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Abstract. We prove that in every compact space of Delone sets in R
d , which is minimal

with respect to the action by translations, either all Delone sets are uniformly spread or
continuously many distinct bounded displacement equivalence classes are represented,
none of which contains a lattice. The implied limits are taken with respect to the
Chabauty–Fell topology, which is the natural topology on the space of closed subsets of
R

d . This topology coincides with the standard local topology in the finite local complexity
setting, and it follows that the dichotomy holds for all minimal spaces of Delone sets
associated with well-studied constructions such as cut-and-project sets and substitution
tilings, whether or not finite local complexity is assumed.
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1. Introduction
A set � ⊂ R

d is called a Delone set if it is both uniformly discrete and relatively dense,
that is, if there are constants r , R > 0 so that every ball of radius r contains at most one
point of � and � intersects every ball of radius R. We refer to r and R as the separation
constant and the packing radius of �, respectively. Two Delone sets �, � ⊂ R

d are said to
be bounded displacement (BD)-equivalent if there exists a bijection φ : � → � satisfying

sup
x∈�

‖x − φ(x)‖ < ∞.

Such a mapping φ is called a BD-map. Note that because norms in R
d are equivalent, this

definition does not depend on the choice of norm. Lattices in R
d with the same covolume

are BD-equivalent, and a Delone set � is called uniformly spread if it is equivalent to a
lattice or, equivalently, if there is a BD-map φ : � → αZd , for some α > 0.
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By fixing a metric ρ on R
d and considering the space C (Rd) of closed subsets of Rd , the

Chabauty–Fell topology on C (Rd) is the topology induced by the metric (see Appendix A)

D(�0, �1)
def= inf

({
ε > 0

∣∣∣∣ �0 ∩ B(0, 1/ε) ⊂ �
(+ε)
1

�1 ∩ B(0, 1/ε) ⊂ �
(+ε)
0

}
∪ {1}

)
, (1.1)

where B(x, R) is the open ball of radius R > 0 centered at x ∈ R
d with respect to the

metric ρ, and A(+ε) is the ε neighborhood of the set A. In this work, we only consider
metrics ρ that are determined by norms on R

d , and although different choices of norms
result in different metrics D, they all define the same topology. We remark that in the
aperiodic order literature, this topology, which was introduced by Chabauty [Ch] for
C (Rd) as well as for a more general setting, and later extended by Fell [Fe], is often
referred to as the natural topology or the local rubber topology, see e.g. [BG, §5]. See also
[LSt] for the relation to the Hausdorff metric.

Delone sets in R
d are elements of C (Rd), and we may consider compact spaces of

Delone sets, where the implied limits are taken with respect to the Chabauty–Fell topology.
Such a space X of Delone sets in R

d is minimal with respect to the Rd action by translations
if the orbit closure of every Delone set � ∈ X is dense in X. Minimality of X is equivalent
to the recurrence of patches in each Delone set � ∈ X, where a patch is a finite subset
of a Delone set. This important geometric consequence of minimality is called almost
repetitivity, and a precise definition and additional details are given in §3. For a proof of this
equivalence, see [FR, Theorem 3.11] and [SS, Theorem 6.5], and see also the discussion
included in [KL].

By denoting the cardinality of the set of BD-equivalence classes represented in X by
BD(X), the following dichotomy is our main result.

THEOREM 1.1. Let X be a space of Delone sets in R
d , and assume it is compact with

respect to the Chabauty–Fell topology and minimal with respect to the action of Rd by
translations. Then either:
(1) there exists a uniformly spread Delone set in X (and so every � ∈ X is uniformly

spread and BD(X) = 1); or
(2) BD(X) = 2ℵ0;
where 2ℵ0 denotes the cardinality of the continuum.

Observe that the minimality assumption is essential, as shown by the following simple
example. Consider � = (−2N) 
 {0} 
 N, a Delone set in R. Then the orbit closure X

of � under translations by R and with respect to the Chabauty–Fell topology consists of
translations of �, the orbit closure of Z and the orbit closure of 2Z. Therefore, BD(X) = 3
and, indeed, X is not minimal.

Let us describe the proof of Theorem 1.1. The implication in the brackets of (1) is
a direct consequence of [La, Theorem 1.1], see also [FG, Theorem 3.2] for a sketch
of a similar proof that holds for general minimal spaces of Delone sets. A uniformly
discrete set in R

d with separation constant r > 0 is BD-equivalent to a subset of the
lattice (r/2)Zd , hence the upper bound BD(X) ≤ 2ℵ0 is trivial. We prove the remaining
implication according to the following steps. Given a non-uniformly spread Delone set
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in a minimal space X, we construct in §4 a sequence of pairs of patches consisting of
an increasingly deviant number of points. In §3, choosing a patch from each pair, which
corresponds to the choice of a word on a two letter alphabet, gives rise to a Delone sets in
X with certain properties. Finally, it is shown in §5 that by using the equivalent condition
for non-BD equivalence of two Delone sets established in §2, two Delone sets defined
using words that differ in infinitely many places are BD-non-equivalent, and so X contains
continuously many BD-equivalence classes.

Recall that a Delone set � has finite local complexity (FLC) if, for every R > 0, the
number of distinct patterns that are contained in balls of radius R in � up to translations
is finite. In such a case, every Delone set in the orbit closure of � under translations,
sometimes called the hull of �, also has FLC. The hull itself is then called FLC, and
the Chabauty–Fell topology on X coincides with the local topology, see [BG, §5]. It
follows that Theorem 1.1 holds also for FLC spaces with respect to the local topology,
and constitutes a new result both in the FLC and non-FLC set-up. In particular, it answers
question (1) in [FG, §7] in the strongest possible way.

In addition to Theorem 1.1, in Theorem 2.3, we establish a useful equivalent condition
for two Delone sets to be non-BD equivalent. This result is the converse of the implication
of Theorem 2.2, which first appeared in [FSS], and may be of interest in its own right.

Delone sets are mathematical models of atomic positions, and BD-equivalence offers
a natural way of classifying them. BD-equivalence for general discrete point sets was
previously considered mainly in the context of uniformly spread point sets, see e.g.
[DO1, DO2, DSS, La]. In recent years, BD-equivalence has emerged as an object of study
for Delone sets that appear in the study of mathematical quasicrystals and aperiodic order,
see [BG] for a comprehensive introduction to such constructions. For cut-and-project sets,
BD-equivalence was studied in [HKW], and links to the notions of bounded remainder
sets and pattern equivariant cohomology appeared in [FG, HK, HKK] and in [KS1, KS2],
respectively. For Delone sets associated with substitution tilings, sufficient conditions for a
set to be uniformly spread were provided in [ACG, S1, S2]. In addition, for the multiscale
substitution tilings introduced by the authors in [SS], it was shown that any Delone set
associated with an incommensurable tiling cannot be uniformly spread.

Recently, questions regarding BD-non-equivalence between two Delone sets were
considered in [FSS], where a sufficient condition for BD-non-equivalence was established.
It was later shown in [S3] that if the eigenvalues and eigenspaces of the substitution
matrix satisfy a certain condition, then the corresponding substitution tiling space contains
continuously many distinct BD-classes.

The following less-restrictive equivalence relation on Delone sets is often studied
in parallel to the BD-equivalence relation. We say that two Delone sets � and � are
biLipschitz (BL)-equivalent if there exists a BL bijection between them. Namely, a bijection
ϕ : � → � and a constant C ≥ 1 so that

for all x, y ∈ �,
1
C

≤ ‖ϕ(x) − ϕ(y)‖
‖x − y‖ ≤ C.

It was shown by Burago and Kleiner [BK1], and independently by McMullen [McM],
Delone sets exist in R

d , d ≥ 2, that are not BL-equivalent to a lattice in R
d . It was shown in
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[Mag] that there are continuously many Delone sets that are pairwise BL-non-equivalent,
and a hierarchy of equivalence relations on Delone sets, which includes BD and BL
equivalence, was recently introduced in [DK]. It would be interesting to obtain an analogue
of our Theorem 1.1 in this context.

Question 1.2. Does Theorem 1.1 hold if BD-equivalence is replaced by BL-equivalence?

In view of the sufficient condition for BL-equivalence to a lattice, given by Burago and
Kleiner in [BK2] and the constructions in [CN, Mag], we remark that the results given in
§§3 and 4, with respect to densities and discrepancy estimates, may be relevant also in the
study of BL-non-equivalence and the question stated above.

1.1. Consequences of Theorem 1.1. Theorem 1.1 directly implies that BD(X) = 2ℵ0 for
many special families of minimal spaces of Delone sets, which are central in the theory of
aperiodic order and for which the BD-equivalence relation was considered previously.

1.1.1. Substitution tilings. For primitive substitution tilings of R
d , we denote the

eigenvalues of the substitution matrix by λ1 > |λ2| ≥ · · · ≥ |λn|, and we let t ≥ 2 be
the minimal index such that the eigenspace of λt contains non-zero vectors whose sum
of coordinates is not zero. Under the assumption that tiles are BL homeomorphic to closed
balls, it was shown in [S2, Theorem 1.2 (I)] that if

|λt | > λ
(d−1)/d

1 , (1.2)

then the Delone sets corresponding to the tilings in the tiling space are not uniformly
spread. Under the assumption (1.2) and an additional assumption regarding the existence
of certain patches, it was recently shown in [S3] that BD(X) = 2ℵ0 . Given the above
result of [S2], and because substitution tiling spaces are minimal (see [BG]), the following
strengthening of the main result of [S3] is a direct consequence of our Theorem 1.1.

COROLLARY 1.3. Let X be a primitive substitution tiling space with tilings by tiles that are
BL homeomorphic to closed balls. Assume that condition (1.2) holds, then BD(X) = 2ℵ0 .

Note that in the context of tilings, we say that two tilings are BD-equivalent if their
corresponding Delone sets, which are obtained by picking a point from each tile, are
BD-equivalent. In addition to the above, [S2] contains an example of a substitution rule,
for which the eigenvalues of the substitution matrix satisfy

|λ2| = λ
(d−1)/d

1 , (1.3)

and the corresponding Delone sets are not uniformly spread, see [S2, Theorem 1.2 (III)].
Note that in this example, the main result of [S3] cannot be applied.

COROLLARY 1.4. There exists a primitive substitution tiling space X for which condition
(1.3) holds and BD(X) = 2ℵ0 .

1.1.2. Cut-and-project sets. Theorem 1.2 in [HKW] concerns the BD-equivalence rela-
tion in the context of cut-and-project sets that arise from linear toral flows (which constitute
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an equivalent method of constructing cut-and-project sets, see [ASW, Proposition 2.3]).
Because the hull of a cut-and-project set is minimal, the next corollary follows directly
from [HKW, Theorem 1.2 (III)] and our Theorem 1.1. We refer to [HKW] for more details
on the construction and terminology.

COROLLARY 1.5. For almost every (k − d)-dimensional linear section S, which is a
parallelotope in the k-dimensional torus, there is a residual set of d-dimensional subspaces
V for which the hull of the corresponding cut-and-project set contains continuously many
distinct BD-classes.

The half-Fibonacci sets were introduced in [FG, §6]. These are cut-and-project sets
in R that belong to the same hull and are BD-non-equivalent. In particular, they are not
uniformly spread (see [FG, Theorem 3.2]). We thus obtain the following result.

COROLLARY 1.6. Let X be the hull of the half-Fibonacci sets from [FG]. Then
BD(X) = 2ℵ0 .

1.1.3. Multiscale substitution tilings. Multiscale substitution tilings were studied
recently in [SS]. Under an incommensurability assumption on the underlying substitution
scheme, the corresponding tiling spaces are minimal [SS, §6], and combined with a mild
assumption on the boundaries of the prototiles, which holds for example for polygonal
tiles, their associated Delone sets, which are never FLC, are also never uniformly spread
[SS, §8].

COROLLARY 1.7. Let X be an incommensurable multiscale polygonal tiling space. Then
BD(X) = 2ℵ0 .

A proof of Theorem 1.1 in the FLC set-up was given in [FGS], which appeared after
the first version of this paper came out. Their work is independent of ours.

2. Necessary and sufficient conditions for BD-non-equivalence
2.1. Notations. Bold characters are used to denote vectors in R

d , and we use the
supremum norm ‖·‖∞ on R

d throughout this paper. Note that with respect to this norm,
balls are (Euclidean) cubes, and we use both terms interchangeably. We denote by ∂A, |A|
and vol(A) the boundary, cardinality and Lebesgue measure of a set A ⊂ R

d , respectively,
and we denote the cardinality of a finite set S by #S. Given ε > 0 and A ⊂ R

d , we denote
the ε-neighborhood of A by

A(+ε) def= {x ∈ R
d | dist(x, A) ≤ ε},

where dist(x, A) = inf{‖x − a‖∞ | a ∈ A}. For an integer m > 0, we denote the collection
of all half-open cubes in R

d with edge-length m and with vertices in mZ
d by

Qd(m)
def=

{ d×
i=1

[ai , ai + m) | a1, . . . , ad ∈ mZ

}
,
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and we denote the collection of finite unions of elements from Qd(m) by Q∗
d(m). In the

case m = 1, we simply write Qd and Q∗
d . For A ∈ Qd , the term vold−1(∂A) denotes

the (d − 1)-Lebesgue measure of ∂A. The following lemma is a direct consequence of
Lemmas 2.1 and 2.2 of [La].

LEMMA 2.1. Let F be a translated copy of an element of Q∗
d and let s > 0, then

vol((∂F )(+s)) ≤ c0 · sd · vold−1(∂F ), (2.1)

where c0 depends only on d .

2.2. BD-equivalence. The following condition for non-BD-equivalence of two Delone
sets in R

d was given in [FSS].

THEOREM 2.2. [FSS, Theorem 1.1] Let �0, �1 be two Delone sets in R
d and suppose

that there is a sequence (Am)m∈N of sets, Am ∈ Q∗
d , for which

|#(�0 ∩ Am) − #(�1 ∩ Am)|
vold−1(∂Am)

m→∞−−−−→ ∞.

Then there is no BD-map φ : �0 → �1.

We show that the converse also holds (compare with [La, Lemma 2.3]).

THEOREM 2.3. The following are equivalent for two Delone sets �0, �1 in R
d .

(i) There is no BD-map between �0 and �1.
(ii) There is a sequence (Am)m∈N of sets, which are translated copies of elements of Q∗

d ,
such that

|#(�0 ∩ Am) − #(�1 ∩ Am)|
vold−1(∂Am)

m→∞−−−−→ ∞. (2.2)

Proof. The implication (ii) ⇒ (i) follows from Theorem 2.2, because translating the sets
Am by at most

√
d changes the numerator by, at most, a constant times vold−1(∂Am).

For (i) ⇒ (ii), suppose that there is no BD-map between �0 and �1, that is, no bijection
φ : �0 → �1 that satisfies

sup
x∈�0

‖x − φ(x)‖∞ < ∞.

For every m ∈ N, consider the bipartite graph Gm
def= (�0 
 �1, Em), where

Em = {{x, y} | x ∈ �0, y ∈ �1, ‖x − y‖∞ ≤ 2m}.
The existence of a perfect matching in Gm for some m would imply the existence of a
BD-map between �0 and �1, which contradicts our assumption. Thus, by Hall’s marriage
theorem (see e.g. [Ra]), for every m ∈ N, there is a set Xm ⊂ �im , im ∈ {0, 1}, so that
#Xm > #(X

(+2m)
m ∩ �1−im). By fixing m ∈ N and assuming, without loss of generality,

that im = 0, set

Am
def=

⋃
{Q ∈ Qd(m) | Q ∩ Xm �= ∅} ∈ Q∗

d(m).
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For Q ∈ Qd(m), let Q′ be a cube of edge-length 3m, which is concentric with Q, and set

Bm
def=

⋃
{Q′ | Q ∈ Qd(m), Q ∩ Xm �= ∅} ∈ Q∗

d(m).

Clearly, Bm ⊃ Am ⊃ Xm and, by the triangle inequality, we have X
(+2m)
m ⊃ Bm. There-

fore,

#(�0 ∩ Am) > #(�1 ∩ Bm) = #(�1 ∩ Am) + #(�1 ∩ (Bm \ Am)),

which implies

#(�0 ∩ Am) − #(�1 ∩ Am) > #(�1 ∩ (Bm \ Am)).

It is left to show that #(�1 ∩ (Bm \ Am))/vold−1(∂Am)
m→∞−−−−→ ∞, which is a conse-

quence of the following argument taken from the proof of [La, Lemma 2.3]. Suppose that
∂Am consists of s faces of cubes in Qd(m). For each such face, let Pj be the cube in Qd(m)

contained in Bm \ Am with a boundary containing that face. Note that P1, . . . , Ps are not
necessarily distinct and that each cube has 2d faces, and so

2d · vol(Bm \ Am) ≥
s∑

j=1

vol(Pj ) = s · md = m · s · md−1 = m · vold−1(∂Am).

The relative denseness of �1 implies that #(�1 ∩ (Bm \ Am)) ≥ c · vol(Bm \ Am) for
some constant c > 0 independent of m, and the proof follows.

COROLLARY 2.4. Let (Am)m∈N be a sequence of sets as in (2.2), then for every R > 0,
there exists M > 0 so that for every m ≥ M , each Am contains a ball of radius R.

Proof. Let R > 0 and suppose that there is a sequence mj → ∞ such that for every j , the
set Amj

does not contain a ball of radius R. Then for every j , we have Amj
⊂ (∂Amj

)(+R)

and thus, by Lemma 2.1,

vol(Amj
) ≤ c0 · Rd · vold−1(∂Amj

).

Because �0 and �1 are uniformly discrete and relatively dense, there exist constants a, b >

0 so that for every j ,

a · vol(Amj
) ≤ #(�0 ∩ Amj

), #(�1 ∩ Amj
) ≤ b · vol(Amj

).

Combining the above implies that for every j , we have

|#(�0 ∩ Amj
) − #(�1 ∩ Amj

)|
vold−1(∂Amj

)
≤ (b − a)c0 · Rd ,

which contradicts (2.2).

3. The topology on spaces of Delone sets
We consider the dynamical system (X, d , G), where (X, d) is a compact metric space
and G is a group acting on X. The dynamical system (X, d , G) is called minimal if every

G-orbit, G.x def= {g.x | g ∈ G} for x ∈ X, is dense in (X, d). A set S ⊂ G is called syndetic
if there is a compact set K ⊂ G so that for every g ∈ G, there is a k ∈ K with kg ∈ S. Note
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that when G = R
d , this notion coincides with our definition of a relatively dense set. A

point x0 ∈ X is said to be uniformly recurrent if, for every open neighborhood U of x0,
the set of ‘return times’ to U , {g ∈ G | g.x0 ∈ U}, is syndetic. As shown in [Fu, Theorem
1.15], in minimal systems, every point is uniformly recurrent.

Recall that given a metric ρ on R
d , we may use (1.1) to define a metric D on C (Rd),

the space of closed subsets of (Rd , ρ), and that this metric induces the Chabauty–Fell
topology. Here and in what follows, we take ρ to be the metric defined by the supremum
norm ‖·‖∞ on R

d . Note that replacing it with any other norm on R
d , such as the Euclidean

norm, would change the metric D but not the induced topology, also known as the local
rubber topology in the context of aperiodic order. It is known that D is a complete metric
on C (Rd), and the space (C (Rd), D) is compact, see e.g. [dH, LSt].

Let X be a collection of Delone sets in R
d . Under the additional assumptions, where X

is a closed subset of C (Rd) and that Rd acts on X by translations, the space (X, D, Rd) is a
compact dynamical system. We say that � ∈ X is almost repetitive if, for every x ∈ R

d and
ε > 0, there exists R = R(ε, x) > 0 such that every ball B(y, R) in R

d contains a vector
v ∈ R

d that satisfies

D(� − x, � − v) < ε.

In words, for every x ∈ R
d and ε > 0, there exists R > 0 so that a copy of B(0, 1/ε) ∩

(� − x) can be found in every R-ball, up to wiggling each point by at most ε. We also
refer to [FR, Definitions 2.8, 2.13, and 3.5] and to [LP] for distinctions between similar
definitions of repetitivity.

The observation in Lemma 3.1 is useful when working with the metric D in spaces of
uniformly discrete point sets.

LEMMA 3.1. Suppose that �0, �1 ⊂ R
d are uniformly discrete sets with separation

constant r > 0, and that D(�0, �1) < ε for 0 < ε < r/2. Then, for every set A ⊂
B(0, 1/ε) that is a translated copy of an element of Q∗

d , there exist injective maps

ϕ0 : �0 ∩ A → �1 ∩ A(+ε), ϕ1 : �1 ∩ A → �0 ∩ A(+ε),

that satisfy

for all x ∈ �0 ∩ A, ‖x − ϕ0(x)‖∞ < ε, for all y ∈ �1 ∩ A, ‖y − ϕ1(y)‖∞ < ε.
(3.1)

In particular, there is a constant c1 that depends on d and r so that

|#(�0 ∩ A) − #(�1 ∩ A)| ≤ c1 · εd · vold−1(∂A). (3.2)

Proof. Given A ⊂ B(0, 1/ε) as above, because D(�0, �1) < ε, the existence of ϕ0, ϕ1

satisfying (3.1) follows directly from the definition of D in (1.1). Note that the maps are
injective because ε < r/2. Therefore,

|#(�0 ∩ A) − #(�1 ∩ A)| ≤ #(�0 ∩ (∂A)(+ε)) + #(�1 ∩ (∂A)(+ε)).

Because �0 and �1 are uniformly discrete, and in view of Lemma 2.1, (3.2) follows.
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We remark that if � is a Delone set in R
d with separation constant and pack-

ing radius r , R > 0, and if X is the orbit closure of � with respect to D, then
every � ∈ X is a Delone set with separation constant at least r and packing radius at
most R.

The following lemma shows that minimal spaces are uniformly almost repetitive.
Namely, the radius R(x, ε), from the definition of almost repetitivity above, does not
depend on x.

LEMMA 3.2. Let X be a compact space of Delone sets so that the dynamical
system (X, D, Rd) is minimal. Then, for every 0 < ε < 1, there exists R = R(ε) > 0,
so that for every �, � ∈ X and y ∈ R

d , there exists some v ∈ B(y, R) for
which

D(�, � − v) < ε.

Proof. Let ε > 0, and let � ∈ X and x ∈ R
d . By minimality, the set � − x is uniformly

recurrent. For η > 0, denote Ux
η

def= {�′ ∈ X | D(� − x, �′) < η}, then the set {v ∈ R
d |

� − v ∈ Ux
ε/2} is relatively dense (syndetic). Therefore, there exists Rx

ε/2 > 0 such that
every cube of edge-length Rx

ε/2 in R
d contains some v ∈ R

d satisfying D(� − x, � −
v) < ε/2.

By minimality again, the collection {� − x | x ∈ R
d} is dense in X. Thus, {Ux

ε/2}x∈Rd

is an open cover of X and, by compactness, there exists a finite sub-cover U
x1
ε/2, . . . , U

xn

ε/2.

Then, for every � ∈ X, there exists some j ∈ {1, . . . , n} so that � ∈ U
xj

ε/2, and hence

D(�, � − xj ) < ε/2. Setting R
def= max{Rx1

ε/2, . . . , R
xn

ε/2}, it follows that for every

y ∈ R
d , there exists some v ∈ B(y, R

xj

ε/2) ⊂ B(y, R) such that D(� − xj , � − v) < ε/2.
Then, by the triangle inequality, D(�, � − v) < ε, as required.

In Proposition 3.3 below, we consider a Delone set � in a minimal space, and
show that if sets Am in Q∗

d grow sufficiently fast, then there exist translation vec-
tors um so that the patches Qm = (� ∩ Am) − um converge to a limit object that
‘almost’ contains all of the patches. The idea of the proof is simply to use the almost
repetitivity property to inductively find an ‘almost’ copy of Qm−1 inside � ∩ Am,
and to set um so that it is centered accordingly, namely, so that the copy we find
‘almost’ agrees with Qm−1. Note that every sequence of sets that grows in a reasonable
sense has a subsequence that grows fast enough to satisfy conditions (1) and (2) in
Proposition 3.3.

PROPOSITION 3.3. Let X be a minimal space of Delone sets in R
d , � ∈ X, (Am)m∈N

a sequence of sets in Q∗
d and (εm)m≥0 a decreasing sequence of positive constants with

ε0 < min{1, r(�)/2}, where r(�) is the separation constant of �. For every m ≥ 0,

choose R(εm) satisfying Lemma 3.2 and set Rm
def= max{R(εm), 1/εm)}. Assume that the

following properties hold for every m ∈ N:
(1) there exists xm ∈ R

d such that Am ⊂ B(xm, 1/2εm);
(2) there exists ym ∈ R

d such that B(ym, 2Rm−1) ⊂ Am.
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Then there exist um ∈ B(ym, Rm−1) and patches Qm
def= (� ∩ Am) − um such that

limm→∞ Qm = � ∈ Rd .� = X. Moreover, for every m ≥ 2,

B(0, Rm−1) ⊂ Am − um ⊂ B(0, 1/εm), (3.3)

D(� − um−1, � − um) < εm−1, (3.4)

D(Qm, �) < εm−1 (3.5)

and there exists c2 > 0 so that

|#(� ∩ (Am − um)) − #Qm| ≤ c2 · εd
m · vold−1(∂Am), (3.6)

where c2 depends on the dimension d and separation constant r(�).

Proof. First, observe that by assumptions (1) and (2),

εm+1 ≤ 1
4Rm

≤ 1
4
εm (3.7)

holds for every m ∈ N. In particular, the series
∑∞

m=1 εm is convergent.
We define the vectors um, and hence the patches Qm, inductively.

• By (1), A1 is in particular contained in a ball of radius 1/ε1. Let u1 be such that
Q1 = (� ∩ A1) − u1 is contained in B(0, 1/ε1).

Assume that the vectors uj , and thus the patches Qj = (� ∩ Aj) − uj , are defined for
j ∈ {1, . . . , m} such that for every 2 ≤ j ≤ m, we have

(i) B(0, Rj−1) ⊂ Aj − uj ⊂ B(0, 1/εj ).
(ii) D(� − uj , � − uj−1) < εj−1.

We define um+1 as follows.
• By (2), Am+1 contains a ball of the form B(ym+1, 2Rm). By Lemma 3.2, let um+1 ∈

B(ym+1, Rm) be a vector satisfying

D(� − um, � − um+1) < εm.

Thus (ii) holds for j = m + 1. Note that because B(ym+1, 2Rm) ⊂ Am+1 and um+1 ∈
B(ym+1, Rm), we have

B(0, Rm) ⊂ Am+1 − um+1.

By (1), Am+1 − um+1 ⊂ B(xm+1 − um+1, 1/2εm+1) and so Am+1 − um+1 contains
the origin. Then, by the triangle inequality, Am+1 − um+1 is contained in
B(0, 1/εm+1), which completes the proof of (i) for j = m + 1.

This completes the construction of the vectors um and the patches Qm. Next, we show
that the sequence (Qm)m∈N is a Cauchy sequence. By fixing some ε > 0 and letting M

be so that 2εM < ε, we let m > n > M and note that by property (ii), we have D(� −
uk+1, � − uk) < εk , for every k ≥ M . Then, by the triangle inequality,

D(� − um, � − un) ≤
m−1∑
k=n

D(� − uk+1, � − uk) <

m−1∑
k=n

εk < 2εn < 2εM < ε, (3.8)
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where the third inequality follows from (3.7). By property (i), for every j ∈ N, the point
sets Qj and � − uj in particular coincide on the ball B(0, 1/εj−1). Because m, n > M ,
the sets � − un and Qn coincide on B(0, 1/ε), and similarly for � − um and Qm.
Therefore, relying on (3.8), for every m > n > M , we have

D(Qm, Qn) ≤ D((� − um) ∩ B(0, 1/ε), (� − un) ∩ B(0, 1/ε)) < ε. (3.9)

Thus, (Qm)m∈N is a Cauchy sequence. The space (X, D) is complete, as a compact metric

space, hence the limit �
def= limm→∞ Qm = limm→∞ � − um exists and belongs to X.

It is left to prove (3.3), (3.4), (3.5), and (3.6). First, observe that (3.3) and (3.4) follow
immediately from the construction, see properties (i) and (ii). To see (3.5), let m ∈ N and
let k > m be so that D(Qk , �) < εm. Repeating the computations in (3.8) and (3.9) yields
that D(Qm, Qk) < 2εm, and by (3.7), we have

D(Qm, �) ≤ D(Qm, Qk) + D(Qk , �) < 3εm < εm−1.

Finally, we prove (3.6). By (3.3), we have Am − um ⊂ B(0, 1/εm) and by (3.5), we have
D(�, Qm+1) < εm. Thus, by Lemma 3.1 with A = Am − um, we obtain

|#(� ∩ (Am − um)) − #(Qm+1 ∩ (Am − um))| ≤ c1 · εd
m · vold−1(∂Am). (3.10)

By (3.4), we have D(� − um, � − um+1) < εm, and applying Lemma 3.1 once again, we
obtain

|#((� − um+1) ∩ (Am − um)) − #((� − um) ∩ (Am − um))| ≤ c1 · εd
m · vold−1(∂Am).

By the definition of Qm, and because Am − um ⊂ Am+1 − um+1 by (3.3), this is exactly

|#(Qm+1 ∩ (Am − um)) − #Qm| ≤ c1 · εd
m · vold−1(∂Am).

Combining this with (3.10) yields (3.6) and completes the proof of the theorem.

4. Finding patches with large discrepancy
The goal of this section is to prove the following proposition, which will be used in our
proof of Theorem 1.1 in §5.

PROPOSITION 4.1. Let � ⊂ R
d be a non-uniformly spread Delone set. Then there exist a

sequence (Am)m∈N of sets in Q∗
d and a sequence (xm)m∈N of vectors in Z

d so that

|#(� ∩ Am) − #(� ∩ (Am + xm))|
vold−1(∂Am)

m→∞−−−−→ ∞. (4.1)

Let � ⊂ R
d be a Delone set. We define the central lower density and the central upper

density of � respectively by

�∗(�)
def= lim inf

t→∞
#(B(0, t) ∩ �)

vol(B(0, t))
, �∗(�)

def= lim sup
t→∞

#(B(0, t) ∩ �)

vol(B(0, t))
.

If the limit limt→∞ #(B(0, t) ∩ �)/vol(B(0, t)) exists, it is called the central density of �

and is denoted by �(�).
We begin with the following lemma.
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LEMMA 4.2. Let � be a Delone set, γ > 0, and A ∈ Q∗
d . Then, for every ε > 0, there

exists K > 0 such that for every integer k ≥ K:
(1) if #(� ∩ B(0, k))/vol(B(0, k)) ≥ γ , then the ball B(0, k) contains A + x, a trans-

lated copy of A with x ∈ Z
d , such that

#(� ∩ (A + x))

vol(A)
≥ γ − ε;

(2) if #(� ∩ B(0, k))/vol(B(0, k)) ≤ γ , then the ball B(0, k) contains A + x, a trans-
lated copy of A with x ∈ Z

d , such that

#(� ∩ (A + x))

vol(A)
≤ γ + ε.

Proof. This is a simple averaging argument. We prove property (1), the proof of property
(2) is similar.

By denoting the diameter of the set A by ρ, for a large integer k, we write B(0, k) =
B[−ρ] 
 (∂B)[+ρ], where B[−ρ], (∂B)[+ρ] ∈ Q∗

d are defined by

B[−ρ]
def=

⋃
{Q ∈ Qd | Q ⊂ B(0, k), dist(Q, ∂B(0, k)) > ρ},

(∂B)[+ρ]
def= B(0, k) \ B[−ρ],

(4.2)

where dist(X, Y )
def= inf{‖x − y‖∞ | x ∈ X, y ∈ Y }.

Given ε > 0, we pick K ∈ N large enough so that for every integer k ≥ K , we have

vol((∂B)[+ρ])

vol(B(0, k))
<

ε

2
. (4.3)

Let k ≥ K , such that

#(� ∩ B(0, k))

vol(B(0, k))
≥ γ , (4.4)

and let Nk
def= {x ∈ Z

d | A + x ⊂ B(0, k)}. By way of contradiction, assume that

for all x ∈ Nk , #(� ∩ (A + x)) < (γ − ε)vol(A). (4.5)

Note that the number of cubes from Qd that form A is vol(A). Then, by counting the
points of � (with multiplicity) in all the sets A + x, x ∈ Nk , the points in every unit lattice
cube in B[−ρ] is counted exactly vol(A) times. Thus,

#Nk(γ − ε)vol(A)
(4.5)
>

∑
x∈Nk

#(� ∩ (A + x)) ≥ vol(A) · #(� ∩ B[−ρ]). (4.6)

Note that #Nk ≤ vol(B(0, k)), then dividing both sides of (4.6) by vol(A) · vol(B(0, k))

yields

γ − ε >
#(� ∩ B[−ρ])

vol(B(0, k))

(4.2)≥ #(� ∩ B(0, k))

vol(B( 0, k))
− #(� ∩ (∂B)[+ρ])

vol(B(0, k))

(4.3),(4.4)
> γ − ε

2
,

which is a contradiction.
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LEMMA 4.3. Suppose that � is a Delone set in R
d and that �∗(�) < �∗(�). Then there

exist α < β, integers ak → ∞ and xk ∈ Z
d , such that

#(� ∩ B(0, ak))

vol(B(0, ak))
≤ α and

#(� ∩ B(xk , ak))

vol(B(xk , ak))
≥ β.

Proof. By the assumption on the densities, there exist sequences ak , bl → ∞ so that

lim
k→∞

#(� ∩ B(0, ak))

vol(B(0, ak))
= α̃ and lim

l→∞
#(� ∩ B(0, bl))

vol(B(0, bl))
= β̃,

where α̃ < β̃. Because � is uniformly discrete, and because the (d − 1)-volume of the
boundary of a cube grows slower than the volume of the cube, we may assume that the
numbers ak , bk are integers. Let δ < (β̃ − α̃)/3 and fix K ∈ N such that for every k, l ≥ K ,
we have

#(� ∩ B(0, ak))

vol(B(0, ak))
≤ α̃ + δ and

#(� ∩ B(0, bl))

vol(B(0, bl))
≥ β̃ − δ. (4.7)

For every k, applying Lemma 4.2 with A = B(0, ak), ε = ((β̃ − α̃)/3) − δ > 0, and β̃ − δ

in the role of γ , and combining this with (4.7), we find a large enough l = lk and xk ∈ Z
d

so that B(0, bl) contains the ball B(xk , ak), which satisfies

#(� ∩ B(xk , ak))

vol(B(xk , ak))
≥ (β̃ − δ) − ε = β̃ − β̃ − α̃

3
. (4.8)

Setting α
def= α̃ + ((β̃ − α̃)/3) and β

def= β̃ − ((β̃ − α̃)/3), the assertion follows from (4.7)
and (4.8).

Proof of Proposition 4.1. Let � ⊂ R
d be a non-uniformly spread Delone set. In view of

Lemma 4.3, we may further assume that �
def= �(�) exists. For α �= �−1/d , the Delone

sets αZd and � do not have the same central density and, hence, there is no BD-map
between them (see e.g. [FSS, Corollary 3.2]). By our assumption on �, there is no BD-map
between � and �−1/d

Z
d as well. Applying Theorem 2.3 on these two Delone sets, we

obtain a sequence (Am)m∈N of sets in Q∗
d that satisfies

|#(�−1/d
Z

d ∩ Am) − #(� ∩ Am)|
vold−1(∂Am)

m→∞−−−−→ ∞.

By passing to a subsequence of (Am)m∈N, we may assume that

#(�−1/d
Z

d ∩ Am) − #(� ∩ Am)

vold−1(∂Am)

m→∞−−−−→ ∞, (4.9)

and complete the proof using (1) of Lemma 4.2. In the case where #(�−1/d
Z

d ∩ Am) <

#(� ∩ Am) for all large values of m, the proof is similar using (2) of Lemma 4.2 instead
of (1).

For every m ∈ N, we pick εm, such that

εmvol(Am) < vold−1(∂Am) (4.10)

and apply Lemma 4.2 with γ = � − εm, A = Am and ε = εm. Note that because
�(�) = � exists, the condition #(� ∩ B(0, k))/vol(B(0, k)) ≥ � − εm is satisfied for
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any sufficiently large k. By (1) of Lemma 4.2, in particular, there exists a vector xm ∈ Z
d

so that

#(� ∩ (Am + xm))

vol(Am)
≥ � − 2εm. (4.11)

From (4.9),

#(�−1/d
Z

d ∩ Am) − #(� ∩ (Am + xm))

vold−1(∂Am)

+ #(� ∩ (Am + xm)) − #(� ∩ Am)

vold−1(∂Am)

m→∞−−−−→ ∞. (4.12)

Note that

#(�−1/d
Z

d ∩ Am) ≤ � · vol(Am) + c · vold−1(∂Am),

where c depends on d and �, and from (4.11), we also have

(� ∩ (Am + xm)) ≥ (� − 2εm)vol(Am).

Then

#(�−1/d
Z

d ∩ Am) − #(� ∩ (Am + xm)) ≤ c · vold−1(∂Am) + 2εmvol(Am)

(4.10)≤ c′ · vold−1(∂Am),

where c′ depends on d and �. Plugging this into (4.12) completes the proof.

5. Proof of Theorem 1.1
Given a non-uniformly spread Delone set � ⊂ R

d , let Am ∈ Q∗
d and xm ∈ Z

d be as in
Proposition 4.1. Let εm > 0 be so that Am is contained in a ball of radius 1/2εm. Passing
to subsequences, by Corollary 2.4 combined with (4.1), we may assume that Am contains
a ball of radius 2Rm−1, where Rm is as in Proposition 3.3. We thus have

B(ym, 2Rm−1) ⊂ Am ⊂ B(zm, 1/2εm) (5.1)

for some ym, zm ∈ R
d . By denoting

Bm
def= Am + xm, pm

def= ym + xm, qm
def= zm + xm, (5.2)

then

B(pm, 2Rm−1) ⊂ Bm ⊂ B(qm, 1/2εm), (5.3)

and so (Am)m∈N and (Bm)m∈N both satisfy Proposition 3.3.
From (4.1), there is a sequence of constants μm → ∞, such that

|#(� ∩ Am) − #(� ∩ (Am + xm))| = μm · vold−1(∂Am). (5.4)

Because μm → ∞, by passing to a further subsequence, we may assume that μm

approaches infinity at an extremely fast rate. In particular, by defining every element in
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the sequence with dependence on the previous one, we may assume that

Rd
m−1

μm

m→∞−−−−→ 0. (5.5)

Using this notation, Theorem 1.1 follows from Lemmas 5.1 and 5.2 below.

LEMMA 5.1. Let X be a minimal space of Delone sets and assume that there exists � ∈ X

that is non-uniformly spread. Let (Am)m∈N and (Bm)m∈N be the sequences of sets in Q∗
d

defined in Proposition 4.1 and in (5.2), with respect to �. For every word ω ∈ {A, B}N, let
(Cm)m∈N be the sequence of sets in Q∗

d defined by

Cm
def=

{
Am, ω(m) = A,

Bm, ω(m) = B,
(5.6)

where w(m) is the mth letter in w. Then there exists a sequence (um)m∈N of vectors in R
d

so that �ω = limm→∞(� ∩ Cm) − um is a Delone set in X,

um ∈
{

B(ym, Rm−1), ω(m) = A,

B(pm, Rm−1), ω(m) = B,
(5.7)

and

for all m ≥ 2, |#(�ω ∩ (Cm − um)) − #(� ∩ Cm)| ≤ c3 · vold−1(∂Cm), (5.8)

where c3 is a constant that depends on d and on the separation constant r(�).

Proof. Given ω ∈ {A, B}N, consider the sequence (Cm)m∈N of sets in Q∗
d defined by

(5.6). From (5.1) and (5.3), conditions (1) and (2) of Proposition 3.3 are being satisfied
for (Cm)m∈N, with (εm)m∈N as described at the beginning of this section. Applying
Proposition 3.3, we obtain vectors um, which satisfies (5.7), for which the sequence of

patches Qm
def= (� ∩ Cm) − um is convergent. Setting �ω to be the limit, by (3.6) of

Proposition 3.3 for every m ≥ 2,

|#(�ω ∩ (Cm − um)) − #Qm| ≤ c3 · εd
m · vold−1(∂Cm),

where c3 depends on d and on r(�). Clearly #Qm = #(� ∩ Cm), and (5.8) follows.

LEMMA 5.2. Let X be a minimal space of Delone sets and assume that there exists � ∈ X

that is non-uniformly spread. Let η, σ ∈ {A, B}N be two words that differ in infinitely many
places. Then, the Delone sets �η and �σ defined in Lemma 5.1 are BD-non-equivalent.

Proof. Taking a subsequence if necessary, we may assume without lose of generality that
η and σ are everywhere different. We use an upper index of η or σ on elements of Q∗

d

and on vectors, e.g. C
η
m and uσ

m, to distinguish between those elements that come from the
construction of �η and of �σ in Lemma 5.1.

By denoting Fm
def= C

η
m − uη

m and using (5.8) for w = η, we obtain

for all m ≥ 2, |#(�η ∩ Fm) − #(� ∩ Cη
m)| ≤ c3 · vold−1(∂Fm). (5.9)
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Observe that for every m ≥ 2 there exists some vm ∈ R
d so that

[Fm − vm =] (Cη
m − uη

m) − vm = Cσ
m − uσ

m and ‖vm‖∞ ≤ 2Rm−1. (5.10)

Indeed, by assuming without loss of generality that η(m) = A and σ(m) = B and combin-
ing (5.2), (5.6), and (5.7) yields that C

η
m = Am, Cσ

m = Am + xm, uη
m ∈ B(ym, Rm−1) and

uσ
m ∈ B(ym + xm, Rm−1), which implies (5.10). It follows that

for all m ≥ 2, (Cσ
m − uσ

m)�Fm ⊂ ∂F
(+2Rm−1)
m ,

and, hence, from (2.1)

for all m ≥ 2, |#(�σ ∩ Fm) − #(�σ ∩ (Cσ
m − uσ

m))| ≤ c4 · Rd
m−1 · vold−1(∂Fm),

where c4 depends on d and on r(�). Again, from (5.8), this time with w = σ , we obtain

for all m ≥ 2, |#(�σ ∩ Fm) − #(� ∩ Cσ
m)| ≤ (c3 + c4 · Rd

m−1)vold−1(∂Fm).

Combining this with (5.9), the triangle inequality yields that for every m ≥ 2,

|#(�η ∩ Fm) − #(�σ ∩ Fm)|
≥ |#(� ∩ Cη

m) − #(� ∩ Cσ
m)| − |#(�η ∩ Fm) − #(� ∩ Cη

m)|
− |#(�σ ∩ Fm) − #(� ∩ Cσ

m)|
≥ |#(� ∩ Cη

m) − #(� ∩ Cσ
m)| − c5 · Rd

m−1 · vold−1(∂Fm),

where c5 depends on d and r(�). Because C
η
m = Am, Cσ

m = Am + xm, and vold−1(∂Am) =
vold−1(∂Fm), combined with (5.4), we have

|#(�η ∩ Fm) − #(�σ ∩ Fm)| ≥ (μm − c5 · Rd
m−1)vold−1(∂Fm),

and together with (5.5), we thus obtain

|#(�η ∩ Fm) − #(�σ ∩ Fm)|
vold−1(∂Fm)

≥ μm

(
1 − c5 · Rd

m−1

μm

)
m→∞−−−−→ ∞.

Theorem 2.3 then implies that the sets �η and �σ are BD-non-equivalent, as required.

Proof of Theorem 1.1. Let X be a minimal space of Delone sets. If there exists a uniformly
spread � ∈ X, then, as noted in §1, every � ∈ X is uniformly spread, and (1) holds.

Otherwise, there exists some � ∈ X that is non-uniformly spread. Consider the
equivalence relation on {A, B}N, in which η ∼ σ , if η and σ differ in only finitely many
places, and let � ⊂ {A, B}N be a set of equivalence class representatives. Because every
equivalence class in this relation is countable, |�| = 2ℵ0 . For every two distinct words
η, σ ∈ �, Lemma 5.2 implies that �η and �σ are BD-non-equivalent; therefore, BD(X) ≥
2ℵ0 . As explained in §1, the upper bound is trivial and so the proof is complete.

Acknowledgment. We are grateful to the anonymous referee for many insightful
suggestions and remarks.
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A. Appendix. D(·, ·) is a metric
It is known that the function D(·, ·) in (1.1) constitutes a metric on C (Rd) when it is
capped by 1/

√
2 instead of 1, see e.g. [LSo, §7]. We show that it is indeed a metric also

when capped by 1. The proof is essentially the same.

PROPOSITION A.1. The function D(·, ·) in (1.1) is a metric on C (Rd).

Proof. The triangle inequality is the only property that is not immediate. Let X, Y , Z ∈
C (Rd) be three closed sets and let ε, δ > 0 so that

D(X, Y ) ≤ ε and D(Y , Z) ≤ δ. (A.1)

We must show that D(X, Z) ≤ ε + δ. Clearly this is true if ε + δ ≥ 1, and so we may
assume in what follows that ε + δ < 1. We have

X ∩ B

(
0,

1
ε + δ

)
= X ∩ B

(
0,

1
ε

)
∩ B

(
0,

1
ε + δ

)
(A.1)⊂ Y (+ε) ∩ B

(
0,

1
ε + δ

)
. (A.2)

Note that because δ < ε + δ < 1, the expression

1
δ

− 1
ε + δ

− ε = ε + δ − δ − εδ(ε + δ)

δ(ε + δ)
= ε(1 − δ(ε + δ))

δ(ε + δ)

is positive, and so ε + (1/(ε + δ)) < 1/δ. By the triangle inequality, if B(x, ε) ∩
B( 0, (1/(ε + δ))) �= ∅ then ρ( 0, x) < ε + (1/(ε + δ)) < 1/δ. Therefore,

Y (+ε) ∩ B

(
0,

1
ε + δ

)
⊂

(
Y ∩ B

(
0,

1
δ

))(+ε) (A.1)⊂ (Z(+δ))(+ε) ⊂ Z(+(ε+δ)).

Combining this with (A.2) finishes the proof.
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