PROBLEMS FOR SOLUTION

J.B. Wilker, Pahlavi University, Shiraz, Iran.

P. 160. Higman [Quart. J. Math. Oxford 10 (1959), 165-178] proves that a group satisfies the identical relation $\left[[x,y], [x,y^{-1}] \right] = 1$ if and only if all its two-generator subgroups are metabelian. Prove that the same conclusion holds for the relation $\left[[x,y], [x^{-1},y^{-1}] \right] = 1$.

J. Gandhi, York University

P. 161. For any positive integer n and any n numbers c_1, \ldots, c_n , let further numbers c_{n+1}, c_{n+2}, \ldots be defined as continued fractions

$$c_{n+1} = 1 - c_n/1 - c_{n-1}/1 - \dots c_2/1 - c_1$$

$$c_{n+2} = 1 - c_{n+1}/1 - c_n/1 - \dots c_3/1 - c_2$$

and so on. Prove that the sequence c_i is periodic with period n + 3; that is, $c_{n+4} = c_1$, $c_{n+5} = c_2$, and so on.

H.S.M. Coxeter, University of Toronto

SOLUTIONS

 $\underline{P. 149}$. Find all solutions, other than the trivial solution (a,b,c) = (1,1,c) of the simultaneous congruences:

ab $\equiv 1 \mod c$, bc $\equiv 1 \mod a$, ca $\equiv 1 \mod b$ where a,b,c are positive integers with a \leq b \leq c .

G.K. White, University of British Columbia