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Minimal Generators of the Defining Ideal
of the Rees Algebra Associated with a
Rational Plane Parametrization with µ = 2

Teresa Cortadellas Benı́tez and Carlos D’Andrea

Abstract. We exhibit a set of minimal generators of the defining ideal of the Rees Algebra associated
with the ideal of three bivariate homogeneous polynomials parametrizing a proper rational curve in
projective plane, having a minimal syzygy of degree 2.

1 Introduction

Let K be an algebraically closed field, and let u0(T0,T1), u1(T0,T1), u2(T0,T1) ∈
K[T0,T1] be homogeneous polynomials of the same degree d ≥ 1 without com-
mon factors. Denote with T the sequence T0,T1, set R := K[T], and let I :=
〈u0(T), u1(T), u2(T)〉 be the ideal generated by these polynomials in R. The Rees
Algebra associated with I is defined as Rees(I) :=

⊕
n≥0 InZn, where Z is a new vari-

able. Let X0,X1,X2 be another three variables and set X = X0,X1,X2. There is a
graded epimorphism of K[T]-algebras defined by

(1.1)
Φ : K[T][X]→ Rees(I),

Xi 7→ ui(T)Z.

Set K := ker(Φ). Note that a description of K also allows a full characterization of
Rees(I) via (1.1). This is why we call it the defining ideal of the Rees Algebra associated
with I.

The search for explicit generators of K is an active area of research in the com-
mutative algebra and computer aided geometric design communities. Indeed, the
defining polynomials of I induce a rational map

(1.2)
φ : P1 → P2,

(t0 : t1) 7→
(

u0(t0, t1) : u1(t0, t1) : u2(t0, t1)
)
,

whose image is an irreducible algebraic plane curve C, defined by the zeros of a ho-
mogeneous irreducible element of K[X0,X1,X2]. This polynomial can be computed
easily by applying elimination techniques on the input parametrization, but it is easy
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to see that the elimination can also be applied on any suitable pair of minimal ele-
ments in K, leading to better algorithms for computing invariants associated with φ.
This is why finding such elements are of importance in the computer aided geometric
design community; see for instance [SC95, SGD97, CSC98, ZCG99, CGZ00, Cox08].

A lot of progress has been made in recent years: a whole description of K has been
given in the case when C has a point of maximal multiplicity in [CHW08, HSV08,
Bus09, CD10]; an extension of this situation to “de Jonquières parametrizations” is
the subject of [HS12]. In [Bus09], a detailed description of generators of K via inertia
forms associated with the syzygies of I is done; the case when φ has an inverse of
degree 2 is the subject of [CD13]; extensions to surfaces and/or non planar curves
have also been considered in [CCL05, HSV09, CD10, HW10, KPU09]; connections
between singularities and minimal elements in K are studied in [CKPU11, KPU13].

In this paper, we give a complete description of a minimal set of generators of the
defining ideal of the Rees Algebra associated with I in the case when there is a minimal
syzygy of I of degree 2 (in the language of µ-bases, this means just µ = 2). Our main
results are given in Sections 3 and 5, where we make explicit these generators in two
different cases: when there is a singular point of multiplicity d − 2 (Theorem 3.4 for
d odd and Theorem 3.7 for d even), and when all the singularities are double points
(Theorem 5.4). The latter situation is just a refinement of [Bus09, Proposition 3.2],
where an explicit list of generators of K is actually given. Our contribution in this
case is to show that Busé’s family is essentially minimal: there is only one member
in this family that can be removed from the list such that the list still generates the
whole K.

There is some general evidence that the more complicated the singularity, the sim-
pler the description of Rees(I) should be; see for instance [CKPU11]. The situation
for µ = 2 is not an exception; indeed from Theorems 3.4, 3.7, and 5.4 we easily de-
rive that the number of minimal generators of K is of the order O( d

2 ) in the case of

a very singular point, and O( d2

2 ) otherwise. Note also that the generators we present
in the very singular point case are not specializations of the larger family produced
in [Bus09] (it was shown in that paper that they are always elements of K), but they
actually appear at lower bidegrees. Moreover, we show in Section 4 that in the very
singular case not all the elements inK1,∗ are pencils of adjoints, as shown also by Busé
in the other case. We should mention that a few days after we posted a preliminary
version of these results ([CD13b]) in the arxiv, the article [KPU13] was uploaded in
the same database. In that work, the authors get the same description we achieved in
Section 3 with a refined kit of tools from local cohomology and linkage.

The paper is organized as follows. In Section 2 we review some well-known facts
about elements in K and focus on the case where the curve C has a very singular
point. We detect in Theorem 2.10 a special family that is part of a minimal set of
generators of K. The rest of the paper focuses on the case µ = 2. In Section 3 we
show that if the curve has a very singular point, we only have to add one (if d is odd)
or two (if d is even) elements to this special family to get a whole set of minimal
generators of K. This is the content of Theorems 3.4 (d odd) and 3.7 (d even).

We then introduce pencils of adjoints in Section 4 and show in Theorem 4.4 that
K1,∗ strictly contains the subspace of pencils of adjoints in the case of a very singular
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point. The other case has already been studied in [Bus09].
Section 5 deals with the case when all the singularities are mild (i.e., no multiplicity

larger than two). In this case, we show in Theorem 5.4 that Busé’s family of generators
of K given in [Bus09, Proposition 3.2] is essentially minimal in the sense that there is
only one of them that can be removed from the list. The paper concludes with a brief
discussion of how these methods may not work for larger values of µ in Section 6.

2 Preliminaries on Rees Algebras and Singularities

Set u(T) := (u0(T), u1(T), u2(T)) for short. By its definition, K ⊂ K[T,X] is a
bihomogeneous ideal that can be characterized as follows:

(2.1) P(T,X) ∈ Ki, j ⇐⇒ bideg(P(T,X)) = (i, j) and P(T, u(T)) = 0.

There is a natural identification of K∗,1 with Syz(I), the first module of syzygies of I.
A straightforward application of the Hilbert Syzygy Theorem shows that Syz(I) is a
free R-module of rank 2 generated by two elements, one of T-degree µ for an integer
µ such that 0 ≤ µ ≤ d

2 , and the other of T-degree d − µ. In the computer aided
geometric design community, such a basis is called a µ-basis of I (see for instance
[CSC98, CGZ00, CCL05]). Indeed, by the Hilbert–Burch Theorem, I is generated by
the maximal minors of a 3× 2 matrix ϕ, and the homogeneous resolution of I is

(2.2) 0 −→ R(−d− µ)⊕ R(−d− (d− µ))
ϕ
−→ R(−d)3

(u0,u1,u2)
−−−−−→ I −→ 0.

This matrix is called the Hilbert-Burch matrix of I and its columns describe the
µ-basis. In the sequel, we will denote with Pµ,1(T,X),Qd−µ,1(T,X) ∈ K∗,1 a (cho-
sen) set of two elements in Syz(I) that are a basis of this module over R.

Throughout this paper we will work under the assumption that the map φ defined
in (1.2) is “proper”, i.e., birational. If this is not the case, then by Lüroth’s Theorem
one can prove that φ is the composition of a proper map φ : P1 → P2 with a poly-
nomial automorphism p : P1 → P1, and our results can be easily translated to this
case.

The following statements have been proven in [CD13]. We will use them in the
sequel.

Proposition 2.1 ([CD13, Section 1 and Lemma 3.10]) Let φ be as in (1.2), a proper
parametrization of a rational plane curve C, and let T0B`(X) − T1A`(X) ∈ K1,` be a
non zero element. Then the map

ψ : C 99K P1,
(x0 :x1 :x2) 7→ (A`(x0, x1, x2) : B`(x0, x1, x2))

is an inverse of φ. Moreover, the singularities of C are contained in the set of common
zeros of {A`(X),B`(X)} in P2. Reciprocally, any inverse of φ induces a nonzero element
in K1,` via the correspondence shown above, with ` being the degree of the polynomials
defining φ−1.
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Denote by Ed(X) the irreducible polynomial of degree d defining C; it is a primi-
tive element generatingK∩K[X].Note that it is well defined up to a nonzero constant
in K.

Proposition 2.2 ([CD13, Proposition 4.1]) Suppose T0F
1
k0

(X) − T1F
0
k0

(X) ∈ K1,k0

for some k0 ∈ N. Then Gi, j(T,X) ∈ Ki, j if and only if Gi, j(F0
k0

(X),F1
k0

(X),X) is a
multiple of Ed(X).

Theorem 2.3 ([CD13, Theorem 4.6]) Let u0(T), u1(T), u2(T) ∈ K[T] be homoge-
neous polynomials of degree d having no common factors. A minimal set of generators
of K can be found with all its elements having T-degree strictly less than d − µ except
for the generators of K∗,1 with T-degree d− µ.

2.1 Curves with Very Singular Points

Definition 2.4 Let µ be the degree of the first non-trivial syzygy of I. A point p ∈ C
is said to be very singular if multp(C) > µ.

The following result is an extension of [CWL08, Theorem 1]. Recall that we have
fixed a basis of the K[X]-module Syz(I) that we denote by {Pµ,1(T,X),Qd−µ,1(T,X)}.

Proposition 2.5 A rational plane curve C can have at most one very singular point. If
this is the case, then after a linear change of the X variables one can write

(2.3) Pµ,1(T,X) = p1
µ(T)X0 − p0

µ(T)X1.

Reciprocally, if 2µ < d and after a linear change of X-coordinates Pµ,1(T,X) has a form
like (2.3), then C has p = (0 :0 :1) as its only very singular point.

Proof The first part of the claim follows directly from [CWL08, Theorem 1]. For
the converse, note that if Pµ,1(T,X) is like (2.3), then by computing u(T) from the
Hilbert Burch matrix appearing in (2.2), we will have

(2.4) u0(T) = p0
µ(T)q(T), u1(T) = p1

µ(T)q(T),

for a homogeneous polynomial q(T) ∈ K[T] of degree d − µ > µ. Hence, the
preimage of the point p = (0 :0 :1) has d − µ values counted with multiplicities (the
zeros of q(T)), and so we get multP(C) > µ.

Remark 2.6 Note that if C has (0 :0 :1) as a very singular point, then

(2.5) Ed(X) = E0
d(X0,X1) + E1

d−1(X0,X1)X2 + · · · + E
µ
d−µ(X0,X1)Xµ

2 ,

with Ei
d−i(X0,X1) ∈ K[X0,X1] homogeneous of degree i, and E

µ
d−µ(X0,X1) 6= 0.

The syzygy Pµ,1(T,X) in (2.3) is called an axial moving line around (0 :0 :1) in
[CWL08]. The following result is well known and will be used in the sequel
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Proposition 2.7 Let as0 (T), bs0 (T) ∈ K[T] be homogeneous of the same degree s0

without common factors. Then (as0 (T), bs0 (T))s = K[T]s for s ≥ 2s0 − 1.

Proof By hypothesis, the classical Sylvester resultant of as0 (T) and bs0 (T) is not zero
(for its definition, see for instance [CLO07]), and moreover from the Sylvester matrix
that computes this resultant we can get a Bézout identity of the form

ã j
s0−1(T)as0 (T) + b̃ j

s0−1(T)bs0 (T) = ResT

(
as0 (T), bs0 (T)

)
T j

0T2s0−1− j
1

for j = 0, 1, . . . , 2s0 − 1. This shows that
(
as0 (T), bs0 (T)

)
2s0−1

= K[T]2s0−1, and the
rest of the claim follows.

Several of the proofs in this text will be done by induction on degrees. In order to
be able to pass from one degree to another, we will apply a pair of operators, one that
decreases the degree in T and another that does it with X. Recall from (2.3) that we
have Pµ,1(T,X) = p1

µ(T)X0 − p0
µ(T)X1.

Definition 2.8 If Gi, j(T,X) ∈ K[T,X]i, j , with i ≥ 2µ− 1, then write

Gi, j(T,X) = p0
µ(T)G0

i−µ, j(T,X) + p1
µ(T)G1

i−µ, j(T,X),

and set

DT

(
Gi, j(T,X)

)
:= X0G0

i−µ, j(T,X) + X1G1
i−µ, j(T,X) ∈ K[T,X]i−µ, j+1.

If Gi, j(T,X) ∈ K[T,X]i, j ∩ 〈X0,X1〉, then write

Gi, j(T,X) = X0G0
i, j−1(T,X) + X1G1

i, j−1(T,X),

and set

DX

(
Gi, j(T,X)

)
:= p0

µ(T)G0
i, j−1(T,X) + pµ1 (T)G1

i, j−1(T,X) ∈ K[T,X]i+µ, j−1.

Note that both operators are in principle not well defined, as the decomposition
of Gi, j(T,X) given above is not necessarily unique. In the next proposition we show
that it is actually well defined modulo Pµ,1(T,X).

Proposition 2.9 Both DT(Gi, j(T,X)) and DX(Gi, j(T,X)) are well defined modulo
Pµ,1(T,X). Moreover, the image of DT lies in the ideal 〈X0,X1〉 and

(2.6) DX

(
DT

(
Gi, j(T,X)

))
= Gi, j(T,X) mod Pµ,1(T,X).

In addition, if Gi, j(T,X) ∈ K, then both DT(Gi, j(T,X)) and DX(Gi, j(T,X)), when
defined, are also elements of K.
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Proof Consider first DT , so it is enough to show that if i ≥ 2µ− 1 and

(2.7) p0
µ(T)G0

i−µ, j(T,X) + p1
µ(T)G1

i−µ, j(T,X) = 0,

then X0G0
i−µ, j(T,X) + X1G1

i−µ, j(T,X) is a multiple of Pµ,1(T,X). But from (2.7), we
get

G0
i−µ, j(T,X) = p1

µ(T)Hi−2µ, j(T,X),

G1
i−µ, j(T,X) = −p0

µ(T)Hi−2µ, j(T,X),

with Hi−2µ, j(T,X) ∈ K[T,X], and hence

X0G0
i−µ, j(T,X) + X1G1

i−µ, j(T,X) = Pµ,1(T,X)H(T,X).

The proof of the claim for DX and for the composition DX ◦DT follows analogously.
To conclude, suppose Gi, j(T,X) ∈ K with i ≥ 2µ − 1. Due to (2.1), this is

equivalent to having

Gi, j

(
T, u(T)

)
= p0

µ(T)G0
i−µ, j

(
T, u(T)

)
+ p1

µ(T)G1
i−µ, j

(
T, u(T)

)
= 0.

From here, by using (2.4), we get immediately that

DT

(
Gi, j(X,T)

) ∣∣
X 7→u(T)

= q(T)
(

p0
µ(T)G0

i−µ, j(T, u(T)) + p1
µ(T)G1

i−µ, j(T, u(T))
)

= 0,

which shows that DT

(
Gi, j(X,T)

)
∈ K, again by (2.1). The proof for DX(Gi, j(T,X))

follows analogously.

2.2 Elements of Low Degree in K

We will assume here that µ < d − µ and set d = kµ + r, with k ∈ N and −1 ≤ r <
µ−1; i.e., k and r are the quotient and remainder respectively of the division between
d and µ, except in the case when d + 1 is a multiple of µ.

With this information we will produce minimal generators of Rees(I) in the case
where the curve C defined by the generators u(T) of I has a very singular point, which
we will assume without loss of generality is P = (0 :0 :1).

We start by setting

Fµ,1(T,X) := Pµ,1(T,X), F(k−1)µ+r,1(T,X) := Qd−µ,1(T,X),

a basis of the syzygy module of I. Note that we have (k− 1)µ + r = d− µ.
Now for j = 2, . . . , k − 1 we will define recursively F(k− j)µ+r, j(T,X) ∈ K as

follows:

(2.8) F(k− j)µ+r, j(T,X) = DT

(
F(k− j+1)µ+r, j−1(T,X)

)
.

Note that we can apply the operator DT to these polynomials as their T-degree is
(k − j + 1)µ + r ≥ 2µ − 1. Also, we have to make a choice in order to define each
of these polynomials, but we know that they are all equivalent modulo Fµ,1(T,X)
thanks to Proposition 2.9.
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Theorem 2.10

(i) For each j = 1, . . . , k − 1, F(k− j)µ+r, j(T,X) is in K, and it is not a multiple of
Fµ,1(T,X). In particular, it is not identically zero.

(ii) Up to a nonzero constant in K, we have

ResT

(
Fµ,1(T,X), F(k− j)µ+r, j(T,X)

)
= Ed(X), j = 1, 2, . . . , k− 1.

(iii) If Gi, j(T,X) ∈ Ki, j with i + µ j < d, then Gi, j(T,X) is a multiple of Fµ,1(T,X).
(iv) The set of k + 1 elements

(2.9)
{
Ed(X), Fµ,1(T,X), Fµ+r,k−1(T,X), F2µ+r,k−2(T,X), . . . , Fd−µ,1(T,X)

}
is part of a minimal system of generators of K.

Proof
(i) The proof is by induction on j, the case j = 1 being obvious. Suppose then

that j > 1. Due to Proposition 2.9, we know that

F(k− j)µ+r, j(T,X) = DT

(
F(k− j+1)µ+r, j−1(T,X)

)
∈ K.

Note also that by construction, we have straightforwardly

X1F(k−( j−1))µ+r, j−1(T,X)− p1
µ(T)F(k− j)µ+r, j(T,X) ∈ 〈Fµ,1(T,X)〉.

If F(k− j)µ+r, j(T,X) is a multiple of Fµ,1(T,X), then as the latter is irreducible, we
would then conclude that F(k−( j−1))µ+r, j−1(T,X) is also a multiple of this polynomial,
which again contradicts the inductive hypothesis.

(ii) Clearly ResT(Fµ,1(T,X), F(k− j)µ+r, j(T,X)) ∈ K[X]. Moreover, an explicit
computation reveals that the X-degree of this resultant is equal to kµ+r = d,which is
the degree of Ed(X). So it must be equal to λEd(X) with λ ∈ K. If λ = 0, this would
imply that both {Fµ,1(T,X), F(k− j)µ+r, j(T,X)} have a nontrivial common factor in
K[T,X]. But Fµ,1(T,X) is irreducible, and we just saw in (i) that F(k− j)µ+r, j(T,X) is
not a multiple of it, which then shows that the resultant cannot vanish identically, so
λ 6= 0.

(ii) We have

ResT

(
Fµ,1(T,X),Gi, j(T,X)

)
= Ed(X)αµ j+i−d(X),

so in order to have this resultant different from zero we must have 0 ≤ µ j + i − d,
contrary to our hypothesis. Hence, the resultant above vanishes identically, and due
to the irreducibility of Fµ,1(T,X), we have that Gi, j(T,X) must be a multiple of it.

(iii) Clearly Fµ,1(T,X) is minimal in this set, so it cannot be a combination of the
others. Also, the family

{Fµ+r,k−1(T,X), F2µ+r,k−2(T,X), . . . , Fd−µ,1(T,X)}

is pseudo-homogeneous with weighted degree degT +µ degX = d (i.e., all the expo-
nents lie on a line). This shows that none of the elements in this family can be a
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combination of the others, and as we have seen in (i), none of them is a multiple
of Fµ,1(T,X), so this is a minimal set of generators of the ideal they generate. To
see that they can be extended to a whole set of generators of K, consider the max-
imal ideal M = 〈T,X〉 of R. The pseudo-homogeneity combined with (i) and (iii)
implies straightforwardly that the family (2.9) is K-linearly independent in the quo-
tient K/MK. By the homogeneous version of Nakayama’s lemma (see for instance
[BH93, Exercise 1.5.24]), we can extend this family to a minimal set of generators of
K. This completes the proof.

Remark 2.11 If µ = 1, then one can take k = d or k = d + 1. If we choose k = d,
then it is easy to see that the family (2.9) actually specializes in the minimal set of
generators of K described in [CD13, Theorem 2.10]. So this construction may be
regarded somehow as a generalization of the tools used in [CD13] for the case µ = 1.

3 The Case µ = 2 with C Having a Very Singular Point

3.1 d Odd

In this case, we will show that the family given in Theorem 2.10(iv) is “almost” a
minimal set of generators of K. We only need to add one more element of bidegree
(1, d+1

2 ) to the list in order to generate the whole K. Suppose then in this paragraph
that µ = 2, and d = 2k − 1, with k ∈ N, k > 2 (otherwise µ = 1). Note that in
this case, there is a form of T-degree one in (2.9). We will define an extra element in
K by computing the so called Sylvester form among F1,k−1(T,X) and F2,1(T,X). This
process is standard in producing nontrivial elements in K; see for instance [BJ03,
Bus09, CD10, CD13].

• Write F2,1(T,X) = T0G1,1(T,X) + T1H1,1(T,X), with G1,1(T,X),H1,1(T,X) ∈
K[T,X]. Note that this decomposition is not unique.

• Write F1,k−1(T,X) = T0F
1
k−1(X) − T1F

0
k−1(X), with Fi

k−1(X) ∈ K[X], homoge-
neous of degree d− 1.

• Set

(3.1) F1,k(T,X) := F0
k−1(X)G1,1(T,X) + F1

k−1(X)H1,1(T,X).

The following claims will be useful in the sequel.

Lemma 3.1 F1,k(T,X) ∈ K1,k\〈F1,k−1(T,X)〉; in particular, it is not identically zero.

Proof By construction, we have

F1,k(F0
k−1(X),F1

k−1(X),X) = F2,1(F0
k−1(X),F1

k−1(X),X)

= ±ResT(F2,1(T,X), F1,k−1(T,X)) = ±Ed(X),

the last equality due to Theorem 2.10(ii). By Proposition 2.2, we then conclude
that F1,k(T,X) ∈ K1,k, and it is clearly nonzero. Moreover, as both F1,k(T,X) and
F1,k−1(T,X) have degree 1 in T, the fact that F1,k

(
F0

k−1(X),F1
k−1(X),X

)
6= 0 im-

plies that they are K-linearly independent, and from here the rest of the claim follows
straightforwardly.
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Lemma 3.2 F1,k(T,X) ∈ 〈X0,X1〉, and modulo F2,1(T,X), we have

(3.2) DX

(
F1,k(T,X)

)
∈
〈

F1,k−1(T,X)
〉
.

Proof Write F2,1(T,X) = T0G1,1(T,X) + T1H1,1(T,X) as before and note that as
F2,1(T,X) ∈ K[T,X0,X1], we then have G1,1(T,X) = G1,1(T,X0,X1) and also
H1,1(T,X) = H1,1,(T,X0,X1). From the definition of F1,k(T,X) given in (3.1), we
get

F1,k(T,X) = F0
k−1(X)G1,1(T,X0,X1) + F1

k−1(X)H1,1(T,X0,X1) ∈ 〈X0,X1〉,

and a choice for DX(F1,k(T,X)) is actually

(3.3) DX

(
F1,k(T,X)

)
=

F0
k−1(X)G1,1

(
T, p0

2(T), p1
2(T)

)
+ F1

k−1(X)H1,1

(
T, p0

2(T), p1
2(T)

)
.

From (2.3), we actually get that F2,1(T,X) ∈ K[T,X0,X1], and hence

F2,1

(
T, p0

2(T), p1
2(T)

)
= 0 = T0G1,1

(
T, p0

2(T), p1
2(T)

)
+ T1H1,1

(
T, p0

2(T), p1
2(T)

)
,

so we conclude that there exist q2(T) ∈ K[T] homogeneous of degree 2 such that

G1,1(T, p0
2(T), p1

2(T)) = T1q2(T),

H1,1(T, p0
2(T), p1

2(T)) = −T0q2(T).

Replacing the left-hand side of the above identities in (3.3), we get

DX

(
F1,k(T,X)

)
=
(

T1F
0
k−1(X)− T0F

1
k−1(X)

)
q2(T) ∈

〈
F1,k−1(T,X)

〉
.

Lemma 3.3 The set

{Ed(X), F1,k−1(T,X), F1,k(T,X), F2,1(T,X), F3,k−2(T,X), . . . , F2(k−2)−1,1(T,X)}

is contained in the ideal 〈X0,X1〉.

Proof Each of the F2(k− j)−1, j(T,X) is actually equal to DT(F2(k− j+1)−1, j−1(T,X)),
and by the definition of this operator, its image always lies in 〈X0,X1〉.

The claim for F2,1(T,X) follows from its definition in (2.3), and for F1,k(T,X)
from Lemma 3.2. To conclude, due to (2.5), we also have that Ed(X) ∈ 〈X0,X1〉.

Now we are ready for the main result of this section.

Theorem 3.4 Suppose µ = 2, d = 2k − 1 with k ≥ 2 and the parametrization
φ induced by the data u(T) is proper with a very singular point. Then the following
k + 2 = d+5

2 polynomials form a minimal set of generators of K :

Fo := {Ed(X), F2,1(T,X), F2(k−1)−1,1(T,X), . . . , F1,k−1(T,X), F1,k(T,X)}.
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Proof Theorem 2.10 shows that the family Fo \ {F1,k(T,X)} is a set of minimal gen-
erators of the ideal that generates it. Lemma 3.1, and the pseudo-homogeneity of
the elements in this family show that by adding F1,k(T,X) to the list, we still get a
minimal set of generators (of the ideal generated by the whole family).

Let us show now that Fo generates K. Due to Theorem 2.3, it is enough to consider
Gi, j(T,X) ∈ K of bidegree (i, j) with i < d− µ. We will proceed by induction on i.

• If i = 0, as Ed(X) generates K ∩ K[X], the claim follows straightforwardly.
• If i = 1, by Proposition 2.2, we have

G1, j

(
F0

k−1(X),F1
k−1(X),X

)
= Ed(X)A j−k(X),

with A j−k(X) ∈ K[X] j−k. Then it is easy to see that

ResT

(
G1, j(T,X)−A j−k(X)F1,k(T,X), F1,k−1(T,X))

)
= 0

by evaluating the first polynomial in the only zero of the second. But this implies that

G1, j(T,X)−A j−k(T,X)F1,k(T,X) ∈ K1, j ∩
〈

F1,k−1(T,X)
〉
.

• For i = 2, we compute ResT(G2, j(T,X), F1,k−1(T,X)) to get Ed(X)A j−1(X), with
A j−1(X) ∈ K[X] j−1. By reasoning as in the previous case, we get

G2, j(T,X)−A j−1(X)F2,1(T,X) ∈ K2, j ∩ 〈F1,k−1(T,X)〉,

as this polynomial also vanishes after the specialization T 7→ Fk−1(X).
• If i ≥ 3, then we can apply DT to Gi, j(T,X) and get, by Proposition 2.9,
DT(Gi, j(T,X)) ∈ Ki−2, j .Now we use the inductive hypothesis and get the following
identity where all elements are polynomials in K[T,X] :

DT(Gi, j(T,X)) = A(T,X)Ed(X) + B(T,X)F1,k(T,X) + C(T,X)F2,1(T,X)

+
∑

1≤2(k−m)−1≤i−2

Dm(T,X)F2(k−m)−1,m(T,X).

(3.4)

Due to (2.6), we have that Gi, j(T,X) = DX(DT(Gi, j(T,X))) modulo F2,1(T,X), and
thanks to Lemma 3.3, we can apply DX( · ) to each of the members of the right-hand
side of (3.4). We verify straightforwardly from the definition given in (2.8) that

DX(F2(k−m)−1,m(T,X)) = F2(k−m+1)−1,m−1(T,X),

and then get the following identity modulo F2,1(T,X) :

Gi, j(T,X) = A(T,X)DX(Ed(X)) + B(T,X)DX(F1,k(T,X))

+ C(T,X)DX(F2,1(T,X))

+
∑

1≤2(k−m)−1≤i−2

Dm(T,X)DX

(
F2(k−m)−1,m(T,X)

)
= A(T,X)DX(Ed(X)) + B̃(T,X)F1,k−1(T,X)

+
∑

1≤2(k−m)−1≤i−2

Dm(T,X)F2(k−m+1)−1,m−1(T,X),
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where the last equality holds thanks to (3.2). The claim now follows straightforwardly
from this identity by noting that DX(Ed(X)) ∈ K2,d−1, and that we just proved (this
is the case i = 2) that this part of K is generated by elements of Fo.

- i

6

j

q (2, 1) q (2k − 3, 1)
q (2k − 5, 2)

qqq
q (1, k − 1)
q (1, k) q

q (0, 2k − 1)

Figure 1: Bidegrees of a set of minimal generators of K for the case d = 2k − 1

Example 3.5 For k ≥ 3, consider

u0(T0,T1) = T2k−1
0 , u1(T0,T1) = T2k−3

0 T2
1 , u2(T0,T1) = T2k−1

1 .

These polynomials parametrize a curve of degree 2k− 1 with µ = 2 and

T2
1 X0 − T2

0 X1, T2k−3
1 X1 − T2k−3

0 X2

as µ basis. The minimal system of generators of K given in Theorem 3.4 is in this
case

E(X) = X2k−1
1 − X2k−3

0 X2
2 ,

F2,1(T,X) = T2
1 X0 − T2

0 X1,

Fd−2,1(T,X) = F2(k−1)−1,1 = T2k−3
1 X1 − T2k−3

0 X2,

...
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F2(k− j)−1, j(T,X) = T2(k− j)−1
1 X j

1 − T2(k− j)−1
0 X j−1

0 X2

...

F1,k−1(T,X) = T1Xk−1
1 − T0Xk−2

0 X2,

F1,k(T,X) = T0Xk
1 − T1Xk−1

0 X2.

3.2 d Even

We will assume here that d = 2k, with k ≥ 3 and that µ = 2. In this case, the family
in Theorem 2.10(iv) becomes

{Ed(X), F2,1(T,X), F2,k−1(T,X), F4,k−2(T,X), . . . , F2(k−1),1(T,X)}.

Note that there are no generators of degree 1 in T. We will produce two of them
by making suitable polynomial combinations among F2,1(T,X) and F2,k−1(T,X) as
follows. Write

(3.5)
F2,1(T,X) = T2

0F
0
1(X) + T2

1F
1
1(X) + T0T1F

∗
1 (X),

F2,k−1(T,X) = T2
0M

0
k−1(X) + T2

1M
1
k−1(X) + T0T1M

∗
k−1(X),

and define F0
1,k(T,X) and F1

1,k(T,X) via the identities

(3.6)
M0

k−1(X)F2,1(T,X)− F0
1(X)F2,k−1(T,X) = T1F0

1,k(T,X),

M1
k−1(X)F2,1(T,X)− F1

1(X)F2,k−1(T,X) = T0F1
1,k(T,X).

We write

(3.7)
F0

1,k(T,X) = T0F
0,0
k (X)− T1F

0,1
k (X),

F1
1,k(T,X) = T0F

1,0
k (X)− T1F

1,1
k (X).

Proposition 3.6

(i) Fi
1,k(T,X) ∈ K1,k ∩ 〈X0,X1〉, for i = 0, 1.

(ii) Up to a nonzero constant in K,

F
0,0
k (X)F1,1

k (X)− F
1,0
k (X)F0,1

k (X) = ResT

(
F0

1,k(T,X), F1
1,k(T,X)

)
= Ed(X).

(iii) {F0
1,k(T,X), F1

1,k(T,X)} is a basis of the K[X]-module K1,∗.

(iv) Modulo F2,1(T,X),DX(Fi
1,k(T,X)) ∈ 〈F2,k−1(T,X)〉 for i = 0, 1.

Proof
(i) This follows straightforwardly from the definition of Fi

1,k(T,X) given in
(3.6), by taking into account that both F2,1(T,X) and F2,k−1(T,X) are elements of
K ∩ 〈X0,X1〉.
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(ii) The fact that ResT(F0
1,k(T,X), F1

1,k(T,X)) coincides with F
0,0
k (X)F1,1

k (X) −
F

1,0
k (X)F0,1

k (X) follows from the definition of ResT and (3.7). As both Fi
1,k(T,X) ∈

K, i = 0, 1, it turns out then that ResT(F0
1,k(T,X), F1

1,k(T,X)) must be a multiple of
Ed(X). Computing degrees, both polynomials have the same degree 2k = d, so the
resultant actually must be equal to λEd(X). To see that λ 6= 0, it is enough to show
that the forms Fi

1,k(T,X) are K-linearly independent, as they have the same bidegree.

Suppose that this is not the case, and write λ0F0
1,k(T,X) + λ1F1

1,k(T,X) = 0 with
λ0, λ1 ∈ K, not both of them equal to zero. We will then have, from (3.6):

(
λ0T0M

0
k−1(X) + λ1T1M

1
k−1(X)

)
F2,1(T,X) =(

λ0T0F
0
1(X) + λ1T1F

1
1(X)

)
F2,k−1(T,X).

From Theorem 2.10(ii), we know that F2,1(T,X) and F2,k−1(T,X) are coprime, so an
identity like the above cannot hold unless it is identically zero, which forces λ0 =
λ1 = 0, a contradiction to our assumption.

(iii) The K[X]-linear independence of the family {F0
1,k(T,X), F1

1,k(T,X)} follows
from the fact that their T-resultant is not zero, which has been shown already in (ii).
So it is enough to show that any other element in K1,∗ is a polynomial combination
of these two. Let G1, j(T,X) ∈ K1, j . Then, as before, we have that

ResT

(
F0

1,k(T,X),G1, j(T,X)
)

= Ed(X)P j−k(X),

with P j−k(X) ∈ K[X] j−k. If the latter is identically zero, then the claim follows
straightforwardly. Otherwise (note that this immediately implies j ≥ k), set

G̃1, j(T,X) := G1, j(T,X)− P j−k(X)F1
1,k(T,X) ∈ K[T,X]1, j .

It is then easy to show that ResT(F0
1,k(T,X), G̃1, j(T,X)) = 0, which implies that

G̃1, j(T,X) ∈ 〈F1
1,k(T,X)〉, so we get immediately from the definition of G̃1, j(T,X)

given above that G1, j(T,X) ∈ 〈F0
1,k(T,X), F1

1,k(T,X)〉.
(iv) First note that, because of what we just proved in (i), the operator DX can be

applied to Fi
1,k(T,X) for i = 0, 1. Also, it is immediate to check that the polynomials

F0
1(X) and F1

1(X) defined in (3.5) belong to 〈X0,X1〉. So we can actually apply DX to
both identities in (3.6) and define DX(Fi

1,k(T,X)) in such a way that

−F0
1

(
p0

2(T), p1
2(T)

)
F2,k−1(T,X) = T1DX

(
F0

1,k(T,X)
)
,

−F1
1

(
p−2 (T), p1

2(T)
)

F2,k−1(T,X) = T0DX

(
F1

1,k(T,X)
)
.

Note that F2,k−1(T,X) cannot have any proper factor. Indeed, by Theorem 2.10, it
belongs to a subset of a minimal generator of the (prime) ideal K. This shows that
T j divides −Fi

1(p0
2(T), p1

2(T)) for i, j = 0, 1, i 6= j, and hence DX(Fi
1,k(T,X)) ∈

〈F2,k−1(T,X)〉 for i = 0, 1.
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Now we are ready to prove the main theorem of this section. Just note that if n = 4
and µ = 2, if there is a point of multiplicity strictly larger than µ, then it is a triple
point and that forces µ = 1, a contradiction to our hypothesis.

Theorem 3.7 Suppose µ = 2, d = 2k with k ≥ 3, the parametrization being proper
with a very singular point. Then a minimal set of generators of K is the following set of
k + 3 = d+6

2 polynomials

Fe :=
{
Ed(X), F0

1,k(T,X), F1
1,k(T,X), F2,1(T,X), F2,k−1(T,X), . . . , F2(k−1),1(T,X)

}
.

Proof The proof follows the same lines as the proof of Theorem 3.4. To begin with,
Theorem 2.10 and Proposition 3.6(iii) show that Fe is a minimal set of generators of
an ideal contained in K. In order to see that they are equal, we will proceed again by
induction on the T-degree of the forms, the case i = 0 follows analogously from the
proof of Theorem 3.4. For i = 1, the claim has been proven in Proposition 3.6(iii).

Suppose then that i = 2, and write G2, j ∈ K2, j as

G2, j(T,X) = T2
0G

0
j (X) + T2

1G
1
j (X) + T0T1G

∗
j (X),

Recall the notation we introduced in (3.5) and write

G0
j (X)F2,1(T,X)− F0

1(X)G2, j(T,X) = T1H1, j+1(T,X),

G0
j (X)F2,k−1(T,X)−M0

k−1(X)G2, j(T,X) = T1H∗1, j+k−1(T,X),

so we get

(3.8) M0
k−1(X)G0

j (X)F2,1(T,X)− F0
1(X)G0

j (X)F2,k−1(T,X) = T1H∗∗1, j+k(T,X)

with H1, j+1(T,X),H∗1, j+k−1(T,X),H∗∗1, j+1(T,X) ∈ K1,∗. By Proposition 3.6(iii), we

know that K1,∗ is generated by 〈F0
1,k(T,X), F1

1,k(T,X)〉, so we have

H1, j+1(T,X) = α j−k+1(X)F0
1,k(T,X) + β j−k+1(X)F1

1,k(T,X),

H∗1, j+k−1(T,X) = α∗j−1(X)F0
1,k(T,X) + β j−1(X)F1

1,k(T,X)

H∗∗1, j+k(T,X) = α∗∗j (X)F0
1,k(T,X) + β∗∗j (X)F1

1,k(T,X).

Note that

(3.9) α∗∗j (X) = M0
k−1(X)α j−k+1(X)− F0

1(X)α∗j−1(X).

From (3.6), we deduce

G0
j (X)(M0

k−1(X)F2,1(T,X)− F0
1(X)F2,k−1(T,X)) = T1G

0
j (X)F0

1,k(T,X).

By subtracting this identity from (3.8), and using the obvious fact that F0
1,k(T,X) and

F1
1,k(T,X) are K[X]-linearly independent, we deduce that

(3.10) G0
j (X) = α∗∗j (X) = M0

k−1(X)α j−k+1(X)− F0
1(X)α∗j−1(X),
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where the last equality is (3.9). So by setting

G̃2, j(T,X) := G2, j(T,X)− α j−k+1(X)F2,k−1(T,X) + α∗j−1(X)F2,1(T,X),

due to (3.10) we easily deduce that G̃2, j = T1G∗1, j(T,X), with G∗1, j(T,X) ∈ K1, j .

Again by Proposition 3.6(iii), it turns out that G∗1, j(T,X) ∈ 〈F0
1,k(T,X), F1

1,k(T,X)〉
and hence

G2, j(T,X) ∈
〈

F0
1,k(T,X), F1

1,k(T,X), F2,1(T,X), F2,k−1(T,X)
〉
,

which proves the claim for i = 2.
If i ≥ 2, we proceed exactly as in the proof of Theorem 3.4, and we only have to

verify that DX(F0
1,k(T,X)) and DX(F1

1,k(T,X) belong to the ideal generated by Fe. But
this follows immediately from Proposition 3.6(iv).

- i

6

j

q (2, 1) q (2k − 2, 1)
q (2k − 4, 2)

qqq
q (2, k − 1)

q q (1, k) q

q (0, 2k)

Figure 2: Bidegrees of a set of minimal generators of K for the case d = 2k

Example 3.8 For k ≥ 3, consider

u0(T0,T1) = T2k
0 , u1(T0,T1) = T2k−2

0 (T2
1 + T0T1), u2(T0,T1) = T2k−2

1 (T2
1 + T0T1).

These polynomials parametrize properly a curve of degree 2k with µ = 2 and

(T2
1 + ToT1)X0 − T2

0 X1, T2k−2
1 X1 − T2k−2

0 X2

as µ basis. Indeed, by computing the implicit equation, we get

E2k(X) = X2k
1 −

1

22k−3

( k−1∑
j=0

(
2k− 2

2 j

)
X2k−2 j−2

0 (X2
0 + 4X0X1) j

)
X1X2 + X2k−2

0 X2
2 .
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4 Adjoints

We now turn our attention to geometric features of elements in K1,∗. Recall that a

curve C̃ is adjoint to C if for any point p ∈ C, including “virtual points”, we have

(4.1) mp(C̃) ≥ mp(C)− 1.

Here, mp(C) denotes the multiplicity of p with respect to C. Adjoint curves are of
importance in computational algebra because of their use in the inverse of the im-
plicitization problem, i.e., the so-called “parametrization problem”; see [SWP08] and
the references therein. For a more geometric approach to adjoints, we refer the reader
to [CA00].

Definition 4.1 A pencil of adjoints of C of degree ` ∈ N is an element T0C
0
`(X) +

T1C
1
`(X) ∈ K[T,X], with Ci

`(X) of degree `, defining a curve adjoint of C, for
i = 0, 1.

For ` ∈ Z≥0, we denote by Adj`(C) the K-vector space of pencils of adjoints of C
of degree `. In [Bus09, Corollary 4.10], it is shown that if C has µ = 2 and only mild
singularities, then both K1,d−2 and K1,d−1 are contained in Adj`(C), ` = d−2, d−1
respectively. We will show here that if C has µ = 2 and a very singular point, then
Adj`(C)∩K1,` is strictly contained in K1,` if the later is not zero. We will also compute
the dimension of these finite dimensional K-vector spaces for a generic C to measure
the difference between them.

Lemma 4.2 With the notation introduced in the previous section, for i = k−1, k and
j = 0, 1, we have that

F1,i(T,X) ∈ 〈X0,X1〉i−1 \ 〈X0,X1〉i ,

F j
1,k(T,X),∈ 〈X0,X1〉k−1 \ 〈X0,X1〉k.

Proof The operator DT from Definition 2.8, when applied to a polynomial in
〈X0,X1〉`, has its image in 〈X0,X1〉`+1. From here, it is easy to deduce that
F1,k−1(T,X) ∈ 〈X0,X1〉k−2. If it actually belonged to 〈X0,X1〉k−1, then it would not
depend on X2. But as

ResT

(
F2,1(T,X), F1,k−1(T,X)

)
= Ed(X)

and F2,1(T,X) does not depend on X2, we would then have that Ed(X) ∈ K[X0,X1],
which is a contradiction to the irreducibility of this polynomial. The same argument
holds for F1,k(T,X) by noting now that

ResT

(
F2,1(T,X), F1,k(T,X)

)
= Ed(X)A2(X),

with A2(X) 6= 0.
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For the second part of the proof, we get that F j
1,k(T,X),∈ 〈X0,X1〉k−1 for j =

0, 1 straightforwardly from the definition of these forms given in (3.6). An explicit
computation also shows that

ResT

(
F j

1,k(T,X), F2,1(T,X)
)

= ±Ed(X)L j
1(X)

with L
j
1(X) 6= 0, which proves that F1,k(T,X) has a term that is linear in X2.

In the sequel, we set
(a

b

)
= 0 if a < b. For a K[X]-graded module M and an integer

`, we denote by M` the `-th graded piece of M.

Proposition 4.3 Let φ be as in (1.2), a proper parametrization of a curve C having
µ = 2 and a very singular point. let ` ≥ 0.

(i) if d = 2k− 1, then K1,` = 〈F1,k−1(T,X)〉` ⊕ 〈F1,k(T,X)〉` and the dimension of

this K-vector space is
(
`−k+3

2

)
+
(
`−k+2

2

)
;

(ii) if d = 2k, then K1,` = 〈F0
1,k(T,X)〉` ⊕ 〈F1

1,k(T,X)〉`, its K-dimension being

2
(
`−k+2

2

)
.

Proof Suppose first that d = 2k − 1. From the statement of Theorem 3.4, we have
that K1,∗ = 〈F1,k−1(T,X), F1,k(T,X)〉K[X].Moreover, from Lemma 3.1 and the proof
of Theorem 3.4, we easily deduce that〈

F1,k−1(T,X), F1,k(T,X)
〉
`

=
〈

F1,k−1(T,X)
〉
`
⊕
〈

F1,k(T,X)
〉
`

for any ` ≥ 0. From here, the claim follows straightforwardly by computing dimen-
sions in each of the subspaces involved in the last equality. The case d = 2k follows
analogously, using now Proposition 3.6(iii).

Theorem 4.4 Let φ as in (1.2) be a proper parametrization of a curve C having µ = 2
and a very singular point. For any ` ≥ 0:

• If d = 2k− 1, then

dimK

(
Adj`(C) ∩K1,`

)
≤

{
0 if ` < 2k− 3,

`(`− 2k + 4) otherwise.

• If d = 2k, then

dimK

(
Adj`(C) ∩K1,`

)
≤

{
0 if ` < 2k− 2,

`(`− 2k + 3) otherwise.

For a generic curve C with µ = 2 and a very singular point, the equality actually holds.

Proof Suppose d = 2k − 1 with k ≥ 3 (otherwise there cannot be a point of multi-
plicity larger than 2), and without loss of generality assume that (0 :0 :1) is the point
of multiplicity d− 2 = 2k− 3. Fix ` ≥ 0, and set

Z` = 〈x0, x1〉d−3 ∩K1,`.
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Due to (4.1) applied to p = (0 :0 :1), it turns out that Adj`(C)∩K1,` ⊂ Z`.Moreover,
the equality holds for a generic curve with µ = 2 and (0 :0 :1) being very singular.
Indeed, such a curve has all its singularities of ordinary type (i.e., there are no “virtual
points”). For this class of curves it is easy to show that any nonzero element in Z`

is a pencil of adjoints, as we already know that (0 :0 :1) has the correct multiplicity,
plus the fact that all the other singular points have multiplicity two thanks to Propo-
sition 2.5 (and are ordinary due to genericity). So condition (4.1) for these points is
satisfied provided that the pencil also vanishes at these points, and this follows from
Proposition 2.1.

To compute the dimension of Z`, Proposition 4.3 and Lemma 4.2 imply that the
set {XαF1,k−1(T,X),XβF1,k(T,X)} with |α| = ` − k + 1, α0 + α1 ≥ k − 2, |β| =
`− k, β0 +β1 ≥ k− 3, is a basis of Z`. If ` < 2k− 3, the cardinality of this set is zero.
Otherwise, it is equal to

`−k+1∑
j=k−2

( j + 1) +
`−k∑

j=k−3

( j + 1) = `(`− 2k + 4).

The proof for d = 2k follows mutatis mutandis the argument above.

Remark 4.5 Combining the dimensions computed in Proposition 4.3 and Theo-
rem 4.4, we get that

dim
(
K1,`/Adj`(C) ∩K1,`

)
≥

{
(k− 2)2 if d = 2k− 1,

(k− 1)(k− 2) if d = 2k,

with equality for ` ≥ d − 2 and C generic in this family of curves. Note that the
dimension of the quotient is independent of ` for ` ≥ d− 2.

5 Curves with Mild Multiplicities

Now we turn to the case where there are no multiple points of multiplicity larger
than 2. In this case, a whole set of generators of K has been given in [Bus09, Proposi-
tion 3.2], and our contribution will be to show that this set is essentially minimal in
the sense that there is only one element that can be removed from the list.

We start by recalling the construction of Busé’s generators. In order to do this,
some tools from classical elimination theory of polynomials will be needed. As
in the beginning, our µ-basis will be supposed to be a fixed set of polynomials
{P2,1(T,X),Qd−2,1(T,X)}. Recall that in this situation, we now have

P2,1(T,X) = T2
0 L0

1(X) + T2
1 L1

1(X) + T0T1L∗1 (X),

with VP2 (L0
1(X), L1

1(X), L∗1 (X)) = ∅, in contrast with the previous case where this
variety was the unique point in C having multiplicity d− 2 on the curve.
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5.1 Sylvester Forms

For v = (v0, v1) ∈ {(0, 0), (1, 0), (0, 1)}, write

P2,1(T,X) = T1+v0
0 P0,v

1−v0,1(T,X) + T1+v1
1 P1,v

1−v1,1(T,X),

Qd−2,1(T,X) = T1+v0
0 Q0,v

d−3−v0,1
(T,X) + T1+v1

1 Q1,v
d−3−v1,1

(T,X),

and set

∆v(T,X) :=

∣∣∣∣∣ P0,v
1−v0,1(T,X) P1,v

1−v1,1(T,X)

Q0,v
d−3−v0,1

(T,X) Q1,v
d−3−v1,1

(T,X)

∣∣∣∣∣ ∈ K[T,X]d−2−|v|,2.

It is easy to see (see also [Bus09]) that these polynomials are elements of K, well
defined modulo K∗,1. Note also that one has the following equality modulo K∗,1:

(5.1) ∆(0,0)(T,X) = T0∆
(1,0)(T,X) = T1∆

(0,1)(T,X),

which essentially shows that these elements are not independent modulo K. These
forms are called Sylvester forms in the literature; see for instance [Jou97, CHW08,
Bus09].

5.2 Morley Forms

Now we will define more elements of K of the form ∆v(T,X), for 2 ≤ |v| ≤ d − 1.
In order to do that, we first have to compute the Morley form of the polynomials
P2,1(T,X) and Qd−2,1(T,X), as defined in [Jou97, Bus09], as follows. Introduce a
new set of variables S = S0, S1, and write

P2,1(T,X)− P2,1(S,X) = P0(S,T,X)(T0 − S0) + P1(S,T,X)(T1 − S1),

Qd−2,1(T,X)− Qd−2,1(S,X) = Q0(S,T,X)(T0 − S0) + Q1(S,T,X)(T1 − S1),

(5.2)

and define the Morley form of P2,1(T,X) and Qd−2,1(T,X) as

Mor(S,T,X) :=

∣∣∣∣P0(S,T,X) P1(S,T,X)
Q0(S,T,X) Q1(S,T,X)

∣∣∣∣ .
Due to homogeneities, it is easy to see that we have the following monomial expan-
sion of the Morley form:

(5.3) Mor(S,T,X) =
∑
|v|≤d−2

Fv
d−2−|v|,2(T,X)Sv,

with Fv
d−2−|v|,2(T,X) ∈ K[T,X](d−2−|v|,2). It can also be shown (see for instance

[Jou97] or [Bus09]) that the elements Fv
d−2−|v|,2(T,X) are well defined modulo the

ideal generated by P2,1(T,X)− P2,1(S,X) and Qd−2,1(T,X)− Qd−2,1(S,X).
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To define nontrivial elements in K, we proceed as in [Bus09, Section 2.3]. Fix
i, 1 ≤ i ≤ d− 2 and let Mi be the (d− 1− i)× (d− 2− i) matrix defined as follows:

Mi =



L0
1(X) 0 0 · · · F(d−2−i,0)

i,2 (T,X)

L∗1 (X) L0
1(X) 0 · · · F(d−3−i,1)

i,2 (T,X)

L1
1(X) L∗1 (X) L0

1(X) · · · F(d−4−i,2)
i,2 (T,X)

...
. . .

. . . · · ·
...

0 · · · L1
1(X) F(0,d−2−i)

i,2 (T,X)


.

By looking at the last column, we see that the rows of Mi are indexed by monomials
v such that |v| = d − 2 − i. For each of these monomials, we define ∆

v
i,d−1−i(T,X)

as the signed maximal minor of Mi obtained by eliminating from this matrix the row
indexed by v. By looking at the homogeneities of the columns of Mi , we easily get
that ∆

v
i,d−1−i(T,X) ∈ K[T,X]i,d−1−i . Moreover, we have the following proposition.

Proposition 5.1 ([Bus09, Theorem 2.5]) Each of the ∆
v
i,d−1−i(T,X) is independent

of the choice of the decomposition (5.2) modulo 〈P2,1(T,X),Qd−2,1(T,X)〉 and belongs
to K.

In connection with the matrices Mi defined above, we recall here the matrix con-
struction for the resultant given in [Jou97, 3.11.19.7]. For a fixed i, 1 ≤ i ≤ d − 4,
we set Mi the (d− 2)× (d− 2) square matrix, defined as follows:

(5.4) Mi =

(
Mi(1) Mor(i)

0 Md−2−i(1)t

)
,

where M j(1) is the submatrix of M j where we have eliminated the last column, and
the matrix Mor(i) has its rows (resp. columns) indexed by all T monomials of total
degree d − 2 − i (resp. i), in such a way that the entry Mor(i)v,v ′ is equal to the

coefficient of Tv ′
Sv in Mor(S,T,X) defined in (5.3). With this notation, we easily

deduce that

(5.5) Fv
d−2−|v|,2(T,X) =

∑
|v ′|=d−2−|v|

Mor(i)v ′,vTv ′
.

Proposition 5.2 ([Jou97, Proposition 3.11.19.21])∣∣Mi

∣∣ = Ed(X).

To prove our main result, we will need the following technical lemma.

Lemma 5.3 Let K be a field, n,N ∈ N and ω0, ω1, . . . , ωn−2, τ1, . . . , τN ∈ Kn, such
that dimK (ω0, ω1, . . . , ωn−2) = n− 1, and for each j = 1, . . . ,N,

dimK (ω0, ω1, . . . , ωn−2, τ j) ≤ n− 1

(where (F) denotes the K-vector space generated by the sequence F). Then for each
i, j, 1 ≤ i, j ≤ N, we have

dimK (ω1, . . . , ωn−2, τi , τ j) ≤ n− 1.
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Proof Suppose that the claim is false. Then, we will have (ω1, . . . , ωn−2, τi , τ j) = Kn

for some i, j and by applying Grassman’s formula for computing the dimension of a
sum of vector subspaces:

dimK (ω1, . . . , ωn−2, τi , τ j)

≤ dimK (ω0, ω1, . . . , ωn−2, τi) + dimK (ω0, ω1, . . . , ωn−2, τ j)

− dimK (ω0, ω1, . . . , ωn−2)

≤ 2(n− 1)− (n− 1) = n− 1,

a contradiction.

5.3 Minimal Generators

We are now ready to present the main result of this section.

Theorem 5.4 If µ = 2 and the curve C has all its singularities having multiplicity 2,
then the following family of (d+1)(d−4)

2 + 5 polynomials

{Ed, P2,1(T,X),Qd−2,1(T,X),∆(1,0)(T,X),∆(0,1)(T,X)}

∪ {∆v
i,d−1−i(T,X)}1≤i≤d−4,|v|=d−2−i

is a minimal set of generators of K.

Proof In [Bus09, Proposition 3.2], it is shown that F ∪ {∆0,0(T,X)} is a set of gen-
erators of K, and we just saw in (5.1) that we can remove ∆0,0(T,X) from the list. So
we only need to prove that this family is minimal, i.e., that there are no superfluous
combinations. Apart from Ed(X), P2,1(T,X),Qd−2,1(T,X), note that the rest of ele-
ments in F have total degree in (T,X) equal to d− 1. The only generator whose total
degree is lower than or equal to d − 1 is P2,1(T,X). So, due to bihomogeneity of the
generators, the proof will be done if we just show that

• ∆(1,0)(T,X) and ∆(0,1)(T,X) are K-linearly independent modulo P2,1(T,X);
• for each i = 1, . . . , d− 4, the set {∆v

i,d−1−i(T,X)}|v|=d−2−i is K-linearly indepen-
dent modulo P2,1(T,X).

To prove the first claim, suppose we have λ0, λ1 ∈ K such that

λ0∆
(1,0)(T,X) + λ1∆

(0,1)(T,X) = 0 mod P2,1(T,X).

Recall also from (5.1), that we have

T0∆
(1,0)(T,X)− T1∆

(0,1)(T,X) = 0 mod P2,1(T,X).

From these two identities, we get

(λ1T0 − λ0T1)∆(0,1)(T,X) ∈
〈

P2,1(T,X)
〉
,

https://doi.org/10.4153/CJM-2013-035-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-035-1


1246 T. Cortadellas Benı́tez and C. D’Andrea

i.e., ∆(0,1)(T,X) ∈ 〈P2,1(T,X)〉. But this is impossible, as (5.1) shows that

T1∆
(0,1)(T,X) = ∆(0,0)(T,X),

and the latter is an element different from zero (the “discrete jacobian” )in the quo-
tient ring K[T,X] modulo P2,1(T,X),Qd−2,1(T,X); see for instance [Bus09, 2.1] So
λ0 = λ1 = 0 and the claim follows.

Now choose i such that 1 ≤ i ≤ d− 4, and consider the family

{∆v
i,d−1−i(T,X)}|v|=d−2−i .

Suppose that there is a non trivial linear combination∑
|v|=d−2−i

λv∆
v
i,d−1−i(T,X) = 0 mod P2,1(T,X),

with λv ∈ K∀v. By the definition of the polynomials ∆
v
i,d−1−i(T,X), this last identity

implies that the square extended matrix

(Mi |λ) =



L0
1(X) 0 0 · · · F(d−2−i,0)

i,2 (T,X) λ(d−2−i,0)

L∗1 (X) L0
1(X) 0 · · · F(d−3−i,1)

i,2 (T,X) λ(d−3−i,1)

L1
1(X) L∗1 (X) L0

1(X) · · · F(d−4−i,2)
i,2 (T,X) λ(d−4−i,2)

...
. . .

. . . · · ·
...

...

0 · · · L1
1(X) F(0,d−2−i)

i,2 (T,X) λ(0,d−2−i)


is rank-deficient modulo P2,1(T,X). We claim the matrix that results by eliminating
the second to last column has maximal rank. Indeed, if this were not the case, by
looking at the Sylvester-type structure of the matrix and performing linear combina-
tions of the columns of this rectangular matrix, we would deduce an identity of the
form ∑

|v|=d−2−i

λvTv =
A(T,X)

B(X)
P2,1(T,X),

with A(T,X) ∈ K[T,X],B(X) ∈ K[X]. But this is impossible, since from

B(X)

( ∑
|v|=d−2−i

λvTv

)
= A(T,X)P2,1(T,X),

we would deduce that P2,1(T,X) is not irreducible, which is a contradiction. Hence,
these columns are K[X]-linearly independent. By expanding the determinant of the
rank-deficient matrix (Mi |λ) by the second to last column, and using (5.5), we get

0 =
∑
|v ′|=i

∣∣∣∣∣∣∣∣∣∣∣∣∣

L0
1(X) 0 0 · · · Mor(i)v ′,(d−2−i,0) λ(d−2−i,0)

L∗1 (X) L0
1(X) 0 · · · Mor(i)v ′,(d−3−i,1) λ(d−3−i,1)

L1
1(X) L∗1 (X) L0

1(X) · · · Mor(i)v ′,(d−4−i,2) λ(d−4−i,2)
...

. . .
. . . · · ·

...
...

0 · · · L1
1(X) Mor(i)v ′,(0,d−2−i) λ(0,d−2−i)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Tv ′

,
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so we conclude that∣∣∣∣∣∣∣∣∣∣∣∣∣

L0
1(X) 0 0 · · · Mor(i)v ′,(d−2−i,0) λ(d−2−i,0)

L∗1 (X) L0
1(X) 0 · · · Mor(i)v ′,(d−3−i,1) λ(d−3−i,1)

L1
1(X) L∗1 (X) L0

1(X) · · · Mor(i)v ′,(d−4−i,2) λ(d−4−i,2)
...

. . .
. . . · · ·

...
...

0 · · · L1
1(X) Mor(i)v ′,(0,d−2−i) λ(0,d−2−i)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

for all v ′, |v ′| = i. Lemma 5.3 above then implies that

(5.6)

∣∣∣∣∣∣∣∣∣∣∣∣∣

L0
1(X) 0 0 · · · Mor(i)v ′,(d−2−i,0) Mor(i)v ′ ′,(d−2−i,0)

L∗1 (X) L0
1(X) 0 · · · Mor(i)v ′,(d−3−i,1) Mor(i)v ′ ′,(d−3−i,1)

L1
1(X) L∗1 (X) L0

1(X) · · · Mor(i)v ′,(d−4−i,2) Mor(i)v ′ ′,(d−4−i,2)
...

. . .
. . . · · ·

...
...

0 · · · L1
1(X) Mor(i)v ′,(0,d−2−i) Mor(i)v ′ ′,(0,d−2−i)

∣∣∣∣∣∣∣∣∣∣∣∣∣
for any pair v ′, v ′ ′ such that |v ′| = |v ′ ′| = i. If we compute the determinant of
the matrix Mi defined in (5.4) by Laplace expansion along the first block of rows
(Mi(1) Mor(i)), then due to the zero-block structure of this matrix it is easy to see
that the only non zero minors contributing to this Laplace expansion coming from
this block are of the form (5.6). This implies then that |Mi | = 0, which contradicts
Proposition 5.2. Hence, there cannot be a nontrivial linear combination of the form∑
|v|=d−2−i λv∆

v
i,d−1−i(T,X) = 0 mod P2,1(T,X).

6 What About µ ≥ 3?

One may wonder to what extent what we have done in this text for curves with µ = 2
can be extended with the same techniques for larger values of µ. We have worked out
several examples with Macaulay 2, and the situation does not seem to be straight-
forwardly generalizable. For instance, there will be no statement equivalent to what
we obtained in Theorems 3.4 and 3.7 for µ ≥ 3, where once you fix the degree d of
the curve with a very singular point, the bidegrees of the minimal generators of K are
determined by it for µ = 2.

Indeed, consider the two following µ-bases:

F3,1(T,X) = T3
0 X0 + (T3

1 − T0T2
1 )X1

F7,1(T,X) = (T6
0 T1 − T2

0 T5
1 )X0 + (T4

0 T3
1 + T2

0 T5
1 )X1 + (T7

0 + T7
1 )X2

F̃3,1(T,X) = (T3
0 − T2

0 T1)X0 + (T3
1 + T0T2

1 − T0T2
1 )X1

F̃7,1(T,X) = (T6
0 T1 − T2

0 T5
1 )X0 + (T4

0 T3
1 + T2

0 T5
1 )X1 + (T7

0 + T7
1 )X2.

Each of them properly parametrizes a rational plane curve of degree 10 having
(0 :0 :1) as a very singular point. However, an explicit computation of a family of
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minimal generators of K for the first curve gives in both cases families of cardinality
10, but in the first one the generators appear in bidegrees

(3, 1), (7, 1), (2, 3), (2, 3), (4, 2), (2, 4), (1, 6), (1, 6), (1, 6), (0, 10),

while in the second curve, the generators have bidegrees

(3, 1), (7, 1), (2, 3), (2, 3), (4, 2), (2, 4), (1, 5), (1, 6), (1, 6), (0, 10).

Also, the family we can get from (2.9) only detects the elements in bidegree

(3, 1), (7, 1), (4, 2), (0, 10),

so it will no longer be true that for T-degrees larger than µ− 1, this set actually gives
all the generators of K.

All of this shows that, for µ ≥ 3, more information from the curve apart from
(d, µ) and if it has a very singular point or not, must be taken into account to get a
precise description of the minimal generators of K. Note also that in the case of mild
singularities, the set of elements of K proposed by Busé in [Bus09] does not generate
the whole ideal, and by computing concrete examples, we find that they almost never
contain or are contained in a minimal set of generators of K.
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