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Richardson and Reynolds number effects on the
near field of buoyant plumes: temporal
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Using numerical simulations, we investigate the near-field temporal variability of
axisymmetric helium plumes as a function of inlet-based Richardson (Ri0) and Reynolds
(Re0) numbers. Previous studies have shown that Ri0 plays a leading-order role in
determining the frequency at which large-scale vortices are produced (commonly called
the ‘puffing’ frequency). By contrast, Re0 dictates the strength of localized gradients,
which are important during the transition from laminar to turbulent flow. The simulations
presented here span a range of Ri0 and Re0, and use adaptive mesh refinement to achieve
high spatial resolutions. We find that as Re0 increases for a given Ri0, the puffing motion
undergoes a transition at a critical Re0, marking the onset of chaotic dynamics. Moreover,
the critical Re0 decreases as Ri0 increases. When the puffing instability is non-chaotic,
time series of different variables are well-correlated, exhibiting only modest changes in
the dynamics (including period doubling and flapping). Once the flow becomes chaotic,
denser ambient fluid penetrates the core of the plume, similar to penetrating ‘spikes’
formed by Rayleigh–Taylor instabilities, leading to only moderately correlated flow
variables. These changes result in a non-trivial dependence of the puffing frequency on
Re0. Specifically, at sufficiently low Re0, the puffing frequency falls below the prediction
from Wimer et al. (J. Fluid Mech., vol. 895, 2020). As Re0 increases beyond the critical
Re0, the puffing frequency increases and then drops back down to the predicted scaling.
The dependence of the puffing frequency on Re0 provides a possible explanation for
previously observed changes in the scaling of the puffing frequency for high Ri0.
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1. Introduction

Buoyant plumes are found in a wide range of naturally occurring phenomena (e.g. volcanic
eruptions, hydrothermal vents and fire plumes) and engineering applications (e.g. heat
treatment processes, desalination plants and space heaters). The distinguishing feature of
these flows is the presence of a dominant buoyant force resulting from density variations
in the presence of a gravitational field (Lee & Chu 2012). In each of these flows, when
lower-density fluid is injected into higher-density ambient fluid, the plume contracts
laterally, producing large coherent vortical structures that rise vertically, opposite to
the direction of gravity. This process repeats continuously, resulting in a characteristic
‘puffing’ behaviour (Bharadwaj & Das 2017). Although this is sometimes referred to as
flame ‘flickering’ for laminar reacting plumes (Moreno-Boza et al. 2016), we will refer
to this phenomenon as the puffing instability regardless of whether or not reactions and
heat release are present. The frequency at which vortices are shed is the most commonly
studied characteristic of this instability, and much research has been devoted to developing
scaling relations for the frequency based on plume inlet parameters.

Early research on the puffing instability was focused primarily on reacting plumes,
motivated by the need to characterize and mitigate risks associated with fire spread.
In reacting plumes, the puffing instability affects the flame height and mixing of fuel
and oxidizer, both of which are particularly important for fires in enclosed spaces. As
reviewed by Zukoski (1986) and Cetegen & Ahmed (1993), a key finding of these studies
was that the puffing frequency f is related to the plume radius R0 as f ∼ R−1/2

0 . It was
hypothesized that buoyancy was the dynamical mechanism for generating such behaviour,
but an unambiguous definition of the buoyancy force in reacting plumes is difficult due
to the spatial variability of density differences resulting from reactions. As a result, the
precise physical mechanism that connects frequency scaling relations to the underlying
governing equations remains unknown. Elucidating this mechanism is an important
ongoing direction of research on reacting plumes, in particular, since similar relations are
now being determined empirically in less ideal configurations (e.g. with non-axisymmetric
geometries and heterogeneous fuel sources) such as wildfires (Finney et al. 2015).

To better understand reacting plume structure and dynamics, it has been common for
the past several decades to instead study non-reacting buoyant plumes where complexities
associated with chemical reactions are absent, while the essential buoyancy-driven
plume dynamics are retained. Much of this research has focused on relating inlet-based
parameters (e.g. inflow velocity, density ratio, etc.) to the puffing frequency. Early
experimental work by Cetegen & Kasper (1996) found that the non-dimensional puffing
frequency – or Strouhal number, St0 ≡ fR0/U0 – could be predicted accurately using
the Richardson number Ri0 ≡ (1 − ρ0/ρ∞)gR0/U2

0. This result was later generalized by
Wimer et al. (2020), leading to a proposed relationship for axisymmetric round plumes of
the form

St0 = 2 e−1
(

Ri0
2

)2/5

, (1.1)

where ρ0 is the density of the injected fluid, ρ∞ > ρ0 is the density of the surrounding
fluid, g is the gravitational acceleration, and U0 is the velocity of the injected fluid.
Equation (1.1) was further substantiated using data from prior experiments (O’Hern
et al. 2005; Bharadwaj & Das 2017, 2019), stability analyses (Bharadwaj & Das 2017;
Chakravarthy, Lesshafft & Huerre 2018; Bharadwaj & Das 2019, 2021), high-resolution
simulations (Jiang & Luo 2000; Wimer et al. 2021), and large-eddy simulations
(DesJardin, O’Hern & Tieszen 2004; Burton 2009). The density ratio ρ0/ρ∞ and Froude
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Temporal variability and puffing in the near field of buoyant plumes

number Fr0 = U0/(gR0)
1/2 have also been found to independently affect the puffing

frequency (Soteriou, Dong & Cetegen 2002; Bharadwaj & Das 2017), but are more
commonly combined to obtain relations for St0 in terms of Ri0 alone, as in (1.1).

By contrast to Ri0, the puffing frequency has generally been found to have little
dependence on the Reynolds number Re0 = R0U0/ν0, where ν0 is the kinematic viscosity
of the injected fluid (Subbarao & Cantwell 1992; Bharadwaj & Das 2017). For small
density ratios and small Fr0 (corresponding to large Ri0), Satti & Agrawal (2006) and
Bharadwaj & Das (2017) found that Re0 affects only the flow near the viscous limit where
the flow transitions from steady to unsteady. The lack of an Re0 effect is particularly
noteworthy given that puffing exists in the limit of low and high Re0, and between these
limits, the flow undergoes a transition between laminar and turbulent behaviours. This
transition is distinguished by chaotic, irregular motions as the puffing instability becomes
more turbulent due to the interaction of newly formed small-scale structures and the global
puffing mode (Subbarao & Cantwell 1992). The robustness of the puffing frequency
through this transition suggests that Re0 and, by extension, small-scale effects do not
impact the global frequency.

At the same time, research on Rayleigh–Taylor instabilities, which are relevant to
buoyant plumes where lower-density fluid is injected into higher-density fluid, has shown
that the perturbation Reynolds number (closely related to Re0) determines whether the
flow transitions between different growth regimes (Wei & Livescu 2012; Bian et al. 2020).
When the plume undergoes this transition, we expect that as Re0 increases, the puffing
behaviour will undergo a series of complex changes in its temporal evolution, starting
with correlated variables at low Re0, and ending with little to no correlation at high Re0.
This transition has been discussed qualitatively by other researchers (Subbarao & Cantwell
1992; Cetegen & Kasper 1996), but the implications of this transition on the temporal
characteristics of buoyant plumes have yet to be examined in detail.

Rigorously testing the effect of Re0 on buoyant plume structure and dynamics is made
difficult by the challenge of controlling Re0 experimentally, as well as by the high
computational cost of fully resolved numerical simulations over a range of Re0. From
an experimental standpoint, most researchers vary U0 and R0 to keep Ri0 fixed. However,
without considerable caution, varying R0 can lead to variations in other non-dimensional
numbers, such as the non-dimensional ratio R0/φ, where φ is a measure of the boundary
layer width at the inflow plane (Michalke 1984; Nichols, Schmid & Riley 2007). From
a computational standpoint, it is easier to ensure that all non-dimensional parameters
remain fixed, but most such studies have needed to sacrifice some level of fidelity to
perform systematic parameter sweeps. This includes reduced spatial dimensionality (i.e.
conducting simulations in two dimensions; Soteriou et al. 2002), using stability analyses
(Bharadwaj & Das 2017), and using subgrid-scale models (DesJardin et al. 2004). It is
conceivable that these simplifications cause Re0 to have a reduced impact due to, for
example, the discrepancy in spectral kinetic energy transfer in two and three dimensions
(Kraichnan 1967) or the challenge in performing physically accurate simulations of
buoyancy-driven flows using large-eddy simulations (DesJardin et al. 2004; Nicolette et al.
2005).

In the present study, we use three-dimensional (3-D) numerical simulations to examine
how Ri0 and Re0 affect the near-field temporal evolution of helium buoyant plumes.
The three-dimensionality of the simulations is important to capture vortex breakdown
properly, which has been shown in buoyant plumes to occur abruptly as a function of
vertical distance (Subbarao & Cantwell 1992). To ensure fully resolved yet computational
tractable simulations, we use PeleLM (Nonaka, Day & Bell 2018), a massively parallel
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low-Mach hydrodynamics code that solves the governing equations on a dynamically
varying and flow-dependent numerical grid. This dynamic grid approach, commonly
known as adaptive mesh refinement (AMR), allows us to resolve small-scale flow features
locally. This is particularly attractive for buoyant plumes because a large computational
domain is required to entrain ambient fluid properly, but grid resolution demands are quite
large for localized concentrations of steep gradients (e.g. along the helium–air interface).

The text is organized as follows. A detailed description of the numerical simulations is
provided in § 2. We then present simulation results in § 3. Finally, a number of important
conclusions drawn from this work are put forth in § 4.

2. Numerical simulations

2.1. Governing equations
We use PeleLM (Nonaka et al. 2018) to perform 3-D numerical simulations of helium
buoyant plumes. PeleLM solves low-Mach governing equations for continuity, momentum,
species and enthalpy, given as (Rehm & Baum 1978; Majda & Sethian 1985)

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.1a)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂π

∂xi
+ gi + 1

ρ

∂

∂xj

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)]
, (2.1b)

∂(ρYm)

∂t
+ ∂(ρuiYm)

∂xi
= ∂Γmi

∂xi
, (2.1c)

∂(ρh)

∂t
+ ∂(ρuih)

∂xi
= ∂

∂xi

(
λ

∂T
∂xi

)
+ ∂

∂xi

(∑
m

hmΓmi

)
. (2.1d)

Here, ρ is the density, ui are the velocity components, π is the perturbational pressure, gi
is gravity, μ is the dynamic viscosity, δij is the Kronecker delta function, Ym is the mass
fraction of species m, h is the mixture-averaged enthalpy, λ is the thermal diffusivity, T is
the temperature, and hm is the enthalpy of species m. The diffusive flux is defined as

Γmi ≡ ρDm
Wmix

Wm

∂Ym

∂xi
, (2.2)

where Dm is the diffusivity, Wm is the molecular weight of species m, and Wmix is the
mixture-averaged molecular weight, Wmix ≡ (

∑
m Ym/Wm)−1. It is assumed that Wmix

varies weakly in space so that the usual form is recovered, Γmi = ρDm ∂Ym/∂xi. An ideal
gas equation of state is used to close the set of equations. Note that we do not include
any reaction source terms in the equations since reactions are negligible between helium
and air. These are the same equations used by Wimer et al. (2021) for simulations of a
large-scale helium plume.

We solve the low-Mach governing equations, as opposed to the fully compressible
Navier–Stokes equations, to capture variable density effects while avoiding the additional
computational cost required to resolve the acoustic time scale. In solving the low-Mach
equations, we assume that all variations in density are due to mixing of the participating
fluids (in this case, helium and air). As a result of these density variations, the
velocity fields are not divergence-free, and the use of the low-Mach equations is
valid when the local Mach number Ma ≡ (uiui)

1/2/c, where c is the speed of sound,
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is small (e.g. Ma � 0.1). This approximation is commonly used for simulations of
high-Reynolds-number variable-density turbulence (Sandoval 1995; Livescu & Ristorcelli
2007; Livescu 2013), and experimental data show that Ma is small for many experimental
buoyant plume configurations (Cetegen & Kasper 1996; Cetegen 1997a; O’Hern et al.
2005). Because invoking the low-Mach approximation does not necessarily guarantee its
validity, we also monitored the simulations to ensure that Ma remained small.

Using the low-Mach approximation, the total pressure can be decomposed into
homogeneous ambient and perturbational pressures, namely p(xi, t) = p0(t) + π(xi, t).
The perturbational pressure controls the evolution of velocity (hence its presence in the
momentum equation), and the thermodynamic state must be consistent with the ambient
pressure. The ideal gas equation of state can thus be recast into a divergence constraint on
the velocity field given by

∂ui

∂xi
= 1

ρcpT

[
∂

∂xi

(
λ

∂T
∂xi

)
+ ∂

∂xi

(∑
m

hmΓmi

)]
+ 1

ρ

∑
m

(
Wmix

Wm
− hm

cpT

)
∂Γmi

∂xi
,

(2.3)

where cp = cp(T) is the specific heat capacity at constant pressure. A more detailed
derivation of (2.3) is provided by Nonaka et al. (2018).

While this is the general form of the divergence constraint, the present simulations focus
on the isothermal injection of helium into air. For the present two-fluid system, we can
express density exactly using YHe and Yair as

1
ρ

= YHe

ρ0
+ Yair

ρ∞
, (2.4)

where ρ0 is the density of the helium, ρ∞ is the density of the air, YHe is the species
mass fraction of helium, Yair is the species mass fraction of air, and YHe + Yair = 1 by
definition (Livescu 2013). After substituting and noting that a single value of diffusivity is
appropriate for a two-fluid system, (2.3) becomes

∂ui

∂xi
= −D

∂2

∂xi ∂xi
(log ρ), (2.5)

consistent with the variable-density turbulence literature (Sandoval 1995). This equation
highlights the fact that divergent velocity fields are due to variations only in density, or
equivalently, fluid composition, rather than compressibility.

2.2. Numerical methods
To solve the governing equations, we use a second-order Godunov procedure to predict the
time-centred velocity on the cell faces by explicitly discretizing the convective terms and
semi-implicitly solving for momentum diffusion (Day & Bell 2000). We set the initial
estimate for the thermodynamic variables equal to their current state. Next, we solve
iteratively: (i) the advection velocity and thermodynamic fluxes, ρh and ρYm, applying
the constraint from (2.3); (ii) face-centred, time-centred states for mass and energy; (iii) a
multi-implicit spectral deferred correction (Dutt, Greengard & Rokhlin 2000) for species
mass fractions; (iv) a backward Euler type equation for time-advanced enthalpy. We then
compute the provisional time-averaged, cell-averaged velocity field. Finally, we update the
perturbational pressure field and compute a final velocity. This simplified description of
the solution algorithm is provided in greater detail by Nonaka et al. (2018) and Wimer
et al. (2021).
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To reduce the computational cost, we use AMR to actively refine the computational
grid during the computation. This is done in PeleLM using an adaptive hierarchy of
nested uniform grids (Zhang et al. 2019). As the simulation evolves, cells are tagged for
refinement based on user-specified criteria. For the present simulations, these criteria are
based on cell-to-cell density variations |�ρ|/(ρ∞ − ρ0) > 0.2, and the level-dependent
magnitude of vorticity |ωi|(ρ0R2

0/μ0)2
 > 2 × 104, where ωi ≡ εijk ∂uk/∂xj, R0 is the inlet
radius, μ0 is the helium dynamic viscosity, and 
 is the grid level (where 
 increases with
increasing refinement, or decreasing cell size). Note that these refinement criteria are quite
conservative, often resulting in the finest resolution grid covering the entire interior of the
plume. We do not refine the grid for z/R0 > 5 in order to increase numerical dissipation
beyond the region of interest. This reduces reflections at the outer boundary, which is
a common problem seen, for example, in stability analyses (Bharadwaj & Das 2017;
Chakravarthy et al. 2018). These criteria were shown to be sufficient for simulating buoyant
jets and plumes in Wimer et al. (2020, 2021), and we provide additional convergence tests
in Appendix A.

For the results in § 3, the maximum level of grid refinement is 
max = 3. The re-meshing
algorithm is called every two time steps to refine the mesh dynamically by creating a series
of independent, nested grids. The time stepping procedure is most easily thought of as
a recursive operation: (i) advance the current level in time, using boundary conditions
from the underlying grid as needed; (ii) advance the next finest level two time steps
using the coarser-level variables as boundary conditions; (iii) synchronize between levels
and interpolate corrections to the finer levels. Conservation losses between levels are
handled by averaging the fine data onto the coarse grid, and through re-fluxing across
the coarse/fine interface. More details on this procedure, as well as complications that
arise through the multi-grid approach, are discussed in Minion (1996) and Almgren et al.
(1998).

2.3. Physical configuration
The simulations model axisymmetric buoyant plumes in which pure helium is injected
vertically into the bottom of a domain filled with quiescent air at p0 = 1 atm. The round jet
is centred at x = 0 m, y = 0 m, with nominal radius R0 = 0.125 m and prescribed nominal
inlet velocity U0. All fluids are fixed to a temperature of T = 300 K, and all fluid transport
properties were obtained from Chemkin-type transport and thermodynamic files (Kee,
Rupley & Miller 1990).

We simulate the plumes in large cubic computational domains with sides of length
L/R0 = 12 or 16. This domain size is substantially larger than the near-field region of
interest (which extends only up to a few radii downstream) to ensure that numerical
artefacts at the domain boundaries do not affect the near-field flow. This is a common
problem in numerical studies of buoyant plumes (Bharadwaj & Das 2017), and we
performed extensive tests to ensure that the domain sizes used were sufficiently large.
The larger domain with side length 16R0 was needed for some of the transitional cases
to allow breakdown of large-scale structures before exiting the domain. The resolution
of the base grid for all simulations was fixed at R0/8 = 1.56 cm and, using AMR, we
achieved an effective finest resolution that is eight times smaller than this, corresponding
to R0/64 = 1.95 mm. Note that the AMR does not extend beyond 5R0 downstream to
conserve computational resources, as well as to add numerical dissipation beyond the
region of interest, thereby further mitigating numerical artefacts.
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Figure 1. Two-dimensional slices through the entire computational domain of the density field for (a) Ri0 = 2,
Re0 = 316, and (b) Ri0 = 20, Re0 = 316. Half of the visualization corresponds to the density field ρ, and the
other half visualizes the grid level 
.

Two-dimensional slices of the density field for the full computational domain for two
different simulations are provided in figure 1. This figure shows where grid resolution
is added as well as the coarse grid beyond the near field that is intended to increase
numerical dissipation prior to the boundary. Although we do not fully recover far-field
scaling relationships within the relatively short region of maximum grid refinement, we
do see velocity and density profiles approaching the Gaussian forms expected in the far
field (Kaye & Hunt 2009; Hunt & Van den Bremer 2011).

The bottom of the domain at z = 0 m is specified using Dirichlet boundary conditions
with a hyperbolic tangent function, as proposed by Michalke (1984) and used by others
(Bharadwaj & Das 2017; Nichols et al. 2007). Specifically, the profile is modelled using

η(x, y, 0) = 1
2

− 1
2

tanh
[

R0

4φ

(
R0

r
− r

R0

)]
, (2.6)

where φ = R0/50 = 2.5 × 10−3 m is a smoothing factor that transitions the jet to the
ambient, and r ≡ (x2 + y2)1/2. The species mass fraction of helium and vertical velocity
at the inlet are determined using η by

YHe(r, θ, 0) = η, uz(r, θ, 0) = ηU0, (2.7a,b)

where θ = tan−1( y/x) is the angle from the x-axis within the x–y plane. From (2.4), the
density can be inferred from the helium mass fraction field. Note that as φ → 0, this profile
approaches a top-hat profile. The transverse velocity components are fixed at ux = uy = 0,
mimicking a no-slip wall outside of the flow stream. The remaining five boundaries are
open, with boundary velocities computed to satisfy (2.3), enabling the entrainment of
ambient air from outside the domain or the outflow of helium–air mixture from within
the domain.

2.4. Present simulations
To vary Ri0 and Re0 independently in the simulations, we change only the magnitude of
the gravitational acceleration g, and the inflow velocity U0. All other parameters remain
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Parameter Symbol Units

Nominal inflow radius R0 = 0.125 m
Smoothing factor φ = R0/50 m
Gravitational acceleration g m s−2

Nominal inflow velocity U0 m s−1

Density of helium ρ0 ≈ 0.163 kg m−3

Dynamic viscosity of helium μ0 ≈ 1.98 × 10−5 kg m−1 s−1

Co-flow velocity U∞ = 0 m s−1

Density of air ρ∞ ≈ 1.17 kg m−3

Dynamic viscosity of air μ∞ ≈ 1.86 × 10−5 kg m−1 s−1

Species diffusivity D ≈ 7.24 × 10−5 m2 s−1

Table 1. List of all independent, dynamically relevant inlet parameters for the buoyant plume simulations.
Parameters with numerical values are fixed for all simulations.

fixed for all simulations, and the complete set of dynamically relevant inlet parameters is
given in table 1. Note that once the two fluids (i.e. helium and air in the present case)
have been selected, we can change Ri0 and Re0 independently by modifying any two of
the following three variables: U0, g and R0. In the present study, we chose to modify only
U0 and g since changes in R0 would require us to also vary the smoothing factor φ and
the domain size L in order to keep φ/R0 and L/R0 constant. A single value of species
diffusivity is appropriate because diffusion must be equal and opposite for a binary fluid
system.

The complete set of non-dimensional groups based on the parameters in table 1 is given
in table 2. Note that the Richardson number used here can be expressed as a combination
of Fr0 and the density ratio ρ̃, as Ri0 = (1 − 1/ρ̃) Fr−2

0 . This definition does not originate
from dimensional analysis, and instead comes from the finding that the puffing frequency
in terms of the Strouhal number is well correlated with this form of the Richardson number
(as discussed in detail in Bharadwaj & Das 2017). Table 3 provides a summary of the
different values of Ri0 and Re0 in the simulations, where each is obtained by varying only
g and U0. In total, 18 simulations are performed, with Ri0 and Re0 each varying by at least
an order of magnitude.

In figure 2 we show Ri0 and Re0 for the present simulations compared to previous
experiments of unsteady, axisymmetric helium jets and plumes (Subbarao & Cantwell
1992; Kyle & Sreenivasan 1993; Cetegen & Kasper 1996; Cetegen 1997a; Pasumarthi &
Agrawal 2003; Yep, Agrawal & Griffin 2003; O’Hern et al. 2005; Hallberg & Strykowski
2006; Bharadwaj & Das 2017). Note that Hamins, Yang & Kashiwagi (1992) also
performed experiments with this configuration, although we were unable to recover the
Reynolds number for this study. Figure 2 shows that the present simulations correspond
to values of Re0 generally higher than in prior experiments. Since the inflow velocity U0
is often varied in experiments to explore different conditions, the experimental studies
in figure 2 follow approximate Ri0 ∼ Re−2

0 scaling relations, where Ri0 ∼ U−2
0 and

Re0 ∼ U0.
Table 3 provides temporal information for the data collected during the simulations. To

collect data that are sufficiently well-resolved temporally, we estimate an expected eddy
turnover time τ ∗ ≡ 1/f ∗, where f ∗ denotes the predicted puffing frequency based on Ri0
and (1.1). Using this estimate of τ ∗, we first let each simulation spin-up for approximately
20τ ∗ to allow initial transients to decay. We then collect data for T ≈ 100τ ∗ with output
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Temporal variability and puffing in the near field of buoyant plumes

Non-dimensional number Definition

Richardson number Ri0 ≡
(

1 − ρ0

ρ∞

)
gR0

U2
0

Reynolds number Re0 ≡ ρ0U0R0

μ0

Froude number Fr0 ≡ U0

(gR0)1/2

Schmidt number Sc0 ≡ μ0

ρ0D
≈ 1.69

Density ratio ρ̃ ≡ ρ∞
ρ0

≈ 7.21

Velocity ratio Ũ ≡ U∞
U0

= 0

Length ratio L̃ ≡ R0

φ
= 50

Dynamic viscosity ratio μ̃ ≡ μ0

μ∞
≈ 1.06

Table 2. Non-dimensional numbers formed from the independent, dynamically relevant inlet parameters in
table 1. Non-dimensional numbers with numerical values are fixed for all simulations.

Non-dimensional numbers Dimensional parameters Data collection

Ri0 (Fr0) Re0 L/R0 U0 (cm s−1) g (m s−2) T/τ ∗ τ ∗/�t

2.0 (0.656) 100.0 12 9.8 0.18 100.5 36.3
177.8 12 17.3 0.56 100.1 39.2
316.2 16 30.9 1.77 99.9 44.1
562.3 16 54.9 5.59 100.1 44.2

1000.0 16 97.6 17.68 103.4 36.3

6.3 (0.369) 100.0 12 9.8 0.56 100.1 43.9
177.8 12 17.3 1.77 100.3 41.2
316.2 16 30.9 5.59 100.7 52.1
562.3 16 54.9 17.68 102.4 39.1

1000.0 16 97.6 55.92 100.1 43.9

20.0 (0.208) 100.0 12 9.8 1.77 101.0 46.2
177.8 12 17.3 5.59 100.0 39.0
316.2 12 30.9 17.68 100.4 43.8
562.3 12 54.9 55.92 105.5 46.2

1000.0 12 97.6 176.84 101.0 34.7

63.2 (0.117) 100.0 12 9.8 5.59 100.6 43.7
177.8 12 17.3 17.68 101.6 36.9
316.2 12 30.9 55.92 101.2 34.6

Table 3. Parameters of the simulations performed herein, with corresponding definitions given in tables 1 and
2. We also provide the domain side length (L/R0), the amount of data collected for each simulation (T/τ ∗),
and the time step between snapshots used for statistics (τ ∗/�t).
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Re0

104

Ri0

Figure 2. Richardson and Reynolds number values for previously conducted experiments of axisymmetric,
unsteady helium jets and plumes, as well as the present simulations. The legend corresponds to the following
references: B17 – Bharadwaj & Das (2017); C96 – Cetegen & Kasper (1996); C97 – Cetegen (1997a); H06 –
Hallberg & Strykowski (2006); K93 – Kyle & Sreenivasan (1993); O05 – O’Hern et al. (2005); P03 –
Pasumarthi & Agrawal (2003); S92 – Subbarao & Cantwell (1992); and Y05 – Yep et al. (2003). The red
dashed line shows the approximate onset of the puffing instability as provided by Bharadwaj & Das (2017).

interval �t ≈ τ ∗/40, both of which are sufficient to temporally resolve large-scale flow
phenomena as well as provide statistically converged results for moments of many different
flow variables.

3. Results and discussion

3.1. Qualitative plume structure and dynamics
The qualitative plume structure and dynamics are indicated in figure 3, which shows time
series of the density field over a time span of roughly τ ∗ for two different values of Ri0,
as well as three different values of Re0 for each Ri0. Note that τ ∗ generally decreases with
increasing Ri0 and increasing Re0, and therefore the time series in figure 3 span different
physical times.

In each of the simulations, figure 3 shows that large-scale vortical structures form at
the base of the plume and then rise vertically due to buoyancy, entraining fluid as they
propagate (this entrainment is indicated by the streamlines provided in the rightmost
column of the figure). This process repeats for the duration of the simulations at a
time scale of approximately τ ∗, corresponding to the puffing instability discussed in § 1;
measurements of τ ∗ and the puffing frequency are given in § 3.5. Figure 3 further shows
that the vortical structures are more diffuse for the Ri0 = 2, Re0 = 100 case, as compared
to larger values of Re0 at the same Ri0. This is due to the slower propagation speed of the
vortices, as compared to the rate of diffusion.
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Figure 3. Time series of the density field over a time span of roughly τ ∗ for six different cases: (a) Ri0 = 2,
Re0 = 100; (b) Ri0 = 2, Re0 = 316; (c) Ri0 = 2, Re0 = 1000; (d) Ri0 = 20, Re0 = 100; (e) Ri0 = 20, Re0 =
316; ( f ) Ri0 = 20, Re0 = 1000. Time progresses in increments of τ ∗/4 from left to right. Panels (a i–f i) show
where the AMR grid is refined, with grey indicating 
 = 2, and black indicating 
 = 3. Panels (a v–f v) include
the in-plane direction of the velocity vector (not scaled with velocity magnitude).

From a dynamical perspective, figure 3 shows that at Ri0 = 2, Re0 = 1000, the puffing
oscillations undergo a transition where the vortices become more turbulent, as indicated
by the development of motions over multiple scales within the vortices, consistent with
experimental observations made by Subbarao & Cantwell (1992). The plume also appears
to lean to one side as a result of a flapping mode, which has been observed previously in
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both non-reacting plumes (Cetegen 1997b) and diffusion flames Cetegen & Dong (2000);
this mode will be discussed in more detail in § 3.2.

For the Ri0 = 20, Re0 = 100 case shown in figure 3, there is still relatively little
small-scale motion due to the low Re0, but the formation of vortices is more sinuous
(i.e. anti-symmetric) in nature, as compared to the varicose (i.e. symmetric) behaviour
observed at the same Re0 for Ri0 = 2. At larger Re0 for Ri0 = 20, the flow is generally
turbulent, even along the centreline near the bottom of the domain. This early transition to
turbulence is correlated with the penetration of heavy air into the core of the plume, as can
be seen in a number of snapshots. We call these Rayleigh–Taylor (RT) spikes due to their
resemblance to classical RT instabilities. Overall, this leads to a puffing instability that is
more turbulent than the puffing instability at lower Ri0 and Re0.

3.2. Temporal variability
Figure 4 shows time series of the vertical velocity uz/U0 and YHe at height z/R0 = 0.5
along the centreline (i.e. r/R0 = 0) over time span 10τ ∗. Note that time in figure 4 has
been normalized by the expected time scale τ ∗, based on (1.1) rather than on the computed
puffing frequency, which is presented and discussed in § 3.5. In general, the time series
of uz/U0 become increasingly complex with increasing Ri0 and Re0. For Ri0 = 2 in
figure 4(a), the time series are smooth and periodic for all Re0, with a characteristic time
scale close to τ ∗, corresponding to the puffing motion. As either Ri0 or Re0 is increased,
the local minima and maxima begin to vary more substantially from cycle to cycle. For
sufficiently high Re0, the signals become erratic and chaotic, indicating the transition to a
fully turbulent plume as shown, for instance, in figures 4(c,d).

Significantly, the transition to turbulent behaviour does not occur monotonically with
increasing Re0. For Ri0 = 2 in figure 4(a), the local maxima in uz/U0 are much more
consistent between each puffing cycle for Re0 = 100 and Re0 = 1000, while at Re0 = 316,
the local maxima between each puffing cycle vary more substantially. This increasing
complexity is also evident in the time series of YHe for Ri0 = 6.3 shown in figure 4( f );
the only deviation from a uniform time series occurs momentarily for the intermediate
Reynolds number Re0 = 316. This behaviour is more consistent with nonlinear dynamical
systems that have complex paths to chaos (e.g. period doubling phenomena, windows of
less chaotic dynamics) rather than a simple broadening of scales typical of a fully turbulent
flow.

The effects of the RT spikes noted in figure 3 are also evident in figure 4. For the two
smallest values of Ri0, in figures 4(e, f ), YHe ≈ 1 at all times, implying that the more dense
ambient air does not penetrate the centre of the plume at z/R0 = 0.5. However, for Ri0 =
20 and 63 in figures 4(g,h), YHe frequently decreases below 1, with the frequency, duration
and strength of the decreases growing as Ri0 and Re0 increase. As indicated in figure 3,
instances of YHe < 1 are not a result of shear layer roll-up causing the ambient air to reach
the centreline horizontally. Rather, these decreases are a result of a downward spike of
heavier air. This phenomenon is particularly important when considering extensions to
reacting plumes, since this would indicate the presence of an additional mechanism for
supplying oxidizer to the flame beyond the mixing along the shear layer.

The flapping motion mentioned in § 3.1 and shown for the Ri0 = 2, Re0 = 1000 case
in figure 3 is indicated quantitatively in figure 5 through time series of the radial
velocity ur/U0 on the plume centreline at z/R0 = 0.5. The radial velocity, in particular,
corresponds to horizontal motions of the plume in the x–y plane and is thus associated
with the horizontal flapping behaviour shown in figure 3. For Ri0 = 2 and Re0 = 1000
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Figure 4. Time series of (a–d) uz/U0 and (e–h) YHe on the centreline (r/R0 = 0) at height z/R0 = 0.5 above
the plume. Different line colours and widths correspond to different values of Re0. Note that the time has been
normalized by the expected time scale τ ∗, based on (1.1) rather than the computed puffing frequency presented
later in the text. Plots are for: (a,e) Ri0 = 2, (b, f ) Ri0 = 6.3, (c,g) Ri0 = 20, and (d,h) Ri0 = 63.

in figure 5(a), ur/U0 oscillates at a frequency that is half that of the oscillations in
uz/U0 shown in figure 4(a), although both oscillations are synchronized. That is, despite
the difference in frequency, the sinuous mode associated with the plume flapping is
synchronized with the varicose mode associated with the puffing. The flapping oscillation
does not occur for the smaller values of Re0 at Ri0 = 2, although figure 5(b) shows that
the oscillation occurs for all Re0 at Ri0 = 6.3. Variations in the radial velocity in the more
turbulent simulations for higher Ri0 are due primarily to the turbulent nature of the flow,
rather than to a distinguishable oscillatory mode, hence we do not plot them here.

The dynamics in the shear layer are indicated by the time series of uz/U0 and YHe shown
in figure 6. These time series are taken at the same height (i.e. z/R0 = 0.5) as in figure 4,
but at radial location r = δY/2, where δY/2 is the half-width of the flow based on where the
temporal and azimuthal average of YHe is 0.5. By probing this radial location, we ensure
that there are substantial and coherent fluctuations in the density field for all simulations,
unlike at the centreline.

The time series of uz/U0 in figures 6(a–d) are generally consistent with the centreline
results in figure 4. Namely, the complexity of the time series increases with increasing
Ri0 and Re0, with consistently repeating signals observed only for the smallest value of
Ri0 shown in figure 6(a). By contrast to the centreline results, however, the increase in
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Figure 5. Time series of ur/U0 on the centreline (r/R0 = 0) at height z/R0 = 0.5 above the plume for
(a) Ri0 = 2 and (b) Ri0 = 6.3. Different line colours and widths correspond to different values of Re0.
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Figure 6. Same as figure 4, but at location r = δY/2, z/R0 = 0.5 within the shear layer.

complexity occurs monotonically for each Ri0 with increasing Re0; these trends will be
discussed in more detail in § 3.3.

The shear layer time series of YHe in figures 6(e–h) vary far more substantially at each
value of Ri0 and Re0 than the corresponding centreline time series in figure 4. Most
notably, for Ri0 = 2 as Re0 increases, figure 6(e) shows a transition from a smooth, almost
sinusoidal, variation in YHe to a time series with more distinct plateaus at YHe ≈ 1. This is
the result of the slower time scale associated with convection for the lower Re0, allowing
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for increased broadening of the helium–air interface as a result of diffusion. At larger Re0,
the flow is accelerated more rapidly, and as a result, can produce gradients that are even
stronger than those initiated at the inlet. This transition can also be seen at Ri0 = 6.3 in
figure 6( f ) for lower Re0. In the simulations with Ri0 ≥ 20, while the signals are not as
regular, we also see sharper changes in YHe within the shear layer, as compared with the
centreline results in figure 4, consistent with previous observations of scalar mixing in
turbulent flows (Sandoval 1995; Buch & Dahm 1998).

Finally, at the location in the shear layer, there are clear and consistent phase
relationships between the different variables. Because density (related directly to YHe) is an
active scalar for vertical momentum transport, it is intuitive that local changes in YHe would
also be reflected in uz. In particular, comparison of figures 6(a–d) with figures 6(e–h)
reveals that large peaks in uz/U0 are preceded by increases in YHe. This makes sense
intuitively because larger density discrepancies lead to larger buoyant forces that accelerate
the flow. This is true for both the laminar and turbulent plumes, and these correlations are
examined in more detail in the next subsection.

3.3. Transition from laminar to turbulent flow
A transition from laminar to chaotic dynamics in the near field of the plumes can be
observed in the time series in § 3.2 as Ri0 and Re0 increase. In this subsection, we examine
this transition more closely by using the state space dynamics of the vertical velocity
uz/U0. We first focus on this transition in the near-field region where the puffing instability
is most evident. It is important to note that for buoyant plumes, the flow will transition
from laminar to turbulent sufficiently far downstream (except for very small Re0), since
potential energy is continually converted to kinetic energy, resulting in an increase in the
local Reynolds number (Hunt & Van den Bremer 2011). Therefore, we first focus on this
transition at a fixed spatial location within the near-field region, then show the transition
from laminar to chaotic dynamics as downstream distance is varied.

To begin, figure 7 shows the state space of uz(t + τ ∗/4)/U0 versus uz(t)/U0 along the
centreline at z/R0 = 0.5 for each simulation summarized in table 3. Each trajectory is
coloured according to the simulation time such that lighter yellow indicates earlier times
and darker blue indicates later times. White space indicates a state that the trajectory does
not reach for the given spatial location during the analysis period. For the two smallest
values of Re0 in the Ri0 = 2 and 6.3 cases, the state-space trajectories form a stable limit
cycle corresponding to the puffing behaviour. However, as Re0 increases to 316 for Ri0 = 2,
the trajectory is not as consistent compared to other trajectories for this value of Ri0, even
compared to higher Re0, indicating increased flow complexity. This ‘island’ of increased
variability, as indicated by the larger amount of state space occupied by the trajectory, is
consistent with the non-monotonicity with Re0 noted in figure 4(a), and is likely due to
the complex coupling between the puffing oscillations and shear layer roll up. Overall,
however, for Ri0 = 2, figure 7 does not reveal a transition to fully chaotic (i.e. turbulent)
dynamics for the range of Re0 examined here.

For Ri0 = 6.3, by contrast, figure 7( f – j) shows that there is a substantial increase in
complexity between Re0 = 178 and Re0 = 316. Because Re0 controls the prevalence of
small-scale motions and the onset of nonlinear chaotic dynamics, after a critical Re0, the
puffing instability becomes sufficiently chaotic such that the state-space trajectories are not
as consistent. When this occurs, the trajectories occupy more of the state-space locations
within a bounded region, eventually exploring most points within the region. Additional
data and analysis are required to claim definitively whether the trajectories occupy all of
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Figure 7. State-space trajectories of the vertical velocity at r/R0 = 0, z/R0 = 0.5, generated by plotting the
same signal on different axes with an offset by τ ∗/4. The lines are coloured by time elapsed during the
simulation. Plots are for: (a–e) Ri0 = 2, ( f – j) Ri0 = 6.3, (k–o) Ri0 = 20, ( p–r) Ri0 = 63; and (a, f,k, p)
Re0 = 100, (b,g,l,q) Re0 = 178, (c,h,m,r) Re0 = 316, (d,i,n) Re0 = 562, (e, j,o) Re0 = 1000.

the state space within the bounded region. For the two highest values of Ri0 examined
here, figure 7 shows that the state-space dynamics are fully chaotic even for the lowest
Re0, indicating that the transition to chaotic dynamics in these cases occurs for Re0 less
than 100.

Based on these results, the critical Reynolds number, denoted Recrit, at which the
transition to chaotic dynamics occurs depends on Ri0, with smaller values of Recrit for
increasing Ri0. Among the present simulations, Recrit > 1000 for Ri0 = 2, 178 < Recrit <

316 for Ri0 = 6.3, and Recrit < 100 for both Ri0 = 20 and 63. In general, for a given Ri0,
as Re0 increases, the flow transitions from steady laminar to unsteady laminar, to unsteady
transitional, to unsteady turbulent behaviours.

The state-space trajectories in figure 7 are all calculated at a single centreline location,
but the transition from laminar to turbulent behaviours also occurs with increasing vertical
location due to the conversion of potential (i.e. buoyant) energy into kinetic energy.
Figure 8 shows this transition for the Ri0 = 2, Re0 = 1000 case. At z/R0 = 0.25 and 1,
the state-space trajectories approximately follow stable limit cycles, but at z/R0 = 2, the
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Figure 8. State-space trajectories of the vertical velocity for Ri0 = 2, Re0 = 1000 along the centreline at
different vertical locations. The lines are coloured the same as in figure 7: (a) z/R0 = 0.25, (b) z/R0 = 1,
(c) z/R0 = 2.

region of state space occupied by the trajectory has grown substantially and the trajectory
explores essentially all of the states within this region.

This dynamical transition with downstream location is expected in most plumes as
the flow convects vertically (Hunt & Van den Bremer 2011) and has been noted before
by Subbarao & Cantwell (1992). It is possible that a robust criterion could be derived
to show more precisely the spatial location where this transition occurs. For example,
estimates of the correlation dimension can be computed using standard algorithms in
nonlinear dynamics (Hegger, Kantz & Schreiber 1999), where most laminar cases would
be essentially one-dimensional but turbulent ones would be larger; this analysis has been
done for the closely related flame flickering instability (Gotoda, Kawaguchi & Saso 2008).
Application of these criteria to the present simulations is left as a direction for future
research.

It should be noted that within the two distinct regimes of puffing indicated by figures 7
and 8 (i.e. laminar and turbulent), the state-space trajectories continue to change with
increasing Re0. For example, in the Ri0 = 2 simulations at the two lowest values of Re0,
we see ‘period doubling’ behaviour where the periodic trajectory changes from requiring
one orbit at Re0 = 100 to two orbits at Re0 = 178 to return to the same state-space location.
For the two highest values of Ri0, the flow is turbulent for all Re0, but the bounded
region within which the state-space trajectories reside grows with increasing Re0. This is
consistent with many turbulent flows where increases in the Reynolds number correspond
to an increasing prevalence of intermittent rare events that expand the occupied state-space
region. At a certain value of Re0, however, results for the two largest values of Ri0 shown in
figure 8 indicate that this region approaches a fixed size, corresponding to fully turbulent
behaviour.

3.4. Temporal correlations
The results in § 3.2 suggest that the flow variables are correlated in potentially complicated
ways. These correlations and the temporal correspondence between variables can be
examined in more detail using state-space trajectories such as those shown in figure 9,
where trajectories are calculated in the p–uz state space along the centreline at z/R0 = 0.5
for three different values of Re0 and for each Ri0. For Ri0 = 2 and Re0 = 100, p and
uz are highly correlated, with p lagging behind uz (i.e. the trajectory in figure 9(a)
goes counterclockwise as time evolves). In the context of these state-space trajectories,

950 A24-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.788


M.A. Meehan, N.T. Wimer and P.E. Hamlington

0.5 2

10
20

10

0

–10

–20

5

0

1

0

–1

p/
ρ

∞
U

2 0

0

–0.5

0.5

1.0
4

1.5 2.0

1.0 1.5 2.0 2.5 3.0 0 2 4 6 –10 0 10 20

1.0 1.5 2.0 2.5 3.0 0 2 4 6 0 10 20

–20 0 20 40

2.5 2 3 4 5 6 0 5 10 15 0 20 40

10

15

10

5

0

–5

–10

20

0

–20

0

–10

–20

2

0

4

2

0

p/
ρ

∞
U

2 0

0

–0.5

0.5

1.0

p/
ρ

∞
U

2 0

0

–0.5

uz /U0 uz /U0 uz /U0

uz /U0

0 10050

t/τ∗

(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i) ( j) (k)

Figure 9. State-space trajectories of the vertical velocity uz/U0 and mechanical pressure p/ρ∞U2
0 at r/R0 = 0,

z/R0 = 0.5. The lines are coloured by time elapsed during the simulation. Plots are for: (a) Ri0 = 2, Re0 = 100;
(b) Ri0 = 6.3, Re0 = 100; (c) Ri0 = 20, Re0 = 100; (d) Ri0 = 63, Re0 = 100; (e) Ri0 = 2, Re0 = 316;
( f ) Ri0 = 6.3, Re0 = 316; (g) Ri0 = 20, Re0 = 316; (h) Ri0 = 63, Re0 = 316; (i) Ri0 = 2, Re0 = 1000; ( j)
Ri0 = 6.3, Re0 = 1000; (k) Ri0 = 20, Re0 = 1000.

correlations are indicated by consistent orbital motions through state space, where p and
uz vary together in a regular way.

As Ri0 increases from 2 to 6.3, figure 9(b) shows that the state-space trajectories become
more complex, with period doubling and slight broadening of the limit cycles, although p
still lags behind uz. Further increases in Re0 or Ri0 result in a chaotic flow for which the
correlation between p and uz is much less pronounced. In particular, results for the larger
values of Re0 and Ri0 in figure 9 show that some orbital trajectories do still exist, but
the trajectories explore an increasingly large region of state space. State-space trajectories
including ur and YHe are less interesting at this spatial location and are thus not shown
here.

Figure 10 shows corresponding state-space trajectories within the shear layer at z/R0 =
0.5, r = δY/2. Given the more substantial variations in ur and YHe at this location (as
is also indicated by the variations in figure 6), here we show state-space trajectories for
all possible combinations of YHe, ur and p. Once again, for small Ri0 and Re0, these
trajectories form closed and compact orbits, with ur and YHe lagging behind p. Large
values of ur and YHe are generally highly correlated since, when ur is large and positive
(i.e. the plume is not entraining strongly), the flow is generally accelerated vertically by
buoyancy, corresponding to higher values of YHe.
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Figure 10. Correlations between YHe and ur (green circles), YHe and p (blue squares), and ur and p (red
triangles), at r = δY/2, z/R0 = 0.5 within the shear layer for several of the simulations. Plots are for:
(a) Ri0 = 2, Re0 = 100; (b) Ri0 = 6.3, Re0 = 100; (c) Ri0 = 20, Re0 = 100; (d) Ri0 = 63, Re0 = 100;
(e) Ri0 = 2, Re0 = 316; ( f ) Ri0 = 6.3, Re0 = 316; (g) Ri0 = 20, Re0 = 316; (h) Ri0 = 63, Re0 = 316; (i)
Ri0 = 2, Re0 = 1000; ( j) Ri0 = 6.3, Re0 = 1000; (k) Ri0 = 20, Re0 = 1000.

3.5. Puffing frequency
The frequency at which large-scale vortices are shed during the buoyant plume evolution
is commonly referred to as the puffing frequency. This frequency is the most widely used
statistical measure of the puffing instability, and both experimental and computational
approaches can easily measure and compare this simple metric. In our simulations, the
periodic puffing motion is present qualitatively in essentially all the data presented in
§§ 3.1–3.4.

The most typical and simplest method of measuring the puffing frequency is to extract
a time series of a flow variable (typically the mechanical pressure or vertical velocity) and
perform a fast Fourier transform (FFT) to obtain the power spectral density (PSD) of the
signal. The peak of the PSD is generally classified as the puffing frequency. In figure 11,
we show the PSD of the vertical velocity uz taken along the centreline at z/R0 = 0.5 for six
different simulations. Each of the PSDs has been normalized by the maximum magnitude,
and the Strouhal number St0 is normalized by the expected value St∗0 based on Wimer et al.
(2020) and (1.1).

For Ri0 = 2 and all values of Re0, figures 11(a–c) show that each PSD has a distinct peak
at St0/St∗0 ≈ 0.84, indicating that the puffing frequency is slightly below that predicted
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Figure 11. Normalized power spectral densities (PSDs) of uz along the centreline at z/R0 = 0.5 for (a–c)
Ri0 = 2 and (d– f ) Ri0 = 20, at (a,d) Re0 = 100, (b,e) Re0 = 316, and (c, f ) Re0 = 1000. The observed Strouhal
number St0 is normalized by the predicted value St∗0 obtained from (1.1).

by Wimer et al. (2020) (there are also smaller peaks at higher harmonics of the puffing
frequency). For each of the Ri0 = 20 cases, by contrast, we do not observe as clear a
peak in the PSD. When Re0 = 100 in figure 11(d), there are actually two peaks that could
conceivably be identified as the puffing frequency. At Re0 = 316 in figure 11(e), the peak
in the signal is fairly clear but far from the expected value. At Re0 = 1000 in figure 11( f ),
it is difficult to say with any certainty that a single distinct peak even exists.

Given the results in figure 11, measuring a single distinct puffing frequency for each
simulation using a probing technique can be difficult. Subbarao & Cantwell (1992) also
noted this difficulty for higher Re flows when conducting experiments. Because puffing is
a global instability, we should be able, in principle, to probe the flow anywhere within the
plume and determine the puffing frequency. In previous studies, the probe location was
typically placed where the largest fluctuations occur, roughly one radius vertically along
the centreline (Cetegen & Kasper 1996) or slightly off-centre at the base of the plume
(Bharadwaj & Das 2017). A more robust technique that better captures the global nature
of the instability was used by Wimer et al. (2021), where a singular value decomposition
(SVD) was performed on two-dimensional slices of vertical velocity.

For the present simulations, neither a single probe nor an SVD approach produced
consistent results that reflected accurately the puffing frequency for all simulations. The
complexity of measuring the puffing frequency is indicated in figure 12. At each spatial
location, we computed the FFT of the time series of vertical velocity, identified which
frequency was associated with the peak in the spectra, computed St0 corresponding to that
frequency, then normalized based on the expected St∗0 from (1.1). This was done for each
simulation, and one radial slice is shown in figure 12. Further, we used a binary logarithm,
log2(St0/St∗0), such that a value of 0 (white in figure 12) corresponds to the peak St0 being
identical to St∗0, and integer values correspond to harmonics of St∗0.
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Figure 12. Frequency corresponding to the peak in the PSD of the fluctuating streamwise velocity computed
at each spatial location within a radial slice for all simulations performed in this study. Images are coloured
using log2(St0/St∗0) such that 0 (or white) corresponds to the computed St0 being identical to St∗0 from (1.1),
with integer values corresponding to harmonics. Plots are for (a–e) Ri0 = 2, ( f – j) Ri0 = 6.3, (k–o) Ri0 = 20,
( p,q,r) Ri0 = 63, with (a, f,k, p) Re0 = 100, (b,g,l,q) Re0 = 178, (c,h,m,r) Re0 = 316, (d,i,n) Re0 = 562, (e, j,o)
Re0 = 1000.

At Ri0 = 2 in figure 12, almost the entire r–z plane shows a consistent puffing frequency
that is slightly below the expected value St∗0. This is perhaps not surprising given that in
figure 3, the flow is laminar for z < 1.5R0. The regions of dark blue and red are harmonics
of St0. At Ri0 = 6.3, the region St0 � St∗0 becomes more confined for increasing Re0, with
values of St0 tending towards St∗0 as Re0 increases. A similar variation with Re0 is observed
for Ri0 = 20, except that in this case St0 increases above St∗0, most notably for Re0 = 316
and Re0 = 562. For Re0 = 100 and Re0 = 178 at Ri0 = 62, the region that is close to St∗0
is very small, even though the flow fields in figure 3 indicate the presence of pulsatile flow.

It is interesting to note that figure 12 shows that a low-frequency region forms near the
centreline at the base of the plume for Ri0 = 20, Re0 ≥ 178, and for all simulations at
Ri0 = 63. Connecting this back to figure 4, these are also the simulations where RT spikes
form along the centreline. Because these spikes cause large fluctuations in the vertical
velocity on a time scale much larger than the puffing instability, the computed St0 in this
area is much smaller than the St0 associated with the puffing.
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Figure 13. Puffing frequency measured by the most commonly computed St0 value in each simulation.
Symbols correspond to different Ri0, and colours correspond to different Re0. (a) Puffing frequency as a
function of Ri0. (b) Puffing frequency as a function of Re0. The dashed lines are the empirical correlation
predicted by Wimer et al. (2020) and indicated in (1.1).

To determine quantitatively the puffing frequency dependence on Ri0 and Re0, we
apply the probe technique to the 3-D volume x ∈ [−2R0, 2R0], y ∈ [−2R0, 2R0] and
z ∈ [0, 5R0], resulting in fields of peak frequencies similar to those shown in figure 12.
If the frequency at a particular spatial location satisfies |log2(St0/St∗0)| < log2(4/3), then
this frequency is retained for further analysis. This bound was chosen because the puffing
frequency must fall within this range based on many previous measurements (Wimer
et al. 2020), and if a computed frequency falls outside this range, then it is most likely
not associated with the puffing instability. Among the spatial locations that fall within
this range, the most common value of St0 (i.e. the mode) is shown in figure 13 for all
simulations.

Figure 13(a) shows that the strongest variations in St0 occur with changes in Ri0. In
particular, St0 increases with increasing Ri0, and the dependence on Re0 is relatively
weak. As Ri0 increases, there is an increase in St0 relative to the scaling proposed in (1.1).
Nevertheless, the present results do lie close to this relationship, which was proposed in
Wimer et al. (2020) based on a wide range of data sources.

Although the dependence of St0 on Re0 is not as strong as the dependence on Ri0,
figure 13(b) does reveal that there are variations in St0 with Re0. For the two highest
values of Ri0, in particular, figure 13(b) shows that St0 reaches a maximum value at an
intermediate value of Re0 (316 in the case Ri0 = 20, and 178 for Ri0 = 63), but decreases
for both smaller and larger values of Re0. The dependence of St0 on Re0 is less pronounced
for the two smaller values of Ri0,

Based on the spatially varying puffing frequency fields shown in figure 12, there are
several points to note regarding the single values of the puffing frequency shown in
figure 13. First, as Ri0 increases, figure 12 shows that the spatial region where the probe
can be used to measure the puffing frequency narrows substantially. Additionally, within
this region, there is also some uncertainty in the precise value of the puffing frequency.
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For example, at Ri0 = 20 and Re0 = 1000, as well as at Ri0 = 63 and Re0 = 316, there are
different peak frequencies all within the same spatial region; any of these frequencies
could be associated reasonably with the puffing frequency. These variations indicate
greater uncertainty in the measurement of a single global puffing frequency associated
with the plume dynamics.

Taken together, figures 12 and 13 suggest the following dependence of the puffing
frequency on Ri0 and Re0. At low Re0, the puffing frequency is consistently predicted
below the scaling proposed in (1.1). As Re0 increases, there is more uncertainty in
the computed St0, but the estimated St0 approaches the proposed scaling. This trend
is most clear for Ri0 = 20: for Re0 = 100–178, St0 is below the proposed scaling; for
Re0 = 316–562, St0 is above the scaling; and at Re0 = 1000, the most commonly computed
St0 is near the proposed scaling, although with some uncertainty (based on the variability
shown in figure 12).

Finally, it should be noted that the slight dependence of the puffing frequency on Re0
observed here does not contradict previous works (Subbarao & Cantwell 1992; Bharadwaj
& Das 2017), where a dependence on Re0 has been neglected or was not observed. Based
on our simulations, we start to see the increase in St0 with Re0 roughly where the flow
transitions from laminar to turbulent, implying that this transitional regime induces a
Reynolds number dependence. Additionally, it was shown experimentally by Cetegen &
Kasper (1996) that there is a change in the scaling of St0 at high Richardson numbers.
However, these high Ri0 values were achieved by varying the inlet velocity U0, thus Re0
was varying simultaneously. From our analysis of the data presented in figure 13, if the
critical Re0 at which transition occurs continues to decrease with increasing Ri0, then we
expect that the data shown in Cetegen & Kasper (1996) would be near this critical regime
where the frequency was found here to be dependent upon Ri0. Of course, in order to make
the connection precise, many more simulations with different Ri0 and Re0 would need to
be conducted, but this Reynolds number dependence offers a possible explanation for the
change in scaling observed previously at large Ri0.

4. Conclusions

A series of high-fidelity numerical simulations with AMR has been performed to model
the injection of helium into quiescent air. In this study, we have focused specifically on how
the inlet Richardson (Ri0) and Reynolds (Re0) numbers impact the near-field temporal
variability associated with the puffing instability as the flow transitions from laminar to
turbulent. We report a number of new phenomena related to how the puffing instability
transitions.

(i) As summarized in table 4, there are three distinct regimes of puffing: laminar,
transitional and turbulent. The point of transition varies with spatial location, Ri0
and Re0. At a fixed spatial location, the critical Re0 where these transitions occur
decreases with increasing Ri0. This increase in dynamical complexity is seen most
easily using self-correlations of the vertical velocity along the centreline in the very
near field.

(ii) Within the laminar puffing regime, we still observe qualitative changes in the puffing
as Ri0 and Re0 vary. In particular, there is ‘period doubling’ where two cycles of
the puffing motion are needed (as opposed to one cycle) for the flow to return
to essentially the same state. A flapping mode is apparent, as indicated by strong

950 A24-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.788


M.A. Meehan, N.T. Wimer and P.E. Hamlington

Richardson number Reynolds number range Flow characterization

2.0 100–1000 Laminar
6.3 100–178

6.3 316–1000 Transitional
20.0 100–178

20.0 178–1000 Turbulent
63.0 100–316

Table 4. Characterization of the flow dynamics in the near field of buoyant plumes in terms of the
Richardson and Reynolds numbers.

coherent fluctuations of the radial velocity along the centreline, with some plumes
showing intermittent flapping and others showing persistent flapping.

(iii) In the transitional regime, the cycle-to-cycle variability in the puffing instability
becomes chaotic, as indicated by the state-space trajectories. The flow, however, has
not transitioned completely to fully turbulent since we do not observe penetration
of heavy air into the core of the plumes, a feature that we call ‘spikes’ due to their
resemblance to classical RT instabilities.

(iv) In the turbulent regime, we find RT spikes, and the consequences of these spikes
are additional mixing and strong intermittent oscillations along the centreline of the
plume, making the puffing frequency difficult to extract. The implications of this for
reacting plumes would be the additional supply of oxidizer to the fuel. Additionally,
within the turbulent puffing regime, the plumes exhibit a simple broadening of scales
consistent with our view of turbulent homogeneous flows.

(v) Different flow variables are found to be almost perfectly correlated in the laminar
regime, but in the turbulent regime, correlations are found related to only extreme
events. As an example for Ri0 = 20 where the flow is turbulent, decreases in
mechanical pressure lead to rapid acceleration along the centreline. However, the
correlations in general do not reflect simple dynamics (i.e. not a simple harmonic
oscillator) and can vary spatially. This detail is important for models that propose
different waveforms and phases of the variables (O’Hern et al. 2005).

(vi) The puffing frequency is found to be dependent on Re0. Relative to the scaling
relation proposed in Wimer et al. (2020) and shown in (1.1), the puffing frequency
is initially below the expected St0 for sufficiently low Re0 and Ri0; then the puffing
frequency goes above the predicted value before settling back to the predicted scaling
once the flow is very turbulent. The specific value of Re0 where St0 begins to increase
relative to the proposed scaling is roughly consistent with the critical Re0 where there
is a transition from laminar to turbulent puffing. This dependency does not contradict
previous observations and instead isolates the secondary effect of Re0 on the puffing
frequency in 3-D axisymmetric plumes compared to the primary effect of Ri0. This
could explain the change in scaling observed by Cetegen & Kasper (1996) at high
Ri0.

While the temporal variability is a key metric used to study the puffing instability of
buoyant plumes, there is substantially more work required to quantify the other important
aspects of plumes. First, we need a better understanding of the transport of the fluid and
the associated mixing properties in order to improve predictive models, especially, for
example, since the near-field dynamics can influence classical far-field scaling laws (Kaye
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& Hunt 2009). Second, the dynamics associated with the kinetic energy and vorticity
needs to be better quantified with respect to variations of Ri0 and Re0 in order to model
more accurately subgrid-scale terms in Reynolds-averaged Navier–Stokes and large eddy
simulations (see, for example, DesJardin et al. (2004) and subsequent studies). Finally,
there is a lack of understanding of how the different flow variables are spatially correlated
as a function of time; this can be explored using two-point spatial correlations or more
global data extraction techniques, such as modal decompositions (Taira et al. 2017). Each
of these areas will be explored in future research.
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Appendix A. Validation of adaptive mesh refinement criteria

The simulation results presented in § 3 were obtained using adaptive mesh refinement
(AMR) to provide additional computational resolution in locations with complex flow
dynamics. The AMR approach substantially reduces the computational time, but at the
expense of requiring additional tests to ensure that refinement criteria accurately capture
quantities of interest. In this paper, we primarily study large-scale quantities associated
with the temporal variability of the flow. In this appendix, we therefore show that the
selected AMR criteria are sufficient to resolve these large-scale quantities.

Before continuing, it is important to note and briefly discuss our two AMR refinement
criteria: (i) the magnitude of cell-to-cell variations in density, |�ρ| (kg m−3), and (ii) the
level-dependent vorticity magnitude, |ωi| × 2
 (s−1), where 
 is the AMR level. (Although
these are dimensional quantities, we suppress references to units in the remainder of the
appendix to simplify the presentation.) Both of these criteria are level-dependent, which
is important to ensure that coarse levels can be refined. As an illustration of this, if we use
a criterion such as |�ρ| > 0.2, then this means that, simply due to the finite grid cell size,
the maximum density gradient possible for each AMR level is different, namely


 = 0:
∣∣∣∣ ∂ρ∂xi

∣∣∣∣
max

≈ 99, 
 = 1:
∣∣∣∣ ∂ρ∂xi

∣∣∣∣
max

≈ 198, 
 = 2:
∣∣∣∣ ∂ρ∂xi

∣∣∣∣
max

≈ 396. (A1a–c)

If we instead used the density gradient directly with a refinement criterion that does not
depend on level and is larger than the maximum allowed by the coarse grid (e.g. |∂ρ/∂x| >

100 for this illustration), then the maximum grid level 
max would always remain at 
max =
0, despite the possibility of steep gradients forming for a given set of physical parameters.
This is not an issue of the base grid not being fine enough, but is instead an issue related
to the construction of the AMR criteria.

To circumvent this issue, we have therefore chosen two refinement criteria that do
depend on 
. In §§ A.1 and A.2, we show that our two criteria are sufficient for the present
analysis.
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Physical parameters Computational parameters Percentage at AMR level Data collection

Ri0 Re0 
max |�ρ| > ϕ |ωi| × 2
 > ϕ p̄0 p̄1 p̄2 p̄3 p̄4 T/τ ∗ τ ∗/�t

2.0 100.0 3 ϕ = 0.19 ϕ = 150 0 29 68 3 — 100.5 36.3
3 ϕ = 0.0475 ϕ = 150 0 0 49 51 — 100.5 36.3

20.0 100.0 1 ϕ = 0.40 ϕ = 600 20 80 — — — 101.0 46.2
2 ϕ = 0.38 ϕ = 300 3 57 40 — — 101.0 46.2
3 ϕ = 0.19 ϕ = 150 0 3 66 30 — 101.0 46.2
4 ϕ = 0.095 ϕ = 75 0 0 31 53 16 50.5 46.2

20.0 316.2 1 ϕ = 0.40 ϕ = 600 14 86 — — — 100.4 43.8
2 ϕ = 0.38 ϕ = 300 4 35 61 — — 100.4 43.8
3 ϕ = 0.19 ϕ = 150 0 1 44 55 — 100.4 43.8
4 ϕ = 0.095 ϕ = 75 0 0 4 49 47 50.2 43.8

20.0 1000.0 1 ϕ = 0.40 ϕ = 600 14 86 — — — 101.0 34.7
2 ϕ = 0.38 ϕ = 300 0 11 89 — — 101.0 34.7
3 ϕ = 0.19 ϕ = 150 0 0 25 75 — 101.0 34.7
4 ϕ = 0.095 ϕ = 75 0 0 1 38 61 57.7 34.7

Table 5. Parameters of the simulations used to assess convergence of the computational grid. The simulations
with 
max = 2, |�ρ| > 0.19 and |ωi| × 2
 > 150 are identical to those in table 3. We use ϕ as the threshold
value for the density variations |�ρ| and level-varying vorticity magnitude |ωi| × 2
. Physical parameter values
are identical to those in table 3. We also provide the average percentage, p̄
, of the region x ∈ [−1.5R0, 1.5R0],
y ∈ [−1.5R0, 1.5R0] and z ∈ [0, 5R0] that is resolved by a particular grid level 
.

A.1. Sufficient resolution of the finest level
To ensure satisfactory grid resolution, we varied the finest grid resolution in the
simulations. This was done by varying the finest level, 
max, of the AMR for the most
turbulent cases (i.e. larger Ri0 and Re0) by adjusting the refinement criteria to ensure that
approximately the same criteria were used at the finest level and that the shear layer at the
inlet was resolved to the finest level. Through these requirements, we ensure that as we
increase 
max, the finest level will continue to be present in the regions of interest.

Although arguments can be made for alternative demonstrations of convergence, we
chose the present approach because when the flow is sufficiently resolved, gradients
are approximately equal for different 
max. Thus we ensure that the finest level is
always resolved to the same gradient and that convergence cannot be attributed simply
to insufficient threshold criteria. It should also be noted that with the more turbulent
cases, we resolve almost the entirety of the flow to the finest level (see figure 1 for an
example), leaving only the boundary entrainment unrefined. We provide the complete
set of parameters for the convergence tests in table 5, as well as reporting the average
percentage, p̄
, of the region x ∈ [−1.5R0, 1.5R0], y ∈ [−1.5R0, 1.5R0] and z ∈ [0, 5R0]
that is refined to level 
. If a particular parameter is not provided in table 5, then it is
identical to a parameter in table 1 or 3.

We first consider the statistics of p
 through averages and probability density functions
(p.d.f.s). The averages in table 5 show that as we increase the finest AMR level 
max,
more of the region of interest is resolved at subsequently finer levels. In figure 14, the
p.d.f.s for the coarsest simulations, 
max = 1, are quite noisy as a result of the discrete
nature of the tagging criteria, since grids generally containing 83 or 163 cells are tagged
based on the refinement criteria, as opposed to tagging individual cells. As 
max increases,
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Figure 14. P.d.f.s of p
 for the region x ∈ [−1.5R0, 1.5R0], y ∈ [−1.5R0, 1.5R0] and z ∈ [0, 5R0] that is
resolved by a particular grid level 
. In each case, Ri0 = 20.0. Plots are for: (a) Re0 = 100, lmax = 1;
(b) Re0 = 316, lmax = 1; (c) Re0 = 1000, lmax = 1; (d) Re0 = 100, lmax = 2; (e) Re0 = 316, lmax = 2;
( f ) Re0 = 1000, lmax = 2; (g) Re0 = 100, lmax = 3; (h) Re0 = 316, lmax = 3; (i) Re0 = 1000, lmax = 3;
( j) Re0 = 100, lmax = 4; (k) Re0 = 316, lmax = 4; (l) Re0 = 1000, lmax = 4.

the p.d.f.s become smoother as a result of the higher resolution, allowing the refinement
criteria to resolve more localized regions of the flow. Overall, these statistics imply that if
convergence is achieved, then it is very unlikely to be the result of under-resolved complex
flow features. In particular, with each increase of 
max, the ‘effective’ resolution doubles
and essentially the same fraction of the region is replaced by one finer level 
.

We assess convergence using four metrics: streamwise fluxes, self-similar variables,
turbulent kinetic energy (averages and spectra), and p.d.f.s of each vorticity component.
The specific streamwise fluxes that we use are the time averages of mass flux and
density-weighted kinetic energy flux, defined respectively as

M(z) ≡ 1
T

∫ tf

t0

∫
A

ρuz dA ddt, D(z) ≡ 1
T

∫ tf

t0

∫
A

1
2
ρ(u · u)uz ddA ddt, (A2a,b)

where ( · ) denotes a time average. The similarity variables that we consider are
the centreline density discrepancy 1 − ρ̄c/ρ∞, and streamwise velocity ūc/U0, where
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Figure 15. (a–c) Mass flux M, and (d– f ) density-weighted kinetic energy D, for various maximum levels of
AMR of (a,d) Ri0 = 20, Re0 = 100, (b,e) Ri0 = 20, Re0 = 316, and (c, f ) Ri0 = 20, Re0 = 1000.

ρ̄c = ρ̄(r = 0, z) and ūc = ūz(r = 0, z), as well as the flow widths where ȲHe and ūz
have decayed to 50 % of their centreline values (denoted δY and δu, respectively). For
the turbulent kinetic energy, we show fields of 〈u′

iu
′
i〉/2, where 〈 · 〉 denotes a temporal and

azimuthal average, and ui = 〈ui〉 + u′
i. We also compute û∗

i ûi/2 as a function of frequency
to indicate the spectral content of the turbulent kinetic energy, where ûi represents the
Fourier transform in time of the signal ui, and the superscript ∗ represents the complex
conjugate. The p.d.f.s of the vorticity components are intended to highlight small-scale
features of the flow. We do not consider directly convergence of the puffing frequency
because of the difficulty in measuring a single frequency for the turbulent plumes, as
discussed in § 3.5.

In figure 15, we show M and D for the different resolutions at Ri0 = 20. All of the data
are well-converged for 
max ≥ 2, indicating that using 
max = 3, as in the present study,
provides good convergence of global statistics. For 
max = 1, the numerical diffusion is
high, resulting in a distinct difference in the dynamics (not shown here), similar to the
transition to turbulence discussed in § 3. The fact that we see convergence at relatively
coarse resolutions is not surprising because the fluxes are generally associated with
entrainment, which is a large-scale property of the flow and does not require very fine
resolution to achieve convergence.

Figure 16 shows self-similar quantities computed from the time-averaged density and
velocity fields. These quantities include the centreline density discrepancy, the centreline
velocity, the flow width based on density, and the flow width based on streamwise velocity.
All of the simulations show good agreement between 
max = 3 and 
max = 4, particularly
in the puffing region of the flow (i.e. z/R0 < 1), which provides further validation of our
choice of 
max = 3 used here. The few discrepancies are almost exclusively beyond the
neck of the plume. Consequently, we do not expect any of the discrepancies to affect the
temporal variability in the very near field below the neck of the plumes.
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Figure 16. (a–c) Centreline density discrepancy 1 − ρ̄c/ρ∞, (d– f ) centreline velocity ūc/U0, (g–i) the flow
width using helium mass fraction δY , and ( j–l) the flow width using streamwise velocity δu, for various
maximum levels of AMR of (a,d,g, j) Ri0 = 20, Re0 = 100, (b,e,h,k) Ri0 = 20, Re0 = 316, and (c, f,i,l)
Ri0 = 20, Re0 = 1000.

We next consider the turbulent kinetic energy 〈u′
iu

′
i〉/2 to assess convergence of the

averages of second-order fluctuating moments, which have been shown previously to be
important for ensuring that the puffing frequency is converged (Wimer et al. 2020, 2021).
In figure 17, we show r–z planes of 〈u′

iu
′
i〉/2 for each of the convergence test cases. There

is good agreement between 
max = 3 and 
max = 4, indicating further that the resolution
used in § 3 is sufficient.

Each of the previous quantities has indicated how the grid resolution affects average
and global flow characteristics, rather than local small-scale structures. To investigate the
latter, we plot the spectral kinetic energy û∗

i ûi/2U2
0 at the centreline for z/R0 = 0.5 as a

function of frequency f , in figure 18. The frequency is normalized by τ ∗ according to (1.1).
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Figure 17. Spatial distribution of turbulent kinetic energy for (a–d) Re0 = 100, (e–h) Re0 = 316, and (i–l)
Re0 = 1000, for simulations with (a,e,i) 
max = 1, (b, f, j) 
max = 2, (c,g,k) 
max = 3, and (d,h,l) 
max = 4.
Each case has Ri0 = 20.

Due to the finite amount of data available along the centreline, the signals were smoothed
using a moving average. From this figure, we make a number of important observations.

We observe that each of the spectra peaks near f τ ∗ ≈ 1, as expected considering that the
integral scale, or energy injection scale, is closely related to the time scale of the puffing
frequency. As f τ ∗ increases, the spectrum decreases rapidly, especially for the transitional
flow. For the better-resolved turbulent cases (i.e. 
max ≥ 3 and Re0 ≥ 316), the decrease
has slope approximately −5/2, which is the scaling that we would expect for inertial range
dynamics in frequency space (instead of the classic −5/3 slope when using the spatial
wavenumber k). For the transitional flow of Re0 = 100, rather than an exponential decrease
in the spectrum at high frequency, we see a flattening of the spectrum, possibly connected
to the inverse cascade that has been noted previously in buoyancy-driven flows (Zhou 2017;
Wimer et al. 2021). Given these results, the resolution used in this study is sufficient to
capture short temporal scales in the laminar and transitional cases, as well as producing
the expected scaling relations in the turbulent cases.

The last metrics that we use to assess convergence are p.d.f.s of the vorticity components
at r/R0 = 0.75 and z/R0 = 0.5, each of which are shown in figure 19. This spatial location
was selected because of the large amounts of vorticity present in this region. Note that
〈ωr〉 = 〈ωz〉 = 0 for a statistically axisymmetric flow, but ω′

r /=ω′
z /= 0 at any given instant
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û∗ iû
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Figure 18. Temporal spectra of the turbulent kinetic energy as a function of frequency f , normalized by τ ∗
computed from (1.1). The spectra are computed at z/R0 = 0.5 along the centreline. The dashed line corresponds
to slope −5/2. Plots are for (a) Re0 = 100, (b) Re0 = 316, and (c) Re0 = 1000.
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Figure 19. Logarithm of the p.d.f.s of vorticity components taken at r/R0 = 0.75, z/R0 = 0.5. Line colours
correspond to those in figure 18. Plots are for (a) Re0 = 100, (b) Re0 = 316, (c) Re0 = 1000, (d) Re0 = 100,
(e) Re0 = 316, ( f ) Re0 = 1000, (g) Re0 = 100, (h) Re0 = 316, (i) Re0 = 1000.

in time. For Re0 = 100 and 316, the p.d.f.s confirm that 
max ≥ 3 provides sufficient
resolution since the p.d.f.s are almost identical for 
max ≥ 3.

For the largest value of Re0 considered here (namely, Re0 = 1000), the present
simulations with 
max = 3 are fully resolved for small and intermediate vorticity
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Figure 20. Instantaneous snapshots of the density field for the most laminar simulation (Ri0 = 2, Re0 = 100)
for two different AMR refinement criteria. The grids are overlaid on the density field with regions surrounded
by black lines corresponding to 
 = 3, and regions surrounded by grey lines corresponding to 
 = 2.
(a) Simulation using the same criteria as in § 3. (b) Overly-resolved simulation using criteria given in table 5.

magnitudes. However, there is slight non-convergence for the most extreme vorticity
values, where there are some remaining differences between the p.d.f.s for 
max = 3 and
4. This indicates that higher-order moments of the velocity and velocity gradient are
not converged for the Re0 = 1000 case, but the convergence of global and second-order
statistics provides confidence that the simulations are adequate for examining the temporal
characteristics and puffing behaviour that are the focus of this study.

Finally, using the same code as in the present study (i.e. PeleLM), prior work by Wimer
et al. (2021) has shown for an Re0 = 1490 helium plume that a resolution of at least
2 mm is required to capture the instability that gives rise to the Rayleigh–Taylor spikes
that drive high-density fluid into the core of the plume. This was also found to be the
resolution required to obtain converged puffing frequencies, and the finest scale in the
present simulations (i.e. 1.95 mm) was chosen, in part, based on these prior results.

A.2. Sufficient threshold criteria
As a final test, we must also demonstrate that the AMR threshold criteria used herein are
sufficient to resolve flow features of interest. This is particularly important for the most
laminar case, since figure 3 shows that despite resolving the shear layer at the base of the
plume at the finest level, the finest level is not present farther downstream. This indicates,
based on our criteria, that the finest level is not required in order to resolve the scales of
motion in the flow. The more turbulent cases are of lesser concern, since the finest level
occupies much of the flow, and in § A.1 we showed that this resolution was sufficient.

To test the threshold criteria, we vary them for Ri0 = 2, Re0 = 100, such that the
majority of the flow is resolved at the finest level. Instantaneous snapshots of the density
field are provided in figure 20, with grids corresponding to different AMR levels overlaid.
Overall, these snapshots show essentially no qualitative difference. More quantitatively,
we show centreline plots in figure 21 of mean vertical velocity and normalized turbulent
kinetic energy. These statistics are in agreement for different refinement criteria.
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Figure 21. Centreline plots of (a) ūz/U0 and (b) u′
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0 for the Ri0 = 2, Re0 = 100 laminar plume with
two different AMR criteria.

REFERENCES

ALMGREN, A.S., BELL, J.B., COLELLA, P., HOWELL, L.H. & WELCOME, M.L. 1998 A conservative
adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput.
Phys. 142 (1), 1–46.

BHARADWAJ, K.K. & DAS, D. 2017 Global instability analysis and experiments on buoyant plumes. J. Fluid
Mech. 832, 97–145.

BHARADWAJ, K.K. & DAS, D. 2019 Puffing in planar buoyant plumes: biglobal instability analysis and
experiments. J. Fluid Mech. 863, 817–849.

BHARADWAJ, K.K. & DAS, D. 2021 Influence of coflow on buoyant plume puffing. Trans. ASME J. Fluids
Engng 143 (9), 091303.

BIAN, X., ALUIE, H., ZHAO, D., ZHANG, H. & LIVESCU, D. 2020 Revisiting the late-time growth of
single-mode Rayleigh–Taylor instability and the role of vorticity. Physica D 403, 132250.

BUCH, K.A. & DAHM, W.J.A. 1998 Experimental study of the fine-scale structure of conserved scalar mixing
in turbulent shear flows. Part 2. Sc ≈ 1. J. Fluid Mech. 364, 1–29.

BURTON, G.C. 2009 Large-eddy simulation of a turbulent helium–air plume using the nLES method. In Center
for Turbulence Research, Stanford University and NASA-Ames Research Center.

CETEGEN, B.M. 1997a Behavior of naturally unstable and periodically forced axisymmetric buoyant plumes
of helium and helium–air mixtures. Phys. Fluids 9 (12), 3742–3752.

CETEGEN, B.M. 1997b Measurements of instantaneous velocity field of a non-reacting pulsating buoyant
plume by particle image velocimetry. Combust. Sci. Technol. 123 (1–6), 377–387.

CETEGEN, B.M. & AHMED, T.A. 1993 Experiments on the periodic instability of buoyant plumes and pool
fires. Combust. Flame 93 (1–2), 157–184.

CETEGEN, B.M. & DONG, Y. 2000 Experiments on the instability modes of buoyant diffusion flames and
effects of ambient atmosphere on the instabilities. Exp. Fluids 28 (6), 546–558.

CETEGEN, B.M. & KASPER, K.D. 1996 Experiments on the oscillatory behavior of buoyant plumes of helium
and helium–air mixtures. Phys. Fluids 8 (11), 2974–2984.

CHAKRAVARTHY, R., LESSHAFFT, L. & HUERRE, P. 2018 Global stability of buoyant jets and plumes.
J. Fluid Mech. 835, 654–673.

DAY, M.S. & BELL, J.B. 2000 Numerical simulation of laminar reacting flows with complex chemistry.
Combust. Theor. Model. 4 (4), 535–556.

DESJARDIN, P.E., O’HERN, T.J. & TIESZEN, S.R. 2004 Large eddy simulation and experimental
measurements of the near-field of a large turbulent helium plume. Phys. Fluids 16 (6), 1866–1883.

DUTT, A., GREENGARD, L. & ROKHLIN, V. 2000 Spectral deferred correction methods for ordinary
differential equations. BIT Numer. Maths 40 (2), 241–266.

FINNEY, M.A., COHEN, J.D., FORTHOFER, J.M., MCALLISTER, S.S., GOLLNER, M.J., GORHAM, D.J.,
SAITO, K., AKAFUAH, N.K., ADAM, B.A. & ENGLISH, J.D. 2015 Role of buoyant flame dynamics in
wildfire spread. Proc. Natl Acad. Sci. 112 (32), 9833–9838.

950 A24-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.788


M.A. Meehan, N.T. Wimer and P.E. Hamlington

GOTODA, H., KAWAGUCHI, S. & SASO, Y. 2008 Experiments on dynamical motion of buoyancy-induced
flame instability under different oxygen concentration in ambient gas. Expl Therm. Fluid Sci. 32 (8),
1759–1765.

HALLBERG, M.P. & STRYKOWSKI, P.J. 2006 On the universality of global modes in low-density
axisymmetric jets. J. Fluid Mech. 569, 493–507.

HAMINS, A., YANG, J.C. & KASHIWAGI, T. 1992 An experimental investigation of the pulsation frequency
of flames. In Symposium (International) on Combustion, vol. 24, pp. 1695–1702. Elsevier.

HEGGER, R., KANTZ, H. & SCHREIBER, T. 1999 Practical implementation of nonlinear time series methods:
the TISEAN package. Chaos 9 (2), 413–435.

HUNT, G.R. & VAN DEN BREMER, T.S. 2011 Classical plume theory: 1937–2010 and beyond. IMA J. Appl.
Maths 76 (3), 424–448.

JIANG, X. & LUO, K.H. 2000 Direct numerical simulation of the puffing phenomenon of an axisymmetric
thermal plume. Theor. Comput. Fluid Dyn. 14 (1), 55–74.

KAYE, N.B. & HUNT, G.R. 2009 An experimental study of large area source turbulent plumes. Intl J. Heat
Fluid Flow 30 (6), 1099–1105.

KEE, R.J., RUPLEY, F.M. & MILLER, J.A. 1990 The Chemkin thermodynamic data base. Tech. Rep. Sandia
National Lab.(SNL-CA), Livermore, CA, USA.

KRAICHNAN, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 1417–1423.
KYLE, D.M. & SREENIVASAN, K.R. 1993 The instability and breakdown of a round variable-density jet.

J. Fluid Mech. 249, 619–664.
LEE, J.H. & CHU, V. 2012 Turbulent Jets and Plumes: A Lagrangian Approach. Springer Science & Business

Media.
LIVESCU, D. 2013 Numerical simulations of two-fluid turbulent mixing at large density ratios and applications

to the Rayleigh–Taylor instability. Phil. Trans. R. Soc. A 371 (2003), 20120185.
LIVESCU, D. & RISTORCELLI, J.R. 2007 Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591,

43–71.
MAJDA, A. & SETHIAN, J. 1985 The derivation and numerical solution of the equations for zero Mach number

combustion. Combust. Sci. Technol. 42 (3–4), 185–205.
MICHALKE, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159–199.
MINION, M.L. 1996 A projection method for locally refined grids. J. Comput. Phys. 127 (1), 158–178.
MORENO-BOZA, D., COENEN, W., SEVILLA, A., CARPIO, J., SÁNCHEZ, A.L. & LIÑÁN, A. 2016

Diffusion-flame flickering as a hydrodynamic global mode. J. Fluid Mech. 798, 997–1014.
NICHOLS, J.W., SCHMID, P. & RILEY, J.J. 2007 Self-sustained oscillations in variable-density round jets.

J. Fluid Mech. 582, 341–376.
NICOLETTE, V.F., TIESZEN, S.R., BLACK, A.R., DOMINO, S.P. & O’HERN, T.J. 2005 A turbulence

model for buoyant flows based on vorticity generation. Sandia National Laboratories, Sandia Report
SAND2005-6273.

NONAKA, A., DAY, M.S. & BELL, J.B. 2018 A conservative, thermodynamically consistent numerical
approach for low Mach number combustion. Part I: single-level integration. Combust. Theor. Model. 22
(1), 156–184.

O’HERN, T.J., WECKMAN, E.J., GERHART, A.L., TIESZEN, S.R. & SCHEFER, R.W. 2005 Experimental
study of a turbulent buoyant helium plume. J. Fluid Mech. 544, 143–171.

PASUMARTHI, K.S. & AGRAWAL, A.K. 2003 Schlieren measurements and analysis of concentration field in
self-excited helium jets. Phys. Fluids 15 (12), 3683–3692.

REHM, R.G. & BAUM, H.R. 1978 The equations of motion for thermally driven, buoyant flows. J. Res. Natl
Bur. Stand. 83 (3), 297–308.

SANDOVAL, D.L. 1995 The dynamics of variable-density turbulence. PhD thesis, University of Washington.
SATTI, R.P. & AGRAWAL, A.K. 2006 Flow structure in the near-field of buoyant low-density gas jets. Intl

J. Heat Fluid Flow 27 (2), 336–347.
SOTERIOU, M.C., DONG, Y. & CETEGEN, B.M. 2002 Lagrangian simulation of the unsteady near field

dynamics of planar buoyant plumes. Phys. Fluids 14 (9), 3118–3140.
SUBBARAO, E.R. & CANTWELL, B.J. 1992 Investigation of a co-flowing buoyant jet: experiments on the

effect of Reynolds number and Richardson number. J. Fluid Mech. 245, 69–90.
TAIRA, K., BRUNTON, S.L., DAWSON, S.T.M., ROWLEY, C.W., COLONIUS, T., MCKEON, B.J.,

SCHMIDT, O.T., GORDEYEV, S., THEOFILIS, V. & UKEILEY, L.S. 2017 Modal analysis of fluid flows:
an overview. AIAA J. 55 (12), 4013–4041.

WEI, T. & LIVESCU, D. 2012 Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys.
Rev. E 86 (4), 046405.

950 A24-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.788


Temporal variability and puffing in the near field of buoyant plumes

WIMER, N.T., DAY, M.S., LAPOINTE, C., MEEHAN, M.A., MAKOWIECKI, A.S., GLUSMAN, J.F., DAILY,
J.W., RIEKER, G.B. & HAMLINGTON, P.E. 2021 Numerical simulations of buoyancy-driven flows using
adaptive mesh refinement: structure and dynamics of a large-scale helium plume. Theor. Comput. Fluid
Dyn. 35, 61–91.

WIMER, N.T., LAPOINTE, C., CHRISTOPHER, J.D., NIGAM, S.P., HAYDEN, T.R.S., UPADHYE, A.,
STROBEL, M., RIEKER, G.B. & HAMLINGTON, P.E. 2020 Scaling of the puffing Strouhal number for
buoyant jets and plumes. J. Fluid Mech. 895, A26.

YEP, T., AGRAWAL, A.K. & GRIFFIN, D. 2003 Gravitational effects on near-field flow structure of low-density
gas jets. AIAA J. 41 (10), 1973–1979.

ZHANG, W., et al. 2019 AMReX: a framework for block-structured adaptive mesh refinement. J. Open Source
Softw. 4 (37), 1370–1370.

ZHOU, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I.
Phys. Rep. 723, 1–160.

ZUKOSKI, E.E. 1986 Fluid dynamic aspects of room fires. In Fire Safety Science, Proceedings of the First
International Symposium, pp. 1–30.

950 A24-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.788

	1 Introduction
	2 Numerical simulations
	2.1 Governing equations
	2.2 Numerical methods
	2.3 Physical configuration
	2.4 Present simulations

	3 Results and discussion
	3.1 Qualitative plume structure and dynamics
	3.2 Temporal variability
	3.3 Transition from laminar to turbulent flow
	3.4 Temporal correlations
	3.5 Puffing frequency

	4 Conclusions
	Appendix A. Validation of adaptive mesh refinement criteria
	A.1 Sufficient resolution of the finest level
	A.2 Sufficient threshold criteria

	References

