BLOCK INTERSECTIONS
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(received January 27, 1964)

1. Introduction. One of the most interesting of the
smaller BIBD' s is the system (8,14, 7,4, 3), where we write
the parameters in the standard order v,b,r,k,A. One
representation of a design with these parameters is 1248,3567;
2358,1467; 3468,1257; 4578,1236; 5618,2347; 6728, 1345;
7438,2456. This particular design has the feature that every
block B is paired with a complementary block B' consisting
of all varieties not lying in B. Thus B/MB' =0. If we seek
to generalize this type of design, we obtain

THEOREM 1. 1If a design contains one pair of comple-
mentary blocks, then it must have parameters

2x+2, t(4x+2), t(2x+1), x+1, tx.
Proof. Let the number of plots in a block be k =x+1{.
Since all varieties occur in a pair of complementary blocks
B and B', it follows that v =2(x+1). Also, the basic BIBD
relations give

A2x+1) = rx, 2r = b.

Since x 1is relatively prime to 2x+1, x must divide \, say
N =tx. The theorem now follows.

It will be convenient to refer to the designs with parameters
as specified in Theorem 1 as designs Hz(t,x); a generalization

will be given later. It should of course be pointed out that,
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while we have shown that every design which splits into pairs
of complementary blocks is automatically a design Hz(t, x),

it does not follow that a design H_(t, x) necessarily possesses

2
the splitting property which we have discussed.

The simplest designs Hz(t,x) are the designs
Hz(i,x) = Hz(x); we shall obtain certain results about these
designs, and extend one of the results to designs in general.
However, designs which have a factor in common among
b, r, and \, need not be ignored as implied by Parker [3].
The useful design made up of all selections of triplets from
7 varieties has parameters (7,35,15,3,5), yet no blocks
are repeated; on the other hand, one can get a different
design with these parameters by repeating the Fano design
(7,7,3,3,1) a total of five times. Also, the design
(416,8X,3X,6,\) exists for all A> 1, but not for \ =1.

2. Block Intersection Properties. Parker [3] showed
that for x odd it was not possible for two blocks of a design
Hz(x) to be identical; Seiden'[4] extended this result to all x

by using the theory of orthogonal arrays. In Theorem 2, we
shall deduce this result by using a technique which is originally
due to Fisher [2]-and which has also been used by Bose [1].

THEOREM 2. 1In a design H_(x), it is impossible to

2(
have two identical blocks.

Proof. Let B1 be a specific block and let x, = xi, be
i i

the number of elements in Bim B., where i ranges from 2
1

to b. It immediately follows that, in general,

X

Z x/(b-1) = K(r-1)/(b-1),

k(Ak-k-\+r) - kz(r=1)2/(b—1)

]

T (x, - %)°
1

For the designs Hz(x), we find
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2x(x+1)/(4x+1) ,

X

(x+ i)zx/(4x+ 1) .

1)

-2
(2. 1) p2) (x.1 - X)
If there is another block B. identical with Bi' then Xj =k
J
and

-2 2 2
(xj - x) = (xt+1) (2x+1)2/(4x+1) .
-2 -2
Since Z(Xi-x) -(xj—x) >0,
we arrive at the contradiction

(x+1)2 (-1 - Z*)x)/(‘!;x-l»i)2 >0.

It follows that there cannot be a block B. identical with Bi.
J )

Since B1 was arbitrary, the theorem follows.

The same method allows us to discuss the possibility of
complementary blocks in ‘Hz(x).

THEOREM 3. If x2 =0, then x must be odd.

Furthermore, all other values of x, must be equal to
. i

1
-Z-(X+'1) .

Proof. The first part of this theorem was proved by
Parker [3], using incidence matrices. We note that if a block,

say BZ’ is complementary to Bi' then x, =0. Consider
the b-2 wvariates Ko Xys oo xb. Then

b b _ "

Z x, = Z x = k(r-1) = 2x(x+1), x = ={x+1);

. i . i 2

i=3 i=2

b

Z x, = (x+1) x

i=3
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b
-2 2 1 2
Clearly Z (xi - x) = (xt1) x - 4x[3(x+1)] = 0.
i=3

1

Thus x_=-)_c=2(x+1) for i> 3. Since x  is an integer, we
i - i

see that x must be odd. Furthermore, if x is odd and there
are two complementary blocks, then these two blocks intersect

1
any other block in the same number of varieties, namely, E(x«M).

3. A Generalization of the Fisher Inequality. Fisher's
inequality b > v was proved in [2]; we use the method of
Section 2 to prove

THEOREM 4. If a BIBD contains a > 0 blocks other
than B1 which are identical with a specified block B‘l’ then

b > (ati)v - (a-1).

Proof. Define T by the equation

T = Z(x ‘32)2 = kK(kA = k- A\ + 1) - kz(r-i)zl(b-i) .

Using the basic relation
(3.1) r-X = rk- Av,

we write

T = k(k\ - k+ rk - Av) - kz(r-i)zl(b-i)

kX (k-v) + kz(r-i) - kz(r-i)Z/(b-i)

: 2
kX (k-v) + k (r-1)(b-r)/(b-1) .
Now the basic relation b/r =v/k can be written as
(3.2) (b-r)/r = (v-k)/k,

so we obtain

T = kz(r-i)(b-r)/(b-i) - kz)\(b-r)/r ;
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but the contribution from the blocks identical with B1 is

-2 2 2 2
a(k - x) = ak (b-r) /(b-1) ,
and this cannot exceed T. We thus find

akz(b~r)/(b—1)25 kz(r~1)/(b—1) - kz,\/ r.

This relation may be written as

2
a(b-r)/(b-i)f (r =bx-r+ \)/r.
Now we may use (3.1) to write

b-r

1}
1}

(bk - vk)/k = (rv - rk)/k (rv+ XA =1 - 2Av)/k

(r-2\)(v-1)/k .

Also, by another use of (3. 1),

2 2 2
r -b\x = (kr -DbkA)/k = (kr - rvi)/k = r(r-\)/k.

Our inequality may then be written
a(r-X)(v-1)/K(b=1) < (r-X)/k = (£-\)/T ;
since r-\A > 0, we find
a bk(v-1)/v < (b-1)(r-k) = (b-1)(bk/v - k),
(3.3) b a(v-1) < (b-1)(b-v) .

If we put @ =0 1in (3. 3), we immediately obtain Fisher's
result b>v. Assuming « #0, we can write (3. 3) as

2
b -bv+v>ab(v-1)+ b,
and so obtain

2
b+ v > bv(atl) - ble-1),
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.

ol<

va(a+ik) - (a-1) -

In this inequality b =v is not possible. Thus v/b < 1; but
b is an integer, and so

b > (atl)v - (a-1) .
This establishes the theorem.

We note that o=1 implies that b > 2v; consequently,
the condition that there be no repeated block leads to the
restriction b < 2v. We then obtain

THEOREM 5. For a given value of v, the design having
largest b for which there is no possibility of a repeated block
is just the design HZ(x).

Proof. If there is to be no repeated block, the restriction
b < 2v forces us totry b=2v - 1. This value is impossible,
since the equation

(2v-1)k = rv

leads to the contradiction that v must divide k. Thus we
must try b =2v-2. Then we obtain

(2v-2)k = rv, A(v-1) = r(k-1).

It follows from the first of these equations that v =2k, r =v-1;
from the second we then obtain X\ =k-1. Our design is then

(2k, 4k-2, 2k-1, k, k-1) = Hz(k-i).
4. The Family H (x). If we seek to generalize the
—_— n
results of Section 2, we obtain

THEOREM 6. If a design contains a set 5 of n disjoint
blocks forming a complete replication, then r > k+ X\ .

Proof. Let the blocks in S be Bi’ ..., B . Then
—_— n
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v = nk and b =nr, so there are n(r-1) blocks outside S.
Also, let x. be the number of varieties in BiﬂBj, where

j=n+i, ..., b. We find, as usual,

2
Exj = k(r-1), ij = KAk-X-k+r),

; - k(r-1) __15
T n(r-1)  n’
- Then
-2 kz( 1)
E(xj-x) = k(xk-x-k+r)-—ni—_>_o.
So

nk(Ak - A = k+ 1) - kz(r-i)io ,
v(Ak- X -k+r) - kz(r-i)zo ,
k(kv-rk)+v(r-X)-kV+k220,

-k(r-\) + v(r-1) - k(v-k) > 0 .

Divide by v-k> 0 to give the result r-\A-k> 0, thatis
r> k#X .

It is well known (see for example Stanton [5]) that the
condition r > k+\ 1is equivalent to the condition v > b+r-1
given by Bose [1] for a resolvable design; However, we see
here that this condition follows from the existence of a single
set S (in a resolvable design, there are r sets of blocks,
each forming a complete replication).

Bose [1] showed that if one had an affine resolvable
design, that is, a resolvable design in which blocks from
different replications have the same number of elements in
common, then b =v+r-1; conversely, if b =v+r-1, the
design is affine resolvable. This idea generalizes to give

THEOREM 7. If a design contains a set. S of n disjoint
blocks forming a complete replication, and if r =k+X, then
each block of S has the same number of elements in common--
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: . 2
with blocks outside S; moreover, Vv divides k .

. 2
Proof. If r=k+\ in Theorem 6, then Z (x - x) =0,
J

that is,

o~
N

k

X = X = ——
v

J
This result shows that x. is constant; furthermore, since

. . 2
x_ is an integer, v must divide k .

We can now use the results of Theorems 6 and 7 to obtain
a series H (x) generalizing the results of Section 2.
n

THEOREM 8. Let a design contain a set S of n disjoint
blocks forming a complete replication; also, let r =k+A. Then
the design, which we shall call H (x), has parameters

n

n{nx-x+1), n(nx+1), nx+1, nx-x+1, x.
Proof. We have
v=nk, b=nr;
Af{v-1) = r(k-1),
r=k+\ .
Then
Ank-1) = r(k-1) = (k+A)}(k-1),
An = k+ A -1 = r-1.

So n divides r-1, and we may thus set r-1 =nx; the
theorem follows.

COROLLARY 4. n is a factor of x-1.

2
Proof. For v divides k , thatis, n(nx-x+1) divides

(nx-x&-i)2 .

546

https://doi.org/10.4153/CMB-1964-050-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-050-0

COROLLARY 2. Eachblock of S in the design Hn(x)

intersects all blocks outside S in x - (x-1)/n varieties.

COROLLARY 3. If we drop the assumption r =k+X in
Theorem 8, we obtain parameters

v = n1 +$-)], b = n(y+nx),

y+nx, k:1+f(—%.i). A= x,

2]
1}

where r-\ =Xky .

Proof. The relations v =nk, b=nr, A(v-1) =r(k-1),
at once give r-\X =k(r-An). So we may set r-\ =ky. We
nx - x+y

y
follows. Evidently it is necessary that y divide x(n-1); the
theorem corresponds to the case y =1. We can also use
Theorem 4 to prove

then obtain y =r-An, whence k= The corollary

THEOREM 9. The general family H (x) cannot have
n

repeated blocks.

Proof. Let ¢ (¢> 1) be the number of blocks, other

than B~ itself, identical with B ;- Then

b > (at+i)v - (a-1) .

For H (x), we find
n

n(nx+1) > (a+1) n(nx-x+1) - a+ 1,
2
nx- n(n-i)(a+‘1)x_>_ n(e+1) - a+1 - n,
nx(-na + a + 1) > a(n-1) + 1.
Now n and x are fixed and positive; @ must be chosen so

that a+1 - na> 0, thatis, a(1-n)+ 1> 0. This cannot occur
since nlz, a> 1, We have thus established the theorem.
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5. Conclusion. Interesting questions arise concerning
the designs Hz(t,x) with t> 1, non-isomorphic designs

HZ(X)' the existence of designs Hz(x) with prescribed block

intersection numbers satisfying the relation (2. 1), discussion
of other series of designs. Studies along these lines are under

way.
REFERENCES

1. R.C. Bose, A note on the resolvability of balanced
incomplete block designs, Sankhya 6 (1942), 105-110.

2. R.A. Fisher, An examination of different possible
solutions in incomplete blocks, Ann. Eugenics 10 (1940),
52-75.

3. E.T. Parker, Remarks on balanced incomplete block
designs, Proc. Amer. Math. Soc. 14 (1963), 729-730.

4. E. Seiden, A supplement to Parker's '"Remarks on
balanced incomplete block designs'', Proc. Amer. Math.
Soc. 14 (1963), 731-732.

5. R.G. Stanton, A Note on BIBDs, Ann. Math. Stat. 28

(1957), 1054-1055.

University of Waterloo

548

https://doi.org/10.4153/CMB-1964-050-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-050-0

