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An experimental investigation of turbulent
free-surface flows over a steep permeable bed
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Steep streams involve shallow, supercritical turbulent flows over a permeable bed made
up of coarse particles. They usually exhibit higher flow resistance and stronger mass and
momentum exchanges between the stream and subsurface flow than low-gradient streams.
Describing their flow dynamics using generalised Manning–Strickler equations has led
to empirical relationships with weak predictive power (errors between predictions and
data of over one order of magnitude). We studied shallow turbulent flows by employing
a mesoscopic approach based on the double-averaged Navier–Stokes equations. More
specifically, we were concerned with the possibility of modelling the turbulent and
dispersive shear stress equations using simple algebraic equations. To that end, we studied
shallow, supercritical turbulent flows over a sloping bed made up of randomly packed
spherical particles. Using visualisation techniques based on particle velocimetry imaging
and refractive index matched scanning, we were able to reconstruct the velocity field
throughout the bed and stream, far from the sidewalls, and estimate the contributions of the
dispersive and turbulent shear stresses to the total shear stress. The dispersive shear stress
represented less than 20 % of the turbulent shear stress, but because it was concentrated
within a thin layer (called the roughness layer) where it outweighed the turbulent shear
stress, it had a significant influence on the mean velocity profile. We proposed an algebraic
closure equation for dispersive shear stress, based on the mixing-length model used
for turbulent shear stress, and we found that it captured closely the mean-velocity and
turbulence-intensity profiles of shallow flows over horizontal or sloping permeable beds.
Our data suggest that flow dynamics was affected largely by turbulence damping, drag
forces and dispersion within the roughness layer, which may explain why steep streams
differ from low-gradient streams.
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1. Introduction

Steep streams are waterways whose slope exceeds a few per cent (Church 2010; Comiti &
Mao 2012; Buffington & Montgomery 2013). Their bed usually contains coarse particles
(cobbles and boulders whose size exceeds 10 cm). Water velocity is high (normally in
excess of 1 m s−1), while the flow is shallow relative to the bed roughness (typically, the
flow depth is of the same order as the bed’s coarsest particles) and reaches a supercritical
regime most of the time. Turbulence is more strongly affected by bed roughness and varied
bedforms (e.g. cascades, steps and pools, riffles) in steep streams than in low-gradient
streams: a steep stream’s velocity profile rarely exhibits a logarithmic layer (Manes,
Pokrajac & McEwan 2007), flow resistance is usually much higher (Ferguson 2013),
turbulent kinetic energy is more easily transported from the surface to the subsurface flow
(Manes et al. 2009), and turbulent fluctuations in the near-bed layer are less pronounced
(Lamb, Brun & Fuller 2017a; Cooper et al. 2018). Steep-stream bed topography and
high bed permeability promote momentum and mass exchanges with the hyporheic flow
through the bed (Buffington & Tonina 2009; Tonina & Buffington 2009; Boano et al.
2014).

Scale invariance is a fundamental concept that has been used widely in hydraulics
(Heller 2017). Among other things, it implies that a river’s overall dynamics can be
determined from certain macroscopic variables (such as bed slope and flow depth) using
power-law equations. The Manning–Strickler law, used for modelling flow resistance,
provides a typical example of scale invariance; this empirical equation holds for a
wide range of flow conditions and stream configurations, and it has been justified on
dimensional grounds and connected to Kolmogorov’s theory of turbulence (Gioia &
Bombardelli 2002; Bonetti et al. 2017; Katul, Li & Manes 2019). When applied to steep
streams, it underestimates flow resistance by one order of magnitude (Ferguson 2013;
Powell 2014). Various equations have thus been developed specifically to deal with flow
resistance in steep streams by proposing new power-law equations adjusted on steep-stream
data (Rickenmann 2016), but because of the wide range of temporal and spatial scales
associated with these streams, flow resistance data are scattered, and no unique scaling
law emerges from them. There is thus growing evidence that steep streams exhibit no
scale invariance (Ferguson 2021), and thus, faced with this failure of scale invariance, we
need to dig down into the issue of spatial scales by looking into their flow dynamics at a
mesoscopic scale (that is, at the bed roughness scale).

Steep streams are a particular case of flows of Newtonian fluid over a porous interface.
Models describing these flows can be split into three classes depending on the scale
of observation (Chandesris & Jamet 2006). Microscopic models resolve the flow on a
length scale finer than the mean bed particle size. They usually involve direct numerical
simulations of the Navier–Stokes equations or large-eddy simulations (Breugem, Boersma
& Uittenbogaard 2006; Fang et al. 2018; Chen et al. 2019; Kuwata & Kawaguchi 2019;
Shen, Yuan & Phanikumar 2020). At the other end of the observation scale, macroscopic
models assume that the free flow and porous bed are two distinct continua separated by a
clear interface. Flow dynamics in each layer can be described using mass and momentum
balance equations supplemented by relevant jump conditions at the interface (Goyeau et al.
2003; Jamet & Chandesris 2009). This is a two-part problem: determining how turbulence
is affected by the rough, porous interface, and relating the jump conditions to bulk flow
conditions. An example of the macroscopic approach applied to steep streams was given
by Lamb, Brun & Fuller (2017b), who developed a model in which the surface flow is
described using Boussinesq’s eddy-viscosity equation, and the subsurface flow is modelled
using the Darcy–Forchheimer equation, including a Brinkman correction. These equations
are closed using ad hoc algebraic equations.
941 A51-2
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Steep streams over permeable bed

In the third approach, referred to as mesoscopic, the system is regarded as a
two-phase medium. The governing equations for the fluid phase are obtained by averaging
the Navier–Stokes equations in time and space over a control volume aligned with
the flow direction (Nikora et al. 2001, 2007a; Dey & Das 2012). This technique,
called double-averaging, combines temporal averaging (used in turbulence to derive the
Reynolds-averaged Navier–Stokes equation) and spatial averaging (used to derive the
governing equations of flows in porous media) (Whitaker 1999). The presence of the solid
phase is reflected by the porosity function ε (defined as the ratio of the fluid volume to
the total volume in the control volume). The surface and subsurface flows are separated by
a transition layer within which ε varies from a mean bulk porosity to unity. Compared to
the macroscopic approach, mesoscopic models require no jump conditions at the interface
between surface and subsurface flows. In addition to the Reynolds stress tensor (accounting
for turbulence), mesoscopic models involve the dispersive stress tensor (representing the
momentum transfer induced by the spatial heterogeneities in the velocity field created by
bed obstacles). Both tensors need to be closed. Although increasingly complex procedures
for closing the Reynolds stress tensor have been proposed, and several recent numerical
studies have focused on dispersive stresses (Fang et al. 2018; Jelly & Busse 2018; Kuwata
& Kawaguchi 2019; Shen et al. 2020), we know of few attempts to date to close the
dispersive stress tensor (Kuwata & Suga 2013, 2015).

The double-averaging technique has been applied to study, for instance, turbulence
in gravel-bed rivers (Nikora et al. 2004, 2007b; Manes et al. 2007; Franca, Ferreira
& Lemmin 2008; Mignot, Barthélemy & Hurther 2009; Dey, Sarkar & Ballio 2011;
Cameron, Nikora & Stewart 2017; Papadopoulos et al. 2020), mass and momentum
exchanges across the bed–stream interface (Giménez-Curto & Corniero 2002; Manes et al.
2009; Voermans, Ghisalberti & Ivey 2017, 2018), the Darcy–Weisbach friction factor for
open-channel flows (Nikora et al. 2019), and turbulence modification in sediment-laden
flows (Revil-Baudard et al. 2016). We applied this technique to study experimentally the
dynamics of steep streams and interpret the flow data that we acquired in a tilted flume. We
revisited the problem initially addressed by Lamb et al. (2017b) at the macroscopic scale.
However, working on the mesoscopic scale required that we be able to capture the velocity
field within the entire flow domain. To that end, we used a technique called refractive
index matching, which involved using fluid and particles with the same refractive index
(Wiederseiner et al. 2011; Dijksman et al. 2012). This experimental technique has been
used increasingly in recent years to reconstruct the three-dimensional velocity fields far
from the sidewalls of free-surface flows (Voermans et al. 2017; Ni & Capart 2018; Kim
et al. 2020; Shih & Wu 2020; Trewhela & Ancey 2021).

This paper focuses on the steady uniform flow in a turbulent supercritical regime
over a sloping permeable bed. In § 2, we define the physical system that was studied
experimentally, we recall how the momentum balance equation for a fluid phase
can be obtained using the double-averaging method, and we introduce the closure
equations. We emphasise algebraic closure equations based on the mixing-length concept.
Section 3 is devoted to the experimental protocol. Although the experimental set-up
was not in complete similarity with flows observed in real-world mountain streams,
it retained their main features: a steep slope, a permeable bed and a shallow flow
in a supercritical regime. Section 4 presents the different experimental profiles used
(velocity and turbulent and dispersive shear stresses) and compares them with the
theoretical model’s predictions. Section 5 discusses the study’s limitations and proposes
possible extensions to the model. An electronic supplement (available at https://
doi.org/10.1017/jfm.2022.310) accompanies the paper and provides additional proofs
for § 2.2.
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Figure 1. Diagram of a gravity-driven turbulent flow over a rough permeable bed with shallow relative
submergence. Here, Ux(z) is the double-averaged velocity, ε(z) is the porosity, zrc is the roughness crest
elevation, and zt is the elevation at which the bulk porosity εb is reached. The roughness layer is bounded
by zrc and zt, while the subsurface layer is below zt. The surface layer is above zrc, and in this region ε = 1.

2. Theoretical developments

2.1. Geometry studied
We consider a Newtonian fluid’s steady uniform flow in the turbulent supercritical regime
over a random packing of stationary spherical particles of diameter dp. The fluid’s dynamic
viscosity is denoted by μ, and its density is �. The particle layer is of uniform depth and
rests on an impervious, solid planar boundary inclined at angle θ (i = tan θ is the bed
slope). The inclination angle is shallow, making it possible to assume that i ∼ sin θ . The
bed surface is initially flat at the macroscopic scale, but because of the random particle
arrangement, the bed–stream interface is bumpy at the particle scale. Figure 1 shows a
sketch of the problem studied. We use a Cartesian frame where the x-axis is aligned
with the impervious wall, the z-axis is normal to that bed, and the y-axis points in the
cross-stream direction. The flow’s free surface is located at z = zsurf . We define a porosity
function ε as the fraction of the pore volume over a control volume V (specified in the
next subsection). We assume that ε depends solely on z because the bed is flat and of
uniform thickness. We also assume that because the bed is stationary, the function ε(z) is
prescribed.

We split the flow domain into three layers depending on ε:

(i) The surface layer is the flow region above the roughness crest zrc, where ε = 1.
(ii) The subsurface layer is assumed to be a homogeneous porous medium with a

constant porosity εb.
(iii) The roughness layer is a transition region, in which the porosity increases from ε =

εb at z = zt to ε = 1 at z = zrc.

Nikora et al. (2001) proposed a slightly different partitioning, with the roughness layer
split into interfacial and form-induced sublayers (between zt and zrc, and above zrc,
respectively). Within the form-induced sublayer, the dispersive stresses gradually drop
to zero. Because the measured dispersive shear stress in our experiments was vanishingly
small for z > zrc, our study did not consider sublayers. For the free stream, flow depth
can be defined as h = zsurf − zrc as a first approximation, but subsequently, we refine this
definition and instead use hf = zsurf − zε=0.8, where zε=0.8 is the elevation for which ε =
0.8. Here, we are concerned with shallow flows – flows with shallow relative submergence,
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Steep streams over permeable bed

h/dp = O(1). The flow depth is, however, sufficiently large relative to dp for the free
surface to remain flat and parallel to the bed.

Different flow regimes in the subsurface layer can be created depending on the flow
velocity and pore size (Wood, He & Apte 2020). In this paper, we focus on beds sufficiently
coarse to be permeable and subject to momentum and mass exchanges with the free stream,
but also sufficiently dense to quickly dampen fluid turbulence. The flow dynamics across
the sediment–water interface can be described using the permeability Reynolds number
ReK = √

Ku∗/ν, where u∗ denotes the shear velocity, ν = μ/� is the kinematic viscosity,
and K is the permeability (Voermans et al. 2017). Here, we consider flows for which
ReK = O(1).

We are interested in determining the mean velocity’s streamwise component Ux(z). This
function is derived by averaging the local velocity field u = (u, v,w) using an appropriate
averaging procedure (see next subsection). Fluid pressure p is assumed to be hydrostatic,
on average, throughout the flow domain.

2.2. Governing equations
A turbulent flow over and through a porous medium exhibits time and/or space fluctuations
of the velocity and pressure fields. To derive the governing equations, we use the
double-averaging technique, which can be seen as an extension of time-averaging for the
Reynolds-averaged Navier–Stokes equations (Nikora et al. 2007a). We first take the time
average of the Navier–Stokes equations and use the Reynolds decompositionψ = ψ̄ + ψ ′,
where ψ denotes a flow variable (velocity or pressure), ψ̄ is its temporal mean, and ψ ′ is
its fluctuation.

We then take the volume average of these Reynolds-averaged Navier–Stokes equations.
Volume averaging is achieved by considering a mesoscopic control volume in the form of
a thin parallelepiped: its length L∗ and width W∗ are much larger than the particle diameter
dp, whereas its depth H∗ is shallow relative to dp. At any point x = (x, y, z), the integration
volume is V = (x − L∗/2, x + L∗/2)× ( y − W∗/2, y + W∗/2)× (z − H∗/2, z + H∗/2).
This volume V comprises fixed solid (Vs) and fluid (Vf ) volumes. We refer to n as the
vector pointing from the solid particle to the fluid phase. We split the surface bounding
the fluid volume Vf into As (the surface of the interface with the solid particles) and Af
(the fluid surface of the volume boundaries, Af = Sf ). See the electronic supplement for
further information. For any arbitrary function ψ related to the fluid phase, Gray (1975)
defined the intrinsic phase average

〈ψ〉 = 1
Vf

∫
Vf

ψ dV. (2.1)

We define the spatial fluctuation ψ̃ with respect to the double (time–space) average
(Gray 1975): ψ̄ = 〈ψ̄〉 + ψ̃ . Using the decomposition based on the double-averaged
variables, we end up with the following expression for the velocity field:

u(x, y, z, t) =
⎡
⎣ux

uy
uz

⎤
⎦ =

⎡
⎣ūx + u′

x
ūy + u′

y
ūz + u′

z

⎤
⎦ =

⎡
⎣〈ūx〉 + ũx + u′

x〈ūy〉 + ũy + u′
y

〈ūz〉 + ũz + u′
z

⎤
⎦ . (2.2)
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Based on developments by Whitaker (1996) and Nikora et al. (2007a), we can express
the double-averaged Navier–Stokes equations in the form

∇ · (ε〈u〉) = 0, (2.3)

∂〈ū〉
∂t

+ ε−1 ∇ · (ε〈ū〉〈ū〉) = g − 1
�

∇〈p̄〉 + ν

ε
(∇2(ε〈ū〉)− ∇〈ū〉 · ∇ε)

+ 1
ε�

∇ · (τ t + τ d)+ f̄
�
, (2.4)

where g denotes gravitational acceleration, τ t = −ε�〈u′u′〉 is the Reynolds stress tensor,
τ d = −ε�〈ũũ〉 is called the dispersive stress tensor, and f̄ is the drag force density
resulting from fluctuating pressure and velocity gradients on the particle surface:

f̄ = 1
Vf

∫
As

(μ∇ũ − p̃I) · n dS, (2.5)

where I is the identity tensor. For steady, uniform, one-dimensional open-channel flow
over a porous bed, the x-component of the momentum equation reduces to

0 = ε�gi + dτd

dz
+ dτt

dz
+ dτv

dz
+ ε f̄ − �μ

dε
dz

dUx

dz
, (2.6)

where Ux(z) = 〈ux〉 is the streamwise component of the double-averaged velocity, f̄ is the
streamwise component of the drag force density f̄ , τt = −�ε〈u′

xu′
z〉 and τd = −�ε〈ũxũz〉

are the turbulent and dispersive shear stresses, respectively, and τv = μ d(εUx)/dz is
the viscous shear stress. The last term on the right-hand side of (2.6) is known as the
second Brinkman correction (Ochoa-Tapia & Whitaker 1995). This term becomes zero
in the surface and subsurface layers. The mesoscopic formulation’s advantage over the
macroscopic one is that the governing equation (2.4) holds everywhere. The individual
contributions in (2.4) may vary significantly from one layer to another.

Equation (2.6) is subject to the usual boundary conditions for free surface flows down a
sloping bed:

Ux = 0 at z = zb and
dUx

dz
= 0 at z = zsurf . (2.7a,b)

The first boundary condition in (2.7a,b) reflects the no-slip condition at the bottom wall,
while the second assumes that the ambient air exerts no shear stress on the free surface.

2.3. Closure equation for the drag forces
The permeable bed is assumed to behave like a homogeneous porous medium for which the
drag force density f̄ is approximated by a Darcy equation with a Forchheimer correction
(Whitaker 1996). Here we follow Breugem et al. (2006) and use Ergun’s (1952) equation
to close the drag force density f̄ . Its streamwise component f̄ can be expressed as

f̄ = − με

K(Ux)
Ux = −

Ergun︷ ︸︸ ︷
AE(1 − ε)2

εd2
p

μUx︸ ︷︷ ︸
Kozeny–Carman

− BE(1 − ε)

dp
�U2

x︸ ︷︷ ︸
Forchheimer term

, (2.8)

where K(Ux) is a velocity-dependent effective permeability, and AE = 180 and BE = 1.75
are Ergun’s empirical constants. In Ergun’s nonlinear model, the force exerted by the fluid
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Steep streams over permeable bed

depends on the mean grain size dp and porosity ε, and it is a quadratic function of the
mean flow velocity Ux. When the quadratic term in Ergun’s equation is negligible, we
end up with Darcy’s law, and in that case, the permeability K(Ux) becomes a constant
whose value is set by the Kozeny–Carman relation (KKC = d2

pε
3
b/(AE(1 − εb)

2), with
AE = 180). When a steady state is reached in the subsurface layer, the stress gradients
in the momentum balance equation (2.6) are small, and the drag force f balances the
driving force ε�gi. Solving (2.8) for Ux provides the steady-state velocity Ux,SSL, whose
leading-order estimate is

Ux,SSL = giKKC

ν
, (2.9)

where KKC is the Kozeny–Carman permeability given by the first contribution on the
right-hand side of (2.8). Note that this expression (2.8) is assumed to be valid everywhere
in the fluid (and the same applies to the closure equations presented below).

2.4. Turbulent stress closure
To model the turbulent stress, we opt for Prandtl’s mixing-length equation,

τt = −�ε〈u′
xu′

z〉 = �ε	t
2
(

dUx

dz

)2

, (2.10)

where, following Li & Sawamoto (1995), we assume that the mixing length 	t can be
parametrised using an integral approach. In their original formulation, Li & Sawamoto
(1995) defined the mixing length as

	t,LS = κ ZLS with ZLS =
∫ z

−∞
ε − εb

1 − εb
dz, (2.11)

where κ denotes the von Kármán constant and ZLS is an integral depth, which avoids
having to fix the position of the bed–stream interface. This equation has been used by
Revil-Baudard & Chauchat (2013) and Maurin et al. (2015), among others.

In open-channel flows, turbulence damping causes the mixing length to decrease in the
buffer layer along a solid boundary (Nezu & Nakagawa 1993; Pope 2000; Dey 2014). For
smooth solid boundaries, Van Driest’s equation is commonly used to model this damping
on an empirical basis (Pope 2000). According to Durán, Andreotti & Claudin (2012),
damping is also expected when the bed is made up of coarse particles. Following these
authors, we combine the mixing length proposed by Li & Sawamoto (1995) with the one
developed by Van Driest (1956):

	t,μ = κ ZLS

(
1 − exp

(
−

√
ZLS Ux(z)/ν

A∗

))
, (2.12)

where A∗ = 26 is an empirical constant calibrated by Van Driest. As will be shown in
the simulation section, § 5, its application to the present context was mostly driven by its
improvements to the model’s performance.

2.5. Dispersive stress closure
Although there is a large body of work on dispersive stresses τ d based on experimental
measurements (Mignot et al. 2009; Detert, Nikora & Jirka 2010; Dey & Das 2012;
Voermans et al. 2017; Rousseau & Ancey 2020) or direct Navier–Stokes simulations
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(Fang et al. 2018; Kuwata & Kawaguchi 2019; Shen et al. 2020), we know of very few
attempts to provide a scaling law or a closure equation for the dispersive stress tensor τ d.
Based on earlier investigations into dispersive stresses (Breugem et al. 2006; Rousseau
2019), we suggest an empirical relationship for the dispersive shear stress closure:

τd = −�ε〈ũxũz〉 = �ενd
dUx

dz
= �ελdp

1 − ε(z)
1 − εb

Ux
dUx

dz
, (2.13)

which involves an effective dispersive viscosity

νd = λdp
1 − ε(z)
1 − εb

Ux, (2.14)

where λ is a proportionality constant that needs to be calibrated. We can also recast the
dispersive shear stress in the form

τd = �ε	2
d

Ux

dp

dUx

dz
, where 	d = dp

√
λ

√
1 − ε(z)
1 − εb

, (2.15)

where 	d plays the role of the mixing length and is subsequently called the dispersive
length.

3. Experimental protocol

3.1. Set-up
Experiments were performed in a 6 cm-wide tilting flume, as depicted in figure 2. A
constant head tank provided a steady fluid discharge into the flume. Equal proportions
of borosilicate beads of two diameters (7 and 9 mm for A runs, and 13 and 15 mm for
B runs) were packed randomly onto the flume bottom, forming the coarse bed. Thus
median diameters were dp,A = 8 mm and dp,B = 14 mm for runs A and B, respectively.
A bimodal size distribution was used because otherwise, beads formed parallel layers
causing undesirable biases in the averaged porosity and velocity profiles, as observed,
for instance, by Ni & Capart (2015). Before each run, the upper layer was flattened out to
form a uniform bed layer of height hs = 5 cm.

We used the refractive index matched (RIM) technique to visualise what happened
within the stream and bed far from the sidewalls (Wiederseiner et al. 2011). This technique
involved matching the fluid’s refractive index nf with that of the glass beads, making
it possible to determine bead positions and probe interstitial flow velocities. The fluid
was prepared by mixing volume concentrations of 60 % benzyl alcohol and 40 % ethanol
(BAE). The advantage of combining borosilicate, ethanol and benzyl alcohol was that
mixtures had bulk densities close to those found in rivers, and this allowed us to run
experiments on sloping beds with no sediment transport. Because of the fixed volume
of fluid in the reservoir, a steady state was maintained for approximately 40 s. Table 1
recaps the fluid and sediment characteristics.

3.2. Velocimetry and scanning
We employed a method combining particle image velocimetry (PIV) and refractive index
matched scanning (RIMS). This method was presented in great detail in an earlier
publication, to which we refer interested readers (Rousseau & Ancey 2020). We outline
the method briefly below.
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y

Permeable grid

Constant head tank

Fluid reservoir
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Flow straightener

Permeable bed

Fluid

g

i

Flow direction

L ∼ 8 cm

Figure 2. Sketch of the experimental set-up. See Movie 1 and Movie 2 in the online supplementary material
available at https://doi.org/10.1017/jfm.2022.310 for an overview of the set-up and a video sample taken by the
PIV-RIMS imaging system, respectively.

i (%) nf dp,A (mm) dp,B (mm) hs (cm) �s (kg m−3) � (kg m−3) ν (mm2 s−1)

0.5–8.0 1.472 8.0 14.0 5.0 2200 950 3.1

Table 1. Fluid and sediment characteristics measured at a controlled temperature 20 ◦C: slope i, fluid refractive
index nf , mean particle diameters dp,A and dp,B for runs A and B, respectively, bed thickness hs, particle density
�s, fluid density �, and kinematic viscosity ν.

The PIV-RIMS method coupled continuous scanning and PIV; it was thus able to
provide more information on turbulence than previous measurements based on fixed laser
sheets. We followed a methodology inspired by Dijksman et al. (2012), van der Vaart et al.
(2015) and Ni & Capart (2015): the porous bed and stream were scanned by moving a laser
sheet across the stream’s transverse axis. The laser sheet was displaced from y = 1 cm to
y = 4 cm (the origin y = 0 of the cross-stream axis is placed at the front sidewall). As
shown by figure 3, the fluid volumes (y < 1 cm) adjacent to the sidewalls were influenced
by the sidewall boundary layers and were thus not representative of the flow conditions far
from the sidewalls – see figure 11 and related text in Rousseau & Ancey (2020). For this
reason, they were not scanned.

For PIV, we seeded the flow with micrometric tracers (made of hollow borosilicate
glass spheres with diameters in the range of 8–12 μm) and lit them using the
mobile laser sheet. The camera was placed 30 cm from the sidewall, filming an area
�x�z = 73.8 × 34.5 mm2 and operated at a rate of 420 frames per second. To estimate
velocities from these images, we used a method called ‘feature tracking’ (Miozzi, Jacob &
Olivieri 2008), which is included in the opyf Python package (available from the public
GitHub repository https://github.com/groussea/opyflow).

First- and second-order turbulence statistics were computed by adjusting the scanning
travel speed so that it was consistent with the constraints imposed by the laser sheet’s
thickness and space–time velocity fluctuations (see Rousseau & Ancey (2020) for further
explanations and validation of the PIV-RIMS method). We were able to produce the
following volume-averaged quantities: the mean streamwise velocity component Ux, and
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Figure 3. Three-dimensional view of the streamwise velocity component for run A1. (a) Side view of a flow
slice with an indication of the velocity field at the transverse position Y = 25 mm (where Y is the distance
from the sidewall). (b) Front view of the flow slice. This view enables us to appreciate how the sidewall
influences the flow. Different bead colours (purple and pink) were used to distinguish between the two different
diameters (dp = 7 mm and 9 mm). The origins of Z and X are arbitrary in this plot. See Movie 3 in the online
supplementary material, illustrating the velocimetry procedure applied to a raw video sample.

the turbulent (τt) and dispersive (τd) shear stresses within a mesoscopic sampling volume
whose dimensions were �x�y�z = 73.8 × 30 × 34.5 mm3 (the mesoscopic scale L∗ =
�x over which spatial averaging was done was approximately ten bead diameters). The
porosity (ε) profile was obtained by averaging over a thinner volume (1 px thick volume),
so virtually ε was a plane-averaged quantity. The profiles were obtained by first averaging
in time the velocity field at any point (voxel) within the control volume. We measured
the time fluctuations and the spatial disturbance for each voxel. Finally, we deduced
the resulting Reynolds and dispersive stresses, and averaged these quantities over the
mesoscopic sampling volume �x�y�z parallel to the bed.

4. Results

Table 2 summarises the key features of the nine runs presented in this paper. Each run
was made using the same flow discharge per unit width (qf = 3 × 10−3 m2 s−1). The bed
slope i varied from 0.5 % to 8 %. For the sake of comparison, we also report the key
features of runs L12, L14 and L15 conducted by Voermans et al. (2017), which we will
compare with ours below. The main difference was that we investigated bed slopes as
steep as 8 %, which led to faster surface and subsurface velocities than those observed by
Voermans et al. (2017) in horizontal beds. In our experiments, the permeability Reynolds
number ReK ranged from 2 to 9, whereas Voermans et al. (2017) investigated a 0.3–6 range.
Figure 4 shows the typical velocity and shear stress profiles determined for runs A2 and
A3, on which we comment in the following subsections.

4.1. Porosity profiles and bed-normal origin definition
To compare the various runs’ velocity profiles, we needed to define a reference level that
could be used to locate the bed–stream interface. We considered different possibilities.
Some authors have suggested defining this reference level by fitting the differential form of
the logarithmic velocity profile to the experimental profile (Cameron et al. 2017; Suga et al.
2018; Shen et al. 2020). We did not choose this option because logarithmic velocity profiles
are not expected in shallow submergence conditions (Jiménez 2004). One alternative was
the definition given by Pokrajac et al. (2006), who suggested that the roughness crest –
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Figure 4. Flow profiles for runs A2 (i = 1 %) and A3 (i = 2 %). We increased the bed slope from 1 % to
2 % while keeping a constant flow discharge. (a) Streamwise velocity profiles; the inset shows the subsurface
velocities in a log–linear plot. The horizontal error bars represent uncertainties at the free surface level. (b)
Porosity profile. (c,d) Shear stresses compared with the driving force density G defined by (4.2). The total
shear stress τTot = τv + τt + τd includes turbulent stress τt, dispersive stress τd , and viscous stress τv . The
bed-normal distance z is scaled by the mean particle diameter dp and defined relative to the elevation zε=0.8:
z′ = z − zε=0.8.

defined as the elevation for which porosity is 0.99 (zrc = zε=0.99) – could be considered the
reference level. However, we found that this definition created significant scatter between
the velocity profiles when the bed was rearranged. Indeed, zε=0.99 was strongly influenced
by individual grains that were slightly higher than the average bed level. We deduced that
a better option was to set the reference level at a bed height where the scatter between
porosity profiles was minimal. We found that the optimal value was zε=0.8 – see figure 13
in Rousseau & Ancey (2020), which compared porosity profiles. In our experiments, zε=0.8
was located at approximately 0.3dp below the roughness crest zrc. Using a bimodal size
distribution for the bed packing, we observed no clear inflexion point at 0.3dp below the
roughness crest, in contrast to what was observed for beds made up of equally sized beads
(Voermans et al. 2017; Shen et al. 2020). In the following subsections, we will use a
relative elevation:

z′ = z − zε=0.8. (4.1)

4.2. Main flow characteristics
Figure 4 shows the bed slope’s influence on velocity and shear-stress profiles for runs
A2 and A3. As the typical flow depth did not vary much between runs (hf ∼ 10 mm),
changing the bed slope i was the most effective way of varying the bottom shear stress
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Steep streams over permeable bed

(τb ∼ �ghi) from one run to another. The slope was increased from 1 % to 2 %, and all
other control parameters were held identical. Figures 4(a–d) show the velocity, porosity,
and turbulent shear stress τt = −�ε〈u′

xu′
z〉 for runs A2 and A3, respectively. If the flow

is steady, one-dimensional and uniform, then the total shear stress counterbalances the
driving gravitational force density:

G(z) =
∫ zsurf

z
ε(z)�gi dz = τt + τv + τd. (4.2)

We computed G by integrating ε�gi between z and zsurf , and plotted it in figures 4(c,d).
These figures show that there was a good match between total shear stress τTot =
τt + τv + τd and the driving stress G in the surface layer, confirming that the flow was
close to the steady state (the slight deviation in figure 4(d) was within the acceptable
range of uncertainty). We also found that the turbulent shear stress τt followed closely
the G variations between zsurf and z′ ∼ 0.3dp, that is, at approximately the roughness
crest z′

rc. Within the roughness layer, the turbulent shear stress decreased significantly.
We also observed that the dispersive stress and viscous stress (τd = −ε�〈ũxũz〉 and
τv = εμU′

x(z), respectively) were one order of magnitude lower than the turbulent shear
stress in the surface layer. The turbulent and viscous stresses reached their maximum near
the roughness crest, which was accompanied by a change in convexity (reflected by an
inflexion point) in the velocity profile. The dispersive shear stress reached its maximum at
a lower elevation z′ = 0.

These observations in the surface and roughness layers were consistent with the
Voermans et al. (2017) measurements of flows over rough horizontal beds when the
permeability Reynolds numbers were close to ours. Voermans et al. (2017) estimated
that the sediment–water interface was located at z′ = 0 (as explained in § 4.1). Although
flow velocities were much lower in the Voermans et al. (2017) experiments than in ours,
their velocity profiles, when scaled by the shear velocity u∗, were close to ours, as shown
by figure 5(b). In our experiments on a sloping bed, the shear velocity was estimated
as u∗ = √

ghf i, whereas Voermans et al. (2017) inferred the shear velocity from the
total stress maximum: u∗,V = √

τTot,max/�, where τTot,max was the maximum of the τTot
profile shown in figure 4. Previous studies investigating flows adjacent to rough beds
have provided varied definitions of shear velocity, and they are known to affect data
interpretation, especially under shallow submergence conditions (Pokrajac et al. 2006).

4.3. Subsurface flows
Figures 6(a,b) show the scaled streamwise velocity profile Ux/up in a log–linear plot,
where up = √

gdpi. Subsurface velocities were extracted directly from the profiles by
defining the subsurface region between elevations z′ ≈ −1.7dp and z′ ≈ −0.7dp for dp =
8 mm, and between z′ = −0.4dp and z′ = −dp for dp = 14 mm (these positions are shown
in figure 6). Subsurface velocity values were extracted from the A and B runs. We also
considered the other runs to assess how sensitive the results were to bed arrangement
(to that end, we repeated experiments by creating a new bed layer before each run). We
refer the reader to figure 13 in Rousseau & Ancey (2020): overall, we found that in the
subsurface layer, particle rearrangement caused a relative variability of approximately
25 % in the velocity profiles.

We measured the subsurface velocities and compared them with the velocities estimated
by the Ergun and Kozeny–Carman equations (2.9). Figures 7(a,b) show how the mean
subsurface velocity Ux,SSL varies with bed slope i for A runs and B runs, respectively.
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Figure 5. Comparison of the streamwise velocity profiles from our A1, A2 and B2 runs with the L12, L14 and
L15 runs obtained by Voermans et al. (2017) (dp = 25 mm). (a) Streamwise velocity profiles in physical units.
(b) Scaled streamwise velocities (velocities were scaled by the shear velocity u∗).
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Figure 6. Mean streamwise velocity profiles for our nine runs in a log–log plot. (a) Profiles for runs A1, A2,
A3 and A4. (b) Profiles for runs B1, B2, B3, B4 and B5. The vertical line locates the bed-normal coordinate
range over which the mean subsurface velocity USSL was computed. The dotted horizontal line denotes the
roughness crest z′

rc in the two sets of experiments, while the solid horizontal line shows the reference elevation
z′
ε=0.8 = 0.

As a first approximation, we assumed the drag force density to be f = ε�gi, and using this
assumption we could see the data in figure 7 as the dependence of the drag force density
f on subsurface velocity Ux,SSL. For Rep ≤ 20, bed slope and subsurface velocity seemed
to be linked linearly, as predicted by the linear Kozeny–Carman relationship. Because of
velocity fluctuations and uncertainties, it was difficult to be more assertive about the linear
dependence of f on Ux,SSL. At higher particle Reynolds numbers (for Rep > 20), nonlinear
dependence was observed clearly, and it was consistent with Ergun’s equation (2.8).
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Figure 7. (a) Measured subsurface velocities as a function of bed slope for 17 A-type runs. (b) Measured
subsurface velocities as a function of bed slope for 11 B-type runs . We tested a variety of bed arrangements
and slopes (i = 0.5 %–8 %). The data were compared with the linear Kozeny–Carman equation (dashed line)
and the Ergun equation (dashed-dotted line), computed with the median grain diameter and the measured
averaged bulk porosity.

This equation is known to perform well at describing flows in homogeneously packed
beds (with ε ≈ 0.4).

4.4. Turbulence intensities
Figures 8(a–c) show the scaled turbulence intensities in the streamwise (σux = 〈u′2

x 〉1/2)
and bed-normal (σuz = 〈u′2

z 〉1/2) velocity components, and the scaled turbulent shear
stresses for runs A1, A4, B1, B4, L12 and L15. Turbulence intensities in the z- and
x-directions increased when going from the free surface to the sediment–water interface,
and they reached a maximum between the roughness crest and z′ = 0. We compared our
measurements with the empirical equations provided by Nezu & Nakagawa (1993) that
give the variation in σux/u∗ and σuz/u∗ with the distance from smooth boundaries:

σux/u∗ = 2.3 exp(−(z − zb)/hf ), (4.3)

σuz/u∗ = 1.27 exp(−(z − zb)/hf ), (4.4)

where zb is the position of the smooth wall. These curves are plotted in figures 8(a,b), with
z − zb given by z′ (although this choice cannot be considered universal for rough beds).

Overall, the turbulence variations predicted by (4.3) and (4.4) captured the observed
trends and provided the right order of magnitude for all the runs. Ghisalberti (2009)
suggested that the following scaling held at the roughness crest for obstructed shear
flows: σux(z = zrc)/u∗ ∼ 1.8 and σuz(z = zrc)/u∗ ∼ 1.1. Here, we found that the measured
streamwise turbulence intensities σux(z = zrc)/u∗ ranged from 1.5 to 1.7, and thus were
slightly lower than 1.8. The values of the bed-normal intensities (σuz(z = zrc)/u∗ were
approximately 0.7. Voermans et al. (2017) also found that σuz(z = zε=0.8)/u∗ ranged from
0.5 to 0.7, which was consistent with our observations at zε=0.8.

Figure 8(c) shows that turbulent stress maxima ranged from 0.5 to 1, in agreement
with earlier studies (Nikora et al. 2001; Mignot et al. 2009; Voermans et al. 2017).
We observed that the scaled turbulent shear stress 〈u′

xu′
z〉/u2∗ decreased with increasing
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Figure 8. Turbulence statistics from our A1, A4, B1 and B4 runs, and from the L12 and L15 runs obtained
by Voermans et al. (2017). (a) Double-averaged streamwise velocity fluctuations scaled by the shear velocity
u∗. The dashed lines are the empirical curves for turbulence intensities given by Nezu & Nakagawa (1993) in
(4.3) and (4.4). (b) Double-averaged normal velocity fluctuations scaled by u∗. (c) Scaled turbulent shear stress
profile. The dotted lines represent the driving force density G scaled by � u2∗. (d) Scaled streamwise fluctuating
velocity 〈ũ2

x〉1/2. (e) Scaled normal fluctuating velocity 〈ũ2
z 〉1/2. ( f ) Scaled dispersive stress. The green dashed

and dotted lines are the L12 and L15 run profiles measured by Voermans et al. (2017) and scaled by u∗,V .

bed slope i and Reynolds number ReK . This behaviour contrasted with that observed by
Voermans et al. (2017), who reported an increase in turbulent shear stress with ReK . As the
scaled shear stress depended on how u∗ was defined, this decrease might have been related
to the shear velocity’s definition . We observed that scaling the turbulent shear stress by
u∗,V , instead of by u∗, modified the peak value of the turbulent shear stress, but regardless
of the scale chosen, the peak value decreased as ReK increased (see Rousseau (2019) for a
discussion about the definition of shear velocity). Another feature of shallow submergence
flows was noticeable: for runs A4 and B4, the peak values of the turbulent shear stress
were localised below zrc, confirming previous observations that the permeable bed was
more subject to turbulent shear stress when ReK was increased (Voermans et al. 2017).
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Figure 9. Comparison between the measured and computed dispersive shear stresses. The solid lines show
the experimental data, while the dotted lines show the dispersive shear stress computed using the closure
equation (2.13). (a) Runs A1 to A4 (dp = 8 mm). (b) Runs B1 to B4 (dp = 14 mm).

4.5. Dispersive stresses
Figures 8(d–f ) show the scaled streamwise and bed-normal fluctuating components
(〈ũ2

x〉1/2/u∗ and 〈ũ2
z 〉1/2/u∗), and the scaled dispersive shear stress 〈ũxũz〉/u2∗, respectively,

for our A and B runs, and the L12 and L15 runs from Voermans et al. (2017). The
scaled profiles had maxima at elevations below the roughness crest. This was consistent
with observations by Nikora et al. (2001). We found that 〈ũ2

x〉1/2 and 〈ũ2
z 〉1/2 reached

their maxima at two different positions. The distance between these positions was
approximately 0.5dp. The Voermans et al. (2017) experiments led to similar results, but
when comparing their results with ours, we noted differences: for L12, the peaks of 〈ũ2

x〉1/2

and the dispersive stress 〈ũxũz〉/u2∗ occurred at zrc. For runs A and B, the dispersive stresses
were vanishingly small at zrc, whereas the peak values of 〈ũxũz〉 were located at z′ = 0
(that is, where the porosity was equal to 0.8). These fluctuating velocity intensities and
dispersive stresses were similar to those shown in the numerical simulation performed by
Fang et al. (2018), who found that the peaks of 〈ũ2

x〉1/2 and 〈ũ2
z 〉1/2 were positioned below

the roughness crest.

4.6. Dispersive stress closure
For ReK > 2, the dispersive shear stress was concentrated within a thin layer below the
roughness crest. The closure equation (2.13) was used and compared with the dispersive
stress data. This equation involved the velocity Ux and porosity ε profiles, as well as a λ
parameter that needed to be calibrated. When using λ = 0.015, we found a good match
between computed and measured dispersive shear stresses, as shown in figure 9 for all but
one run: for run A4, the closure equation (2.13) underestimated the maximum dispersive
stress by a factor of 2, whereas for other runs, the relative error did not exceed 25 %.

Voermans et al. (2018) suggested that the effective dispersive viscosity was related to the
effective transverse diffusive coefficient DT through the dispersive Schmidt number, which
is the ratio of the dispersive diffusion to the effective dispersive viscosity (Scd = νd/DT ).
In the literature devoted to dispersion in porous media (Sahimi 2011), the transverse
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dispersion is often found to vary linearly with Ux:

DT = αT
dp

2
Ux. (4.5)

Within our computational framework, (2.14) defines the effective dispersive viscosity,
which takes the following form in the subsurface layer (where ε = εb):

νd = λdpUx. (4.6)

Equations (4.5) and (4.6) are structurally similar. Furthermore, we found that the fitted
value λ = 0.015 was consistent with the αT values found to be in the 0.01–0.05 range
in the related literature (Sahimi 2011, p. 360). This finding supports the Voermans et al.
(2018) statement that the dispersive Schmidt number is close to unity in the subsurface
layer.

4.7. Mixing length
The mixing length can be estimated experimentally by inverting Prandtl’s equation:

	t =
√

−〈u′
xu′

z〉
dUx/dz

. (4.7)

Figure 10 shows that the scaled mixing lengths 	t/hf for the surface layer (z > zrc)
fell onto the same curve for runs A and B. The empirical distribution was similar to the
one determined by Nezu & Rodi (1986). For z > z′ = 0.7hf , the mixing length decreased
when approaching the free surface. For runs A1, A2, A3, B1 and B2, the mixing length
tended toward zero at the free surface – a behaviour that was consistent with the velocity
defect effect (Coles 1956; Nezu & Rodi 1986). In the vicinity of the roughness crest zrc,
the mixing length increased nonlinearly, which evoked the damping effect observed by
Van Driest (1956) in turbulent shear flows near a smooth solid boundary. All the profiles
exhibited a local minimum near the roughness crest. This local minimum, as well as the
overall behaviour of the mixing-length profiles, was consistent with the observations of
Ghisalberti & Nepf (2004).

Figure 10 shows two empirical mixing-length curves: the equations of Coles (1956)
and Van Driest (1956) account for a velocity defect (also called Coles’ law of the wake)
and turbulence damping, respectively. Combining these two effects, Nezu & Rodi (1986)
suggested expressing the mixing length 	t as

	t = hf κ

√
1 − z′

hf

[
hf

z′ + πΠ sin
(

π
z′

hf

)]
Γ, (4.8)

where

Γ = 1 − exp
(−u∗z′

ν A∗

)
(4.9)

is van Driest’s damping function, and Π is the Coles parameter expressing the strength
of the wake function – see Nezu & Rodi (1986) or Pope (2000, pp. 305–308) for further
information. Here, the distance from the wall is given by z′. Accounting for the turbulence
damping effect and the wake effect in the 	t definition provided a better agreement than
the original expression of the mixing length based on a constant von Kármán coefficient.
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Figure 10. Scaled mixing length evaluated using (4.7). (a) Runs A1 to A4 (dp = 8 mm). (b) Runs B1 to B5
(dp = 14 mm). We have also plotted the mixing-length profile predicted by Coles (1956), with Π = 0 and
Π = 0.1, together with (4.8) proposed by Nezu & Rodi (1986), which includes both turbulence damping and
Coles’ law of the wake.

For runs B1 to B5, the agreement between empirical curves and experimental data was
less pronounced. We observed that the empirical curves were higher, thereby suggesting
that the reference zε=0.8 was not the optimal value for B runs. The failure to find the same
reference level for the sediment–water interface across all the runs led us to think that
models relying on a vertical origin were not suitable for shallow submergence flows. This
belief led us to develop closure equations based on an integral length presented in § 2.4
and used, among others, by Li & Sawamoto (1995), Revil-Baudard & Chauchat (2013) and
Maurin et al. (2015).

Figure 11 shows the scaled mixing-length profile. By scaling the mixing length 	t
by dp

√
(1 − ε)/(1 − εb), we were able to collapse all experimental 	t values onto the

vertical straight line λ′ = 	t/(dp
√
(1 − ε)/(1 − εb)) ∼ 0.1 in the subsurface layer (z′ <

0). This showed that the mixing length was very close to the dispersive length defined in
(2.15); because λ′ ∼ √

λ, we have 	t ∼ 	d in the subsurface layer, whereas 	t > 	d in the
roughness layer. This match-up shows that the dispersive and turbulent stresses had the
same characteristic length, which was a small fraction of the particle diameter and thus
related to the typical pore size.

5. Simulations and discussion

5.1. Numerical scenarios
We solved the double-averaged momentum equation (2.6) supplemented by the closure
equations presented in §§ 2.3–2.5. Drag forces in the porous bed were modelled using
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Figure 11. Mixing length profiles evaluated from (4.7) in the roughness layer and scaled by the dispersive
length 	d . (a) Runs A1 to A4 (dp = 8 mm). (b) Runs B1 to B5 (dp = 14 mm).

Ergun’s equation (2.8). For Prandtl’s mixing-length equation (2.10), we used each of the
three algebraic expressions for 	t: 	t,LS given by (2.11), 	t,μ given by (2.12), and 	t,D given
by (5.1). We considered three computational scenarios, as follows.

(i) The L&S scenario was based on the Li & Sawamoto (1995) mixing-length closure
equation for 	t,LS, (2.11).

(ii) The damp. + L&S scenario used the 	t,μ mixing length closure given by (2.12),
which includes a damping correction.

(iii) The disp. + damp. + L&S scenario combined turbulent and dispersive stresses. Since
the mixing and dispersive lengths were similar in the subsurface layer, and because
the dispersive length dropped to zero in the surface layer, we used a generalised
mixing length:

	t,D =
√
	2

t,μ + 	2
d, (5.1)

where 	d is the dispersive length given by (2.15), and 	t,μ is the mixing length given
by (2.12), including a damping correction.

None of these scenarios included the velocity defect effect. Indeed, although we found
(see § 4.7) that it explained the decrease in the mixing length 	t near the free surface,
consistent with earlier measurements (Nezu & Rodi 1986; Pope 2000), its influence on the
velocity profile was negligible because as 	t decreased to zero, the shear stress and shear
rate also dropped to zero.

The system of equations was solved using a finite-difference scheme. We considered the
hydraulic conditions reported in table 2. One parameter was adjusted from experiments:
λ = 0.015. These values held for slopes ranging from 1 % to 8 %. Runs A2 and B5 were
compared to the simulated profiles in figures 12 and 13, respectively. We also applied the
model to runs L12, L14 and L15 conducted by Voermans et al. (2017); as these authors did
not provide a porosity profile, we synthesised it based on their figure 6.
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5.2. Observations on experimental and simulated profiles
We tested the three scenarios and compared their numerical predictions with experimental
data in figures 12 and 13. The L&S scenario overestimated systematically the mixing
length 	t in the roughness layer. As a consequence, the streamwise velocity was
underestimated.

In the damp. + L&S scenario, which accounted for turbulence damping near the bed
surface, the agreement was better. However, the increase in the mixing length within the
roughness layer was not predicted. When including dispersive mechanisms – the disp. +
damp. + L&S scenario – we obtained a better agreement between numerical solutions
and experimental data for the turbulent mixing length. We also observed a substantial
improvement in the velocity profile’s shape for the roughness layer. In the surface layer,
none of the three scenarios reproduced the decrease in the mixing length near the free
surface. This suggested that including the velocity defect law could improve the predictive
capacity. Although (5.1) led to a better agreement between computed and experimental
profiles, it could not capture all the patterns exhibited by the mixing-length profiles.

This comparison highlighted how turbulence damping and dispersion could produce
complementary effects. Indeed, the damping effect, which increased with decreasing
Reynolds number, tended to reduce turbulent vertical exchanges. Dispersion was an
additional contributor to vertical exchange in momentum. Then damping effects might
become negligible as the Reynolds number increases, but an opposite trend was expected
for the dispersive shear stress.

Figures 12( f ) and 13( f ) show the scaled contributions to the momentum balance
equation (2.6) predicted by the disp.+ damp. + L&S scenario. As expected, this scenario
predicts the prevalence of the drag force density in the subsurface layer and the
predominance of the turbulent shear stress gradient in the surface layer. There was a sharp
decay in the drag force density and the turbulent shear-stress gradient in the roughness
layer. Furthermore, for a shallow region of thickness ∼ 0.2dp at the bed interface, the
dominant balance was between the drag force and the turbulent and dispersive shear
stresses. The second Brinkman correction term −�ν (dε/dz) (dUx/dz) was vanishingly
small across the entire layer, an observation that supports a posteriori the working
assumption made by Nikora et al. (2004) and Voermans et al. (2017) that this term plays
a negligible role in the momentum balance equation in the roughness layer of flows in a
transitional regime (ReK = O(1)).

5.3. Flows over rough horizontal beds
To assess how robust the computational framework presented in § 2 was, we applied
the model to runs conducted by Voermans et al. (2017) over horizontal beds. Figure 14
compares the model predictions with their experimental data for run L14 (see the Zenodo
repository indicated in the Acknowledgements for the other runs). Since the bed was
horizontal in the Voermans et al. (2017) experiments, the driving force fd was inferred
from the information that they provided: fd = τmax/(δ − zU), where δ was the estimated
boundary layer thickness and zU ∼ 0.4dp was related to the bed-normal coordinate at
which τTot = τmax = �u2

∗,V (see Voermans et al. (2017) for more details). We used a
synthetic porosity profile based on figure 16 in Voermans et al. (2017), where the
roughness layer thickness typically scaled with the bed grain size. We observed good
overall agreement between the model output and experimental data. Including both the
damping and dispersive mechanisms increased the agreement between the theory and the
experiment. This might come as no surprise since, like us, Voermans et al. (2017) worked
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〈ũ xũ
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Figure 12. Simulated and measured double-averaged profiles for run A2. Vertical profiles of (a) mixing length,
(b) turbulent τt, (c) dispersive τd , (d) drag force density f , and (e) streamwise velocity. Panel ( f ) shows the
different contributions to the momentum balance equation (2.6). Three closure scenarios are compared: (L&S)
for the Li & Sawamoto (1995) mixing length, (damp. + L&S) accounting for turbulence damping, and (disp. +
damp. + L&S) including dispersion.
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Figure 13. Simulated and measured double-averaged profiles for run B5. Vertical profiles of (a) mixing length,
(b) turbulent τt, (c) dispersive τd , (d) drag force density f , and (e) streamwise velocity. Panel ( f ) shows the
different contributions to the momentum balance equation (2.6). Three closure scenarios are compared: (L&S)
for the Li & Sawamoto (1995) mixing length given, (damp. + L&S) accounting for turbulence damping, and
(disp.+ damp. + L&S) including dispersion.
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at intermediate Reynolds numbers. This comparison provided further evidence that both
damping and dispersive shear stress were important when predicting flows over rough beds
in a transitional regime (ReK = O(1)).

6. Conclusion

This paper examined the flow dynamics of shallow supercritical turbulent flows over
sloping permeable beds made up of coarse grains – a situation typical of steep streams
in mountainous terrain but which may also be in line with flows over canopies. To gain
new physical insights into this problem, we used innovative imaging techniques based
on refractive index matched scanning. This enabled us to reconstruct the velocity field
throughout the bed and stream, far from the sidewalls. Experiments were conducted at the
same flow discharge rate. We varied particle sizes (from 8 mm to 14 mm) – but kept the
grain-size distribution narrow – and bed inclination (from 0.5 % to 8 %).

To move a step further in our understanding of steep streams, we used the
double-averaged Navier–Stokes equations (2.4) supplemented by two closure equations
(2.10) and (2.13) for the turbulent and dispersive shear stresses. In both cases, the closure
was based on mixing lengths. For the turbulent shear stress, we used the variant of
Prandtl’s equation proposed by Li & Sawamoto (1995), and we also accounted for
turbulence damping near the bed–flow interface by taking inspiration from the Van Driest
(1956) equation. Coles’ law of the wake was considered a second-order effect, and was thus
not included in the model. We knew of no algebraic closure for the dispersive shear stress,
and we thus proposed an empirical equation that was structurally close to the definition of
turbulent shear stress and consistent with earlier investigations. For the drag force exerted
by the fluid on the bed particles, we used Ergun’s equation (2.8). In total, our model
involved a single free parameter λ, which was fitted to our data (λ = 0.015).

Overall, the model was able to capture the flow features in our experiments, namely the
mean flow velocity in the bed, the velocity profile across the stream, and the turbulent and
dispersive shear stresses. Furthermore, our model interpreted the non-logarithmic velocity
profile as the consequence of two additive processes: on the one hand, there was noticeable
turbulence damping near the bed interface (which we were able to account for by using a
damping correcting function in the mixing-length equation (2.11)), and on the other hand,
the dynamics of the roughness layer was controlled by the drag force and the dispersive
and turbulent shear stresses.

From this perspective, the reason why the Manning–Strickler equation fails to predict
flow resistance in steep streams is related directly to the existence of the roughness layer,
which is associated closely with the production of dispersive stresses and drag forces.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.310.
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