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Abstract. We show that for any positive integer t there exist on 4CP2, the connected sum of four
complex projective planes, twistor spaces whose algebraic dimensions are two. Here, t appears
as the order of the normal bundle of C in S, where S is a real smooth half-anti-canonical divisor
on the twistor space and C is a real smooth anti-canonical divisor on S.This completely answers
the problem posed by Campana and Kreussler. Our proof is based on the method developed
by Honda, which can be regarded as a generalization of the theory of Donaldson and Friedman.
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1. Introduction

Let nCP2 be the connected sum of n copies of the complex projective plane, where
0CP2 denotes the four-sphere S4 by convention. Let g be a self-dual metric on
nCP2 and Z the associated twistor space. Throughout this paper we always assume
that the type of the scalar curvature of g is positive. From the works of Poon,
LeBrun, Kreussler, Kurke, Campana and others [P1, P2, LB, KK, Kr1, Kr2, C]
it has turned out that twistor spaces associated with such self-dual metrics have rich
structures as compact complex threefolds.

In this paper we focus our attention on the case n � 4. This case is interesting
because we have c1�Z�3 � 4ÿ n � 0 [Hi], where c1�Z� denotes the ¢rst Chern class
of Z and c1�Z�3 is a positive multiple of the coef¢cient of the leading term of
the Riemann^Roch for pluri-anti-canonical system of Z. Another reason is that
for nW 3 twistor spaces over nCP2 have already been described [P1, P2, KK]
and the case n � 4 is the next one to be studied.

Some important families of twistor spaces over 4CP2 are known. (a) LeBrun
twistor spaces [LB]: They are explicitly given as bimeromorphic transforms of conic
bundles over CP1 �CP1. In particular they are Moishezon threefolds. They have
a holomorphic C�-action. They are naturally parameterized by distinct four points
on H3, the upper half three-space, and form a six-dimensional family. (b) Twistor
spaces with a �C��2-action [PP2, Hon1]: They have a pencil whose general elements
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are nonsingular toric surfaces, and the base locus of the pencil is the anti-canonical
curve of the surfaces. In particular, they are Moishezon. They are naturally
parameterized by distinct four points on the circle and form a one-dimensional
family. (c) Another Moishezon twistor spaces are also known [Kr2, Hon2]: They
have a net of rational surfaces and the associated meromorphic maps give on
the twistor spaces (meromorphic) conic bundle structures over CP2. (d) Recently
the author and M. Itoh [HI] have proved that there exist twistor spaces over
4CP2 with a C�-action whose corresponding self-dual metrics are not LeBrun's
or Joyce's.

On the other hand Campana and Kreussler [CK] showed that there exist twistor
spaces over 4CP2 whose algebraic dimensions are two. More precisely they showed
the following: Let j ÿ 1

2KZjs be the real sub-system of the half-anti-canonical system
of Z, where s denotes the real structure of Z. Let S 2 j ÿ 1

2KZjs be an irreducible
element. (It is relatively easy to see that such an S always exists on any twistor space
over 4CP2.) Then by a result of Pedersen and Poon [PP1] S is an eight points
blown-up of CP1 �CP1. Hence we always have dim j ÿ KSjX 0, and if C is an
irreducible nonsingular anti-canonical curve of S the degree of the normal bundle,
which we will denote by NC=S, is zero. Then Campana and Kreussler showed
the following: (i) Let a�Z� denote the algebraic dimension of Z. Then
1W a�Z�W 2 and the equality a�Z� � 2 holds if and only if the order of NC=S in
Pic0C is ¢nite. (ii) For some tX 1, there exists a twistor space Z over 4CP2 with
S 2 j ÿ 1

2KZjs and C 2 j ÿ KSjs such that the order of NC=S in Pic0C is t.
Then they asked [CK, Open Problem] which values of t can be realized as above

for some twistor spaces over 4CP2. The purpose of this paper is then to give an
answer to this problem in the following form:

THEOREM 1.1. For any tX 1 there exist twistor spaces over 4CP2 with the
following property: There exist smooth and irreducible members S 2 j ÿ 1

2KZjs
and C 2 j ÿ KSjs respectively such that the order of NC=S in Pic0C is t.

It is easy to see that for distinct t the twistor spaces are not biholomorphic. Thus
for each tX 1 there exist twistor spaces over 4CP2 whose algebraic dimensions
are two. We also remark that all of the twistor spaces (a)^(c) cited above contain
only reducible C 2 j ÿ KSjs.

Our proof of Theorem 1.1 is based on the method developed in [Hon2], which is a
generalization, in a sense, of the theory of Donaldson and Friedman [DF]. That is,
for any given integer tX 1 we construct a `triple' �Z0;S0;A0� of normal crossing
varieties, where S0 (resp. A0) is a (real) Cartier divisor on Z0 (resp. S0). Then we
will show that this triple can be smoothed to give a twistor space over 4CP2 in
Theorem 1.1.

Finally we should mention that in the previous paper [HI] we have already shown
the existence of twistor spaces in the case that t � 1. But the twistor spaces con-
sidered in that paper are different from the one in this paper even in the case that
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t � 1. For example, as was mentioned above, twistor spaces in [HI] have aC�-action,
whereas the identity component of the automorphism group of twistor spaces in
Theorem 1.1 is trivial.

2. Main Construction

In this section we shall construct a triple �Z0;S0;A0� of normal crossing varieties
which depends on an integer tX 1. This will be used in Section 3 to prove Theorem
1.1.

Let g be a self-dual metric on 3CP2 whose scalar curvature is of positive type. That
is, there exists a C1-function j on 3CP2 such that the scalar curvature of ejg is a
positive constant. Let Z be the twistor space associated to g. Such a twistor space
belongs to either of the following (Sections 2 and 3 of [P2]; See also [KK, Kr1]):

(i) (generic type [P2, KK, Kr1]) Assume that the complete linear system j ÿ 1
2KZj has

no base points. Then j ÿ 1
2KZj is three-dimensional and de¢nes a morphism

f : Z! CP3. f is a double covering map branched along a (real) quartic surface.
(ii) (LeBrun twistor spaces [LB]) Assume that j ÿ 1

2KZj has base points. In this case
we also have dim j ÿ 1

2KZj � 3, but the image under the associated meromorphic
map is CP1 �CP1, a (real) quadric surface. Further a bimeromorphic model of
Z has a conic bundle structure over the quadric surface. Z has a C�-action
and is one of twistor spaces constructed by LeBrun [LB].

For the proof of Theorem 1.1 we use a twistor space over 3CP2 which is type (i).
From now on let Z1 be such a twistor space, s1 the real structure of Z1 and
f : Z1 ! CP3 the double covering map induced by j ÿ 1

2KZ1 j. Moreover, let B denote
the branch quartic surface, which is real with respect to s1. It was shown in [P2, KK,
Kr1] that B has exactly 13 ordinary double points, one of which is the unique real
point on B.

LetH1 be a real plane onCP3 which intersects B transversally along a nonsingular
curve. We further assume that H1 does not go through any of the singular points of
B. Then we put S1 :� f ÿ1�H1�. By construction S1 is a real nonsingular element
of j ÿ 1

2KZ1 js1 . Adjunction formula and the vanishing theorem of Hitchin imply that
the restriction of f onto S1 is the morphism induced by j ÿ KS1 j, which is
two-dimensional without base points. It is easy to see that S1 is a rational surface
with c21 � 2. But the reality implies more [PP1]: S1 is obtained from CP1 �CP1

by blowing-up six points. Let p : S1! CP1 be the composition of the blowing-down
and the projection to one of theCP1s. Then twistor lines (onZ1) which are contained
in S1 are parameterized by S1 � CP1, the real circle. Let fLs :� pÿ1�s� j s 2 S1g be the
family of twistor lines. By choosing H1 suf¢ciently general we may suppose that the
blown-up six points are in general position. That is, no two (resp. four) points among
the six points are on a curve of bidegree (1,0) or (0,1) (resp. a curve of bidegree (1,1)),
and the six points are not on a curve of bidegree (1,2) or (2,1). Then we have
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(�) For any twistor line Ls �� pÿ1�s�� on S1 f jLs
, the restriction of f onto Ls, is a

biholomorphic map onto a real conic on H1.

In fact if the image f �Ls� is a line then there must be an effective curve D on S1 such
that D� Ls is an anti-canonical curve of S1. But since Ls is an element of the system
jb�O�0; 1�j, where b : S1 ! CP1 �CP1 is the above blowing-down map, b�D� must
be a curve of bidegree �2; 1� which goes through all of the (blown-up) six points.
This contradicts to the above generality condition.

Next let m1 be a real line on H1 which intersects B \H1 transversally, and put
C1 :� f ÿ1�m1�. Clearly C1 is a non-singular elliptic curve with a real structure
and is a real anti-canonical curve of S1. Since C1 � Ls � ÿKS1 � Ls � ÿ 1

2KZ1 � Ls

� 2 and both C1 and Ls are real, C1 \ Ls consists of two distinct points for every
s 2 S1. Therefore the set fC1 \ Ls j s 2 S1g de¢nes an unrami¢ed double covering over
the circle S1. We denote this by T . T is obviously a real subset of C1. By choosingm1

suf¢ciently general we may assume that the following holds:

(��) The four rami¢cation points of the double covering map f jC1
: C1! m1 are not

on any twistor lines on S1.

Further let m �6� m1� be also a real line on H1 and set y :� m1 \m and
f ÿ1�y� � fw1;w1g, where we put w1 :� s1�w1� �6� w1�. The situation is illustrated
as follows:

Z1 � S1 � C1 � fw1;w1g
f # # # #
CP3 � H1 � m1 3 y

Then we have isomorphisms

NC1=S1 ' OC1�w1 � w1� ' f �Om1�1�:
Now we consider a map a : C1ÿ! Pic0C1 which is de¢ned by

z 7 ÿ!OC1 �w1 � w1 ÿ zÿ z�

�' OC1 �ÿzÿ z� 
 f �Om1 �1��:
Then the structure of a is described as follows: The image of a, which we denote by
S1, is the circle. S1 is the identity component of �Pic0C1�s1 :� fF 2 Pic
0C1 js�1F ' F g. a gives on C1 the structure of a ¢ber bundle over S1. When
�Pic0C1�s1 is connected, that is �Pic0C1�s1 � S1, the typical ¢ber of a is a circle. When
�Pic0C1�s1 is disconnected, which is two disjoint circles, the typical ¢ber of a is two
disjoint circles. These can be proved, for example, by classifying all of
anti-holomorphic involutions on elliptic curves and writing down explicitly the
equation of the ¢bers of a (using a coordinate on the universal cover C).

Now we show that:
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LEMMA 2.1 For any positive integer t there exists a point z 2 C1nT such that the
order of a�z� in Pic0C1 is t.

Proof. Let j�t� denote the Euler function of t. That is, for a positive integer t, j�t�
denotes the number of integers n with 1W nW t such that �n; t� � 1. Then there exist
j�t� points on S1 whose order (in Pic0C1) is t. If tX 7 or t � 5 we have j�t�X 3 and
hence it is obvious that the claim of the lemma holds. When j�t� � 2, that is t � 3; 4
or 6, it suf¢ces to show that T cannot coincide with the ¢ber over the two-torsion
points. Suppose that. Then T consists of disjoint two circles T 1 and T 2 and each
are the ¢bers over two-torsion points. But this cannot happen, since we have
T 2 � s1�T 1�, a preserves the real structures, and hence even if T is contained in
some ¢ber of a, it must be a ¢ber of a.

Therefore to prove the lemma it suf¢ces to show that T cannot be the ¢ber (of a)
over the trivial bundle or the real line bundle whose order is two. First we show
that a�z� 6' OC1 for any z 2 T . Assume that a�z� ' OC1 . Then since in such a case
OC1 �z� z� ' f �Om1 �1� and the system jOC1 �z� z�j is one-dimensional we have
f �z� � f �z�. On the other hand if z 2 T there exists a twistor line Ls � S1 such that
z 2 Ls. Therefore f �z� 6� f �z� since z 6� z and f jLs

is an isomorphism by (�). This
is a contradiction. Hence a�z� 6' OC1 for any z 2 T , and the case t � 1 is proved.

Next let z 2 C1 be a rami¢cation points of f jC1
: C1! m1. Then we have

a�z�
2 � OC1 �ÿ2zÿ 2z� 
 f �Om1�2� ' f �Om1 �ÿ2� 
 f �Om1 �2� ' OC1 :

Moreover z does not lie on T by (��). Hence, a�z� is a torsion point whose order is
two. Therefore the case t � 2 is also proved. &

Let tX 1 be a given integer, z10 2 C1nT a point such that the order of a�z10� in
Pic0�C1� is t, L1 the twistor line on Z1 through z10 (and z10), and m1 : Z01! Z1

the blowing-up along L1. Further we set S01 :� mÿ11 �S1�, Q1 :� mÿ11 �L1�,
l1 :� mÿ11 �z10� and l1 :� mÿ11 �z10�:LetC01�� S01� denote the strict transform of C1. Since
L1S1 m1jS01 is the blowing-up at z10 and z10, and l1 and l1 are the exceptional curves.
Then we have

NC01=S
0
1
' OC01�w1 � w1 ÿ z10 ÿ z10� � a�z10�;

where we regard w1;w1; z10 and z10 as points on C 01. Hence, by the choice of z10, the
order of NC01=S

0
1
in Pic0C01 is t. It is easy to show the following claim:

CLAIM 2.2. The tth anti-canonical system j ÿ tK 01j of S01 is one-dimensional without
base points, and de¢nes an elliptic ¢bration g : S01! CP1.

We note that tC 01 is a real element of j ÿ tK 01j and that the anti-Kodaira dimension
(cf. [S]) of S01 is one.

Next let f1 be a real nonsingular ¢ber of g. Since f1 is linearly equivalent to tC01 and
we have C01 � l1 � 1, we have f1 � l1 � t and may suppose that f1 intersects l1 trans-
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versally at t distinct points. Let fz11; � � � ; z1tg be the intersections. Then we have
fz11; � � � ; z1tg � f1 \ l1 by the reality of f1.

On the other hand let Z2 be the £ag twistor space of CP2 with Fubini^Study
metric, s2 the real structure and L2 � Z2 any twistor line. Then there exists a divisor
D2 on Z2 which satis¢es (i) D2 � L2 � 1; (ii) D2 and D2 :� s2�D2� intersect trans-
versally along L2. Let m2 : Z02 ! Z2 be the blowing-up along L2, Q2 the exceptional
divisor, and D02 and D

0
2 the proper transforms of D2 and D2 respectively. D2 and

D2 are isomorphic to S1, the non-minimal Hirzebruch surface. Further we set
l2 :� D02 \Q2 and l2 :� D

0
2 \Q2. These de¢ne disjoint sections of m2jQ2

: Q2 ! L2.
Next we choose a biholomorphic map f : Q1! Q2 which preserves the real struc-

tures and satis¢es f�l1� � l2 and f�l1� � l2. Then we set ([DF, KP]) Z0 :� Z01 [f Z02;
and

S0 :� S01 [ �D02 qD02� � D02 [l S
0
1 [

l
D02:

Here, we put l :� l1 ' l2 and l :� l1 ' l2. S0 is clearly a Cartier divisor which is
invariant by the natural real structure of Z0.

Next for each i with 0W iW t we set z2i :� f�z1i� 2 l2; z2i :� f�z1i� 2 l2 and let f2i
(resp. f 2i) be the ¢ber of D2! CP1 (resp. D2! CP1) through z2i (resp. z2i). Then
we put

C0 :� C01 [f �f20 q f 20� � f20 [ C 01 [ f
0
20;

and

f 0 :� f1 [
f
�qt
i�1
�f2i q f 2i�� � �q

t

i�1
f2i� [ f1 [ �q

t

i�1
f 2i�:

(See next page for ¢gures.) We note thatC 0 and f 0 are Cartier divisors on S0 which are
invariant by the real structure. Furthermore we put A0 :� C0 � f 0.

3. Proof of Theorem 1.1

In the previous section for each tX 1 we have constructed a triple �Z0;S0;A0� of
normal crossing varieties, where S0 (resp. A0) is a real Cartier divisor on Z0 (resp.
S0). In this section using the results of [Hon2] we study smoothing of this triple
and prove Theorem 1.1. For notations we refer to Sections 3 and 5 of [Hon2].

First we consider smoothing of the pair �S0;A0�. The following lemma can be
proved in the same way as Proposition 3.1 and Lemma 3.2 of [Hon2].

LEMMA 3.1. We haveY1
S0;A0 ' Ol �Ol and Yi

S0;A0 � 0 for iX 2, and there exists an
exact sequence of vector spaces

0ÿ!H1�YS0;A0 � ÿ!T1
S0;A0 ÿ!

r
H0�Y1

S0;A0 �
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ÿ!H2�YS0;A0 � ÿ!T2
S0;A0 ÿ!H1�Y1

S0;A0 � � 0:

Next we show (after Proposition 3.3):

LEMMA 3.2. We have H2�YS0;A0 � � 0.

Lemmas 3.1 and 3.2 imply

PROPOSITION 3.3. We have T 2
S0;A0 � 0. In particular deformations of the pair

�S0;A0� are unobstructed.
Proof of Lemma 3.2. For simplicity we put A01 :� C01 � f1 �� S01),

A02 :� St
i�0f2i �� D02� and A

0
2 :� St

i�0f 2i �� D
0
2�. Then we have A0 � A01 � A02 � A

0
2.

First we consider the exact sequence

0! YS0;A0 ! YS01;A
0
1�l1�l1

� �YD02;A
0
2�l2 �YD

0
2;A
0
2�l2�

! Yl�ÿ1ÿ t� �Yl�ÿ1ÿ t� ! 0: �1�
(Strictly speaking we must take the normalization of S0 into consideration. But for
simplicity of notations we omit it.)

Figure. Curves on S01.

Figure. Curves on D02.
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CLAIM 3.4. We have H2�YD02;A
0
2�l2 � � H2�YD

0
2;A
0
2�l2� � 0.

Proof. The cohomology exact sequence of

0! YD02;A
0
2�l2 ! YD02;l2 !OA02 ! 0

shows that H2�YD02;A
0
2�l2 � ' H2�YD02;l2 �: But the latter cohomology group is easily

seen to vanish by using the exact sequence

0! YD02;l2 ! YD02 !Ol2�1� ! 0:

By the reality we also have H2�YD
0
2;A
0
2�l2 � � 0: (qed for Claim 3.4) &

CLAIM 3.5. The natural map H1�YD02;A
0
2�l2� ! H1�Yl2�ÿ1ÿ t�� is surjective.

Proof. The cohomology exact sequence of

0! YD02;A
0
2
�ÿl2� ! YD02;A

0
2�l2 ! Yl2 �ÿ1ÿ t� ! 0

shows that we have only to show that H2�YD02;A
0
2
�ÿl2�� � 0: But the exact sequence

0! YD02;A
0
2
�ÿl2� ! YD02 �ÿl2� ! OA02�ÿ1� ! 0

implies that H2�YD02;A
0
2
�ÿl2�� ' H2�YD02 �ÿl2��: Further the exact sequences

0! YD02 �ÿl2� ! YD02;l2 ! Yl2 ! 0

and

0! YD02;l2 ! YD02 ! Nl2=D02 ! 0

show that we have

H2�YD02 �ÿl2�� ' H2�YD02;l2 � ' H2�YD02 � � 0;

as desired. (qed for Claim 3.5) &

CLAIM 3.6. We have H2�YS01;A
0
1�l1�l1

� � 0.
Proof. The exact sequence

0! YS01;A
0
1�l1�l1

! YS01;A
0
1
! Nl1=S01 �Nl1=S01

! 0

implies that H2�YS01;A
0
1�l1�l1

� ' H2�YS01;A
0
1
�:

To prove that H2�YS01;A
0
1
� is zero we ¢rst show that H0�OS01�C01�� � 0, where OX

denotes the cotangent sheaf of a complex manifold X . We choose a blowing-down
map b : S1! S0 :� CP1 �CP1 and put a :� b � �m1jS01 �. a is eights points blown-up
of S0. We put C0 :� a�C01� �� b�C1��, which is an anti-canonical curve of S0. Then
the eight points, which we denote by P :� fp1; � � � ; p8g �� S0�, clearly lie on C0

and we may assume that pi 6� pj for i 6� j. Further, we set Ei :� aÿ1�pi� for
1W iW 8, the exceptional curves of a, and put E :� S8

i�1Ei. Then we have an exact
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sequence

0! a�OS0 ! OS01 ! OE ! 0;

from which, by taking tensor product with OS01�C01�, we get an exact sequence

0ÿ!�a�OS0� 
 OS01 �C 01� ÿ!OS01 �C 01� ÿ!OE 
OS01 �C01� ÿ! 0: �2�

Since C01 is the strict transform of C0 we have OS01�C01� ' �a�OS0 �C0�� 
 OS01�ÿE� and
hence the ¢rst nontrivial term of (2) becomes �a�OS0 �C0�� 
 OS01 �ÿE�. On the other
hand being Ei � C01 � 1 for each i (1W iW 8) the last nontrivial term of (2) becomes
�8

i�1�OEi 
OEi �1��, which we denote by OE�ÿ1� for simplicity. Therefore (2) can
be rewritten as

0ÿ!�a�OS0�C0�� 
 OS01 �ÿE� ÿ!OS01�C01� ÿ!OE�ÿ1� ÿ! 0:

Hence we get an isomorphism

H0�S01;OS01 �C 01�� ' H0�S0;OS0 �C0� 
 IP�; �3�

where IP denotes the ideal sheaf of P in S0. On the other hand, the second Chern
class of OS0 �C0� is

c2�OS0�C0�� � c2�OS0 � � c1�OS0 � � c1�OS0 �C0�� � C2
0

� e�S0� � KS0 � �ÿKS0� � �ÿKS0�2

� e�S0� � 4;

where e�S0� denotes the Euler number of S0. Therefore if a section ofOS0 �C0� has only
isolated zeros it vanishes at four points. Hence a nonzero element s of
H0�S0;OS0 �C0� 
 IP� must vanish along a curve containing P. But since P is on
an anti-canonical curve C0 and the six points among P are in general position (see
(�) in Section 2) this implies that s determines a nonzero section of
OS0�C0� 
 OS0�ÿC0� ' OS0 . But this cannot happen because S0 is rational. Hence,
by using (3) and Serre duality we get

H0�OS01 �C 01�� � H2�YS01 
 2KS01 � � 0: �4�

Now assume that t � 1. Then we have YS01�ÿA01� ' YS01 
 2KS01 . Hence, (4) and the
cohomology exact sequence of

0! YS01�ÿA01� ! YS01;A
0
1
! YA01 ! 0

imply that H2�YS01;A
0
1
� � 0, which is the claim for the case t � 1.

Next we show that H2�YS01;A
0
1
� � 0 for tX 2. Since in this case NC01=S

0
1
is a

non-trivial line bundle of degree zero we have H1�NC01=S
0
1
� � 0. Hence the
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cohomology exact sequence of

0! YS01;A
0
1
! YS01 ! NC01=S

0
1
�Nf1=S01 ! 0

shows that it suf¢ces to show that the map H1�YS01 � ! H1�Nf1=S01� is surjective. Con-
sidering further the cohomology exact sequences of

0! YS01;f1 ! YS01 ! Nf1=S01 ! 0

and

0! YS01�ÿf1� ! YS01;f1 ! Yf1 ! 0;

we have only to show that H2�YS01 �ÿf1�� � 0: Moreover, by Serre duality, this is
equivalent to H0�OS01��tÿ 1�C 01�� � 0:

Fix tX 2. We show by induction on k that

H0�OS01 �kC01�� � 0 �5�
for any 1W kW tÿ 1. The case k � 1 is nothing but (4). Assume that (5) holds for
some k, 1W kW tÿ 2. The exact sequence 0! N�C01=S01 ! OS01 jC01 ! OC01 ! 0 splits
because N�C01=S01 is non-trivial. That is, we have

OS01 jC01 ' N�C01=S01 � OC01 : �6�

By taking the tensor product of OS01 with the exact sequence
0!OS01�kC 01� ! OS01 ��k� 1�C 01� ! �k� 1�NC01=S

0
1
! 0 , we get an exact sequence

0ÿ!OS01 �kC01� ÿ!OS01��k� 1�C01�ÿ!OS01 jC01 
 �k� 1�NC01=S
0
1
ÿ! 0: �7�

But by (6) the last nontrivial term of this sequence is isomorphic to
kNC01=S

0
1
� �k� 1�NC01=S

0
1
, whose cohomology groups vanish since we have assumed

that 1W kW tÿ 2. Thus by using (7) we have H0�OS01�kC 01�� '
H0�OS01 ��k� 1�C 01��: Hence by assumption we get H0�OS01��k� 1�C01�� � 0. In
particular we have H0�OS01 ��tÿ 1�C01�� � 0. This is the required result. (qed for
Claim 3.6)

Completion of the Proof of Lemma 3.2. Then the cohomology exact sequence of (1)
and Claims 3.4^3.6 (and the reality) imply H2�YS0;A0 � � 0. &

Let fS !p B;A!q B with A ,!Sg be the Kuranishi family of deformations of the
pair �S0;A0�. By Proposition 3.3 B can be regarded as a small open ball in T1

S0;A0

containing the origin and we have isomorphisms pÿ1�0� ' S0 and qÿ1�0� ' C0. Again
by Proposition 3.3 and the exact sequence of Lemma 3.1 we have an exact sequence

0ÿ!H1�YS0;A0 � ÿ!T1
S0;A0 ÿ!

r
H0�Ol �Ol� ÿ! 0: �8�

Then the following proposition can be proved along the same line as in the proof of
Proposition 2.3 in [Hon2].
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PROPOSITION 3.7. Let t �6� 0� 2 B �� T 1
S0;A0 � be an element such that both of the

factors of r�t� in �8 � are non-zero. Then St :� pÿ1�t� satis¢es the following: (i) St

is nonsingular and is an eight points blown-up of CP1 �CP1, (ii) the tth anti-
-canonical system of St is one-dimensional without base points and de¢nes an elliptic
¢bration St ! CP1, (iii) there exists real and nonsingular anti-canonical curve
Ct of St, such that (iv) the order of NCt=St in Pic0Ct is t.

Proof. By the choice of t it is obvious that St � pÿ1�t� is nonsingular and
At :� qÿ1�t� consists of two smooth curves Ct and ft which are invariant by the
natural real structure of St. It is also obvious that both Ct and ft are elliptic curves,
because Ct (resp. ft) is obtained as a smoothing of C 0 (resp. f 0) and the curves
f20 and f 20 (resp. f2i and f 2i (1W iW t�) are smooth rational curves.

Now following the idea of [KP] we proceed as follows. Let D � C be a small open
disk around the origin and $ : S01 � D! D the projection. Let g : SD ! S01 � D be
the blowing-up with center �l1 q l1� � f0g, and put $0 :� $ � g : SD! D. Then it
is easily shown that $0ÿ1�0� is biholomorphic to S0. That is, the pair
�S0;A0 � C0 � f 0� can be smoothed to obtain the pair �S01;A01 � C 01 � f1�. Hence
the versality of the Kuranishi family of deformations of the pair �S0;A0� implies that
�St � pÿ1�t�;At � qÿ1�t�� can be obtained as smooth deformation of �S01;A01�. In
particular we have c21�St� � c21�S01� � 0.

We choose a blowing-down map b:S1 ! S0 � CP1 �CP1 as in Section 2 and set
b0 :� m1jS01 � b, where m1:Z01 ! Z1 is the blowing-up with center L1 as before. b0 is
eight points blowing-up of S0. Let n and n0 be curves on S0 whose bidegrees are
�1; 0� and �0; 1� respectively. We suppose that they do not go through the blown-up
eight points on S0. Set n1 :� b0ÿ1�n� and n01 :� b0ÿ1�n0�. We regard n1 and n01 as curves
on S0 which do not go through the singular locus of S0. Then since both of Nn1=S0 and
Nn01=S

0 are trivial n1 and n01 are stable by any small deformations of S0. Let nt and n0t be
preserved curves on St, and let bt be the rational map associated to the linear system
jnt � n0tj. Then bt gives a blowing-down map St! CP1 �CP1 since both of Nnt=St

and Nn0t=St are trivial and we haveH1�OSt � � 0 by upper-semi-continuity. Combining
with c21�St� � 0 we have (i).

We now know that �St;At� is obtained as a smooth deformation of �S01;A01� as
rational surfaces. Then recalling that C01 (resp. f1) is an anti-canonical curve (resp.
a t-th anti-canonical curve) of S01, we may conclude that Ct (resp. ft) is also an anti-
canonical curve (resp. a t-th anti-canonical curve).

Thus we get two distinct tth anti-canonical curves tCt and ft and, hence, the tth
anti-canonical system of St is at least one-dimensional. But since f 2t � 0 (because
ft is pluri-anti-canonical curve of St with c21�St� � 0), jftj is at most one-dimensional
without base points. Hence we have completed the proof of (ii) and (iii). For a proof
of (iv) see [BPV, III (8.3)], for example. &

Next we investigate deformations of the triple �Z0;S0;A0�which was constructed in
Section 2.
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LEMMA 3.8. We have H2�YZ0 �ÿS0�� � 0.
Proof. By Proposition 4.1 in [Hon2] we have only to show thatH2�YZ1 �ÿS1�� � 0:

Since Z1 is a Moishezon twistor space a result of Campana [C, Lemma 1.9] shows
that it suf¢ces to show that the restriction map H2�Z1;C� ! H2�S1;C� is injective.
But the latter is shown by Kreussler [Kr1, p. 258]. &

The following Proposition can be proved in the same way as Propositions 4.5
and 4.6 in [Hon2], using Lemmas 3.2, 3.8 and Proposition 3.3. So we omit the
proof.

PROPOSITION 3.9. We have T2
Z0;S0;A0 � H2�YZ0;S0;A0 � � 0: In particular

deformations of the triple �Z0;S0;A0� are unobstructed. Further we have a com-
mutative diagram

where the vertical arrows are surjective and h is given by t 7! �t; t�:

Let fZ0 !r B0;S0 !p
0
B0;A0 !q

0
B0; with A0 ,!S0 ,!Z0g be the Kuranishi family of

deformations of the triple �Z0;S0;A0�, where B0 can be identi¢ed with a small open
ball in T 1

Z0;S0;A0 containing the origin by Proposition 3.9.
Let x 2 T 1

Z0;S0;A0 be any real vector whose image inH0�OQ� (see the above diagram)
is non-zero. Let B00 � B0 be any real holomorphic curve in B0 through the origin
whose tangent vector at the origin is x. Let fZ00 ! B00;S00 ! B00;A00 ! B00 with
A00 ,!S00 ,!Z00g be the restriction of the Kuranishi family onto B00 and t 2 B00 be
a non-zero real element. Then by Donaldson and Friedman [DF] Zt :� rÿ1�t� is
a twistor space of 4CP2. Further as in the proof of Proposition 2.5 in
[Hon2] St :� p0ÿ1�t� is a real nonsingular element of j ÿ 1

2KZt j. Moreover by
Proposition 3.7 there exists a real nonsingular anti-canonical curve Ct of St such
that the order of NCt=St in Pic0Ct is t. (The reality of Ct easily follows from that
of t.)

That is, we have proved

THEOREM 3.10 �� Theorem 1.1). Zt is a twistor space over 4CP2 with the following
property: There exist real, smooth and irreducible members St 2 j ÿ 1

2KZt j and
Ct 2 j ÿ KSt j respectively such that the order of NCt=St in Pic0Ct is t.
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