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Abstract. In this paper we study the conformal measures of a normal subgroup of a
cocompact Fuchsian group. In particular, we relate the extremal conformal measures to
the eigenmeasures of a suitable Ruelle operator. Using Ancona’s theorem, adapted to the
Ruelle operator setting, we show that if the group of deck transformations G is hyperbolic
then the extremal conformal measures and the hyperbolic boundary of G coincide. We
then interpret these results in terms of the asymptotic behavior of cutting sequences of
geodesics on a regular cover of a compact hyperbolic surface.
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1. Introduction
Let D = {z ∈ C : |z| < 1} be the open hyperbolic unit disc and let ∂D = {z ∈ C : |z| =

1}. Let Ŵ be a Fuchsian group (a discrete subgroup of Möbius transformations) which
preserves D. We denote by δŴ the critical exponent of Ŵ (see the definition in §2.5). Given
δ > 0, a finite measure µ on ∂D is said to be (Ŵ, δ)-conformal if for every γ ∈ Ŵ,

d(µ ◦ γ )

dµ
= |γ ′|δ .

We denote by Conf(Ŵ, δ) the collection of (Ŵ, δ)-conformal measures and by
ext(Conf(Ŵ, δ)) the extremal points of Conf(Ŵ, δ).

Conformal measures have many applications in hyperbolic geometry. Let µ and µ′ be
two (Ŵ, δ)-conformal measures. Then the measure

dµ(ξ−)dµ′(ξ+)dt

‖ξ− − ξ+‖2δ
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on ∂D2 × R projects to a geodesic-flow-invariant measure on T 1(D/Ŵ) (the unit tangent
bundle of D/Ŵ), see [6]; the measure

eδsdµ(ξ)dsdt (1)

on ∂D × R
2 projects to a horocycle-flow-invariant measure on T 1(D/Ŵ) and the function

h(z) =

∫

∂D

(
1 − |z|2

|ξ − z|2

)δ
dµ(ξ), z ∈ D,

is a positive Ŵ-invariant δ(δ − 1)-eigenfunction of the Laplacian Beltrami operator.
Moreover, every such eigenfunction arises in that way; see [5, 31].

If the underlying surface D/Ŵ is a tame surface then every ergodic horocycle-flow-
invariant Radon measure which is not supported on a single horocycle is of the form of
equation (1); see [43]. See also [32] for a similar decomposition in higher dimensions.

The existence of a (Ŵ, δ)-conformal measure was first proven by Patterson [37] for the
critical value δ = δŴ and by Sullivan in higher dimensions [52]. Later on, in [53] Sullivan
showed that for non-cocompact groups with no parabolic elements, a (Ŵ, δ)-conformal
measure exists if and only if δ ≥ δŴ . In [40], Roblin studied the conformal measures in
more general settings via a Martin boundary approach. A more general class of measures,
quasiconformal measures, has been considered as well; see [9, 14].

Furstenberg [22] showed that if Ŵ is cocompact (i.e. D/Ŵ is compact) then the Lebesgue
measure is the unique (Ŵ, δŴ)-conformal measure and there are no other (Ŵ, δ)-conformal
measures for all δ > δŴ . Variants of this result were proven by Dani [16] for cofinite
groups and by Burger [12] for geometrically finite groups. Their original motivation was
the classification of the horocycle-flow-invariant measures. See also [28] for a study of
the ergodicity of the horocycle flow with respect to the Liouville measure and [39] for
an extensive study of the conformal measures in negatively curved geometrically finite
manifolds.

In this work we study the conformal measures of a normal subgroup of a cocompact
Fuchsian group, namely under the assumption that there exists a cocompact Fuchsian
group Ŵ0 with Ŵ ⊳ Ŵ0. In particular, we focus on the classification of the conformal
measures and their identification with some structure of the group of deck transformations
G ∼= Ŵ0/Ŵ. To the best of our knowledge, such an identification is known only when the
group G is a nilpotent group. Then the extremal conformal measures are identified with
homomorphisms of the form ϕ : G → R; see [33, 34]. Another related work is [45], where
Schapira and Sarig studied the generic points of the horocycle-flow-invariant measures on
Z
d -covers (namelyG ∼= Z

d ) in terms of the almost sure asymptotic velocity of geodesics.

1.1. Conformal measures and eigenmeasures of the Ruelle operator. In §3 we show
that for every δ ≥ δŴ there is a linear one-to-one correspondence between the extremal
(Ŵ, δ)-conformal measures and eigenmeasures of a suitable Ruelle operator. As the theory
of the eigenmeasures of the Ruelle operator is well developed (see [10, 18, 35, 41, 42,
49, 51]), this correspondence can be a step towards a classification of the conformal
measures. In particular, in [49] the author presented the eigenmeasures of a transient
Ruelle operator (see the definitions in §2.2) in terms of points on a Martin boundary. Thus,
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the classification of the conformal measures directly translates to the identification of the
Martin boundary.

The correspondence is stated using the Bowen–Series coding. In more detail, for a
cocompact Fuchsian group Ŵ0 let F0 ⊆ D be a fundamental domain for D/Ŵ0 with even
corners, that is, F0 is a union of complete geodesics in D. Every compact surface D/Ŵ0

has such fundamental domains; see, for example, [7]. For a set A, we write int(A) =

A \ ∂A. In [11], Bowen and Series constructed (with respect to F0) a partition {Ia}a∈S0

of ∂D into closed arcs with disjoint interiors and a set {ea}a∈S0 ⊆ Ŵ0 such that the set
{ea}a∈S0 generates Ŵ0 and the Bowen–Series map fŴ0 : ∂D → ∂D,

fŴ0(ξ) = e−1
a ξ , ξ ∈ int(Ia),

induces a Markov partition of ∂D, namely the space

6 := {(σi) : ∀i ≥ 0, σi ∈ S0 and int(fŴ0(Iσi )) ∩ int(Iσi+1) 6= ∅}

along with the left-shift transformation is a topological Markov shift (see §2.1). Since the
group Ŵ0 has no parabolic elements the set S0 is finite and (6, T ) is actually a subshift
of finite type. Let π6 : 6 → ∂D be the canonical projection, π6(σ ) ∈

⋂
n≥0 f

−n
Ŵ0
Iσn

(the intersection is a singleton; see [6]). For several other important properties of the
Bowen–Series coding, see §2.6.

Let (X, T ) be the group extensionof 6 with G = Ŵ0/Ŵ and let T : X → X be the
left-shift transformation; see §2.6. We sometime use the canonical correspondence and
identify X with 6 ×G. Given δ > 0, let φX,δ : X → R,

φX,δ(σ , γŴ) := −δ log |(e−1
σ0
)′(π6 ◦ πX(x))|

where πX : X → 6 is the natural projection from X to 6. The Ruelle operator associated
to φX,δ , evaluated on a function f : X → R and a point x ∈ X, is

(LφX,δf )(x) =
∑

y:Ty=x

eφ
X,δ(y)f (y);

see Definition 2.1. In §3 we prove the following theorem which connects between the
conformal measures and the eigenmeasures of LφX,δ .

THEOREM 1.1. Let Ŵ0 be a cocompact Fuchsian group, let Ŵ ⊳ Ŵ0 and let δ ≥ δŴ . Then
the following mapping ψ is an affine bijection between the Radon eigenmeasures of LφX,δ

for the eigenvalue 1 and the (Ŵ, δ)-conformal measures: for a Radon eigenmeasure µX
and a Borel set E ⊆ ∂D,

ψ(µX)(E) = µX(π
−1
6 (E)× {Ŵ}).

1.2. Application to hyperbolic covers. In §§4 and 5 we apply the principle described
above to the case where the group of deck transformations G = Ŵ0/Ŵ is hyperbolic. In
the canonical probabilistic setting, Ancona’s well-known theorem [3, 4] relates the Martin
boundary of a finite-range random walk on a hyperbolic graph to the hyperbolic boundary
of the graph. In his original work, Ancona actually studied elliptic operators; see [54]
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for the probabilistic interpretation. Using an extended version of Ancona’s theorem to
the Ruelle operator setting (see §2.4), for every δ > δŴ we relate the (Ŵ, δ)-conformal
measures, via a suitable Martin boundary, to the hyperbolic boundary of G, denoted
by ∂G.

In what follows, a sequence (ai) with ai ∈ S0 is called a boundary expansion of a point
ξ ∈ ∂D if for every n ≥ 0, f nŴ0

(ξ) ∈ Ian . Observe that (ai) is a boundary expansion of a
point ξ ∈ ∂D if and only if π6(a0, a1, . . . ) = ξ .

THEOREM 1.2. Let Ŵ0 be a cocompact Fuchsian group, let Ŵ ⊳ Ŵ0 and let δ > δŴ . Assume
thatG = Ŵ0/Ŵ is a hyperbolic group. Then, for every µ ∈ Conf(Ŵ, δ), for µ-almost every
(a.e.) ξ ∈ ∂D with Bowen–Series coding (an), the sequence

e−1
an
. . . e−1

a0
Ŵ

converges to a point in ∂G. If µ ∈ ext(Conf(Ŵ, δ)), then there exists η ∈ ∂G such that the
sequence almost surely converges to η. Conversely, for every η ∈ ∂G, there exists a unique
µ ∈ ext(Conf(Ŵ, δ)) with η its almost surely limiting point of the sequence.

We interpret the result of Theorem 1.2 in terms of cutting sequences of geodesics as
well. In more detail, let

R = {(ξ−, ξ+) ∈ (∂D)2 : the geodesic curve between ξ− and ξ+ intersects int F0}.

Recall that for every γ1, γ2 ∈ Ŵ0, int(γ1F0) ∩ int(γ2F0) 6= ∅ if and only if γ1 = γ2 and
that the copies γ1F0, γ2F0 share a common edge if and only if γ1γ

−1
2 ∈ {ea}a∈S0 . Given

(ξ−, ξ+) ∈ R, let (Fi)i∈Z be the sequence of copies of F0 that the geodesic curve between
ξ− and ξ+ intersects. If the curve passes through a vertex of some Fi , we perturb the
curve around it; see [48, Figure 5]. Then, for all i, there exists a unique ei ∈ {ea}a∈S0

such that Fi = e−1
i Fi+1. The sequence (ei) is called the cutting sequence of (ξ−, ξ+). For

(ξ−, ξ+) ∈ R with a cutting sequence (ei), we write

η+
n (ξ

−, ξ+) := e−1
n · · · e−1

0 Ŵ

and

η−
n (ξ

−, ξ+) := (e−n−1)
−1 · · · (e−1)

−1Ŵ.

In §5 we prove the following theorem which describes the almost surely limiting behavior
of η+

n and η−
n .

THEOREM 1.3. Let Ŵ0 be a cocompact Fuchsian group, let Ŵ ⊳ Ŵ0, let δ > δŴ and let µ ∈

Conf(Ŵ, δ). Assume that G = Ŵ/Ŵ0 is a hyperbolic group. Then the following statements
hold.

(1) For µ-a.e. ξ+ ∈ ∂D, for all but countably many ξ− ∈ ∂D such that (ξ−, ξ+) ∈ R,
the sequence η+

n (ξ
−, ξ+) converges to a point in ∂G.

(2) For µ-a.e. ξ− ∈ ∂D, for all but countably many ξ+ ∈ ∂D such that (ξ−, ξ+) ∈ R,
the sequence η−

n (ξ
−, ξ+) converges to a point in ∂G.
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If µ ∈ ext(Conf(Ŵ, δ)) then there exists a point η ∈ ∂G such that the sequences
almost surely converge to η. Conversely, for every η ∈ ∂G, there exists a unique
µ ∈ ext(Conf(Ŵ, δ)) with η its almost surely limiting point of the sequences.

The limiting point η from Theorem 1.3 is the same limiting point from Theorem 1.2.
We emphasize that Theorem 1.3 does not follow directly from Theorem 1.2 because when
Ŵ0 is cocompact the set of cutting sequences is not a Markov shift; see [48]. However, as
was shown by Series in [48] and also by Adler and Flatto in [2], the cutting sequences
and boundary expansions (namely the two-sided Bowen–Series coding) are conjugate; see
§5. Although Theorems 1.2 and 1.3 are equivalent in some sense, for completeness of this
paper, a rigorous proof for the latter theorem is included in §5.

The extended Ancona’s theorem (see Theorem 2.9) holds only for supercritical values,
which translates in this setting to δ > δŴ . Recently and independently, Bispo and Stadl-
bauer [8] showed that for a potential function with a quasi-symmetric Green’s function
on a group extension of a hyperbolic group, the results of the extended Ancona’s theorem
also hold at the critical value. In particular, they showed that the results of Theorems 1.2
and 1.3 hold at the critical value δ = δŴ as well. Moreover, using the symbolic coding
presented recently in [13], they derived a similar correspondence between the conformal
measures and the hyperbolic boundary which holds at critical value δ = δŴ for regular
covers of CAT (−1)-spaces with compact convex core and hyperbolic group of deck
transformations.

For similar results on dependent random walks involving invariant measures (rather
than conformal measures), see [29, 30].

2. Preliminaries
2.1. Topological Markov shifts and the Ruelle operator. Let S be an infinite countable
set of states and let A = (Aa,b)S×S ∈ {0, 1}S×S be a transition matrix over S. For a subset
A ⊆ Z and a vector x ∈ SA, we denote by xi the ith coordinate of x.

The (positive) one-sided topological Markov shift (TMS) is the space

X = {x ∈ SN∪{0} : Axi ,xi+1 = 1, ∀i ≥ 0}

with the transformation T : X → X, (T x)i = xi+1 and the metric

d(x, y) = 2− inf{i≥0:xi 6=yi }.

If
∑
b Aa,b < ∞ for every a ∈ S, then the space (X, d) is locally compact and all cylinder

sets

[a0, . . . , am] := {x ∈ X : xi = ai , 0 ≤ i ≤ m}

are compact. A word (a1, . . . , an) ∈ Sn is called admissible if [a1, . . . , an] 6= ∅. We
denote by Wn the set of all admissible words of length n,

W
n = {(a1, . . . , an) ∈ Sn : [a1, . . . , an] 6= ∅}.

We say that X is topologically transitive, or simply transitive, if for every a, b ∈ S there
exists n ≥ 0 such that T −n[a] ∩ [b] 6= ∅.
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We denote by Cc(X) the space of all continuous functions from X to R with compact
support, by C+(X) the space of all non-negative continuous functions and by C+

c (X) =

C+(X) ∩ Cc(X) the space of all non-negative continuous functions with compact support.
The m-th variation of a function φ : X → R is

Varm(φ) = sup{|φ(x)− φ(y)| : x, y ∈ X, xi = yi , 0 ≤ i < m− 1}.

A function φ is said to have summable variations if
∑
m≥2 Varm(φ) < ∞. Notice that this

condition is satisfied by all Hölder-continuous functions. We let φn =
∑n−1
i=0 φ ◦ T i and

Cφ =
∑
m≥2 Varm(φ).

Definition 2.1. The Ruelle operator Lφ evaluated on a function f ∈ C(X) at a point
x ∈ X is

(Lφf )(x) =
∑

y:Ty=x

eφ(y)f (y).

When X is locally compact, the sum is finite for every f ∈ Cc(X). Then, for every n > 0,

(Lnφf )(x) =
∑

y:T ny=x

eφn(y)f (y).

Definition 2.2. The Gurevich pressure of φ is the limit

PG(φ) = lim sup
n→∞

1

n
log

∑

T nx=x

eφn(x)1[a](x)

for some a ∈ S and x ∈ X.

If (X, T ) is topologically transitive and φ has summable variations, then PG(φ) is inde-
pendent of the choice of a; see [41]. When PG(φ) < ∞, we write ρ(φ) = exp(PG(φ)).

2.2. The Martin boundary of a transient potential. Assume that X is transitive and
locally compact and that ρ(φ) < ∞. Let t ∈ [ρ(φ), ∞). The t-Green function, evaluated
at f ∈ Cc(X) and x ∈ X, is

G(f , x|t) :=
∑

n≥0

t−n(Lnφf )(x).

We say that φ is t-recurrent ifG(f , x|t) = ∞ for some (or equivalently for every) 0 6≡ f ∈

C+
c (X) and x ∈ X. Otherwise, we say that φ is t-transient. If φ is 1-transient, we simply

say that it is transient. Then we write G(f , x) := G(f , x|1). Notice that the ‘transience’
in [42] means in our terminology ρ(φ)-transience.

For a t-transient potential with summable variations, the author introduced in [49] a
Martin boundary which represents all eigenmeasures (and analogously all eigenfunctions)
of the Ruelle operator, for the eigenvalue t. We briefly describe the construction here.
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Fix o ∈ S arbitrarily. When φ is t-transient, for every fixed f ∈ C+
c (X), the Martin

kernel

K(f , x|t) :=
G(f , x|t)

G(1[o], x|t)

is continuous and bounded as a function of x. Let {wi}i∈N be an enumeration of
⋃
i≥1 Wi .

We define a new metric on X,

̺(x, y|t) =

∞∑

i=1

|K(1[wi ], x|t)−K(1[wi ], y|t)| + |1[wi ](x)− 1[wi ](y)|

maxz∈[wi ] |K(1[wi ], z|t)|
.

The t-Martin compactification, denoted by X̂(t), is the completion of X with respect to
the metric ̺. The t-Martin boundary, denoted by M(t), is the set of all new obtained
points, M(t) = X̂(t) \X. For every fixed f ∈ Cc(X), the Martin kernel K(f , ·|t) is a
̺-continuous function in X and it can be uniquely extended to a ̺-continuous function in
X̂(t) via

K(f , ω|t) = lim
x→ω

K(f , x|t), ω ∈ M(t).

Given ω ∈ M(t) and f ∈ Cc(X), we let µω(f ) := K(f , ω|t). Observe that for every ω ∈

M(t), the measure µω is a t-eigenmeasure of Lφ .
The t-minimal boundary Mm(t) is the set of all pointsω ∈ M(t) such that the resulting

measure µω is extremal in the cone of eigenmeasures for eigenvalue t. Then, for every
positive Radon measure µ with L∗

φµ = tµ, there exists a unique finite measure ν on
Mm(t) such that

µ(f ) =

∫

Mm(t)

µω(f ) dν(ω) for all f ∈ Cc(X). (2)

By definition, a sequence xn ∈ X converges to a point ω ∈ M(t) in the topology of
X̂(t) if and only if K(f , xn|t) −−−→

n→∞
K(f , ω|t) for all f ∈ Cc(X). In particular, a point

ω ∈ Mm(t) is fully characterized by the following convergence property: for µω-a.e. x ∈

X, T nx → ω in X̂(t).
It is elementary to show that observing the first coordinate alone is sufficient to

determine whether a sequence of internal points xn ∈ X converges to a boundary point
ω ∈ Mm(λ): if T nx → ω and xn = yn for all n ≥ 1 then T ny → ω as well. In particular,
we have the following proposition.

PROPOSITION 2.3. For every ω ∈ Mm(λ) there is sequence an ∈ [S] such that for every
x ∈ X with xn ∈ [an] we have that T nx → ω.

In this paper we mainly assume that PG(φ) < 0, which directly implies that φ is
transient and the Martin boundary M := M(1) exists. We write Mm := Mm(1).

2.3. The hyperbolic boundary. We briefly recall the definitions of a hyperbolic graph
and its boundary. For more detailed description, see [23] and also [54].

Let E ⊆ S × S be a set of edges over S. We say that (S, E) is connected if for
every a, b ∈ S, there exist a1, . . . , an ∈ S such that a1 = a, an = b and (ai , ai+1) ∈ E,
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1 ≤ i < n. We say that (S, E) is undirected if the set E is symmetric. We say that E is
locally finite if for every a ∈ S, #{b : (a, b) ∈ E} < ∞. We denote by dE(a, b) the length
of a shortest path from a to b in (S, E). When (S, E) is undirected and connected, dE is a
metric.

Definition 2.4. Let (S, E) be a connected, undirected and locally finite graph.
A geodesic triangle consists of three points a, b, c ∈ S and three geodesic paths
π(a, b), π(b, c), π(c, a) from a to b, b to c, and c to a, respectively. We say that the
graph (S, E) is δ-hyperbolic if every geodesic triangle in the graph is δ-thin, namely any
point on one of its sides is at distance at most δ from the other two sides.

Let (S, E) be a δ-hyperbolic graph. For a, b, o ∈ S, let

|a ∧ b|o := 1
2 (dE(o, a)+ dE(o, b)− dE(a, b)).

Fix an origin point o ∈ S.

Definition 2.5. We say that a sequence an ∈ S converges to the hyperbolic boundary
in (S, E) if limm,n→∞ |an ∧ am|o = ∞. Two sequences converging to the hyperbolic
boundary an, bn ∈ S are said to be equivalent if

lim
n→∞

|an ∧ bn|o → ∞. (3)

It is easy to verify that these definitions do not depend on o ∈ S.

Definition 2.6. The hyperbolic boundary (or the Gromov boundary) of (S, E), denoted by
∂(S, E), is the collection of all equivalence classes according to the relation in equation (3).

2.4. Generalized Ancona theorem. Recall that ρ(φ) is the radius of convergence of
Green’s function. Consider a finite-range random walk on a hyperbolic graph. Then, for all
λ > ρ(φ), the minimal λ-Martin boundary of the walk and the hyperbolic boundary of the
graph coincide. This was first proven by Series for random walks on Fuchsian groups [47]
and then by Ancona for more general hyperbolic graphs [3, 4]. See also [27] for a similar
result in more general spaces and [9] for the connection between Ancona’s inequality and
the Green metric. Later on, this result was proved at the critical value λ = ρ(φ) by Gouëzel
and Lalley for random walks on Fuchsian groups [25] and by Gouëzel for symmetric
random walks on hyperbolic groups [24].

To prove the main results of §§4 and 5, we extend Ancona’s theorem to the Ruelle
operator setting. In particular, we show that if the potential is uniformly irreducible with
respect to a hyperbolic graph (see Definition 2.7) then for all λ > ρ(φ), the minimal Martin
boundary Mm(λ) and the hyperbolic boundary coincide. The proof of the theorem, which
is of technical flavor, appears in Appendix A.

Definition 2.7. Let (S, E) be a connected, undirected and locally finite graph. We say that
φ is uniformly irreducible with respect to (S, E) if:

(1) φ is bounded;
(2) for every a, b ∈ S with [a, b] 6= ∅ we have that (a, b) ∈ E;
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(3) there exists K > 0 such that for every a, b ∈ S with (a, b) ∈ E, there exists k ≤ K

with
Lkφ1[a](x) > 0 for all x ∈ [b].

Remark 2.8. There may be (a, b) ∈ E with [a, b] = ∅. The set of edges E is symmetric
and we may have different values of k for (a, b) and (b, a). However, both values are still
bounded by K.

For every a ∈ S, we pick xa ∈ T [a] arbitrarily.

THEOREM 2.9. Make the following assumptions.

• (X, T ) is locally compact and topologically transitive.
• φ has summable variations and PG(φ) < ∞.
• There exist δ ≥ 0 and a δ-hyperbolic graph (S, E) such that φ is uniformly irreducible

with respect to (S, E).

Then, for every λ > ρ(φ), there is a bijection ω : ∂(S, E) → Mm(λ) such that, for any
an ∈ S,

an −−−→
n→∞

ξ ∈ ∂(S, E) ⇐⇒ for all f ∈ Cc(X), K(f , anxan |λ) −−−→
n→∞

K(f , ω(ξ)|λ).

Recently and independently, in [8] Bispo and Stadlbauer have managed to show that if
X is a group extension of a hyperbolic group and Green’s function is quasi-symmetric then
the result of Theorem 2.9 also holds at the critical value λ = ρ(φ). In contrast to our proof
which is based on [54], their proof is based on the previous works by Lalley and Gouëzel
[25] and by Gouëzel [24].

2.5. Regular covers of compact hyperbolic surfaces. Recall that D = {z ∈ C : |z| < 1}

is the unit open hyperbolic disc and that ∂D = {z ∈ C : |z| = 1} is its boundary. We denote
by dD the hyperbolic metric on D. A Fuchsian group Ŵ0 is said to be cocompact if D/Ŵ0 is
a compact surface. A regular cover of D/Ŵ0 is a surface D/Ŵ where Ŵ ✁ Ŵ0. The group
of deck transformations G can be identified with Ŵ0/Ŵ as follows: γŴ · xŴ = γ xŴ, with
γ ∈ Ŵ0 and x ∈ D. Let Fix(Ŵ0) = {ξ ∈ ∂D : ∃γ0 ∈ Ŵ0 \ {id} such that γ0ξ = ξ}. Notice
that Fix(Ŵ0) is a countable set.

Recall that δŴ is the critical exponent of Ŵ, namely the critical value of δ such that the
Poincaré series

p(Ŵ, δ) :=
∑

γ∈Ŵ

e−δdD(0,γ 0) (4)

converges for all δ > δŴ and diverges for all δ < δŴ . In general, δŴ ≤ δŴ0 and there is an
equality if and only if G is amenable [50]. See also [15, 19, 26] for similar results in more
general spaces. Since Ŵ0 is cocompact, δŴ0 = 1; see [36, Theorem 1.6.3].

We remind the reader of the definition of a conformal measure.

Definition 2.10. (Sullivan [52]) A finite positive measure µ on ∂D is said to be
(Ŵ, δ)-conformal if for every γ ∈ Ŵ,

d(µ ◦ γ )

dµ
= |γ ′|δ
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where (µ ◦ γ )(A) = µ(γA) =
∫

1A(γ−1x) dµ(x). We denote by Conf(Ŵ, δ) the
collection of all (Ŵ, δ)-conformal measures and by ext(Conf(Ŵ, δ)) the extremal points of

Conf(Ŵ, δ).

Patterson and Sullivan originally considered what they called conformal densities rather
than conformal measures. However, both definitions coincide; see [5, Remark 3.3].

2.6. The Bowen–Series coding and its group extension. Let Ŵ0 be a cocompact Fuchsian
group and let F0 ⊆ D be a fundamental domain of D/Ŵ0 with even corners. In [11], Bowen
and Series constructed (with respect to F0) a finite partition {Ia}a∈S0 of ∂D into closed
arcs with disjoint interiors, a finite set {ea}a∈S0 ⊆ Ŵ0 and a map fŴ0 : ∂D → ∂D with the
following properties.

(Gen) The set {ea}a∈S0 is symmetric and generates Ŵ0.
(Res) For all a ∈ S0, fŴ0 = e−1

a on int(Ia).
(Mar) {Ia} is a Markov partition: if int(fŴ0(Ia)) ∩ int(Ib) 6= ∅ then Ib ⊆ f (Ia).

(Tr) For every a, b ∈ S0 there exists n such that f nŴ0
(Ia) ⊇ Ib.

(Orb) For all except finitely many ξ1, ξ2 ∈ ∂D,

there exist n, m ∈ N such that f nŴ0
(ξ1) = fmŴ0

(ξ2)

⇐⇒ there exists γ0 ∈ Ŵ0 such that ξ1 = γ0(ξ2).

(Dist) There exists a constant B > 1 such that for every a1, . . . , an ∈ S0 and every
ξ1, ξ2 ∈ ∂D with f kŴ0

ξi = e−1
ak
. . . e−1

a1
ξi for k = 1, . . . , n and i = 1, 2,

|(f n−1
Ŵ0

)′(ξ1)|

|(f n−1
Ŵ0

)′(ξ2)|
≤ B.

For (Orb), see [46]. For (Dist) see also [33]. The finiteness of S0 follows from the absence
of parabolic elements in Ŵ0.

We write Ia1,...,an =
⋂n
i=1 f

−i+1
Ŵ0

Iai . In particular, for all ξ ∈ int(Ia1,...,an) and
1 ≤ k ≤ n,

f kŴ0
(ξ) = e−1

ak
· · · e−1

a1
ξ .

For an admissible word w = (a1, . . . , an), we write ew = ea1 . . . ean .

Definition 2.11. A sequence (ai)i≥0 with ai ∈ S0 is called a boundary expansion of a point
ξ ∈ ∂D if for every n ≥ 0, f nŴ0

(ξ) ∈ Ian .

Let

6 =
{
(σi)i≥0 : ∀i ≥ 0, σi ∈ S0 and int(Iσi+1) ⊆ int(f (Iσi ))

}
(5)

and let T6 : 6 → 6 be the left-shift. Let π6 : 6 → ∂D be the canonical projection,

π6(σ ) ∈
⋂
n≥0 f

−n
Ŵ0
Iσn (the intersection is a singleton; see [6]). By (Mar) and (Tr), (6, T )

is a one-sided transitive TMS, and by (Res), fŴ0 ◦ π6 = π6 ◦ T6 . Given a point σ ∈ 6,
we write σi for its ith coordinate.
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Let G = Ŵ0/Ŵ where Ŵ ⊳ Ŵ0. Let (X, T ) be the one-sided TMS over the set of states
SX = S0 ×G with the transition rule

(a, γ1Ŵ) (b, γ2Ŵ) ⇐⇒ int(Ib) ⊆ int(fŴ0(Ia)) and γ2Ŵ = e−1
a γ1Ŵ. (6)

The shift space (X, T ) is called the group extension, or the G-extension, of 6; see [50].
The transitivity of (X, T ) follows immediately from the transitivity of the geodesic flow
on D/Ŵ (see [20, Theorem 3.8]) and from the conjugation between cutting sequences and
the Bowen–Series coding (see [2]).

We denote by πX : X → 6 the natural projection from X to 6.

Definition 2.12. Given δ > 0, let φ6,δ : 6 → R,

φ6,δ(σ ) := −δ log |(e−1
σ0
)′(π6(σ ))|

and let

φX,δ(x) := φ6,δ(πX(x)).

The potential φ6,δ is Hölder continuous (see [46]) and thus φX,δ is Hölder continuous as
well. It is elementary to show that the potential φX,δ is transient if and only if p(Ŵ, δ) < ∞

and that for all δ > δŴ , PG(φX,δ) < 0. The following proposition allows us to narrow our
discussion to non-atomic measures.

PROPOSITION 2.13. Let Ŵ0 be a cocompact Fuchsian group, let Ŵ ⊳ Ŵ0 and let δ ≥ δŴ .

(1) Every (Ŵ, δ)-conformal measure is non-atomic.
(2) Every Radon eigenmeasure of LφX,δ for eigenvalue 1 is non-atomic.

Part (1) of the proposition was proven in [21] for Kleinian groups with no parabolic
elements. We prove part (2) in Appendix B.

3. The eigenmeasures of the Ruelle operator and the conformal measures
In this section we prove Theorem 1.1, which relates the (Ŵ, δ)-conformal measures to the
eigenmeasures of LφX,δ for eigenvalue 1.

Before proving the theorem, we illustrate the usefulness of Theorem 1.1 and deduce
several elementary results, some already known, using the theorem.

COROLLARY 3.1. Let δ ≥ δŴ . Then, for every µ ∈ Conf(Ŵ, δ), there exists a unique finite
measure ν on ext(Conf(Ŵ, δ)) such that

µ =

∫

µ′ ∈ ext(Conf(Ŵ,δ))
µ′ dν(µ′).

Proof. This result can be derived from the classical Choquet theory but also follows from
the unique representation on the minimal boundary (see equation (2) and also [49]) and by
the linearity of the mapping in Theorem 1.1. �

COROLLARY 3.2. (Furstenberg [22]) Assume that D/Ŵ is compact. Then a (Ŵ, δ)-
conformal measure exists if and only if δ = δŴ . Moreover, the (Ŵ, δŴ)-conformal measure
is unique up to scaling.
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Proof. The corollary follows directly from Ruelle’s Perron–Frobenius theorem; see [10].
�

COROLLARY 3.3. (Cf. Sullivan [53] and the Hopf–Tsuji–Sullivan theorem.) Assume that
p(Ŵ, δŴ) = ∞. Then the (Ŵ, δŴ)-conformal measure is unique up to scaling.

Proof. Since p(Ŵ, δŴ) = ∞, the potential φX,δŴ is recurrent. By Sarig’s generalized
Ruelle Perron–Frobenius theorem [41, 42], the eigenmeasure of LφX,δŴ is unique up to
normalization. �

In what follows, let Y = ∂D ×G. The group Ŵ0 acts on Y in the following way:

γ0(ξ , γŴ) = (γ0ξ , γ0γŴ), γ0 ∈ Ŵ0, (ξ , γŴ) ∈ Y .

Let fY : Y → Y be the extension of fŴ0 to Y:

fY (ξ , γŴ) = (e−1
a ξ , e−1

a γŴ), ξ ∈ int(Ia).

By Proposition 2.13, we can narrow our discussion to non-atomic measures and thus we
may ignore the values of fY on ∂Ia . To prove Theorem 1.1, we map, in several steps, the
Radon eigenmeasures of LX,δ

φ for eigenvalue 1 to the Radon measures on Y which satisfy
Ŵ0-regularity condition; see equation (8) in the following lemma.

LEMMA 3.4. Let µY be a non-atomic Radon measure on Y. Then the following statements
are equivalent.

(1) The measure µY ◦ fŴ0 given by

(µY ◦ fY )(A× {γŴ}) =
∑

a∈S0

µY (fY ((Ia ∩ A)× {γŴ}))

with A ⊆ ∂D measurable is absolutely continuous with respect to µY and

d(µY ◦ fY )

dµY
(ξ , γŴ) = |f ′

Ŵ0
(ξ)|δ , µY -a.e. (7)

(2) The measure µY is Ŵ0-quasi-invariant and for all γ0 ∈ Ŵ0,

d(µY ◦ γ0)

dµY
(ξ , γŴ) = |γ ′

0(ξ)|
δ , µY -a.e. (8)

Proof. Assume (1) holds. Fix γ0 ∈ Ŵ0, γ0 6= idŴ0 and let

An,m = {ξ ∈ ∂D : f nŴ0
(ξ) = (fmŴ0

◦ γ0)(ξ)}.

By (Orb), µY ((
⋃
n,m≥0 An,m ×G)△ Y ) = 0. Fix n, m ≥ 0 and let ξ ∈ An,m \ Fix(Ŵ0).

Let a1, . . . , an, b1, . . . , bm ∈ S0 such that ξ ∈ Ia1,...,an and γ0ξ ∈ Ib1,...,bm . Then

e−1
an

· · · e−1
a1
(ξ) = e−1

bm
· · · e−1

b1
γ0(ξ).

In particular, ξ is a fixed point of ea1 · · · eane
−1
bm

· · · e−1
b1
γ0. Since ξ 6∈ Fix(Ŵ0),

γ0 = (e−1
bm

· · · e−1
b1
)−1e−1

an
· · · e−1

a1
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and

|γ ′
0(ξ)|

δ = |((e−1
bm

· · · e−1
b1
)−1)′(e−1

an
· · · e−1

a2
ξ)|δ · |(e−1

an
· · · e−1

a1
)′(ξ)|δ

=
|(e−1

an
· · · e−1

a1
)′(ξ)|δ

|(e−1
bm

· · · e−1
b1
)′(γ0ξ)|δ

.

For µY -a.e. (ξ , γŴ) ∈ (Ia1,...,an ∩ γ−1
0 Ib1,...,bm)×G we have that

d(µY ◦ f nY )

dµY
(ξ , γŴ) =

d(µY ◦ fmY ◦ γ0)

dµY
(ξ , γŴ)

=
d(µY ◦ fmY )

dµY
(γ0ξ , γ0γŴ)

d(µY ◦ γ0)

dµY
(ξ , γŴ).

Moreover, by equation (7), for µY -a.e. (ξ , γŴ) ∈ (Ia1,...,an ∩ γ−1
0 Ib1,...,bm)×G,

d(µY ◦ f nY )

dµY
(ξ , γŴ) = |(e−1

an
· · · e−1

a1
)′(ξ)|δ

and

d(µY ◦ fmY )

dµY
(γ0ξ , γ0γŴ) = |(e−1

bm
· · · e−1

b1
)′(γ0ξ)|

δ .

Thus, for µY -a.e. (ξ , γŴ) ∈ (Ia1,...,an ∩ γ−1
0 Ib1,...,bm)×G,

d(µY ◦ γ0)

dµY
(ξ , γŴ) =

(
d(µY ◦ fmY )

dµY
(γ0ξ , γ0γŴ)

)−1 d(µY ◦ f nY )

dµY
(ξ , γŴ) = |γ ′

0(ξ)|
δ .

Since there are only a countable number of such (a1, . . . , an), (b1, . . . , bm), m and n, the
identity holds for µY -a.e. (ξ , γŴ) ∈ Y . So (1) ⇒ (2).

Next, assume (2). Fix a ∈ S0. Then, for µY -a.e. (ξ , γŴ) ∈ Ia ×G,

d(µY ◦ fY )

dµY
(ξ , γŴ) =

d(µY ◦ e−1
a )

dµY
(ξ , γŴ) = |(e−1

a )′(ξ)|δ = |f ′
Ŵ0
(ξ)|δ .

Henceforth we use the following canonical correspondence to identify X with 6 ×G:

(σ , γŴ) 7−→ ((σ0, γŴ), (σ1, e−1
σ0
γŴ), (σ1, e−1

σ1
γŴ), . . . ).

In particular, we will not distinguish between the two. We let π̃ : X → Y , π̃(σ , γŴ) =

(π6(σ ), γŴ).

LEMMA 3.5. Let δ ≥ δŴ . Then the map µX 7→ µX ◦ π̃−1 is an affine bijection between the
Radon eigenmeasures of LφX,δ with eigenvalue 1 and the non-atomic Radon measures on
Y which satisfy equation (8).

Proof. Recall that π6 is bijective away from a countable number of points; see [46]. There-
fore, since all eigenmeasures of the Ruelle operator are non-atomic (see Proposition 2.13),
π̃ is a measure-theoretic isomorphism.

Recall that µX is an eigenmeasure of LφX,δ of eigenvalue 1 if and only if

d(µX ◦ T )

dµX
(σ , γŴ) = |f ′

Ŵ0
(π(σ ))|δ
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where (µX ◦ T )(A× {γŴ}) =
∑
a∈S0

µX(T (([a] ∩ A)× {γŴ})); see [44] and references
therein. Since π̃ ◦ fY = T ◦ π̃ ,

d(µY ◦ fY )

dµY
((π−1(σ ), γŴ)) =

d(µY ◦ (fY ◦ π̃−1))

d(µY ◦ π̃−1)
(σ , γŴ)

=
d(µX ◦ T )

dµX
(σ , γŴ)

= |f ′
Ŵ0
(π(σ ))|δ .

Hence, by Lemma 3.4, µX is an eigenmeasure if and only if µY satisfies equation (8). �

Proof of Theorem 1.1. By Lemma 3.5, it suffices to present a bijection between the
(Ŵ, δ)-conformal measures and the non-atomic Radon measures on Y which satisfy
equation (8).

Let µ ∈ Conf(Ŵ, δ). We define a new measure µY on Y = ∂D ×G as follows: for A ⊆

∂D and γŴ ∈ G,

µY (A× {γŴ}) :=
∫

|γ ′(ξ)|δ1A(γ ξ) dµ(ξ). (9)

We show that this definition does not depend on the choice of γ which represents γŴ.
Assume that γ1Ŵ = γ2Ŵ and let γ ∈ Ŵ such that γ1 = γ2γ . Since µ is (Ŵ, δ)-conformal,

∫
|γ ′

1(ξ)|
δ 1A(γ1ξ) dµ(ξ) =

∫
|(γ2γ )

′(ξ)|δ1A(γ2γ ξ) dµ(ξ)

=

∫
|γ ′

2(γ ξ)|
δ|γ ′(ξ)|δ1A(γ2γ ξ) dµ(ξ)

=

∫
|γ ′

2(ξ)|
δ|γ ′(γ−1ξ)|δ1A(γ2ξ)

d(µ ◦ γ−1)

dµ
(ξ) dµ(ξ)

=

∫
|γ ′

2(ξ)|
δ1A(γ2ξ) dµ(ξ).

So µY is defined properly. Since µ is non-atomic (see Proposition 2.13), µY is non-atomic.
Moreover, by definition different choices of µ lead to different measures µY (consider
γ ∈ Ŵ).

We prove that µY satisfies equation (8). Given A ⊆ ∂D Borel and γ1, γ2 ∈ Ŵ0,

(µY ◦ γ1)(A× {γ2Ŵ}) = (µY )(γ1A× {γ1γ2Ŵ})

=

∫
|(γ1γ2)

′(ξ)|δ1γ1A(γ1γ2ξ) dµ(ξ)

=

∫
|(γ1γ2)

′(ξ)|δ1A(γ2ξ) dµ(ξ)

=

∫
|(γ1)

′(γ2ξ)|
δ|(γ2)

′(ξ)|δ1A(γ2ξ) dµ(ξ).

By the definition of µY ,

µY (|γ
′
1|
δ1A×{γ2Ŵ}) =

∫
|(γ1)

′(γ2ξ)|
δ|(γ2)

′(ξ)|δ1A(γ2ξ) dµ(ξ)

and therefore d(µY ◦ γ1)/dµY = |γ ′
1|
δ for all γ1 ∈ Ŵ0.
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Finally, we show that this mapping is onto. Given a non-atomic Radon measure µY
which satisfies equation (8), let µ(·) := µY (·, {Ŵ}). Clearly µ is non-atomic and µY is the
resulting measure of the mapping in equation (9). Moreover, for every γ ∈ Ŵ,

(µ ◦ γ )(A) = µY (γA, {Ŵ})

= µY (γA, {γŴ}) (∵ γŴ = Ŵ in G = Ŵ0/Ŵ)

= (µY ◦ γ )(A, {Ŵ})

= µY (|γ
′|δ1A×{Ŵ})

=

∫
|γ ′(ξ)|δ1A(ξ)µ(ξ)

and µ is indeed a (Ŵ, δ)-conformal measure. �

4. Application to hyperbolic covers
We now turn our attention to study regular covers with a hyperbolic group of deck
transformations. Recall that G is called a hyperbolic group if some (or every, see [23])
Cayley graph of G is a hyperbolic graph. We denote by ∂G the hyperbolic boundary of G;
see §2.3. We say that a regular cover D/Ŵ of D/Ŵ0 is a hyperbolic cover if the group of
deck transformations G = Ŵ0/Ŵ is a hyperbolic group.

In this section we prove Theorem 1.2, which describes the extremal conformal measures
of Ŵ in terms of ∂G. In principle, we would like to apply the generalized Ancona theorem
on the Markov shift X and the potential φX,δ . Since we do not know a priori that the states
graph of X is undirected or hyperbolic, we work with a ‘larger’ hyperbolic graph structure
on SX = S0 ×G which is easier to analyze. In what follows, let

EG = {(g1, g2) ∈ G×G : g1 = g2 or ∃a ∈ S0 such that e−1
a g1 = g2}

and let

EX = {((a, g), (b, h)) ∈ SX × SX : (g, h) ∈ EG}.

Since {ea}a∈S0 is a symmetric set which generates Ŵ0, the set {eaŴ}a∈S0 generates G and
(G, EG) is an undirected Cayley graph of G. Since (G, EG) is undirected, (SX, EX) is
undirected as well. Let πSX : SX → G be the natural projection, πSX (ξ , g) = g. Observe
that (SX, EX) is not the canonical graph associated to the transition matrix of the TMS X.
In fact, it is larger since it has more edges.

Definition 4.1. Two metric spaces (X1, d1) and (X2, d2) are called quasi-isometric if there
exist g : X1 → X2, A ≥ 1, B ≥ 0 and C ≥ 0 such that the following statements hold.

(1) For every x, y ∈ X1,

1

A
d1(x, y)− B ≤ d2(g(x), g(y)) ≤ Ad1(x, y)+ B.

(2) For every y ∈ X2 there exists x ∈ X1 such that

d2(y, g(x)) ≤ C.

We call such a function g a quasi-isometry; see [17].
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Since, for all a, b ∈ S0 and g, h ∈ G,

dEG(g, h) ≤ dEX ((a, g), (b, h)) ≤ dEG(g, h)+ 1 (10)

the graphs (G, EG) and (SX, EX) are quasi-isometric. Since hyperbolicity is preserved
under quasi-isometries (see [23]), G is a hyperbolic group if and only if (SX, EX) is a
hyperbolic graph. We denote by ∂G and ∂SX the hyperbolic boundaries of (G, EG) and
(SX, EX), respectively; see the definitions in §2.3. We fix origin points oG ∈ G, oSX ∈ SX
with πSX (oSX ) = oG. Notice that equation (10) together with the definition of ∧ (see §2.3)
implies that

|(a, g) ∧ (b, h)|oSX − 1 ≤ |g ∧ h|oG ≤ |(a, g) ∧ (b, h)|oSX + 1. (11)

In particular, for every {an} ⊆ S0 and {gn} ⊆ G,

lim
m,n→∞

|gn ∧ gm|oG = ∞ if and only if lim
m,n→∞

|(an, gn) ∧ (am, gm)|oSX → ∞

and (an, gn) converges to a point in ∂SX if and only if gn = πSX (an, gn) converges to a
point in ∂G. For η ∈ ∂SX, set

πSX (η) := lim
n→∞

gn (12)

where (an, gn) → η. It is easy to verify that πSX : ∂SX → ∂G is a well-defined bijection
between the two boundaries.

Recall the definition of uniform irreducibility (see Definition 2.7).

PROPOSITION 4.2. φX,δ is uniformly irreducible with respect to (SX, EX).

Proof. Since 6 is compact, φX,δ is bounded. If [(a, g), (b, h)] 6= ∅ then h = e−1
a g. In

particular, (g, h) ∈ EG and thus ((a, g), (b, h)) ∈ EX. For every a, b ∈ S0 and γ ∈ Ŵ0,
let na,b,γ be an integer such that there is an admissible path from (a, Ŵ) to (b, γŴ) in X,
namely

(L
na,b,γ

φX,δ (1[(a,Ŵ)]))(x(b,γŴ)) > 0

where x(b,γŴ) ∈ T [(b, γŴ)]. Since (X, T ) is topologically transitive, such a path exists.
Let ((a, g), (b, h)) ∈ EX. Then either g = h and

L
na,b,idŴ0
φX,δ (1[(a,g)])(x(b,h)) > 0

or h = e−1
c g, for some c ∈ S0, and

L
n
a,b,e−1

c

φX,δ (1[(a,g)])(x(b,h)) > 0.

Thus, with

K = max
a,b∈S0

max
γ∈{ec}c∈S0 ∪{idŴ0 }

na,b,γ

we have that φX,δ is uniformly irreducible with respect to (SX, EX). �

We are now ready to prove the main result of this section.

https://doi.org/10.1017/etds.2020.83 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.83


Conformal measures of normal subgroups of cocompact Fuchsian groups 2861

Proof of Theorem 1.2. Since δ > δŴ , we have that PG(φX,δ) < 0. By Proposition 4.2, φX,δ

is uniformly irreducible with respect to the (larger) hyperbolic graph (SX, EX). Thus the
conditions of Theorem 2.9 hold.

Let µ ∈ Conf(Ŵ, δ). By Corollary 3.1, we can assume without loss of generality that
µ ∈ ext(Conf(Ŵ, δ)). Let µX be the corresponding eigenmeasure on X from Theorem 1.1.
Since µ is extremal and the transformation from µ to µX is linear, µX is extremal as well.
By Theorem 2.9 there exists η′ ∈ ∂SX such that for µX-a.e. x = (σ , Ŵ) ∈ X, T nx → η′.
Let η = πSX (η

′) ∈ ∂G. By equation (12) we have that

e−1
σn

· · · e−1
σ0
Ŵ → η

on the Cayley graph (G, EG). Since µ(·) = µX(π
−1
6 (·)× {Ŵ}), (σ , Ŵ) is µX-typical point

if and only if σ is a µ-typical point and thus the first part of the theorem follows.
Now, let η ∈ ∂G and let η′ = π−1

SX
η. By Theorem 2.9 there is a unique eigenmeasure

µX such that for µX-a.e. x ∈ X, T nx → η′. Then, the second part of the theorem follows
with µ(·) = µX(π

−1
6 (·)× {Ŵ}). �

5. Convergence of cutting sequences along geodesics
In this section we study the asymptotic behavior of cutting sequences on hyperbolic
covers with respect to conformal measures. In particular, for every δ > δŴ and every
µ ∈ Conf(Ŵ, δ), we show that the cutting sequence (projected to G) µ-almost surely
converges to a point in ∂G (see Theorem 1.3).

We emphasize that the geodesics on a regular cover do not always escape to infinity. In
fact, by the Hopf–Tsuji–Sullivan theorem the geodesic flow is conservative with respect
to the Liouville measure if and only if the Poincaré series diverges for δ = 1; see [1]. An
example is a Z

d -cover: the Poincaré series diverges if and only if d ≤ 2 [38].
In what follows, recall that F0 ⊆ D is a fundamental domain of D/Ŵ0 with even corners,

that given ξ−, ξ+ ∈ ∂D with ξ− 6= ξ+ we denote by ξ− ∧ ξ+ the unique geodesic curve
in D from ξ− to ξ+ and that

R = {(ξ−, ξ+) ∈ ∂D2 : (ξ− ∧ ξ+) ∩ int (F0) 6= ∅}.

Observe that R is symmetric, namely (ξ−, ξ+) ∈ R if and only if (ξ+, ξ−) ∈ R. Let
(ξ−, ξ+) ∈ R and let {Fi}i∈Z be the sequence of copies of F0 that the curve (ξ− ∧ ξ+)

intersects. If (ξ− ∧ ξ+) passes through a vertex of some Fi , we perturb the curve around
it; see [48, Figure 5]. Then, for all i, there exists a unique ei ∈ {ea}a∈S0 such that
Fi = e−1

i Fi+1.

Definition 5.1. The sequence (. . . , e−1, e0, e1, . . . ) is called the cutting sequence of
(ξ−, ξ+).

For (ξ−, ξ+) ∈ R with a cutting sequence (. . . , e−1, e0, e1, . . . ), recall that

η+
n (ξ

−, ξ+) = e−1
n · · · e−1

0 Ŵ

and

η−
n (ξ

−, ξ+) = (e−n−1)
−1 · · · (e−1)

−1Ŵ.
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To prove Theorem 1.3, we exploit the connection between boundary expansions and cutting
sequences, presented by Series [48] and also by Adler and Flatto [2]. Firstly, we briefly
introduce the two-sided Bowen–Series coding. We denote by 6± the negative one-sided
shift,

6± = {(. . . , σ−1, σ0, σ1, . . . ) : ∀i, [σi , σi+1] 6= ∅ in 6}.

We write T6 for the left-shift action on both 6 and 6±; the meaning should be clear from
the context. Recall that π6 : 6 → ∂D is the canonical projection where

π6(σ0, σ1, . . . ) ∈
⋂

n≥0

f−n
Ŵ0
Iσn .

We write π+ : 6± → ∂D,

π+(σ ) = π6(σ0, σ1, . . . ).

For every a ∈ S0, let a ∈ S0 such that ea = e−1
a and [a, b] 6= ∅ if and only if [b̄, a] 6= ∅

in 6. We define π−(σ ) = π6(σ−1, σ−2, . . . ) and π(σ) = (π−(σ ), π+(σ )). Then

π(T6σ) = (π−(T6σ), π
+(T6σ)) = (e−1

σ0
π−(σ ), e−1

σ0
π+(σ )).

Let

A = {(ξ−, ξ+) : ∃σ ∈ 6± such that (ξ−, ξ+) = π(σ)}.

The Bowen–Series map fŴ0 acts on A similarly to the left-shift action,

fŴ0(ξ
−, ξ+) = (π ◦ T6)(σ ) = (e−1

σ0
π−(σ ), e−1

σ0
π+(σ )) = e−1

σ0
(ξ−, ξ+).

Here and throughout, e−1
σ0
(ξ−, ξ+) := (e−1

σ0
(ξ−), e−1

σ0
(ξ+)). The value of the first-return

map gŴ0 : R → R on a pair (ξ−, ξ+) ∈ R with cutting sequence (. . . , e−1, e0, e1, . . . )
is

gŴ0(ξ
−, ξ+) = e−1

0 (ξ−, ξ+).

Notice that gŴ0(ξ
−, ξ+) ∈ R and the cutting sequence of gŴ0(ξ

−, ξ+) is the cutting
sequence of (ξ−, ξ+) shifted by one position to the left. In particular,

gnŴ0
(ξ−, ξ+) = (e−1

n−1 · · · e−1
0 )(ξ−, ξ+).

THEOREM 5.2. (Series [48]) There exists a bijection ϕ : A → R such that

(ϕ ◦ fŴ0)(ξ
−, ξ+) = (gŴ0 ◦ ϕ)(ξ−, ξ+).

An explicit formula for ϕ was derived in [2].
Let

D := {ξ ∈ ∂D \ Fix(Ŵ0) : |π−1
6 (ξ)| = 1}.

Notice that D is a Ŵ0-invariant set and that ∂D \ D is countable and thus a null set with
respect to any conformal measure; see Proposition 2.13. Given ξ ∈ D with a (one-sided)
boundary expansion π−1

6 (ξ) = (σ0, σ1 . . . ) and γ0 ∈ Ŵ0, we write

τn(ξ , γ0) := e−1
σn

· · · e−1
σ0
γ0Ŵ.
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Proof of Theorem 1.3. We show that for µ-a.e. ξ+ ∈ ∂D, for every ξ− ∈ D with
(ξ−, ξ+) ∈ R, η+

n (ξ
−, ξ+) converges to a point in ∂G. Observe that if the cutting sequence

of (ξ−, ξ+) is (ei) then the cutting sequence of (ξ+, ξ−) is (fi) with fi = e−i−1. In
particular,

η+
n (ξ

+, ξ−) = (fn)
−1 · · · (f0)

−1Ŵ = (e−n−1)
−1 · · · (e−1)

−1Ŵ = η−
n (ξ

−, ξ+)

and so we prove the theorem only for η+
n (ξ

−, ξ+) as the arguments for η−
n (ξ

−, ξ+) are
similar. By Corollary 3.1, we can assume without loss of generality that µ+ is extremal.
Since µ is non-atomic (see Proposition 2.13), we can also assume that ξ−, ξ+ ∈ D.

Let γ0 ∈ Ŵ0, let η ∈ ∂G and let

Aγ0 =

{
ξ+ ∈ D :

∃ξ− ∈ D such that (ξ−, ξ+) ∈ R, ϕ−1(ξ−, ξ+) = γ0(ξ
−, ξ+)

and limn→∞ η+
n (ξ

−, ξ+) 6= η

}
.

We write limn→∞ η+
n (ξ

−, ξ+) 6= η whenever the limit does not exist or it exists but differs
from η. We show that there exists η ∈ ∂G such that µ(Aγ0) = 0.

Let ξ+ ∈ Aγ0 and let ξ− ∈ D such that (ξ−, ξ+) ∈ R and ϕ−1(ξ−, ξ+) = γ0(ξ
−, ξ+).

Let σ ∈ 6 such that π6(σ ) = γ0ξ
+ and let (. . . , e−1, e0, e1, . . . ) be the cutting sequence

of (ξ−, ξ+). For every n ≥ 1, let γn ∈ Ŵ0 such that ϕ−1(gnŴ0
(ξ−, ξ+)) = γn(g

n
Ŵ0
(ξ−, ξ+)).

By Theorem 5.2,

(ϕ ◦ f nŴ0
◦ ϕ−1)(ξ−, ξ+) = gnŴ0

(ξ−, ξ+),

meaning

(γ−1
n e−1

σn−1
· · · e−1

σ0
γ0)(ξ

−, ξ+) = (e−1
n−1 · · · e−1

0 )(ξ−, ξ+).

Since ξ−, ξ+ 6∈ Fix(Ŵ0),

γ−1
n e−1

σn−1
· · · e−1

σ0
γ0 = e−1

n−1 · · · e−1
0 .

According to the explicit formula for ϕ (see [2]) there exists an absolute constant N (that
depends only on the group Ŵ0) such that |γn| ≤ N for all n, where | · | denotes the word
length with respect to the generating set {ea}. Then

dEG(η
+
n (ξ

−, ξ+), τn(γ0ξ
+, γ0))

= dEG(γ
−1
n e−1

σn−1
· · · e−1

σ0
γ0Ŵ, e−1

σn−1
· · · e−1

σ0
γ0Ŵ) ≤ N .

In particular,

lim
n→∞

η+
n (ξ

−, ξ+) = η ⇐⇒ lim
n→∞

τn(γ0ξ
+, γ0) = η.

Observe that the right-hand term does not depend on ξ− once γ0 and ξ+ are given.
Hence,

Aγ0 =
{
ξ+ ∈ D : lim

n→∞
τn(γ0ξ

+, γ0) 6= η
}
.

Since D is a Ŵ0-invariant set,

γ0Aγ0 =
{
ξ ∈ D : lim

n→∞
τn(ξ , γ0) 6= η

}
.
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Let µY be the measure on Y = ∂D ×G from Theorem 1.1 that satisfies equation (8) and
µ(·) = µY (· × {Ŵ}). Then µ(Aγ0) = µY (Aγ0 × {Ŵ}). By equation (8),

µY (Aγ0 × {Ŵ}) = 0 ⇐⇒µY (γ0Aγ0 × {γ0Ŵ}) = 0.

Let µX = µY ◦ π̃ , see Lemma 3.5. Then

µY (γ0Aγ0 × {γ0Ŵ}) = 0 ⇐⇒ µX(π
−1
6 (γ0Aγ0)× {γ0Ŵ}) = 0.

By equation (12),

π−1
6 (γ0Aγ0) =

{
σ+ ∈ π−1

6 (D) : lim
n→∞

T n(σ , γ0) 6= π−1
SX
(η)

}
.

Then by Theorem 2.9 there exists η ∈ ∂G such that π−1
6 (γ0Aγ0)× {γ0Ŵ} is a µX-null set.

Similarly, given η ∈ ∂G, let µX such that π−1
6 (γ0Aγ0)× {γ0Ŵ} is a µX-null set. Such a

measure exists by Theorem 2.9.
As for the other part of the proof, similar arguments show that, given µ ∈

ext(Conf(Ŵ, δ)) with µ(·) = µX(π
−1
6 (·)× {Ŵ}), we have that µ(Aγ0) = 0. �
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A. Appendix. The Martin boundary of a Markov shift over a hyperbolic graph
A.1. Discretized Green function and related inequalities. To prove Theorem 2.9 (the
generalized Ancona theorem), we introduce approximated versions Green’s function and
the Martin kernel to the discrete set of states S rather than the non-discrete set of infinite
paths X. For these discretized functions, we present several combinatorial inequalities,
inspired by their probabilistic analogues.

Recall that for every a ∈ S we fixed xa ∈ T [a] arbitrarily.

Definition A.1. For a, b ∈ S and λ > 0, let

G(a, b|λ) := G(1[a], bxb|λ) =

∞∑

n=0

∑

(a0,...,an) ∈ Wn+1

a0=a, an=b

λ−neφn(a0,...,anxb)

and let

F(a, b|λ) :=
∞∑

n=0

∑

(a0,...,an) ∈ Wn+1

a0=a, an=b
for all i<n, ai 6=b

λ−neφn(a0,...,anxb).

We let φ0 ≡ 0. In particular, F(a, a|λ) = 1.
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For a subset A ⊆ S, we let

LA(a, b|λ) :=
∞∑

n=0

∑

(a0,...,an) ∈ Wn+1

a0=a, an=b
a0 ∈ A, for all i>0: ai /∈A

λ−neφn(a0,...,anxb)

and let

FA(a, b|λ) :=
∞∑

n=0

∑

(a0,...,an) ∈ Wn+1

a0=a, an=b
an ∈ A, for all i<n:ai /∈A

λ−neφn(a0,...,anxb).

Observe that if a 6∈ A then LA(a, b|λ) = 0 and if b 6∈ A then FA(a, b|λ) = 0. We write
L{a}(a, b|λ) = L(a, b|λ). Let

K(a, b|λ) := K(1[a], bxb|λ) =
G(a, b|λ)

G(o, b|λ)

and given f ∈ Cc(X), let K(f , a|λ) := K(f , axb|λ). For λ = 1, we simply write
G(a, b), F(a, b), L(a, b) and K(a, b).

The following propositions present several useful inequalities involving the functions
F , G, L and K. Their proofs are elementary and are partly included here. Several of these
inequalities have been adapted from probabilistic settings; see [54] for more details.

PROPOSITION A.2. Assume that (X, T ) is locally compact and transitive, that φ has
summable variations and that PG(φ) < ∞. Then there exists a constant C > 1 such that,
for every λ > ρ(φ), the following statements hold.

(1) For every a, b ∈ S,

G(a, b|λ) = C±1F(a, b|λ)G(b, b|λ).

(2) For every a, b, c ∈ S,

F(a, c|λ)F (c, b|λ) ≤ CF(a, b|λ).

(3) For every a, b ∈ S and every set A ⊆ S such that every path from a to b must pass
through A,

G(a, b|λ) = C±1
∑

e∈A

G(a, e|t)LA(e, b|λ).

(4) For every a, b ∈ S and every set A ⊆ S,
∑

e∈A

G(a, e|λ)LA(e, b|λ) = C±1
∑

e∈A

FA(a, e|λ)G(e, b|λ).

(5) For every a, b ∈ S and A ⊆ S,
∑

e∈A

FA(a, e|λ)G(e, b|λ) ≤ CG(a, b|λ).
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(6) For every a, b ∈ S and every λ1, λ2 with ρ(φ) < λ1 ≤ λ2,

G(a, b|λ1)

λ1
−
G(a, b|λ2)

λ2
= C±1

(
1

λ1
−

1

λ2

) ∑

c∈S

G(a, c|λ1)G(c, b|λ2).

(7) For every admissible a1, . . . , aN ∈ S and every b1, b2 ∈ S with bi 6= aj ,

K(1[a1,...,aN ], bi |λ) = C±1t−(N−1)eφN−1(a1,...,aNxaN )K(aN , bi |λ)

and

K(1[a1,...,aN ], b1|λ)

K(1[a1,...,aN ], b2|λ)
= C±1F(aN , b1|t)F (o, b2|λ)

F (aN , b2|t)F (o, b1|λ)
.

PROPOSITION A.3. Assume that (X, T ) is locally compact and transitive, that φ has
summable variations, that φ is uniformly irreducible with respect to a connected, undi-
rected and locally finite graph (S, E) and that PG(φ) < 0. Then the following statements
hold.

(1) For every a, b ∈ S and every λ ∈ (ρ(φ), 1),

LA(a, b|λ) ≥ λ−dE(a,b)LA(a, b).

(2) (Harnack’s inequality) There exists C′ > 1 such that for every λ ∈ (ρ(φ), 1], for
every h ∈ {G(·, c|λ), F(·, c|λ), G(c, ·|λ), F(c, ·|λ)}c∈S and every a, b ∈ S,

h(a) ≤ (C′)dE(a,b)h(b).

Proof. The proof of (1) is elementary and follows directly from the definition of the
function LA. We prove (2).

Let K > 0 such that for every (a, b) ∈ E there exists k ≤ K with Lkφ(1[a])(bxb) >

0 and let ǫ = exp(−K minx∈X |φ(x)|). Let N = dE(a, b)+ 1 and let a1, . . . , aN be
a shortest path in E from a1 = b to aN = a. Let k1, . . . , kN−1 ≥ 1 with ki ≤ K

and Lkiφ (1[ai ])(ai+1xai+1) > 0. Let k =
∑N−1
i=1 ki . Notice that dE(a, b) ≤ k ≤ dE(a, b)K .

Then

G(b, c|λ) ≥

∞∑

n=k

λ−nLnφ(1[b])(cxc)

≥ λ−k
∞∑

n=0

λ−nLn+kφ (1[b] · 1T −dE(a,b)[a])(cxc)

≥λ−kC−k
φ

∞∑

n=0

L
k1
φ (1[b])(a2xa2) · · · L

kN−1
φ (1[aN−1])(axa)λ

−nLnφ(1[a])(cxc)

≥ λ−kC−k
φ ǫ

dE(a,b)
0 G(a, c|λ)

≥ (max{Cφ , CKφ }ǫ−1)−dE(a,b)G(a, c|λ).

So, with B = max{Cφ , CKφ }ǫ−1
0 ,

G(a, c|λ) ≤ BdE(a,b)G(b, c|λ).
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Similar arguments lead to G(c, b|λ) ≤ BdE(a,b)G(c, a|λ).
Let C > 1 be the constant from Proposition A.2. Then

F(a, c|λ) ≥ C−1G(a, c|λ)

G(c, c|λ)

≥ C−1B−dE(a,b)G(b, c|λ)

G(c, c|λ)

≥ C−2B−dE(a,b)F(b, c|λ).

Moreover, since G(a, a|λ) ≥ B−dE(a,b)G(a, b|λ) and G(b, b|λ) ≤ BdE(a,b)G(a, b|λ), we
have that

G(a, a|λ)

G(b, b|λ)
≥ B−2dE(a,b).

We conclude that

F(c, b|λ) ≥ C−1G(c, b|λ)

G(b, b|λ)

≥ C−1B−dE(a,b)G(c, a|λ)

G(b, b|λ)

≥ C−2B−dE(a,b)F(c, a|λ)
G(a, a|λ)

G(b, b|λ)

≥ C−2B−3dE(a,b)F(c, a|λ).

A.2 Proof of Theorem 2.9. We follow here the arguments of the proof of the original
theorem as presented in [54].

Observe that if λ > ρ(φ) then PG(φ − log λ) < 0 and that for all f ∈ Cc(X) and
x ∈ X,

λ−n(Lnφf )(x) = Lnφ−log λ(f )(x).

Thus we can assume without loss of generality that PG(φ) < 0 and prove the theorem for
λ = 1.

In what follows, assume that (S, E) is a δ-hyperbolic graph and that PG(φ) < 0. For
a, b ∈ S, let

Ua,b = {c ∈ S : |b ∧ c|a ≥ dE(a, b)− 7δ}

and let Vb,a = S \ Ua,b. For a ∈ S and r ≥ 0, we denote by B(a, r) = {b ∈ S : dE(a, b) ≤

r} the closed ball of radius r around a. Let C, C′ > 1 be the constants from Propositions
A.2 and A.3 respectively and let C0 = max{C, C′}.

PROPOSITION A.4. Under the assumptions of Theorem 2.9, for every λ ∈ (ρ(φ), 1) there
exists a constant C1(λ) > 1 such that for every a, b ∈ S and for every v on some geodesic
segment in the graph (S, E) from a to b,

G(a, w) ≤ C1(t)F (a, v)G(v, w|λ) for all w ∈ Ua,v ∪ Vv,b.

Proof. We use only properties that do not depend on the base point and so we can assume
without loss of generality that a = o. Let ℓ = 21δ, let m be the integer part of d(o, v)/ℓ
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(m may be zero) and consider the points v0, . . . , vm which lie on a geodesic segment
between o and v with dE(vk , v) = (m− k)ℓ. Let Wk = Uo,vk ∪ Vvk ,b and let dWk = {w ∈

Wk : dE(w, S \Wk) = 1}.

LEMMA A.5. Assume that (S, E) is a δ-hyperbolic graph. Then, for all k ≥ 1, the following
statements hold.

(1) vk ∈ Wk ⊆ Wk−1.
(2) If w ∈ Wk with dE(w, vk) ≥ 2r + ℓ+ 1 then B(w, r) ⊆ Wk−1.

Proof. See [54, Lemma 27.7]. �

Choose an integer r ≥ ℓ with λrC2l+4
0 ≤ 1. We show by induction on k that, with

C1 = C4r+2ℓ+1
0 ,

G(o, w) ≤ C1F(o, vk)G(vk , w|λ) for all w ∈ Wk . (A.1)

The proposition follows with k = m.
Let k = 0. Then dE(o, v0) ≤ ℓ and by Proposition A.3.2, for every w ∈ S,

G(o, w) ≤ Cℓ0G(v0, w) ≤ Cℓ0G(v0, w|λ).

Similarly, G(v0, v0) ≤ Cℓ0G(o, v0). By Proposition A.2.1,

F(o, v0) ≥ C−1
0
G(o, v0)

G(v0, v0)
≥ C−ℓ−1

0 (A.2)

and thus, for every w ∈ S, G(o, w) ≤ C2ℓ+1
0 F(o, v0)G(v0, w|λ).

Next, suppose by induction that equation (A.1) holds for k − 1. Since dE(vk−1, vk) ≤ ℓ,
by Proposition A.3.2, for all w ∈ S,

G(vk−1, w|λ) ≤ Cℓ0G(vk , w|λ). (A.3)

Similarly to equation (A.2),

Cℓ+1
0 F(vk−1, vk) ≥ 1. (A.4)

Hence, for all w ∈ Wk−1,

G(o, w) ≤ C1F(o, vk−1)G(vk−1, w|λ) (∵ induction hypothesis)

≤ C1C
2ℓ+1
0 F(o, vk−1)F (vk−1, vk)G(vk , w|λ) (∵ equations (A.3), (A.4))

≤ C1C
2ℓ+2
0 F(o, vk)G(vk , w|λ) (∵ Proposition A.2.2).

(A.5)

Now, let w ∈ Wk and assume first that dE(w, vk) ≥ 2r + ℓ+ 1. Set A = {e ∈ S :
dE(e, w) = r}. By Lemma A.5, A ⊆ Wk−1 and hence equation (A.5) holds for all e ∈ A.
We claim that any path from o to w must pass through A. If k = 1 then, by construction,
dE(o, v1) ≥ ℓ and, by assumption, dE(w, v1) ≥ 2r + ℓ+ 1 so dE(o, w) > r . Thus any
path from o to w must enter A. Observe that o 6∈ W1 and, by Lemma A.5, o 6∈ Wk for all k.
Hence, if k ≥ 2 then o 6∈ B(w, r) and again any path from o from w must enter A.
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We deduce that

G(o, w) ≤ C0

∑

e∈A

G(o, e)LA(e, w) (∵ Proposition A.2.3)

≤ C1C
2ℓ+3
0

∑

e∈A

F(o, vk)G(vk , e|λ)L
A(e, w) (∵ equation (A.5))

≤ C1C
2ℓ+3
0 λr

∑

e∈A

F(o, vk)G(vk , e|λ)L
A(e, w|λ) (∵ Proposition A.3.1).

Since dE(w, vk) > r , any path from w to vk must pass through A. Therefore, by Proposition
A.2.3,

C1C
2ℓ+3
0 λr

∑

e∈A

F(o, vk)G(vk , e|λ)L
A(e, w|λ) ≤ C1C

2ℓ+4
0 t rF(o, vk)G(vk , w|λ).

So, for all w ∈ Wk with dE(w, vk) ≥ 2r + ℓ+ 1,

G(o, w) ≤ C1C
2ℓ+4
0 λrF(o, vk)G(vk , w|λ).

By the choice of r, equation (A.1) follows.
Lastly, if w ∈ Wk with dE(w, vk) ≤ 2r + ℓ, then

G(o, w) ≤ C2r+ℓ
0 G(o, vk) (∵ Proposition A.3.2)

≤ C2r+ℓ+1
0 F(o, vk)G(vk , vk) (∵ Proposition A.2.1)

≤ C2r+ℓ+1
0 F(o, vk)G(vk , vk|λ) (∵ λ < 1)

≤ C4r+2ℓ+1
0 F(o, vk)G(vk , w|λ) (∵ Proposition A.3.2).

COROLLARY A.6. Under the assumptions of Theorem 2.9, for every λ ∈ (ρ(φ), 1) there
is a constant C2(λ) > 1 such that for every a, b ∈ S and for every v on some geodesic
segment in the graph (S, E) from a to b,

G(w, b) ≤ C2(λ)G(w, v|λ)L(v, b) for all w ∈ Vv,a ∪ Ub,v .

Proof. Denote by X± is the two-sided shift, by X− the negative one-sided shift and by
X+ = X the positive one-sided shift. It is known that there exist a potential function φ− :
X− → R with summable variations and a bounded uniformly continuous function ψ :
X± → R such that

φ+ − φ− = ψ − ψ ◦ T ;

see [49, §5]. We add the + or − notation over Green’s functions to distinguish between the
two spaces (e.g. G+ or G−).

LEMMA A.7. Assume that (X, T ) is locally compact and transitive, that φ has summable
variations and that PG(φ) < ∞. Then there exists C′′ > 1 such that for every λ > ρ(φ)

and every a, b, c ∈ S,

G−(a, b|λ) = (C′′)±1G+(b, a|λ)

and

F−(a, b)G−(b, c|λ) = (C′′)±1G+(c, b|λ)L+(b, a|λ).
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Proof. Let a, b ∈ S, let a1, . . . , an−1 be an admissible path from a to b, let x−
a ∈ [a] ⊆

X− and let x+
b ∈ [b] ⊆ X+. Since φ−, φ+ and ψ are all bounded,

|φ+
n (a, a1, . . . , an−1x

+
b )− φ−

n (x
−
a a1, . . . , an−1, b)|

≤ |φ+(a, a1, . . . , an−1x
+
b )| + |φ−(x−

a a1, . . . , an−1, b)|

+

∣∣∣∣∣

n−1∑

i=1

(φ+(ai , . . . , an−1x
+
b )− φ−(x−

a a1, . . . , ai))

∣∣∣∣∣

≤ sup |φ+| + sup |φ−| + 2 sup |ψ |.

Now any path from a to b in X+ is a path from b to a in X− and there thus is a natural
matching of the terms in the sums G+, G− and F+, F− with the property that matching
terms are within multiplicative error e±(sup |φ+|+sup |φ−|+2 sup |ψ |) of each other. �

The corollary follows from Proposition A.4 and Lemma A.7.

THEOREM A.8. (Ancona’s inequality) Under the assumptions of Theorem 2.9, for every
r ≥ 0 there exists C3(r) ≥ 1 such that

(C3(r))
−1F(a, v)F (v, b) ≤ F(a, b) ≤ C3(r)F (a, v)F (v, b)

whenever a, b ∈ S and v is at distance at most r from some geodesic segment from a to b
in the graph (S, E).

Proof. The lower bound follows from Proposition A.2.2, so we focus on the upper
bound. We first consider the case r = 0, when v lies on a geodesic segment from
a to b.

Fix λ ∈ ((ρ(φ)+ 1)/2, 1). If dE(a, v) ≤ 7δ then by Proposition A.3.2, F(a, b) ≤

C7δ
0 F(v, b) and 1 ≤ F(v, v) ≤ C7δ

0 F(a, v). In particular, F(a, b) ≤ C14δ
0 F(a, v)F (v, b).

Suppose that dE(a, v) > 7δ. Since |a ∧ v|a = 0, a 6∈ Ua,v . Moreover, since v lies on a
geodesic segment from a to b, |v ∧ b|a = dE(a, v) and thus b ∈ Ua,v . In particular, any
path from a to b must pass through

A := {c ∈ Ua,v : ∃w ∈ S \ Ua,v , dE(c, w) = 1}.

By Propositions A.2.3 and A.4,

G(a, b) ≤ C0

∑

w∈A

G(a, w)LA(w, b) ≤ C0C1F(a, v)
∑

w∈A

G(v, w|λ)LA(w, b) (A.6)

where C1 = C1(1) is the constant from Proposition A.4. Every point w ∈ A is at distance
1 from some point w′ in Vv,a = S \ Ua,v . By Corollary A.6,

G(w′, b) ≤ C2G(w
′, v|λ)L(v, b)

where C2 = C2(1) is the constant from Corollary A.6. We apply Proposition A.3.2 to
G(w′, b) and G(w′, v|λ) to obtain that

G(w, b) ≤ C2C
2
0G(w, v|λ)L(v, b). (A.7)
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Then, by Proposition A.2, for every e ∈ S,
∑

w∈A

G(e, w)LA(w, b) ≤ C0

∑

w∈A

FA(e, w)G(w, b) (∵ Proposition A.2.4)

≤ C0

∑

w∈A

FA(e, w|λ)G(w, b) (∵ λ < 1)

≤ C2C
3
0

∑

w∈A

FA(e, w|λ)

×G(w, v|λ)L(v, b) (∵ equation (A.7))

≤ C2C
4
0G(e, v|λ)L(v, b) (∵ Proposition A.2.5).

(A.8)

Let ν(e) = λδv(e)+ (1 − λ)G(v, e|λ). By Proposition A.2.6, with λ1 = 1 and λ2 = λ.

G(v, w|λ) ≤ λG(v, w)+ C0(1 − λ)
∑

e∈S

G(v, e|λ)G(e, w)

≤ C0

(
λG(v, w)+ (1 − λ)

∑

e∈S

G(v, e|λ)G(e, w)

)

= C0

∑

e∈S

ν(e)G(e, w). (A.9)

In summary,

G(a, b) ≤ C0C1F(a, v)
∑

w∈A

G(v, w|λ)LA(w, b) (∵ equation (A.6))

≤ C2
0C1F(a, v)

∑

w∈A

∑

e∈S

ν(e)G(e, w)LA(w, b) (∵ equation (A.9))

= C2
0C1F(a, v)

∑

e∈S

ν(e)

( ∑

w∈A

G(e, w)LA(w, b)

)

≤ C6
0C1C2F(a, v)

( ∑

e∈S

ν(e)G(e, v|λ)

)
L(v, b) (∵ equation (A.8)).

Choose λ2(λ) ∈ (ρ(φ), 2λ− 1) with limλ→1− λ2(λ) = 1. Then, 1 − λ ≤ λ− λ2 and
∑

e∈S

ν(e)G(e, v|λ) = λG(v, v|λ)+ (1 − λ)
∑

e∈S

G(v, e|λ)G(e, v|λ)

≤ λG(v, v|λ)+ (λ− λ2)
∑

e∈S

G(v, e|λ2)G(e, v|λ)

≤ λG(v, v|λ)+ C0
λ− λ2

1/λ2 − 1/λ

(
G(v, v|λ2)

λ2
−
G(v, v|λ)

λ

)

(∵ Proposition A.2.6)

≤ λG(v, v|λ)+ C0tG(v, v|λ2)

≤ C0t (G(v, v|λ)+G(v, v|λ2)).

This leads to

G(a, b) ≤ C7
0C1C2tF (a, v)(G(v, v|λ)+G(v, v|λ2))L(v, b).
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Since ρ(φ) < 1, G(v, v|λ) is analytic as a function of λ on a neighborhood of λ = 1 and

lim
λր1

G(v, v|λ) = lim
λր1

G(v, v|λ2(λ)) = G(v, v).

Therefore

G(a, b) ≤ 2C7
0C1C2F(a, v)G(v, v)L(v, b).

By Proposition A.2.3,

G(a, b) ≤ 2C7
0C1C2F(a, v)G(v, b).

We divide both sides by G(b, b) and apply Proposition A.2.1 to obtain that

F(a, b) ≤ 2C9
0C1C2F(a, v)F (v, b).

This proves Ancona’s inequality in the case wherev lies on a geodesic segment from
a to b.

Now assume that v is at distance r ≥ 0 from some geodesic segment from a to b. Then
we can find v′ ∈ S on this geodesic segment from a to b with d(v, v′) = r . By the first part
of the proof,

F(a, b) ≤ 2C9
0C1C2F(a, v′)F (v′, b).

Applying Proposition A.3.2 twice leads to

F(a, b) ≤ 2C9+2r
0 C1C2F(a, v)F (v, b).

Proof of Theorem 2.9. Let ξ ∈ ∂(S, E). We first show that there exists ǫ1 ∈ (0, 1) such
that for every f ∈ C+

c (X) and for every two sequences bn, b′
n ∈ S which converge to ξ ,

lim inf
n→∞

K(f , bn) ≥ ǫ1 lim sup
n→∞

K(f , b′
n).

LEMMA A.9. Let (S, E) be a δ-hyperbolic graph. Then, for every n, there exists vn ∈ S

which is at distance at most 2δ from some geodesic segments from a to bn, from o to bn,
from a to b′

n, and from o to b′
n.

Proof. See [54], proof of Theorem 27.1. �

For every n > 0, let vn ∈ S as in the lemma and let a1, . . . , aN ∈ S with
[a1, . . . , aN ] 6= ∅. By Proposition A.2.7 and Theorem A.8, for all n large enough,

K(1[a1,...,aN ], bn)

K(1[a1,...,aN ], b′
n)

≥ C−1
0
F(a,bn)F (o, b′

n)

F (a,b′
n)F (o, bn)

≥ C−1
0 (C3(2δ))

−4F(a, vn)F (vn, bn)F (o, vn)F (vn, b′
n)

F (a, vn)F (vn, b′
n)F (o, vn)F (vn, bn)

= C−1
0 (C3(2δ))

−4.

Here C3(2δ) is the constant in Ancona’s inequality for r = 2δ. In particular,

lim inf
n→∞

K(1[a1,...,aN ], bn) ≥ C−1
0 (C3(2δ))

−4 lim sup
n→∞

K(1[a1,...,aN ], b
′
n). (A.10)
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Since the collection of cylinder sets linearly spans a dense subset of Cc(X) with respect to
the sup norm, equation (A.10) extends to all f ∈ C+

c (X).
Let ǫ1 = C−1

0 (C3(2δ))−4 ∈ (0, 1) and let

Aξ =
{
ω : ∃bn ∈ S such that bn −→ ξ and lim

n→∞
K(f , bn) = K(f , ω), ∀f ∈ Cc(X)

}
,

that is, the set of all possible limit points in M of sequences bn ∈ S with bn → ξ in (S, E).
We show that Aξ consists of a single point alone. Notice that for all ω1, ω2 ∈ Aξ ,

K(f , ω1) ≥ ǫ1K(f , ω2) for all f ∈ C+
c (X).

Therefore, it suffices to show that Aξ ∩ Mm 6= ∅.
Let ω ∈ Aξ ,

C = {µ Radon : µ ≥ 0 and L∗
φµ = µ}

and let

Bω =

{
µ ∈ C : sup

f∈C+
c (X)

µ(f )

µω(f )
= 1

}
.

Recall that µω(f ) = K(f , ω), f ∈ Cc(X). If µω = µ1 + µ2 with µi ∈ C and the mea-
sures µ1, µ2 are mutually singular and non-zero then supf∈C+

c (X)
{µi/µω} = 1. Thus, it

suffices to show that Bω = {µω}.
Let (b0, b1, . . . ) be a geodesic sequence converging to ξ in (S, E) with b0 =

o and limn→∞ K(f , bn) = K(f , ω) for every f ∈ Cc(X). By Proposition A.2.1 and
Theorem A.8,

K(bk , bn) ≥ C−2
0
F(bk , bn)

F (o, bn)
≥ C−2

0 C−1
3

1

F(o, bk)
,

where C3 = C3(0). Therefore, for every a ∈ S,

K(a, bk) ≤ C2
0
F(a, bk)

F (o, bk)
≤ C3C

4
0F(a, bk)K(bk , bn) −−−→

n→∞
C3C

4
0F(a, bk)K(bk , ω).

Let a1, . . . , aN ∈ S be admissible. By Proposition A.2.7, for all k large enough,

K(1[a1,...,aN ], bk) ≤ C0e
φN−1(a1,...,aNxaN )K(aN , bk)

≤ C5
0C3e

φN−1(a1,...,aNxaN )F(aN , bk)K(1[bk], ω). (A.11)

So, for every c ∈ S with c 6= ai ,

K(1[a1,...,aN ], c) ≥ C−1
0 eφN−1(a1,...,aNxaN )K(aN , c) (∵ Proposition A.2.7)

≥ C−3
0 eφN−1(a1,...,aNxaN )

F(aN , c)

F (o, c)
(∵ Proposition A.2.1)

≥ C−4
0 eφN−1(a1,...,aNxaN )

F(aN , bk)F (bk , c)

F (o, c)
(∵ Proposition A.2.2)

≥ C−6
0 eφN−1(a1,...,aNxaN )F(aN , bk)K(bk , c) (∵ Proposition A.2.1)

≥ C−11
0 C−1

3 K([a1, . . . , aN ], bk)
K(bk , c)

K(1[bk], ω)
(∵ equation (A.11)).

(A.12)
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Let ω′ ∈ Mm and let cn ∈ S with limn→∞ K(f , cn) = K(f , ω′) for every f ∈ Cc(X).
Such a sequence exists; see Proposition 2.3. Since equation (A.12) holds for all n large
enough,

µω′([a1, . . . , aN ]) ≥ C−11
0 C−1

3 K([a1, . . . , aN ], bk)
µω′([bk])

µω([bk])
.

Recall that for every µ ∈ C there exists a finite measure ν on Mm such that µ =∫
K(·, ω′)dν(ω′). Therefore, for every µ ∈ C and every f ∈ C+

c (X) we have that

µ([a1, . . . , aN ]) ≥ C−11
0 C−1

3 K([a1, . . . , aN ], bk)
µ([bk])

µω([bk])
.

Again, since the collection of cylinder sets linearly spans a dense subset of Cc(X), the
above inequality holds for all f ∈ C+

c (X). We take k → ∞ and obtain that for everyµ ∈ C

and every f ∈ C+
c (X),

µ(f ) ≥ C−11
0 C−1

3 µω(f ) lim sup
k→∞

µ([bk])

µω([bk])
. (A.13)

Let µ ∈ Bω and let µ′ = µω − µ. By definition of Bω, µ′ ≥ 0 and so µ′ ∈ C. Since
inff∈C+

c (X)
(µ′(f )/µω(f )) = 0, equation (A.13) with µ′ implies that limk→∞ (µ′([bk])/

µω([bk])) = 0. In particular, limk→∞ (µ([bk])/µω([bk])) = 1. We use this fact and apply
equation (A.13) with µ to obtain that µ ≥ ǫ2µω where ǫ2 = C−11

0 C−1
3 ∈ (0, 1).

Set cn = ǫ2(1 + (1 − ǫ2)+ · · · + (1 − ǫ2)
n). We show by induction that for every

µ ∈ Bω and every n ≥ 0, µ ≥ cnµω. Since c0 = ǫ2, it is true for n = 0. Let n > 0 and
suppose that µ ≥ ckµω for every µ ∈ Bω and every k < n. Then, for every µ ∈ Bω,
(µ− cn−1µω)/(1 − cn−1) ∈ Bω and so (µ− cn−1µω)/(1 − cn−1) ≥ ǫ2µω. In particular,
µ ≥ (cn−1 + ǫ2(1 − cn−1))µω = cnµω. Letting n → ∞, we get that µ ≥ µω. Therefore
µ = µω for every µ ∈ Bω, namely Bω = {µω}.

In what follows, let ω(ξ) ∈ Mm be the unique limit point such that K(·, bn) →

K(·, ω(ξ)), where bn → ξ in the hyperbolic geometry. Since Aξ contains a single point,
ω(ξ) is well defined.

By Proposition 2.3 the mapping ω is onto. We show that for two boundary points ξ , η ∈

∂S with η 6= ξ , we have that K(·, ω(ξ)) 6= K(·, ω(η)).

LEMMA A.10. Let (S, E) be a δ-hyperbolic graph. Then, for two every boundary points
ξ , η ∈ ∂(S, E) there exists a two-sided infinite geodesic segment (. . . , a−1, a0, a1, . . . )
such that an −−−→

n→∞
ξ and a−n −−−→

n→∞
η.

Proof. See [54, Lemma 22.15]. �

By Proposition A.3.2 we have that for every s ∈ S,

F(o, s) = C
±dE(o,a0)
0 F(a0, s). (A.14)
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Hence, for every n, k ≥ 0, with C3 = C3(0),

K(ak , an)

K(ak , a−n)

≥ C−2
0
F(ak , an)F (o, a−n)

F (o, an)F (ak , a−n)
(∵ Proposition A.2.7)

≥ C
−2−2dE(o,a0)
0

F(ak , an)F (a0, a−n)

F (a0, an)F (ak , a−n)
(∵ equation (A.14))

≥ C
−2−2dE(o,a0)
0 C−2

3
F(ak , an)F (a0, a−n)

F (a0, ak)F (ak , an)F (ak , a0)F (a0, a−n)
(∵ Theorem A.8)

= C
−2−2dE(o,a0)
0 C−2

3
1

F(a0, ak)F (ak , a0)

≥ C
−4−2dE(o,a0)
0 C−2

3
G(ak , ak)G(a0, a0)

G(a0, ak)G(ak , a0)
(∵ Proposition A.2.1)

≥ C
−4−2dE(o,a0)
0 C−2

3
1

G(a0, ak)G(ak , a0)
(∵ G(a, a) ≥ 1a(axa) = 1).

Letting n → ∞, we get that

K(1[ak], ω(ξ))

K(1[ak], ω(η))
≥ C

−4−2dE(o,ao)
0 C−2

3
1

G(a0, ak)G(ak , a0)
.

By Proposition A.2.6 and the assumption that PG(φ) < 0, we have that
∑

w∈S

G(a0, w)G(w, a0) < ∞.

Therefore, G(a0, ak)G(ak , a0) → 0 as k → ∞. In particular, there exists k such that
K(ak , ω(ξ)) > K(ak , ω(η)) and thus ω(ξ) 6= ω(η). �

B. Appendix. Proof of Proposition 2.13
Part (1) of the proposition was already proven in [21]. We prove part (2). Let µ be a Radon
measure with L∗

φX,δµ = µ and assume by contradiction that (σ , γŴ) ∈ X is an atom. We
first provide infinite sequences σ n ∈ 6 and mn, kn > 0 such that

T mn(σ n, γŴ) = T kn(σ , γŴ) for all γ ∈ Ŵ0,

and

exp(φ6,δ
mn
(σ n)− φ

6,δ
kn
(σ )) > C, (A.15)

where C is a positive constant which does not depend on n.
For every a, b ∈ S0 let wa,b be an admissible word that includes b and such that awa,ba

is an admissible word. Since (X, T ) is topologically transitive, we can choose wa,b so that
eawa,b ∈ Ŵ. We also choose wa,b so that for every a1, a2 ∈ S0 with a1 6= a2, we have that
wa1,b 6= wa2,b.

Let ξ = π6(σ ) and let

σ n,b = (σ0, . . . , σn−1, σnwσn,bσn, σn+1, . . . ).
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For every n, let bn ∈ S0 such that π6(σ n,bn) 6= ξ , let σ n = σ n,bn and let ξn = π6(σ
n).

Such bn exists since |S0| ≥ 4 and π6 is at most two-to-one (see [48]). Let αn ∈ Ŵ0 such
that f nŴ0

ξ = α−1
n ξ . By (Res), for all n, f nŴ0

ξn = α−1
n ξn. Let ln = |σnwσn,bn | and let βn ∈ Ŵ0

such that f lnŴ0
(f nŴ0

ξn) = βn(f
n
Ŵ0
ξn). Since f nŴ0

ξ = f
n+ln
Ŵ0

ξn, we have that

ξn = αnβ
−1
n α−1

n ξ .

Let γn = αnβ
−1
n α−1

n . Observe that βn = e−1
σnwσn ,bn

∈ Ŵ and thus γn ∈ Ŵ. In particular, for
all γ ∈ Ŵ,

T n(σ , γŴ) = T n+ln(σ n, γŴ).

We deduce that

|γ ′
n(ξ)| = |α′

n(β
−1
n α−1

n ξ)| · |(β−1
n )′(α−1

n ξ)| · |(α−1
n )′(ξ)|

= |(β−1
n )′(α−1

n ξ)| ·
|(α−1

n )′(ξ)|

|(α−1
n )′(αnβ

−1
n α−1

n ξ)|

= |(β−1
n )′(f nŴ0

ξ)| ·
|(f nŴ0

)′(ξ)|

|(f nŴ0
)′(ξn)|

.

By (Dist), there exists B > 1 such that

|(f nŴ0
)′(ξ)|

|(f nŴ0
)′(ξn)|

≥ B−1.

Then, with

D = min
a,b∈S0

min
ξ ′∈[a]

|(e−1
awa,b

)′(ξ ′)| > 0,

we have that

|γ ′
n(ξ)| ≥

D

B
.

We show that |{σ n}| = ∞. The mapping π is continuous and thus ξn → ξ . Since ξn 6= ξ

for all n, there exists a sub-sequence ξnk with |{ξnk }| = ∞.
Finally, since

exp(φ6,δ
n (σ )) = |(α−1

n )′(ξ)|−δ

and

exp(φ6,δ
n+ln

(σ n)) = |(βnα
−1
n )′(ξn)|

−δ = |(αnβ
−1
n )′(α−1

n ξ)|δ ,

equation (A.1) follows with kn = n and mn = n+ ln.
Next, observe that if x, y ∈ X with T nx = T my, then

e−φ
X,δ
n (x)µ({x}) = e−φ

X,δ
m (y)µ({y}).

Then, for every γ ∈ Ŵ0,

µ({(σ n, γŴ)}n∈N) =
∑

n

exp(φ6,δ
mn
(σ n)− φ

6,δ
kn
(σ ))µ({x}) = ∞

which contradicts the fact that µ is a Radon measure. �
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