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Results from lattice QCD at nonzero temperature

At very high temperature, where the QCD coupling constant g(T ) is perturbatively
small, hard thermal loop resummed perturbation theory provides a quantitatively
controlled approach to QCD thermodynamics. However, in a wide temperature
range around the QCD phase transition which encompasses the experimentally
accessible regime, perturbative techniques become unreliable. Nonperturbative
lattice-regularized calculations provide the only known, quantitatively reliable,
technique for the determination of thermodynamic properties of QCD matter
within this regime.

We shall not review the techniques by which lattice-regularized calculations are
implemented. We merely recall that the starting point of lattice-regularized cal-
culations at nonzero temperature is the imaginary time formalism, which allows
one to write the QCD partition function in Euclidean spacetime with a periodic
imaginary time direction of length 1/T [541]. Any thermodynamic quantity can
be obtained via suitable differentiation of the partition function. At zero baryon
chemical potential, the QCD partition function is given by the exponent of a real
action, integrated over all field configurations in the Euclidean spacetime. Since
the action is real, the QCD partition function can then be evaluated using standard
Monte Carlo techniques, which require the discretization of the field configurations
and the evaluation of the action on a finite lattice of spacetime points. Physi-
cal results are obtained by extrapolating calculated results to the limit of infinite
volume and vanishing lattice spacing. In principle, this is a quantitatively reliable
approach. In practice, lattice-regularized calculations are CPU-expensive: the size
of lattices in modern calculations does not exceed 483 × 64 [332] and these cal-
culations nevertheless require the most powerful computing devices (currently at
the multi-teraflop scale). In the continuum limit, such lattices correspond typically
to small volumes of ≈ (4 fm)3 [332]. This means that properties of QCD matter
which are dominated by long-wavelength modes are difficult to calculate with the
currently available computing resources and there are only first exploratory studies.
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66 Results from lattice QCD at nonzero temperature

For the same reason, it is in practice difficult to carry out calculations using light
quark masses that yield realistically light pion masses at zero temperature. Light
quarks are also challenging because of the CPU-expensive complications which
arise from the formulation of fermions on the lattice.

In addition to the practical challenges above, conceptual questions arise in two
important domains. First, at nonzero baryon chemical potential the Euclidean
action is no longer real, meaning that the so-called fermion sign problem precludes
the use of standard Monte Carlo techniques. Techniques have been found that evade
this problem, but only in the regime where the quark chemical potential μB/3 is
sufficiently small compared to T [352, 312, 45, 315, 353, 46, 371, 372, 313]. Sec-
ond, conceptual questions arise in the calculation of any physical quantities that
cannot be written as derivatives of the partition function. Many such quantities are
of considerable interest. Calculating them requires the analytic continuation of lat-
tice results from Euclidean to Minkowski space (see below) which is always under-
constrained since the Euclidean calculations can only be done at finitely many val-
ues of the Euclidean time. This means that lattice-regularized calculations, at least
as currently formulated, are not optimized for calculating transport coefficients and
answering questions about, say, far-from-equilibrium dynamics or jet quenching.

We allude to these practical and conceptual difficulties to illustrate why alterna-
tive strong coupling techniques, including the use of the AdS/CFT correspondence,
are and will remain of great interest for the study of QCD thermodynamics and
quark–gluon plasma in heavy ion collisions, even though lattice techniques can be
expected to make steady progress in the coming years. In the remainder of this
chapter, we discuss the current status of lattice calculations of some quantities of
interest in QCD at nonzero temperature. We shall begin in Section 3.1 with quanti-
ties whose calculation does not run into any of the conceptual difficulties we have
mentioned, before turning to those that do.

3.1 The QCD equation of state from the lattice

The QCD equation of state at zero baryon chemical potential, namely the relation
between the pressure and the energy density of hot QCD matter, is an example of a
quantity that is well-suited to lattice-regularized calculation since, as a thermody-
namic quantity, it can be obtained via suitable differentiations of the Euclidean
partition function. And, the phenomenological motivation for determining this
quantity from first principles in QCD is strong since, as we have seen in Section 2.2,
it is the most important microphysical input for hydrodynamic calculations. Accu-
rate calculations of the thermodynamics of pure glue QCD (N f = 0) have existed
for a long time [184], but the extraction of the equation of state of quark–gluon
plasma with light quarks having their physical masses, and with the continuum
limit taken, has become possible only recently [59, 129, 179]. This illustrates the
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Figure 3.1 Results from a lattice calculation of QCD thermodynamics with phys-
ical quark masses (N f = 3, with appropriate light and strange masses). Upper
panel: temperature dependence of the pressure in units of T 4. Lower panel: the
trace anomaly (ε − 3P) in units of T 4. Data are for lattices with the same tem-
poral extent, meaning the same temperature, but with varying numbers of points
in the Euclidean time direction Nτ . The continuum limit corresponds to taking
Nτ → ∞. Figures taken from Ref. [179].

practical challenges of doing lattice-regularized calculations with light quarks that
we have mentioned above.

The current understanding of QCD thermodynamics at the physical point [179]
is summarized in Fig. 3.1. In the upper panel, the pressure of QCD matter (in ther-
mal equilibrium, with zero baryon chemical potential) is plotted as a function of its
temperature. In order to provide a physically meaningful reference, it is customary
to compare this quantity to the Stefan–Boltzmann result
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for a free gas of noninteracting gluons and massless quarks. This benchmark is indi-
cated by the arrow in the figure. As illustrated by this plot, the number of degrees of
freedom rises rapidly above a temperature Tc ∼ 170 MeV; at higher temperatures,
the pressure takes an almost constant value which deviates from that of a nonin-
teracting gas of quarks and gluons by approximately 20%. This deviation is still
present at temperatures as high as 1 GeV, and convergence to the noninteracting
limit is only observed at asymptotically high temperatures (T > 108 GeV [354])
which are far from the reach of any collider experiment. The lower panel shows the
trace anomaly, ε − 3P , in units of T 4 in the same range of temperatures. ε − 3P
is often called the “interaction measure”, but this terminology is quite misleading
since both noninteracting quarks and gluons on the one hand and very strongly
interacting conformal matter on the other have ε − 3P = 0, with ε/T 4 and P/T 4

both independent of temperature. Large values of (ε − 3P)/T 4 necessarily indi-
cate significant interactions among the constituents of the plasma, but small values
of this quantity should in no way be seen as indicating a lack of such interac-
tions. We see in the figure that (ε − 3P)/T 4 rises rapidly in the vicinity of Tc.
This rapid rise corresponds to the fact that ε/T 4 rises more rapidly than 3P/T 4,
approaching roughly 80% of its value in an noninteracting gas of quarks and glu-
ons at a lower temperature, between 200 and 250 MeV. At higher temperatures, as
3P/T 4 rises toward roughly 80% of its noninteracting value, (ε − 3P)/T 4 falls
off with increasing temperature and the quark–gluon plasma becomes more and
more conformal. Remarkably, after a proper rescaling of the number of degrees of
freedom and Tc, all the features described above remain the same when the number
of colors of the gauge group is increased and extrapolated to the Nc → ∞ limit
[198, 306, 663].

The central message for us from these lattice calculations of the QCD equa-
tion of state is that at high enough temperatures the thermodynamics of the QCD
plasma becomes conformal while deviations from conformality are most severe at
and just above Tc. This suggests that the use of conformal theories (in which cal-
culations can be done via gauge/gravity duality as described in much of this book)
as vehicles by which to gain insights into real-world quark–gluon plasma may be
more quantitatively reliable when applied to data from heavy ion collisions at the
LHC than when applied to those at RHIC. In this respect, it is also quite encourag-
ing that the charged particle elliptic flow v2(pT ) measured very recently in heavy
ion collisions at

√
s = 2.76 TeV at the LHC [5] is, within error bars, the same as

that measured at RHIC. On a qualitative level, this indicates that the quark–gluon
plasma produced at the LHC is comparably strongly coupled to that at RHIC.
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3.1 The QCD equation of state from the lattice 69

One of the first questions to answer with a calculation of the equation of state
in hand is whether the observed rapid rise in ε/T 4 and P/T 4 corresponds to a
phase transition or to a continuous crossover. In QCD without quarks, a first order
deconfining phase transition is expected due to the breaking of the Z N center sym-
metry. This symmetry is unbroken in the confined phase and broken above Tc by
a nonzero expectation value for the Polyakov loop [388, 769]. The expected first
order phase transition is indeed seen in lattice calculations [184]. The introduc-
tion of quarks introduces a small explicit breaking of the Z N symmetry even at low
temperatures, removing this argument for a first order phase transition. However, in
QCD with massless quarks there must be a sharp phase transition (first order with
three flavors of massless quarks, second order with two) since chiral symmetry is
spontaneously broken at low temperatures and unbroken at high temperatures. This
argument for the necessity of a transition vanishes for quarks with nonzero masses,
which break chiral symmetry explicitly even at high temperatures. So, the question
of what happens in QCD with physical quark masses, two light and one strange,
cannot be answered by any symmetry argument. Since both the center and chiral
symmetries are explicitly broken at all temperatures, it is possible for the transition
from a hadron gas to quark–gluon plasma as a function of increasing temperature
to occur with no sharp discontinuities. And, in fact, lattice calculations have shown
that this is what happens: the dramatic increase in ε/T 4 and P/T 4 occurs contin-
uously [59]. This is shown most reliably via the fact that the peaks in the chiral
and Polyakov loop susceptibilities are unchanging as one increases the physical
spatial volume V of the lattice on which the calculation is done. If there were a
first order phase transition, the heights of the peaks of these susceptibilities should
grow ∝ V in the large V limit; for a second order phase transition, they should
grow proportional to some fractional power of V . But, for a continuous crossover
no correlation length diverges at Tc and all physical quantities, including the heights
of these susceptibilities, should be independent of V once V 1/3 is larger than the
longest correlation length. This is indeed what is found [59]. The fact that the tran-
sition is a continuous crossover means that there is no sharp definition of Tc, and
different operational definitions can give different values. However, the analysis
performed in [178] indicates that the chiral susceptibility and the Polyakov loop
susceptibility peak in the range of T = 150–170 MeV.

Despite the absence of a phase transition in the mathematical sense, well above
Tc QCD matter is deconfined, since the Polyakov loop takes on large nonzero
values. In this high temperature regime, the matter that QCD describes is best
understood in terms of quarks and gluons. This does not, however, imply that the
interactions amongst the plasma constituents is negligible. Indeed, we have already
seen in Section 2.2 that in the temperature regime accessible in heavy ion colli-
sions at RHIC, the quark–gluon plasma behaves like a liquid, not at all like a gas
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of weakly coupled quasiparticles. And, as we will discuss in Section 6.1, explicit
calculations done via the AdS/CFT correspondence show that in the large-Nc limit
in gauge theories with gravity duals which are conformal, and whose coupling can
therefore be chosen, the thermodynamic quantities change by only 25% when the
coupling is varied from zero (noninteracting gas) to infinite (arbitrarily strongly
coupled liquid). This shows that thermodynamic quantities are rather insensitive
to the strength of the interactions among the constituents (or volume elements) of
quark–gluon plasma.

Finally, we note that calculations of QCD thermodynamics done via perturba-
tive methods have been compared to the results obtained from lattice-regularized
calculations. As is well known (see for example [556] and references therein), the
expansion of the pressure in powers of the coupling constant g is a badly con-
vergent series and, what is more, cannot be extended beyond order g6 log(1/g),
where nonperturbative input is required. This means that perturbative calculations
must resort to resummations and indeed different resummation schemes have been
developed over the years [185, 507, 454, 166, 50, 51, 52]. The effective field the-
ory techniques developed in [185, 507], in particular, exploit a fundamental feature
of any perturbative picture of the plasma: at weak coupling, the Debye screening
mass μD ∝ gT and these methods all exploit the smallness of μD relative to T
since the basis of their formulation is that physics at these two energy scales is well
separated. As we will see in Section 6.3, this characteristic is in fact essential for
any description of the plasma in terms of quasiparticles. The analysis performed in
Ref. [454] showed that in the region of T ∼ (1–3) Tc these effective field theory
calculations of the QCD pressure become very sensitive to the matching between
the scales μD and T , which indicates that there is no separation of these scales.
This was foreshadowed much earlier by calculations of various different correla-
tion lengths in the plasma phase which showed that at T = 2Tc some correlation
lengths that are ∝ 1/(g2T ) at weak coupling are in fact significantly shorter than
others that are ∝ 1/(gT ) at weak coupling [425], and showed that the perturba-
tive ordering of these length scales is only achieved for T > 102Tc. Despite the
success of other resummation techniques [166] in reproducing the main features
of QCD thermodynamics, the absence of any separation of scales indicates that
there are very significant interactions among constituents and casts doubt upon any
approach based upon the existence of quasiparticles.

3.1.1 Flavor susceptibilities

The previous discussion focused on thermodynamics in the absence of expectation
values for any of the conserved (flavor) charges of QCD. As is well known, these
charges are a consequence of the three flavor symmetries that QCD possesses: the
U (1) symmetries generated by electric charge, Q, and baryon number, B, and a
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3.1 The QCD equation of state from the lattice 71

global SU (3) flavor symmetry. Within SU (3) there are two U (1) subgroups which
can be chosen as those generated by Q and by strangeness S. Conservation of Q is
fundamental to the standard model, since the U (1) symmetry is a gauge symmetry.
Conservation of S is violated explicitly by the weak interactions and conservation
of B is violated by exceedingly small nonperturbative weak interactions, and per-
haps by yet to be discovered beyond standard model physics. As we are interested
only in physics on QCD time scales, we can safely treat S and B as conserved.
Instead of taking B, Q and S as the conserved quantities, we can just as well choose
the linear combinations of them corresponding to the numbers of up, u, down, d,
and strange quarks, s. With three conserved quantities, we can introduce three inde-
pendent chemical potentials. In spite of the difficulties in studying QCD at nonzero
chemical potential on the lattice, derivatives of the pressure with respect to these
chemical potentials at zero chemical potential can be calculated. These derivatives
describe moments of the distributions of these conserved quantities in an ensem-
ble of volumes of quark–gluon plasma, and hence can be related to event-by-event
fluctuations in heavy ion collision experiments.

When all three chemical potentials vanish, the lowest nonzero moments are
the quadratic charge fluctuations, i.e. the diagonal and off-diagonal susceptibilities
defined as

χ X
2 = 1

V T

∂2

∂μX∂μX
log Z(T, μX , . . .) = 1

V T 3
〈N 2

X 〉 , (3.2)

χ XY
11 = 1

V T

∂2

∂μX∂μY
log Z(T, μX , μY , . . .) = 1

V T 3
〈NX NY 〉 , (3.3)

where Z is the partition function and the NX are the numbers of u, d or s quarks
(or, equivalently, B, Q or S charge) present in the volume V . The diagonal suscep-
tibilities quantify the fluctuations of the conserved quantum numbers in the plasma
and the off-diagonal susceptibilities measure the correlations among the conserved
quantum numbers, and are more sensitive to the nature of the charge carriers [540].

Lattice results for these quantities [180, 130] are shown in Fig. 3.2. In the top
panel, the diagonal strange quark number susceptibility is shown as a function of
temperature, at different lattice spacings and extrapolated to the continuum limit.
The susceptibility is compared to its value in a noninteracting gas of gluons and
quarks (dashed line) and to the expectation from a hadron resonance gas, which
correctly describes the results of the lattice calculation at low temperature. Sim-
ilarly to the case of the pressure, there is rapid rise in the susceptibility above
Tc followed by saturation at high temperatures to a constant value that is below
what it would be in a noninteracting gas. This rise, which reflects the liberation of
s-quarks from hadrons, occurs over a similar range of temperatures as the rise in
the pressure. The high temperature value of the susceptibility is about 90% of the
Stefan–Boltzmann value, closer but not significantly closer to the noninteracting
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Figure 3.2 Top: quadratic fluctuations of the strange quark number. Bottom:
off-diagonal susceptibility χus

11 . In both panels the different symbols correspond
to different lattice spacings. The red band is the continuum extrapolation. The
continuous black line is the expectation from a hadron resonance gas and the
dashed black line corresponds to the Stefan–Boltzmann (i.e. noninteracting) limit.
Figures taken from [180].

limit than is the case for the pressure. Similar results are obtained for the u and d
quark number susceptibilities [180]. In the bottom panel, one of the off-diagonal
susceptibilities, χus

11 , is shown. In a noninteracting plasma, the off-diagonal suscep-
tiblities would all vanish. The results of these lattice calculations show significant
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deviation from zero, with the off-diagonal value comparable to its value in a hadron
resonance gas up to temperatures as high as 1.5 Tc and gradually approaching zero
at higher temperatures.

The lattice calculations of susceptibilities further illustrate the fact that thermo-
dynamic properties alone do not resolve the structure of the QGP, since they do not
yield an answer to as simple a question as whether it behaves like a liquid or like a
gas of quasiparticles. On the one hand, the diagonal susceptibilities seem close to
the noninteracting limit and are, in fact, not incompatible with hard thermal loop
computations [170], which supports a quasiparticle interpretation of the plasma
already at these rather low temperatures. On the other hand, the off-diagonal sus-
ceptibilities are too large to be accommodated in perturbative calculations and it
has even been suggested that they point towards the presence of meson-like states
above deconfinement [707] (see also [740]). We will come back to the apparently
contradictory pictures suggested by the different static properties of the plasma in
Section 6.1.2.

3.2 Transport coefficients from the lattice

We turn now to lattice calculations that further determine the structure of the
plasma via studying dynamical quantities rather than just static ones. The lattice
calculation of dynamical quantities, which require time and therefore Minkowski
spacetime in their formulation, are subject to the conceptual challenges that we
described at the beginning of this section, meaning that the lattice results that we
are going to discuss now come with caveats that we shall describe.

Transport coefficients, such as the shear viscosity, are essential in the description
of the real time dynamics of a system, since they describe how small deviations
away from equilibrium relax towards equilibrium. As we have discussed in Sec-
tion 2.2, the shear viscosity plays a particularly important role as it provides the
connection between experimental data on azimuthally asymmetric flow and con-
clusions about the strongly coupled nature of the quark–gluon plasma produced
in RHIC collisions. In this section we describe how transport coefficients can be
determined via lattice gauge theory calculations.

Transport coefficients can be extracted from the low momentum and low fre-
quency limits of the Green’s functions of a suitable conserved current of the theory,
see Appendix A. To illustrate this point, we concentrate on two examples: the stress
tensor components T xy , and the longitudinal component of some conserved U (1)
current J i (ω,k) which can be written J (ω, k) k̂, with ω, k the Fourier modes, and
k̂ a vector of unit length. The stress tensor correlator determines the shear viscosity;
the current–current correlator determines the diffusion constant for the con-
served charge associated with the current. (The conserved charge could be baryon
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number, strangeness or electric charge in QCD or could be some R-charge in a
supersymmetric theory.) The retarded correlators of these operators are defined by

Gxy xy
R (t, x) = −iθ(t)

〈[
T xy(t, x), T xy(0, 0)

]〉
, (3.4)

G J J
R (t, x) = −iθ(t) 〈[J (t, x), J (0, 0)]〉 . (3.5)

And, according to the Green–Kubo relation (A.9) the low momentum and low
frequency limits of these correlators yield

η = − lim
ω→0

Im Gxy xy
R (ω, k = 0)

ω
, (3.6)

Dχ = − lim
ω→0

Im G J J
R (ω, k = 0)

ω
, (3.7)

where η is the shear viscosity, D is the diffusion constant of the conserved charge,
and χ is the charge susceptibility. Note that χ is a thermodynamic quantity which
can be extracted from the partition function by suitable differentiation and so is
straightforward to calculate on the lattice, while η and D are transport properties
which describe small deviations from equilibrium. In general, for any conserved
current operator O whose retarded correlator is given by

G R(t, x) = −iθ(t) 〈[O(t, x),O(0, 0)]〉 , (3.8)

if we define a quantity μ by

μ = − lim
ω→0

Im G R(ω, k = 0)

ω
, (3.9)

then μ is a transport coefficient, possibly multiplied by a thermodynamic quantity.
Transport coefficients can be computed in perturbation theory. However, since

the quark–gluon plasma not too far above Tc is strongly coupled, it is preferable
to extract information about the values of the transport coefficents from lattice
calculations. Doing so is, however, quite challenging. The difficulty arises from
the fact that lattice quantum field theory is formulated in such a way that real time
correlators cannot be calculated directly. Instead, these calculations determine the
thermal or Euclidean correlator

G E(τ, x) = 〈OE(τ, x)OE(0, 0)〉 , (3.10)

where the Euclidean operator is defined from its Minkowski counterpart by

Oμ1...μn
M ν1..νm (−iτ, x) = (−i)r (i)sOμ1..μn

E ν1..νm (τ, x) , (3.11)

where r and s are the number of time indices in {μ1 . . . μn} and {ν1 . . . νm}
respectively. Using the Kubo–Martin–Schwinger relation

〈O(t, x)O(0, 0)〉 = 〈O(0, 0)O(t − iβ, x)〉 , (3.12)

the Euclidean correlator G E can be related to the imaginary part of the retarded
correlator,
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ρ(ω, k) ≡ −2 Im G R(ω, k) , (3.13)

which is referred to as the spectral density. The relation between G E (which can be
calculated on the lattice) and ρ (which determines the transport coefficient) takes
the form of a convolution with a known kernel:

G E(τ, k) = (−1)r+s
∫ ∞

0

dω

2π

cosh
(
ω
(
τ − 1

2T

))
sinh

(
ω

2T

) ρ(ω, k) . (3.14)

A typical lattice computation provides values (with errors) for the Euclidean cor-
relator at a set of values of the Euclidean time, namely {τi , G E (τi , k)}. In general,
it is not possible to extract a continuous function ρ(ω) from a limited number of
points on G E(τ ) without making assumptions about the functional form of either
the spectral function or the Euclidean correlator. Note also that the Euclidean cor-
relator at any one value of τ receives contributions from the spectral function at
all frequencies. This makes it hard to disentangle the low frequency behavior of
the spectral function from a measurement of the Euclidean correlator at a limited
number of values of τ .

The extraction of the transport coefficient is also complicated by the fact that
the high frequency part of the spectral function ρ typically makes a large contribu-
tion to the measured G E . At large ω, the spectral function is the same at nonzero
temperature as at zero temperature and is given by

ρ(ω, k = 0) = A ω2�−d , (3.15)

where � is the dimension of the operator O and d is the dimension of spacetime. In
QCD, the constant A can be computed in perturbation theory. For the two examples
that we introduced explicitly above, the spectral functions are given at k = 0 to
leading order in perturbation theory by

ρ J J
R (ω, k = 0) = Nc

6π
ω2 , (3.16)

ρ
xy,xy
R (ω, k = 0) = π(N 2

c − 1)

5(4π)2
ω4 , (3.17)

where Nc is the number of colors. These results are valid at any ω to leading
order in perturbation theory; because QCD is asymptotically free, they are the
dominant contribution at large ω. This asymptotic domain of the spectral func-
tion does not contain any information about the transport coefficients, but it makes
a large contribution to the Euclidean correlator. This means that the extraction
of the contribution of the transport coefficient, which is small in comparison and
τ -independent, requires very precise lattice calculations.

The results of lattice computations for the shear correlator are shown in the top
panel of Fig. 3.3. The finite temperature Euclidean correlator is normalized to the
free theory correlator at the same temperature. The measured correlator deviates
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Figure 3.3 Top panel: ratio of the stress tensor Euclidean correlator calculated on
the lattice in Ref. [614] to that in the free theory for QCD with three colors and
zero flavors at four values of the Euclidean time x0 = τ and two temperatures T .
This theory has a first order deconfinement transition, and T is given in units of the
critical temperature Tc for this transition. Bottom panel: stress tensor Euclidean
correlator for N = 4 SYM from Ref. [777]. The solid red line corresponds to
infinite coupling and the dashed black line corresponds to the free theory. The
solid curves are the zero temperature potential.

from the free one only by about 10%–20%. The statistical errors in the numerical
computation illustrate that it is hard to distinguish the computed correlator from
the free one, specially at the higher temperature. It is important to stress that the
fact that the measured correlator is close to the free one comes from the fact that
both receive a large contribution from the large ω region of the spectral function,
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and therefore cannot be interpreted as a signature of large viscosity. To illustrate
this point, it is illuminating to study N = 4 supersymmetric Yang–Mills (SYM)
theory as a concrete example in which we can compare weak and strong coupling
behavior with both determined analytically. We shall introduce this theory and its
strongly coupled plasma in subsequent chapters. As we will discuss in Section 6.2,
in this theory the AdS/CFT correspondence allows us to compute ρ in the limit
of infinite coupling, where the viscosity is small. From this AdS/CFT result, we
can then compute the Euclidean correlator via Eq. (3.14). The result is shown in
the bottom panel of Fig. 3.3. In the same figure, we show the Euclidean correlator
at zero coupling – noting that in the zero coupling limit the viscosity diverges as
does the length scale above which hydrodynamics is valid. As in the lattice com-
putation in the top panel of the figure, the difference between the weak coupling
and strong coupling Euclidean correlator is small and is only significant around
τ = 1/(2T ), where G E is smallest and the contributions from the small-ω region
of ρ are most visible against the “background” from the large-ω region of ρ. For
this correlator in this theory, the difference between the infinite coupling and zero
coupling limits is only at most 10%. Thus, the N = 4 SYM theory calculation
gives us the perspective to realize that the small deviation between the lattice and
free correlators in QCD must not be taken as an indication that the QGP at these
temperatures behaves as a free gas. It merely reflects the lack of sensitivity of the
Euclidean correlator to the low frequency part of the spectral function.

The extraction of transport information from the four points in the upper panel
of Fig. 3.3, as done in Ref. [614], requires assumptions about the spectral den-
sity. Since the high frequency behavior of the spectral function is fixed due to
asymptotic freedom, a first attempt can be made by writing

ρ(ω)

ω
= ρL F(ω)

ω
+ θ(ω − �)

ρH F(ω)

ω
, (3.18)

where

ρH F(ω) = π(N 2 − 1)

5(4π)2

ω4

tanhω/4T
(3.19)

is the free theory result at the high frequencies where this result is valid. In the
analysis performed in [614], the parameter � is always chosen to be ≥ 5T . The
functional form of the low frequency part ρL F should be chosen such that ρL F

vanishes at high frequency. A Breit–Wigner ansatz

ρL F/ω = η

π(1 + b2ω2)
= ρBW/ω (3.20)

provides a simple example with which to start (and is in fact the form that arises in
perturbation theory [10]). This ansatz does not provide a good fit, but it nevertheless
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yields an important lesson. Fitting the parameters in this ansatz to the lattice results
for G E at four values of τ favors large values (larger than T ) for the width � = 2/b
of the low frequency Breit–Wigner structure. This result motivates the assumption
that the width of any peak or other structure at low frequency must be larger than T .
From this assumption, a bound may be derived on the viscosity as follows. Since a
wider function than a Breit–Wigner peak of width � = T would lead to larger value
of ρL F for ω <

√
2T and since the spectral function is positive definite, we have

G E

(
1

2T
, k = 0

)
≥ 1

T 5

[∫ 2T

0
ρBW (ω) +

∫ ∞

�

ρH F(ω)

]
dω

sinhω/2T
. (3.21)

From this condition and the measured value of G E(
1

2T , k = 0), an upper bound on
the shear viscosity η can be obtained, resulting in

η/s <

{
0.96 (T = 1.65Tc)

1.08 (T = 1.24Tc),
(3.22)

with s the entropy density [614]. The idea here is: (i) we know how much the ω>�

region contributes to the integral
∫

dωρ(ω)/ sinhω/2T which is what the lattice
calculation determines, and (ii) we make the motivated assumption that the nar-
rowest a peak at ω = 0 can be is T , and (iii) we can therefore put an upper bound
on ρ(0) by assuming that the entire contribution to the integral that does not come
from ω > � comes from a peak at ω = 0 with width T . The bound is conservative
because it comes from assuming that ρ is zero at intermediate ω between T and �.
Surely ρ receives some contribution from this intermediate range of ω, meaning
that the bounds on η/s obtained from this analysis are conservative.

Going beyond the conservative bound (3.22) and making an estimate of η is
challenging, given the finite number of points at which G E(τ ) is measured, and
relies on physically motivated parameterizations of the spectral function. A sophis-
ticated parameterization was introduced in Ref. [614] under the basic assumption
that there are no narrow structures in the spectral function, which is supported by
the Breit–Wigner analysis discussed above. In Ref. [614], the spectral function was
expanded in an ordered basis of orthonormal functions with an increasing number
of nodes, defined and ordered such that the first few functions are those that make
the largest contribution to the Euclidean correlator; in other words the latter is
most sensitive to the contribution of these functions. Owing to the finite number of
data points and their finite accuracy, the basis has to be truncated to the first few
functions, which is a way of formalizing the assumption that there are no narrow
structures in the spectral function. The analysis based on such parameterization
leads to small values of the ratio of the shear viscosity to the entropy density. In
particular,
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η/s =
{

0.134(33) (T = 1.65Tc)

0.102(56) (T = 1.24Tc) .
(3.23)

Both statistical errors and an estimate of those systematic errors due to the trunca-
tion of the basis of functions used in the extraction are included. The results of this
study are compelling since, as discussed in Section 2.2, they are consistent with
the experimentally extracted bounds on the shear viscosity of the QGP via hydro-
dynamical fits to data on elliptic flow in heavy ion collisions. These results are also
remarkably close to η/s = 1/4π ≈ 0.08, which is obtained in the infinite coupling
limit of N = 4 SYM theory and which we will discuss extensively in Section 6.2.

The lattice studies to date must be taken as exploratory, given the various dif-
ficulties that we have described. As explained in Ref. [616], there are ways to do
better (in addition to using finer lattices and thus obtaining G E at more values of τ ).
For example, a significant improvement may be achieved by analyzing the spec-
tral function at varying nonzero values of the momentum k. One can then exploit
energy and momentum conservation to relate different Euclidean correlators to the
same spectral function, in some cases constraining the same spectral function with
50–100 quantities calculated on the lattice rather than just four. Furthermore, the
functional form of the spectral function is predicted order by order in the hydro-
dynamic expansion and this provides guidance in interpreting the Euclidean data.
These analyses are still in progress, but results reported to date [616] are consistent
with (3.23), given the error estimate therein.

Let us conclude the discussion by remarking on the main points. The Euclidean
correlators calculated on the lattice are dominated by the contribution of the
temperature-independent high frequency part of the spectral function, reducing
their sensitivity to the transport properties that we wish to extract. This fact,
together with the finite number of points on the Euclidean correlators that are avail-
able from lattice computations, complicates the extraction of the shear viscosity
from the lattice. Under the mild assumption that there are no narrow structures in
the spectral function, an assumption that is supported by the lattice data themselves
as we discussed, current lattice computations yield a conservative upper bound
η/s < 1 on the shear viscosity of the QGP at T = (1.2–1.7)Tc. A compelling but
exploratory analysis of the lattice data has also been performed, yielding values of
η/s ≈ 0.1 for this range of temperatures. In order to determine η/s with quanti-
tative control over all systematic errors, however, further investigation is needed –
integrating information obtained from many Euclidean correlators at nonzero k as
well as pushing to finer lattices.

3.3 Quarkonium spectrum from the lattice

Above the critical temperature, quarks and gluons are not confined. As we have
discussed at length in Chapter 2, experiments at RHIC have taught us that in this
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regime QCD describes a quark–gluon plasma in which the interactions among the
quarks and gluons are strong enough to yield a strongly coupled liquid. It is also
possible that these interactions can result in the formation of bound states within the
deconfined fluid [739]. This observation is of particular relevance for quarkonium
mesons formed from heavy quarks in the plasma, namely quarks with M � T .
For these quarks, αs(M) is small and the zero temperature mesons are, to a first
approximation, described by a Coulomb-like potential between a Q−Q̄ pair. Thus,
the typical radius of the quarkonium meson is rM ∼ 1/αs M � 1/T . As a conse-
quence, the properties of these quarkonium mesons cannot be strongly modified in
the plasma. Quarkonia are therefore expected to survive as bound states up to a tem-
perature that is high enough that the screening length of the plasma has decreased
to the point that it is of order the quarkonium radius [609].

The actual masses of the heavy quarks that can be accessed in heavy ion
collisions, the charm and the bottom, are large enough that charmonium and
bottomonium mesons are expected above the deconfinement transition, but they
are not so large that these mesons are expected to be unmodified by the quark–
gluon plasma produced in ultra-relativistic heavy ion collisions. As discussed in
detail in Section 2.4, data indicate that heavy ion collisions at RHIC (at the LHC)
reach temperatures high enough to dissociate all but the lowest lying 1s charmo-
nium (bottomonium) states, see also Fig. 2.16. Moreover, while charmonia are not
expected to survive in the quark–gluon plasma produced at the LHC, they may be
regenerated when the plasma hadronizes since several dozen charm and anticharm
quarks are expected in each LHC collision. It is a non-trivial challenge to deter-
mine what QCD predicts for the temperatures up to which a particular quarkonium
meson survives as a bound state, and above which it dissociates. In this section, we
describe the results of lattice QCD calculations done with this goal in mind. This
is a subject of ongoing research, and definitive results for the dissociation temper-
atures of various quarkonia are not yet in hand. For an example of a recent review
on this subject, see Ref. [131].

Some of the earliest [609, 520] attempts to describe the in-medium heavy
mesons are based on solving the Schrödinger equation for a pair of heavy quarks
in a potential determined from a lattice calculation. These approaches are known
generically as potential models. In this approach, it is assumed that the interactions
between the quark–antiquark pairs and the medium can be expressed in the form of
a temperature-dependent potential. The mesons are identified as the bound states of
quarks in this potential. Such an approach has been very successful at zero temper-
ature [335] and in this context it can be put on firm theoretical grounds by means of
a non-relativistic effective theory for QCD [681, 188]. However, at nonzero tem-
perature it is not clear how to determine this potential from first principles. (For
some attempts in this direction, see Ref. [189].)
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Figure 3.4 Wilson line representing the propagation of a heavy quark–antiquark
pair. The line at −r/2 is the heavy quark propagator in imaginary time while the
line at r/2 is the antiquark. The space links ensure gauge invariance. The singlet
free energy is obtained by setting τ = β.

If the binding energy of the quarkonium meson is small compared to the temper-
ature and to any other energy scale that characterizes the medium, the potential
can be extracted by analyzing a static (infinitely massive) Q − Q̄ pair, in the
color-singlet representation, separated by a distance r . In this limit, both the quark
and the antiquark remain static on the time scale over which the medium fluctu-
ates, and their propagators in the medium reduce to Wilson lines along the time
axis. In the imaginary time formalism, these two Wilson lines wind around the
periodic imaginary time direction and they are separated in space by the distance r .
These quark and antiquark Wilson lines are connected by spatial links to ensure
gauge invariance. These spatial links can be thought of as arising via applying
a point-splitting procedure at the point where the quark and antiquark pair are
produced by a local color singlet operator. A sketch of this Wilson line is shown
in Fig. 3.4.

At zero temperature, the extension of the Wilson lines in the imaginary time
direction τ can be taken to infinity; this limit yields Wilson’s definition of the
heavy quark potential [800]. In contrast, at nonzero temperature the imaginary time
direction is compact and the imaginary time τ is bounded by 1/T . Nevertheless,
inspired by the zero temperature case the early studies postulated that the potential
should be obtained from the Wilson line with τ = β = 1/T . This Wilson line
can be interpreted as the singlet free energy of the heavy quark pair, i.e. the energy
change in the plasma due to the presence of a pair of quarks at a fixed distance and
at fixed temperature [680, 641].

Lattice results for the singlet free energy are shown in Fig. 3.5. In the upper
panel we show results for the gluon plasma described by QCD without any quarks
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Figure 3.5 Lattice results for the singlet free energy F1(r, T ) as a function
of the distance r for different temperatures T , quoted as fractions of the crit-
ical temperature Tc at which the crossover from hadron gas to quark–gluon
plasma occurs. The solid curves are the zero temperature potential. The upper
panel shows results for QCD without quarks [502, 503, 504] and the lower
panel for 2+1 flavor QCD [505]. The fact that below Tc the free energy goes
above the zero temperature result is a lattice artifact [189]. Figures taken from
Refs. [131, 678].

[502, 503, 504]. The solid black line in this figure denotes the T = 0 result, which
rises linearly with the separation r at large r , as expected due to confinement. The
potential is well approximated by the ansatz

F1(r) = σ r − α

r
, (3.24)
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where the linear long-distance part is characterized by the string tension
√
σ =

420 MeV [647] and the perturbative 1/r piece describes the short-distance regime.
Below Tc, as the temperature increases the theory remains confined but the string
tension decreases. For temperatures larger than Tc, the theory is not confined and
the free energy flattens to a finite value in the large-r limit. At these temperatures,
the color charge in the plasma screens the interaction between the heavy Q and
Q̄. In QCD with light dynamical quarks, as in the lower panel of Fig. 3.5 from
Ref. [505], the situation is more complicated. In this case, the free energy flattens
to a finite limit at large distance even at zero temperature, since once the heavy
quark and antiquark have been pulled far enough apart it becomes favorable to
produce a light q–q̄ pair from the medium (in this case the vacuum) which results
in the formation of Qq̄ and Q̄q mesons that can then be moved far apart with-
out any further expenditure of energy. In vacuum this process is usually referred
to as “string-breaking”. In vacuum, at distances that are small enough that string-
breaking does not occur the potential can be approximated by (3.24), but with a
reduced string tension

√
σ ≈ 200 MeV [277]. Above Tc, the potential is screened

at large distances by the presence of the colored fluid, with the screening length
beyond which the potential flattens shrinking with increasing temperature, just as in
the absence of quarks. As a consequence, in the lower panel of the figure the poten-
tial evolves relatively smoothly with increasing temperature, with string-breaking
below Tc becoming screening at shorter distance scales above Tc. The decrease in
the screening length with increasing temperature is a generic result, and it leads us
to expect that quarkonium mesons dissociate when the temperature is high enough
that the vacuum quarkonium size corresponds to a quark–antiquark separation at
which the potential between the quark and antiquark is screened [609].

After precise lattice data for the singlet free energy became available, several
authors have used them to solve the Schrödinger equation. Since the expectation
value of the Wilson loop in Fig. 3.4 leads to the singlet free energy and not to
the singlet internal energy, it has been argued that the potential to be used in the
Schrödinger equation should be that obtained after first subtracting the entropy
contribution to the free energy, namely

U (r, T ) = F(r, T ) − T
d F(r, T )

dT
. (3.25)

Analyses performed with this potential indicate that the J/ψ meson survives
deconfinement, existing as a bound state up to a dissociation temperature that lies
in the range Tdiss ∼ (1.5–2.5) Tc [806, 39, 740, 621, 40]. It is also a generic fea-
ture of these potential models that, since they are larger in size, other less bound
charmonium states like the χc and ψ ′ dissociate at a lower temperature [520], typ-
ically at temperatures as low as T = 1.1 Tc. Let us state once more that these
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ρ/ω

2M2M−Eb0 ω

Figure 3.6 Schematic view of the current–current spectral function as a function
of frequency for heavy quarks. The structure at small frequency ω ∼ 0 is the
transport peak which is due to the interaction of the external current with heavy
quarks and antiquarks from the plasma. At ω = 2M there is a threshold for pair
production. An in-medium bound state, like a quarkonium meson, appears as a
peak below the threshold.

calculations are based on two key model assumptions: first, that the charm and
bottom quarks are heavy enough for a potential model to apply and, second, that
the potential is given by Eq. (3.25). Neither assumption has been demonstrated
from first principles.

Given that potential models are models, there has also been a lot of effort to
extract model-independent information about the properties of quarkonium mesons
in the medium at nonzero temperature by using lattice techniques to calculate the
Euclidean correlation function of a color-singlet operator of the type

J�(τ, x) = ψ̄(τ, x)�ψ(τ, x) , (3.26)

where ψ(τ, x) is the heavy quark operator and � = 1, γμ, γ5, γ5γμ, γμγν corre-
spond to the scalar, vector, pseudoscalar, pseudovector and tensor channels. As in
the case of the transport coefficients whose analysis we described in Section 3.2,
in order to obtain information about the in-medium mesons we are interested
in extracting the spectral functions of these operators. As in Section 3.2, the
Minkowski space spectral function cannot be calculated directly on the lattice; it
must instead be inferred from lattice calculations of the Euclidean correlator

G E(τ, x) = 〈J�(τ, x)J�(0, 0)〉 , (3.27)

which is related to the spectral function as in Eq. (3.14).
The current–current correlator can be understood as describing the interaction

of an external vector meson which couples only to heavy quarks in the plasma.
This interaction can proceed by scattering with the heavy quarks and antiquarks
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present in the plasma or by mixing the singlet quarkonium meson with (light quark)
states from within the plasma that have the same quantum numbers as the exter-
nal quarkonium. The first physical process leads to a large absorption of those
vector mesons in which the ratio ω/q matches the velocity of heavy quarks in
the medium, yielding the so-called transport peak at small ω. The second phys-
ical process populates the near-threshold region of ω ∼ 2M . Since the thermal
distribution of the velocity of heavy quarks and antiquarks is Maxwellian with a
mean velocity v ∼ √

T/M , the transport peak is well-separated from the thresh-
old region. Thus, the spectral function contains information not only about the
properties of mesons in the medium, but also about the transport properties of the
heavy quarks in the plasma. A sketch of the general expectation for this spectral
function is shown in Fig. 3.6. Given these expectations, the extraction of proper-
ties of quarkonium mesons in the plasma from the Euclidean correlator must take
into account the presence of the transport peak. It is worth mentioning that for
the particular case of pseudoscalar quarkonia, the transport peak is suppressed by
mass [9]; thus, the extraction of meson properties is simplest in this channel. All
other channels, including in particular the vector channel, include contributions
from the transport peak.

From the relation (3.14) between the Euclidean correlator and the spectral
function, it is clear that the Euclidean correlator has two sources of temperature
dependence: the temperature dependence of the spectral function itself which is of
interest to us and the temperature dependence of the kernel in the relation (3.14).
Since the latter is a trivial kinematical factor, lattice calculations of the Euclidean
correlator are often presented compared to

Grecon(τ, T ) =
∫ ∞

0
dω

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
ρ(ω, T = 0) , (3.28)

which takes into account the modification of the heat kernel. Any further tem-
perature dependence of G E relative to that in Grecon is due to the temperature
dependence of the spectral function.

In Fig. 3.7 we show the ratio of the computed lattice correlator G E to Grecon

defined in (3.28) in the pseudoscalar and vector channels for charm quarks [491].
The temperature dependence of this ratio is due only to the temperature depen-
dence of the spectral function. The pseudoscalar correlator shows little temperature
dependence up to temperatures as high as T = 1.5 Tc while the vector correlator
varies significantly in that range of temperatures. Since, as we have already men-
tioned, the transport peak is suppressed in the pseudoscalar channel, the lack of
temperature dependence of the Euclidean correlator in this channel can be inter-
preted as a signal of the survival of pseudoscalar charmed mesons (the ηc) above
deconfinement. However, the Euclidean correlator is a convolution integral over
the spectral density and the thermal kernel, and in principle the spectral density
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Figure 3.7 The ratio of the Euclidean correlator G E to Grecon defined in (3.28) in
the pseudoscalar (top) and vector (bottom) channels for charm quarks versus the
imaginary time τ [491]. Note that the transport contribution is suppressed by the
mass of the charmed quark only in the pseudoscalar channel. Figure taken from
Ref. [491].

can change radically while leaving the convolution integral relatively unchanged.
So, the spectral function must be extracted before definitive conclusions can be
drawn.

There has been a lot of effort towards extracting these spectral densities in
a model-independent way directly from the Euclidean correlators. The method
that has been developed the furthest is called the Maximum Entropy Method
(MEM) [81]. It is an algorithm designed to find the most probable spectral func-
tion compatible with the lattice data on the Euclidean correlator. This problem is
underconstrained, since one has available lattice calculations of the Euclidean cor-
relator only at finitely many values of the Euclidean time τ , each with error bars,
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and one is seeking to determine a function of ω. This means that the algorithm
must take advantage of prior information in the form of a default model for the
spectral function. Examples of priors that are taken into account include informa-
tion about asymptotic behavior and sum rules. The MEM method has been very
successful in extracting the spectral functions at zero temperature, where it turns
out that the extracted functions have little dependence on the details of how the pri-
ors are implemented in a default model for the spectral function. The application
of the same MEM procedure at nonzero temperature is complicated by two facts:
the number of data points is smaller at finite temperature than at zero temperature
and the temporal extent of the correlators is limited to 1/T , which is reduced as
the temperature increases. The first problem is a computational problem, which
can be ameliorated over time as computing power grows by reducing the temporal
lattice spacing and thus increasing the number of lattice points within the extent
1/T . The second problem is intrinsic to the nonzero temperature calculation; all
the structure in the Minkowski space spectral function, as in the sketch in Fig. 3.6,
gets mapped onto fine details of the Euclidean correlator within a small interval of
τ meaning that at nonzero temperature it takes much greater precision in the cal-
culation of the Euclidean correlator in order to disentangle even the main features
of the spectral function.

To date, extractions of the pseudoscalar spectral density at nonzero temperature
via the MEM indicate, perhaps not surprisingly, that the spectral function includ-
ing its ηc peak remains almost unchanged up to T ≈ 1.5 Tc [80, 308, 491, 11],
especially when the comparison that is made is with the zero temperature spectral
function extracted from only a reduced number of points on the Euclidean corre-
lator. The application of the MEM to the vector channel also indicates survival of
the J/ψ up to T ≈ 1.5–2 Tc [80, 308, 491, 11, 322], but it fails to reproduce the
transport peak that must be present in this correlator near ω = 0. It has been argued
that most of the temperature dependence of the vector correlator seen in Fig. 3.7
is due to the temperature dependence of the transport peak [782]. (Note that since
the transport peak is a narrow structure centered at zero frequency, it corresponds
to a temperature-dependent contribution to the Euclidean correlator that is approx-
imately τ -independent.) This is supported by the fact that the τ -derivative of the
ratio of correlators is much less dependent on T [307] and by the analysis of the
spectral functions extracted after introducing a transport peak in the default model
of the MEM [322, 325]. When the transport peak is taken into account the MEM
also shows that J/ψ may survive at least up to T = 1.5 Tc [322]. However, above
Tc both the vector and the pseudoscalar channels show strong dependence (much
stronger than at zero temperature) on the default model via which prior informa-
tion is incorporated in the MEM [491, 322], which makes it difficult to extract
solid conclusions on the survival of charmonium states from this method. For the
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bottomonium family, the difficulties which arise from the presence of a transport
peak remain. However, their influence on the lattice determination of the survival
of the different states is reduced as a result of the larger mass of the b-quark, which
suppresses this contribution. The large b-quark mass also makes it possible to per-
form a different set of lattice studies in which these uncertainties are reduced by
starting from a non-relativistic effective field theory for the bottomonia states in
which the transport and bound state regions of the spectral function are explicitly
decoupled. This method provides access not only to the ground states of the dif-
ferent bottomonium channels but also to their excited states. In the vector channel,
in particular, the calculations in Ref. [8] indicate that the ϒ survives up to temper-
atures higher than 2 Tc while the first excited state, the ϒ(2S), disappears below
1.5 Tc. Notwithstanding the uncertainties of the method, the conclusions of the
MEM analyses agree with those reached via analyses of potential models in which
the internal energy (3.25) is used as the potential. However, before this agreement
can be taken as firm evidence for the survival of the different quarkonia states well
above the phase transition, it must be shown that the potential models and the lattice
calculations are compatible in other respects. To this we now turn.

Potential models can be used for more than determining whether a temperature-
dependent potential admits bound states: they provide a prediction for the entire
spectral density. It is then straightforward to start with such a predicted spectral
density and compute the Euclidean correlator that would be obtained in a lattice
calculation if the potential model correctly described all aspects of the physics. One
can then compare the Euclidean correlator predicted by the potential model with
that obtained in lattice computations like those illustrated in Fig. 3.7. Following this
approach, the authors of Refs. [623, 622] have shown that neither the spectral func-
tion obtained via identifying the singlet internal energy as the potential nor the one
obtained via identifying the singlet free energy as the potential correctly reproduce
the Euclidean correlator found in lattice calculations. This means that conclusions
drawn based upon either of these potentials cannot be quantitatively reliable in
all respects. These authors then proposed a more phenomenological approach,
constructing a phenomenological potential (containing many of the qualitative fea-
tures of the singlet free energy but differing from it) that reproduces the Euclidean
correlator obtained in lattice calculations at the percent level [623, 622]. These
authors also point out that at nonzero temperature all putative bound states must
have some nonzero thermal width, and states whose binding energy is smaller than
this width should not be considered bound. These considerations lead the authors
of Refs. [623, 622] to conclude that the J/ψ and ηc dissociate by T ∼ 1.2Tc while
less bound states like the χc or ψ ′ do not survive the transition at all. These con-
clusions differ from those obtained via the MEM. Although these conclusions are
dependent on the potential used, an important and lasting lesson from this work is
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that the spectral function above Tc can be very different from that at zero temper-
ature even if the Euclidean correlator computed on the lattice does not show any
strong temperature dependence. This lesson highlights the challenge, and the need
for precision, in trying to extract the spectral function from lattice calculations of
the Euclidean correlator in a model independent fashion.

Finally, we note once again that there is no argument from first principles for
using the Schrödinger equation with either the phenomenological potential of
Refs. [623, 622] or the internal energy or the free energy as the potential. To
conclude this section, we would like to add some remarks on why the identifi-
cation of the potential with the singlet internal or singlet free energy cannot be
correct [563, 137]. If the quarkonium states can be described by a Schrödinger
equation, the current–current correlator must reduce to the propagation of a quark–
antiquark pair at a given distance r from each other. The correlator must then
satisfy (

−∂τ + ∇2

2M
− 2M − V (τ, r)

)
G M(τ, r) = 0, (3.29)

where we have added the subscript M to remind the reader that this expression is
only valid in the near-threshold region. From this expression, it is clear that the
potential can be extracted from the infinitely massive limit, where the propagation
of the pair is given by the Wilson line WM in Fig. 3.4 (up to a trivial phase factor
proportional to 2Mt). In this limit, the potential in the Euclidean equation (3.29) is
then defined by

− ∂τ WM(τ, r) = V (τ, r)WM(τ, r) , (3.30)

where τ and r are the sides of the Wilson loop in Fig. 3.4. In principle, the correct
real time potential V (t, r) should then be obtained via analytic continuation of
V (τ, r). And, for bound states with sufficiently low binding energy it would then
suffice to consider the long time limit of the potential, V∞(r) ≡ V (t = ∞, r).

The difficulty of extracting the correct potential resides in the analytic continu-
ation from V (τ, r) to V (t, r). At zero temperature, τ is not periodic and we can
take the τ → ∞ limit and relate what we obtain to V∞. At nonzero temperature,
τ is periodic and so there is no τ → ∞ limit. It is also apparent that V∞ need
not coincide with the value of V (β, r) as postulated in some potential models; in
fact, due to the periodicity of τ a lot of information is lost by setting τ = β [137].
Explicit calculations within perturbative thermal field theory, where the analytic
continuation can be performed, show that V∞ does not coincide with the internal
energy (3.25) and, what is more, the in-medium potential develops a r -dependent
imaginary part which can be interpreted as the collisional dissociation of the state
in the plasma via processes in which momentum is exchanged with the plasma
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constituents [563]. Potential model analyses, analogous to those described above
but which use complex potentials inspired by the perturbative quantum field the-
oretical calculations, show that the imaginary part of the potential dominates the
melting process of the different quarkonia states, since they become broad well
before their binding energy vanishes [563] and before their size becomes com-
parable to the Debye screening length of the plasma [219].1 Nevertheless, the
Euclidean correlators extracted from these potentials deviate from those obtained
in lattice calculation [679], as expected since the calculation of these potentials
assumes a weakly coupled medium while the lattice calculations include the full
thermodynamics of the strongly coupled plasma in QCD.

If the log of the Wilson loop WM is a quadratic function of the gauge potential,
as in QED or in QCD to leading order in perturbation theory, then it is possible to
show that the real part of the potential agrees with the singlet free energy [137];
however, this is not the case in general and an analysis which goes beyond per-
turbation theory is needed. Complementary to the analysis of current correlators,
there have been some attempts to extract the heavy quark potential from lattice
studies [717, 221]. These analyses are based on an analytical continuation of the
numerical computation of the potential (3.30) to real time via a spectral analysis of
the lattice Wilson loop

WM(τ, r) =
∫ ∞

−∞
dω e−ωτρM(ω, r) . (3.31)

The numerical inversion of this integral poses the same challenges as the extrac-
tion of the spectral density from the meson correlators we have described above.
Nevertheless, current attempts in determining V∞ from this spectral analysis show
that the real part of the potential does indeed deviate from the singlet free energy
above Tc, and also show a very strong increase in the imaginary part of the potential
at large distances, r . While further studies are needed before V∞ can be extracted
accurately from the lattice, these calculations show that the many-body effects that
lead to complex potentials are indeed of relevance for the dynamics of quarkonium
mesons in the plasma. For this reason, in recent years a new approach to these
dynamics based on describing the heavy quark pair as an open quantum system

1 If the plasma is weakly coupled, and if the quark mass M is heavy enough that the quarkonium mesons are
small enough that physics at the scales given by both their size and their binding energy is weakly coupled,
then all the relevant scales are distinct. In this case, the Debye screening length of the plasma would become
comparable to the size of the quarkonium meson at a temperature that is of order gM but the imaginary part
of the potential becomes comparable to the binding energy of the meson first, at a lower temperature that is

of order g4/3
(

log 1
g

)−1/3
M [344, 562]. In a strongly coupled plasma in which g is large, these scales need

not be separated. Indeed, the calculations that we shall describe in Section 9.4.2 indicate that in the strongly
coupled plasma in N = 4 SYM theory in which the physics of “quarkonium” mesons can be investigated
using gauge/gravity duality there is no parametric difference between the scales where the imaginary part of
the potential gets large and where the screening length of the plasma becomes comparable to the meson size.
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has been pursued. This approach has great potential for the description of the real-
time evolution of heavy states in plasma since it is based on a stochastic approach.
A detailed description of this method [814, 813, 176, 31] goes beyond the scope of
this book.

Finally, the collisional dissociation processes that lead to imaginary potentials
have also impacted the modern description of quarkonium production in heavy
ion collisions. In current modeling, these dynamics have been introduced either by
including collisional dissociation processes into the traditional rate equations for
the different states [337, 759], or via new attempts to describe the entire quarko-
nium evolution via a potential approach [766, 765, 248]. The latter approach, which
is particularly suitable for bottomonium states due to their larger masses, has been
very successful in describing the suppression pattern of the ϒ family in heavy ion
collisions at the LHC, which we have described in Section 2.4.
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