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Abstract

We present some properties of orthogonality and relate them with support disjoint and norm inequalities
in p-Schatten ideals. In addition, we investigate the problem of characterization of norm-parallelism for
bounded linear operators. We consider the characterization of the norm-parallelism problem in p-Schatten
ideals and locally uniformly convex spaces. Later on, we study the case when an operator is norm-
parallel to the identity operator. Finally, we give some equivalence assertions about the norm-parallelism
of compact operators. Some applications and generalizations are discussed for certain operators.
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1. Introduction

Let (X,||-1) be a normed space over K € {R,C}. The orthogonality between
two vectors of X may be defined in several ways. The so-called Birkhoff—James
orthogonality reads as follows (see [7, 16]): for x,y € X, it is said that x is Birkhoff-
James orthogonal (B-J orthogonal) to y, denoted by x Lp; y, whenever

[l < llx + yyll (1.1)

for all y e K. If X is an inner product space, then B-J orthogonality is equivalent
to the usual orthogonality given by the inner product. It is also easy to see that
B-J orthogonality is nondegenerate, is homogeneous, but it is neither symmetric nor
additive.

There are other definitions of orthogonality with different properties. We focus
in particular on the previous notion and isosceles orthogonality, which is defined as
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follows: in a real normed space X, we say that x € X is isosceles orthogonal to y € X
(see [16]) and we write x L; y whenever

llx + yll = llx = yll. (1.2)
In complex normed spaces one has to consider the following orthogonality relation:

llx + Il = llx = yll,
llx + iyl = llx = iyll.
For a recent account of the theory of orthogonality in normed linear spaces, we refer
the reader to [2, 9] and references therein.

Orthogonality in the setting of Hilbert space operators has attracted attention of
several mathematicians. We cite some papers which are closer to our results in
chronological order. Stampfli [31] characterized when an operator is B-J orthogonal to
the identity operator. This result was generalized to any pair of operators by Magajna
[21]. In [18], Kittaneh gave necessary and sufficient conditions such that I 1g; A
for the p-norm in a finite-dimensional context. Also, for matrices, Bhatia and Semrl
[5] obtained a generalization of Kittaneh’s result and other statements concerning
the spectral norm. More recently, some other authors studied different aspects of
orthogonality of bounded linear operators and elements of an arbitrary Hilbert C*-
module; for instance, see [4, 6, 12, 15, 26, 27, 29, 33, 34].

Furthermore, we say that x € X is norm-parallel to y € X (see [30, 38]), in short
x|l y,if there exists A€ T ={a € K: |a| = 1} such that

xJ_1y<:){ (1.3)

llx + Ayl = [|xI| + [[yll.

In the framework of inner product spaces, the norm-parallel relation is exactly the usual
vectorial parallel relation, that is, x || y if and only if x and y are linearly dependent. In
the setting of normed linear spaces, two linearly dependent vectors are norm-parallel,
but the converse is false in general. To see this, consider the vectors (1,0) and (1, 1) in
the space C? with the max-norm. Notice that the norm-parallelism is symmetric and
R-homogenous, but not transitive (that is, x ||y and y || z = x || z; see [38, Example
2.7], unless X is smooth at y; see [35, Theorem 3.1]). It was shown in [38] that the
following relation between the norm-parallelism and B-J orthogonality is valid:

x|y e (x Lgy (llx + Alx]ly) for some A € T). (1.4)

Some characterizations of the norm-parallelism for Hilbert space operators and
elements of an arbitrary Hilbert C*-module were given in [15, 35-38].

We briefly describe the contents of this paper. Section 2 contains basic definitions,
notation and some preliminary results. In Section 3, we present some properties of
orthogonality and relate them with support disjoint and norm inequalities in p-Schatten
ideals. In the last section, we restrict our attention to the problem of characterization of
norm-parallelism for bounded linear operators. We first consider the characterization
of the norm-parallelism problem in p-Schatten ideals and locally uniformly convex
spaces. Later on, we investigate the case when an operator is norm-parallel to the
identity operator. Finally, we give some equivalence assertions about the norm-
parallelism of compact operators. Some applications and generalizations are discussed
for certain operators.
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2. Preliminaries

Throughout the paper, X, Y stand for normed spaces. Further, (H, (-, -)) denotes
a separable complex Hilbert space. We write By and Sy, respectively, to show the
closed unit ball and the unit sphere of X. The (topological) dual of X is denoted by
X*. If there is a unique supporting hyperplane at each point of Sy, then X is said to be
smooth. A space X is said to be strictly convex if every element of Sy is an extreme
point of By. Further, X is said to be uniformly convex if for any sequences {x,} and
{yn} in By with lim, . ||x, + yull = 2, we have lim,— ||x,;, — yull = 0. The concepts of
strictly convex and uniformly convex spaces have been extremely useful in the study
of the geometry of Banach Spaces (see [17]).

Let B(X,Y) and K(X,Y) denote the Banach spaces of all bounded operators
and all compact operators equipped with the operator norm, respectively. We write
K(X,Y) = K(X) and B(X, Y) = B(X) if X = Y. The symbol I stands for the identity
operator on X. In addition, we denote by M, the set of all unit vectors at which A
attains its norm, that is, My = {x € Sx; ||Ax]| = ||All]}.

For A € B(H), we use R(A) and ker(A), respectively, to denote the range and kernel
of A. We say that A < B whenever (Ax, x) < (Bx, x) for all x € H. An element
A € B(H) with A > 0 is called positive. For any £ C B(H), L* denotes the subset
of all positive operators of L.

For any compact operator A € K(H), let s1(A), s2(A), .. . be the singular values of A,
that is, the eigenvalues of the ‘absolute value-norm’ |A| = (A*A)!/? of A, in decreasing
order and repeated according to multiplicity. Here A* denotes the adjoint of A. If
A eK(H)and p > 0, let

> 1/p
lall, = () i) = awiary'r, @.1)
i=1

00

where tr is the usual trace functional, that is, tr(A) = Z_‘;":l(Ae j»€j), where {e j}j:1 is
an orthonormal basis of . Equality (2.1) defines a norm (quasi-norm) on the ideal
By(H) ={A e K(H) : llAll, < oo} for 1 < p <oo (0< p<1), called the p-Schatten
class. Tt is known that the so-called Hilbert—Schmidt class B,(H) is a Hilbert space
under the inner product (A, B)ys := tr(B*A). The ideal B(H) is called the trace class.
It is not reflexive and, in particular, is not a uniformly convex space, because it contains
a subspace isomorphic to /; (the subspace can be chosen to be the operators diagonal
with respect to a given orthonormal basis of H).
According to [3], we define the concept of disjoint supports as follows.

DeriniTiON 2.1. Let A € B(H). The right support r(A) of A is the orthogonal projection
of H onto ker(A)*: = {h € H : (h,x) =0 for all x € ker(A)} and the left support /(A) of
A is the orthogonal projection of H onto R(A). Two operators A, B € B(H) have:

(1) right disjoint supports if and only if r(A)r(B) = 0;
(2) left disjoint supports if and only if I(A)I(B) = 0;
(3) disjoint supports if and only if r(A)r(B) = 0 and I(A)I(B) = 0.
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Let us recall that if Py denotes the orthogonal projection onto the closed subspace N
of H, then PyPp =0if and only if N L Q (thatis, (x,y) =0forall x e N,y € Q). We
observe that r(A)r(B) = 0 if and only if AB* = 0 and similarly with the left disjoint
support. Consequently, two operators A, B have disjoint supports if and only if
R(A) L R(B) and R(A™) L R(B").

The following is a well-known result, which we use in the present article (see [14]).
Let A, B € B,(H). Then the following conditions are equivalent.

(1) A*AB*B =0 (or AA*BB* =0).
(2) |AlBI = |BlIAl = |A*[|B*| = |B*[|A*| = 0.
(3) A and B have disjoint supports.
The classical Clarkson-McCarthy inequalities assert that if A, B € B,(H), then
IA + Bll, + 1A = Bll;, < 2(|All; + IBII}) (2.2)

for1 < p<2,and
A + BIl, + lA = Blly > 2(IAll5 + IIBII)

for 2 < p < oo (see [25]). If p = 2, equality always holds and, if p # 2, equality holds
if and only if A*AB*B = 0. This inequality implies the uniform convexity of B,(7H)
for] < p<oo. If0< p<1,then

IA + Bl < lIAIl, + 1Bl (2.3)

Furthermore, if p < 1, the previous equality holds if and only if A*fAB*B = 0. The
previous inequality motivates us to study conditions such that equality in (2.3) holds
for 1 < p < oco. These and more results related with these ideals can be seen, for
instance, in [14, 19, 25].

3. Orthogonality in B,(H)

3.1. Birkhoff-James and isosceles orthogonality in B,(#) ideals. Let B,(#) be
a p-Schatten ideal with p > 0. Using (1.1), the Birkhoff-James orthogonality for any
A,BeB,(H)is

A 1h, B (JAll, < llA +yBl|, for all y € C).

The following result is a direct consequence of [23, Lemma 3.1], which relates the
concept of disjoint supports with B-J orthogonality in p-Schatten ideals. It is true
for any symmetric ideal associated to a unitarily invariant norm, but in this paper we
restrict ourselves to the p-Schatten ideals to unify our study.

ProrositioN 3.1. If A+ B € B,(H) with 1 < p < oo and R(A) L R(B), then A, B €
B,(H) and A J_’;J Band B J_IZ;J A.

The following statement is a reverse of Proposition 3.1 for positive operators in
B, (H).
P
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Tueorem 3.2. Let 1 < p < co and A,B € B,(H)*. If A L%, B, then A and B have
disjoint supports.

Proor. Define the real-valued function

J&) =1lA+yBllp.
Without loss of generality, we may assume that A # 0. By the hypothesis, f attains its
minimum at y = 0 and, so, by [, Theorem 2.3],

AP-'B
-o{55)
’}/:

d
0=—|lA +yBl, - -
dy Ay

whence tr(A?~!' B) = 0. We observe that
0 = tr(A”"'B)
_ tr(Bl/Z(Ap—l)I/Z(Ap—l)l/ZBl/Z)
_ tr[((Ap—l)1/231/2)*((Ap—1)1/231/2)]
— <(Ap—1)1/231/2’ (Ap—l)l/ZBl/2>HS ,
which implies that (A?~1)!/2B'/2 = (0. Thus,
APl B = (Apfl)l/Z(Apfl)l/ZBl/ZBl/Z -0.

Since A, B are compact operators, there exists an orthonormal basis {¢;};c; of H such
that

APl = Zaiei®e[ and B= Z,B,e,-@e,-
iel iel
with @;,8; > 0 for every i € 7. Hence, a;5; = 0 for every i € 7. Finally,

1/(p-1)
tr(AB) = tr[(z aie; ® ei) (Zﬁiei ® ei)] = Z a;/(pfl),Bi =0
iel iel iel

and this implies that
0 =tr(AB) = tr((A'?B'?)*A'2B'/%) = || A'/2B'2|5. o

RemARrk 3.3. The previous result does not hold if A or B are not positive operators. For
instance, let A = [ ')* 7, ] and I = [§ 9]. Then, by Corollary 3.10, since tr(A) = 0 we
get ] J_g ; A. Nevertheless, I and A clearly do not have disjoint supports.

Furthermore, the previous result does not hold either for p =1 or p = co. Let
B=[}5]. Then it is easy to see that B L}, I and I 15, B. Nevertheless, I and B
clearly do not have disjoint supports.

In [8], it was proved that for any A, B € B{(H)™,
A1l B AB=BA=0. (3.1)
From the positivity of A, B and A + B,
IA + Bll; = tr(A + B) = tr(A) + tr(B) = [|All; +[|Bl];.

Recently, Li and Li [19] gave a characterization of disjoint supports for operators in
the trace-class ideal. In the same direction, we present the following result.
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TueOREM 3.4. Let 0 < p < 0o and A, B € B,(H). Then the following statements are
equivalent.

(1) A and B have disjoint supports.
(i) IlyA = uBlly = llyA + Bl = WPIIAl, + P IBIl, for any y,u € C.
(iii) I|A - Bll; = A + Bll, = IIAIIP +IBIl}.

Proor. (i) = (ii) By the hypothesis, YA and uB have disjoint supports and yA + uB €
B, (H); then it follows from [22, Theorem 1.7] that

llyA + uBll, = Il + |l Bllp.
Analogously, [lyA — uBIl}, = lyIPlAll; + |ul|1BIl}.
(ii) = (iii) Itis trivial.
(ii1)) = (1) We have

A + Bll, + A = Bl = 2(IIAll; + lIBII)

or, equivalently, by utilizing [25, Theorem 2.7], A*AB*B = 0, which ensures that
A and B have disjoint supports. O

According to (1.3), we say that A, B € B,(H) are isosceles orthogonal, denoted by
A L7 B, if and only if

IA+Bl,=lA-Bll, and [lA+iBl,= A - iBI,.

The following lemma is a well-known result from McCarthy [25] for positive
operators. We will use it to prove Proposition 3.6.

Lemma 3.5 (McCarthy inequality). If A, B € B,(H)" for any p > 1, then
27114 + BIly < lIAII + 1BII) < A + Bl

Observe that in the cone of positive operators B,()* we consider the isosceles
orthogonality notion as in (1.2).

Prorosition 3.6. If A, B € B,,(?—()+, 1<p<2andA J_? B, then
A + Bl = lA = Bll; = [IAIl; + I1BI}.
Proor. By the Clarkson—McCarthy inequality (2.2) and isosceles orthogonality,
2/|A + Bll, = lA + Bl + A = BIl; < 2(llAll; + lIBII;)

and
A + BIl, < 1Al + 1BIl5.

Now, using the previous lemma,

IA + Bl = llAIl, + 1Bl o
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There exists a comparison between isosceles and Birkhoff-James orthogonalities.
James in [16] proved that if ||x — y|| = ||x + y|| for any elements x, y in a normed space
X, then ||x]| < ||x + yy|| for all [y] = 1. The next statement shows that in the cone of
positive operators, both notions of orthogonality coincide.

Tueorem 3.7. If A, B € B,(H)*, with 1 < p <2, then the following statements are
equivalent:

(i) AL} B;
(i) A1}, B.
Also, for p = 1, the following statements are equivalent:
(iii)) A L] B;
(iv) AB=BA=0.
Proor. Combining Propositions 3.1 and 3.6 and Theorems 3.2 and 3.4, we obtain the
equivalence desired. On the other hand, the result for p = 1 is true due to (3.1).
We remark that for p = 1 the equivalence between Birkhoff-James and isosceles

orthogonalities does not hold. For instance, let B be the same matrix as in Remark 3.3.
Then B L}, I and [|B+ 1|l # ||B - I||;. o

3.2. B,(‘H) ideals as semi-inner product spaces. Recall that in any normed space
(X, ]l - |I) one can construct (as noticed by Lumer [20] and Giles [13]) a semi-inner
product, that is, a mapping [-, -] : X X X — K such that:

(D) [xx] = lIxlP;

(2) [ax+pBy,z] = alx,z] + By, zl;
) [yl =vlxyl;

A4 1lx, yIP < Pyl

for all x,y,z € X and all ,f3, y € K. There may be more than one semi-inner product
on a space. It is well known that in a normed space there exists exactly one semi-
inner product if and only if the space is smooth. If X is an inner product space, the
only semi-inner product on X is the inner product itself. More details can be found in
[13,20].

Using Lumer’s ideas, we endowed the B () ideals with semi-inner products as
follows. Let 1 < p < co; we define for any A, B € B,(H),

(B, A] = |lAll;Pu(AP~' U B),

where U|A]| is the polar decomposition of A. Then [-, -] satisfies (1) to (4). In fact, items
(1) to (3) are easy to check. To prove item (4), we observe that

(AP~ U*B)| < wl|APP~' U Bl = ||AP~' U* B,
< Bl NAP~ TNl < IBI AP,
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where (1/p) + (1/g) = 1 and also
AP = w(AP~) = wlAP = Al

whence

_ -1
AP, = AL = AIL ™.

Il
Thus,

I[B, AP = IAIl} "[te(AP U B < AL IBIZIAILY ™ = IBIZIAIR.

Therefore, (B,(H),[-,-]) is a semi-inner product space in the sense of Lumer.
Moreover, the continuous property for semi-inner product spaces holds for almost all
of these operator ideals, as we state in the following result.

TueorEM 3.8. Let 1 < p < co. Then (B,(H), [-,]) is a continuous semi-inner product
space and, for A, B € B,(H), the following statements are equivalent:

G A J_g ; B;
(i) [B,A]l=0.
Proor. It is a direct consequence of [13, Theorem 3], since any p-norm in B,(H)

is Gateaux differentiable for 1 < p < co. The characterization of Birkhoff—James
orthogonality follows directly from [13, Theorem 2]. ]

REmARK 3.9. Theorem 3.8 was proved for matrices in [5, Theorem 2.1]. In this context,
the converse still holds for p = 1 and A invertible.

The following result was obtained by Kittaneh in [18].

CoroLLarY 3.10. Let A be in the algebra M, (C) of all complex n X n matrices and
p € [1, 00). Then the following statements are equivalent:

(i) 115, A;
(ii) tr(A) =0.
Proor. According to Theorem 3.8, we have that / L}, A if and only if [A, 1] =

||I||ﬁ_2tr(|l|1’"U*A) =0, where U is the partial isometry associated to the polar
decomposition of the identity matrix, so |/|P~'U* = I since |I|P"' = U = I and this
completes the proof. O

TueoreM 3.11. Let A € B(H). Then the following conditions are equivalent.

i A=0.
(i) [ +yA|=1forallyeC.
(ii) |[I + yA| = |l —yA| forall y € C.

In the case when H is finite dimensional, for every p € [1, ), each one of these
assertions implies that 1 J_Z ;A
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Proor. (1) = (ii) It is trivial.
(ii) = (iii) Suppose that (ii) holds. Then | + yA|* > I for all v € C. Hence,
YA +¥A* +[yPIAF 20 (y€C).

Fory = 1/m,—1/m,i/m, —i/m, the above inequality becomes
1 1
A+A + —|AP >0, A+A"——]AP <0 (3.2)
m m
and
. - 1 2 . P 1 2
iA—iA"+ —|AI" >0, iA-iA" - —]AI"<0. (3.3)
m m
Letting m — oo in (3.2) and (3.3),
A+A*"=0 and iA-iA"=0,

which imply that A = 0. Thus, |/ + yA| =1 = |l —yA| for all y € C.
(iii) = (i) Let | + yA| = |I — yA| for all y € C. Then yA + yA* = 0 for all y € C. For
v =1, i, we conclude that

A+A"=0 and iA—iA" =0,
which yield that A = 0. O

THeEOREM 3.12. Let A, B € M,,(C) and p € [1,00). Let |B + yA| > |B| for all y € C. Then
the following statements hold.

(i) tr(B*A)=0.

(i1) ker(B + yA) = ker(B) Nker(A) for all y € C\ {0}.
(iii) Either A or B is noninvertible.

(iv) B J_’; ;A

Proor. (i) For v = 1/m, we have |B + (1/m)A| > |B|. Hence, s;(|B + (1/m)A|) >
si(IB]) (1 < i < n). Therefore, s;,(|B + (1/m)A|*) > s;(|B]*) forall 1 <i < n.
We have

n

(B = > si(BP)

i=1
Z": 1

< S[( B+ —A
i=1 m

o 2

1 1 1
= tr(|B[*) + —tr(B"A) + —tr(A*B) + —tr(|AP).
m m m

)

1
B+ —A
m
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Hence,

tr(B*A) + tr(A*B) + %tr(lAIz) > 0. (3.4)
Similarly, for y = —1/m, i/m, —i/m,

tr(B*A) + tr(A*B) — %tr(IAIZ) <0, (3.5)

itr(B*A) — itr(A*B) + %tr(lAlz) >0 (3.6)
and

itr(B*A) — itr(A*B) — %tr(lAIz) <0. (3.7)

Taking m — oo in (3.4) and (3.5),

tr(B*A) + tr(A*B) = 0. (3.8)
Also, letting m — oo in (3.6) and (3.7),

itr(B*A) — itr(A*B) = 0. (3.9)

Now, by (3.8) and (3.9), we conclude that tr(B*A) = 0.

(i) Obviously, ker(B) N ker(A) C ker(B + yA). We prove that ker(B + yA) C
ker(B) Nker(A). Let x € ker(B + yA) for y # 0. First note that if Bx = 0, then yAx = 0,
whence x € ker A. Next we observe that

x € ker(B + yA) = ker(|B + yA|).
By virtue of the hypothesis,
0 =(IB + yAlx,x) > (|Blx, x) > 0,

that is, x € ker(|B|) = ker(B). We also see that ker(B + yA) = ker(B) N ker(A) is
equivalent to the range additivity property R(B* + yA*) = R(B*) + R(A").

(iii)) Now let A be invertible. Then {0} = ker(B) N ker(A) = ker(B + yA) for all
v € C\ {0}. Hence, B + yA is invertible for all v € C\ {0}. Furthermore, we have
(1/YA B +yA) =1+ (1/y)A7'B for all y € C\ {0}. Thus, the spectrum of A~'B
consists of exactly one point. Hence, A~' B is noninvertible and so is B.

(iv) Let p € [1, 00). For an orthonormal basis {e;} consisting of eigenvectors of B
and forall y € C,

u 1/p
181, = 08I, = 1Bles, 7
i=1

n 1/p
< (D 4B+ yales.ed”) < 11B -+ yAll, = 1B+ Al
i=1

Hence, ||Bl|, < ||B + yAl|, or, equivalently, B J_ZJ A. O
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The following example shows that statements (i)—(iii) in the above theorem are not
equivalent to |B + yA| > |B| for all y € C, in general.

Exampe 3.13. Let B= [} 9]and A = [, ! ]. Simple computations show that tr(B*A) =
0, A is noninvertible and B J_ZJ A for all p €[l,). But, for y =1, we have

1/V2[3 7' 1=1B+Al21BI=[}¢].
As a consequence of Theorem 3.12, we have the following result.

CoroLLARY 3.14. Let A, B € M,,(C) satisfy B*A > 0. Then the following conditions are
equivalent:

(i) B*A=0;
(ii) |B+yA| = |B| forally e C.

Furthermore, for every p € [1, 00), each one of these assertions implies that B J_Z ;A

4. Norm-parallelism of operators

4.1. Norm-parallelism in p-Schatten ideals. LetB,(#) be a p-Schatten ideal with
p > 0. According to [21], we say that A, B € B,(H) are norm-parallel, denoted by
A||PB, if there exists A € T such that

lA + ABI|, = [|All, + lIBI|,-

The following proposition gives a characterization of parallelism in B ,(). This result
was previously obtained in [37], for 1 < p < 2, with a different proof.

ProposiTioN 4.1. Let A, B € B,(H) with 1 < p < co. Then the following conditions are
equivalent:

(i) All"B;
(i1) A, B are linearly dependent.

Proor. As we observed, it is evident that if A and B are linearly dependent, then A||”B.
Conversely, if A||P B, then there exists A € T such that

lA + ABI|, = [|All, + |IBIl, = lIAll, + |IABIl,.

According to [24, Corollary 1.5], it is equivalent to
l' A AB

+
lAll, — ll4BIl,

P
Since B,(H) is a uniformly convex space for 1 < p < oo, so [|A/||A]l, + /lB/||/lB||p||p =

2 implies that there exists r € R such that B = (r/1)A (see [10]). Thus, A and B are
linearly dependent. O
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One can similarly show that for any uniformly convex Banach space X the
conditions of parallelism and linear dependence are equivalent (see [10, 17]).

The following remark shows that the equivalence between p-parallelism and linear
dependence does not hold for p = 1, co.

Remark 4.2. Let A = [[ 3] and I = [} 9]. Then it is trivial that
lA + 11l =3 = llAll + (1111,
lA + 11 =2 = [|All + |l]]].
It is however evident that A and [ are linearly independent.

In [38], the authors related the concept of parallelism to the Birkhoff-James
orthogonality for the p-Schatten norm and / a finite-dimensional Hilbert space.
Utilizing the same ideas, we generalize it to any arbitrary dimension.

Tueorem 4.3. Let A, B € B,(H) with polar decompositions A = U|A| and B = V|B|,
respectively. If 1 < p < oo, then the following conditions are equivalent.

i) AlB.

(i) [IAll, le(|A]P~'U*B)| = ||Bl, tr(AP).
(iii) 1Bl [tr(IBIP~'V*A)| = ||All, tr(|BIP).
(iv) A, B are linearly dependent.

Proor. The proof is based on [38, Proposition 2.19] and Proposition 4.1. O

Remark 4.4. In [36], for two trace-class operators A and B, the following
characterizations were proved.

(1) Al'B.
(2) There exist a partial isometry V and A € T such that A = V|A| and B = AV|B|.
(3) There exists A € T such that

ltr(A]) + ptr(U*B)| < ||Pyera(A + pB) Pyerally,
where A = U|A]| is the polar decomposition of A and u = ||A||;/||Bl|; A.
If A is invertible, then (1)—(3) are also equivalent to:
@) [te(AJA="B)| = ||BI|;.

As an immediate consequence of Remark 4.4 (for p = 1) and Theorem 4.3 (for
1 < p < o), we have the following result.

CoroLLARY 4.5. Let A € M,(C) and p € [1, ). Then the following conditions are
equivalent:

i AL
(i) [tr(A)] = nP~DIPYA]L,.
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4.2. Norm-parallelism to the identity operator. In this section, we investigate the
case when an operator is norm-parallel to the identity operator. In the context of
bounded linear operators on Hilbert spaces, the well-known Daugavet equation

A +1]] = [|All + 1

is a particular case of parallelism; see [32, 37] and the references therein. Such
equation is one useful property in solving a variety of problems in approximation
theory. We notice that if A € B(H) satisfies the Daugavet equation, then A is a
normaloid operator, that is, [|A|| = w(A), where w(A) is the numerical radius of A.
Reciprocally, a normaloid operator does not necessarily satisfy the Daugavet equation;
for instance, consider A = —1.

In order to obtain a characterization of norm-parallelism, let us give the following
definition. The numerical radius is the seminorm defined on B(X) by

V(A) := sup{|x"(Ax)| : x € Sy, x" € Sx-, x"(x) = 1}
for each A € B(X).

THeEOREM 4.6. Let X be a Banach space and A € B(X). Then the following statements
are equivalent:

® AllL
(i) |All = v(A).

Proor. (i) = (ii) Suppose that (i) holds. Since the norm-parallelism is symmetric and
R-homogenous, so there exists A € T such that

[l + ArAl| =1 +|r|l|A]] (7 € [0, +0)).

It was shown in [11] that

I+ ArA|| -1
SUp(Re(x'(1A) : ¥ € Sy, " € Sy, x'(0) = 1} = lim I+ ArAll = 1
r—0* r
and hence
sup{Re(x*(1Ax)) : x € Sy, x" € Sx+, x"(x) = 1} = ||A|l.
Now, by the above equality,
IA]l = v(A) = v(1A) = sup{Re(x"(14x)) : x € Sy, x* € Sx-, x"(x) = 1} = ||A]|.

Hence, ||A]| = v(A).
(i) = (i) Let [|A]| = v(A). For every &€ > 0, we may find x € Sy and x* € Sy~ such
that x*(x) = 1 and x*(Ax)| > ||A|| — e. Let x*(Ax) = 4 x*(Ax)| for some A € T. We have

1+ (Al > I + AA]| > |Ix + AAx]|
> |x*(x + AAx)| = |x*(x) + Ax"(Ax))|
=1 + A" A = 1 + ¥ (Ax)| > 1 + Al - &.
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Hence,
1+ Al 2 1T + AA] > 1 + [|A]l — &.

Letting £ — 0%, we obtain ||I + Al =1 + ||All or, equivalently, ||A + AI|| = ||Al] + 1.
Thus, A || 1. O

In the following proposition we present a new proof of the previous result in Hilbert
space context.

Proposition 4.7. Let H be a Hilbert space and A € B(H). Then the following
statements are equivalent:

» AlL
(ii) Al = w(A).

Proor. (i) = (ii) By (1.4), I Lpg; (J|A|ll — AA) for some A € T. Using [21] or [5], there
exists a sequence {x,} of unit vectors such that:

(1) lxall =1 — [U]}; and
(2)  (AA* Xy, x,) — |IAll.

Then
IKA* X0, X)| = ANl < [{AA" X, x) = [|Alll = O

when n — co. Hence, w(A*) = w(A) = ||A||. From this, we deduce that A is normaloid.

(i) = (@) Let (ii) hold. It is known that for any operator A € B(H), w(A) = ||A]|
if and only if r(A) = ||A||, where r(A) is the spectral radius of A. So, there exists
a sequence {y,} of unit vectors such that x, = [(A*y,, y,)| = ||Al|. We denote by
70 = €9[(A*y,, y,)| the polar form of (A*y,, y,). By the complex Bolzano—Weierstrass
theorem, there exists a subsequence {6,,} such that e — . Then Zn, — e"||A|| or,
equivalently, ((e®||A||l = A*)y,,, s, — 0, from which we deduce by [21, Lemma 2.2]
that I 1; (e7||A||I — A) and this completes the proof. o

4.3. Norm-parallelism in locally uniformly convex spaces. A Banach space X is
said to be locally uniformly convex whenever for each x € Sy and each 0 < € < 2, there
exists some 0 < § < 1 such thaty € By, and ||x — y|| > & implies that ||(x + y)/2|| < 1 - 6.
Note that in a locally uniformly convex space the following condition holds: if for
any sequence {x,} in By and for any y in Sx with lim, . ||x, + || = 2, we have
lim, . [|x, — || = 0. It is obvious that every uniformly convex space is also locally
uniformly convex.

Lemma 4.8. Let X, Y be Banach spaces. Suppose that Y is locally uniformly convex.
Let A € K(X,Y) and B € B(X,Y). Suppose that A + 0 # B. If A || B, then there are
AeT, {x,} € Sx and y € Sy such that

. A
lim —x, =y,

lim A—x, = y.
n—oo [|All n—e " ||B]| ™"
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Proor. Suppose that A || B holds. Since the norm-parallelism is R-homogenous, we
have A/||A|| || B/||B||. Hence, there exists A € T such that

v il = Il + il =
HIIAII 1Bl [IA]| IIB]]
Since
{'A 1l S}’A+AB”
u — X, — X, =|l— —
P 1ALl Bl X Al 1IBll

there exists a sequence of unit vectors {x,} in X such that

4.1)

lim H—x +A—x
oo [[IAIT" T T NBIT"

By virtue of compactness of A, there exist a subsequence {x,, } and y € Sy such that

A
lim — . 4.2)
e AT T
From
” +A B < A + H +A4 B
— X, — x| £ [l—=x,, — —X
7RV [l 17V | AT-THE
<[ oyl + a2
<||l—x, -
g =
A
<|l—x, —y[|+1+1
A
as well as (4.1) and (4.2), we obtain lim, . [[A(B/||Bl)xy |l = 1 and lim, e [[y +
A(B/||BI)xn, Il = 2. Since Y is locally uniformly convex, we infer that
lim,, oo [[A(B/||BI)X,, — ¥l = 0. Thus, lim,_,. A(B/||B||)x,, =y. Now the proof is
completed. O

THEOREM 4.9. Let X be a closed subspace of a locally uniformly convex Banach space
Y. Let J € B(X, Y) denote the inclusion operator (that is, Jx = x for all x in X). Let
A € K(X,Y). Then the following statements are equivalent:

@ AllJ;
(1) Al is an eigenvalue of A for some A € T.

Proor. (i) = (ii) Suppose that A || J holds. It follows from Lemma 4.8 that there exist
a subsequence {x,} C Sy and y € Sy and 1 € T such that

lim —ux, =y, lim Ax, =y. 4.3
kg{lw”A”xn y, lim Ax, =y (4.3)

Due to A being continuous and using the second equality in (4.3),

A A
lim —(Ax,) = —. 4.4)
i JIA] 1Al
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By the first equality in (4.3) and by (4.4), we reach that (A/||A]|)y = Ay or, equivalently,
Ay = A||Ally. Thus, A||A|| is an eigenvalue of A.

(i1) = (i) Suppose that (ii) holds. So, there exists x € X \ {0} such that Ax = A||A||x.
We have

1A+ AJ]| > H(A + /lJ)i” = HanAui + AiH A+ 1= 1A + AJ].
(1] || [[x]]

Thus, ||A + AJ|| = ||All + 1 = ||A]| + ||/]|, which means that A || J. O

Remark 4.10. Notice that the condition of compactness in the implication (i) = (ii) of
Theorem 4.9 is essential. For example, consider the right shift operator A : £ — 2
defined by A(é1,&2,&3,...) =(0,61,6,&3, .. .). Itis easily seen that A || 1, but A has no
eigenvalues.

Let (Q, M, p) be a measure space. It is well known that every L”(Q, I, p) space
with 1 < p < oo is a uniformly convex Banach space (see [10, 17]). Therefore, as a
consequence of Theorem 4.9, we have the following result.

CoroLLary 4.11. Let (Q, M, p) be a measure space and A € K(LP((Q, M, p)) with
1 < p < co. Then the following statements are equivalent:

O Al
(1) Al is an eigenvalue of A for some A € T.

Remark 4.12. Notice that in the implication (i) = (ii) of Corollary 4.11, the condition
1 < p < oo is essential. For example, let x(¢) = sin(r¢) and y(¢) = cos(at) with 0 <7 < 1.
Consider the rank-one operator A = x ® y. Then A € K(L'([0, 1])) U K(L>([0, 1])). It
is easily seen that A || 1, but the operator A has no nonzero eigenvalue.

Let X be a normed space and A € B(X). Recall that an invariant subspace for A is a
closed linear subspace X of X such that A(Xy) C Xj. The following result shows that
the notion of parallelism is related to the invariant subspace problem.

CoroLLARY 4.13. Let X be a locally uniformly convex Banach space and A € K(X). If
A || I, then the operator A has an invariant subspace of dimension one.

Proor. Let A || I. It follows from Theorem 4.9 that there exist A € T and xy € X \ {0}
such that Axg = A||Al|xp. Set Xo := span{Axp}. It is easy to verify that A(Xy) € X and
dim Xy =1. O

4.4. Norm-parallelism of nilpotent and projections. In this section, we investigate
nilpotent and projections in the context of norm-parallelism in locally uniformly
convex spaces. First, we show that iterations of nilpotent are not norm-parallel.

TueoreM 4.14. Let X be a locally uniformly convex Banach space. Let A € K(X) be
such that A"~ # 0, A™ = 0 for some m € N. Then A* }f AJ for every 1 <k < j <m.
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Proor. Assume, contrary to our claim, that A || A7 for some 1 < k < j < m. Since A is
compact, A¥, A/ are compact. It follows from Lemma 4.8 that there exist a sequence
{x,} € Sx,y € Sx and A € T such that

' 1 A 5

lim —x, =y, mA—-—-x, =y. 4.

o AR T R At =Y (*)
Due to A/~ being continuous, we get by (4.5), lim,_,. A7*(A¥/||A¥||x,) = AJFy.
Hence,

(A -
Jim(ag) =47 6
Now the equality (4.6) becomes

A AN
hm(—.xn) = MW ik, “7)
ame\ [l ) T A

By (4.5) and (4.7), we reach that (||A%|I/||A/|)A/y = 1y. We obtain A’ %y = ary with
a := A(||A7)|/1|A¥|)). Therefore, A™U=Py = oy # 0, while A”U~% =0, and we obtain a
contradiction. O

Now we investigate whether projections may be norm-parallel.

TueoreM 4.15. Let X be a locally uniformly convex Banach space. Let A, B € B(X)
be operators such that A*> = A and B> = B. Moreover, suppose that dim A(X) < co. If
A || B, then A(X) N B(X) is a nontrivial subspace.

Proor. Since dim A(X) < o0, A € K(X). It follows from Lemma 4.8 that there exist a
sequence A € T, {x,} C Sx and y € Sy such that

A B
lim , limA—x, =y. 4.8)
e AT T s Y

The operators A, B are continuous. Thus, we get by (4.8),
A? B

lim —x, = Ay, lim A—x, = By. 4.9)
e A T SR T

Since A2 = A, B = B, it follows from (4.9) that

A B
lim —x, = Ay, lim A—ux, = By. 4.10)
koo [|A] ™" k= 1B

Combining (4.8) and (4.10), we get Ay =y = By. So, it yields y € A(X) N B(X), which
means that span{y} c A(X) N B(X). O

CoroLLARY 4.16. Let X be a locally uniformly convex Banach space. Let A, B € B(X)
be projections such that ||Al| = 1 and ||B|| = 1. Moreover, suppose that dim A(X) < co.
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Then the following conditions are equivalent:

i) AllB;
(i) A(X) N B(X) is a nontrivial subspace.

Proor. The implication (i) = (ii) holds by Theorem 4.15. We prove that (ii) = (i). Fix
x € A(X) N B(X) N Sy. It follows that Ax = x and Bx = x. Thus,

AL+ 1IBIl = 2 = [lx + xI| = [|Ax + Bx|| < [|A + Bl| < ||All + ||,
which completes the proof of this corollary. O

4.5. Norm-parallelism of compact operators. In this section, we give some
equivalence assertions about the norm-parallelism of compact operators. Let 0 < e < 1.
We say that a mapping U : X — Y is an g-isometry if

A =gl <Uxl < (A +&)lIrl|  (x € X).

THeEOREM 4.17. Let X be a normed space and let A, B € B(X). Suppose that for every
&> 0, there exist a normed space Y and a surjective e-isometry U : X — Y such that
UAU' ||UBU" in B(Y). Then A || B.

Proor. Fix € > 0. By assumption, there exist a normed space Y and a surjective &-
isometry U : X — Y such that UAU™! || UBU™!. Hence, there exists A € T such

that
IUAU™" + AUBU7Y|| = |UAUY|| + [ UBU™|. 4.11)
For every C € B(X),
_ _ il 1+e
Nlucuyl <lluciiu=yl < lulic IL_S < 1TONIICII Il ey,
which implies that
B 1+¢
\ucu=!| < 1—||C||. (4.12)
— &
On the other hand,
1- 1-
Zlexll = —2 Ui (weu s
1+¢ 1+¢
1-¢
< vl (ucu Y
1 +8|I ( U

l-g _
< I IUCU i + o)l
+&

1-¢ 1 1
— (1
1+$>< 1_8||UCU [1(1 + &)l

= UCU"|Ixll (x€X),
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whence
1-¢ _
TlICl<lvcu . (4.13)
+¢
From (4.12) and (4.13),
1-¢ _ 1+e¢
—icl < lucu < —=lICl. (4.14)
1+¢ 1-¢
‘We have
IA]l + [IBIl > ||A + AB|
1—
> ﬁnU(A +AB)U™'|| (by(4.14)forC = A + AB)
e
1-¢ _ _
= (AU I+ IUBUTTID - (by (4.11)
l-g(/l1-¢ 1-¢
A B by (4.14
> (A B (by (4.14)
1 -¢e\?
=|— All + ||BI]).
(1) -+ 1)
Thus,
1-e\?
A1+ 181 > 14 + ABI > (1) (Al + 1BI) (4.15)
Letting € — 0" in (4.15), we obtain ||A + AB|| = ||A|| + ||B|| and hence A || B. O
ProposiTioN 4.18. Let X, Y be a normed space, A € B(X,Y) and x,y € My. If Ax || Ay,
then x || y.

Proor. Let Ax || Ay. Hence, there exists Ay € T such that |[Ax + Ayl = ||Ax]| + ||Ay]l.
Since x,y € My, we obtain ||Ax + AgAy|| = 2||A]|. Now let x }t y. Then 0 < |Jx + Ay|| <
[[x]l + |yl = 2 for all A € T. In particular, 0 < ||x + Agy|| < 2. So,

A( x + Aoy )”

e ]
I+ Aoyl

= ——[|Ax + A Ayl
llx + Aoyl

_ Al 2diAl
llx+ Aoyl 2

= lIAll,

which is a contradiction. Thus, x || y. O

In the sequel, we show that the converse of Proposition 4.18 is also true if both X, Y
are real smooth Banach spaces. To this end, let us quote a result from [28].

Lemma 4.19 [28, Theorem 3.1]. Let X be a real smooth Banach space, A € B(X) and
x € My. Then
A({ze X;x Lpyzh) C{iwe X;Ax Lgy w}.
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We are now in a position to establish one of our main results.

TueorEM 4.20. Let X be a real smooth Banach space, A € B(X) with ||A|l =1 and
X,y € My. Then the following statements are equivalent:

i xlly
(i) Ax|| Ay.

Proor. By Proposition 4.18, (ii) implies (i).
(i) = (ii) Let x || y. By (1.4), there exists A € T such that x Lg; (|[y|lx + A||x|[y). From
X,y € Sx, we deduce that x Lp; (x + Ay). Thus,

Ax+Ay) e A({ze X : x Lgy z)).

From Lemma 4.19, we therefore conclude that Ax Lg; A(x + Ay). Thus, Ax Lp;
[[Ay[[Ax + A||Ax||Ay, since ||Ax]| =||Ayll =1. Again applying (1.4), we obtain
Ax || Ay. O

Remark 4.21. Notice that the smoothness condition of the Banach space in the above
theorem is essential. For example, let us consider the space R?> with the max-norm.
Consider the norm-one operator A € B(R?) defined by A(x,y) = (1/2)(x +y,x —y). It
is easily seen that (1,-1),(—1,—-1) e My and (1,-1) || (-1, —1). However, we have
A(L,-1) =, D) #f (-1,0) = A(-1,-1).

Because any compact operator on a reflexive Banach space must attain its norm, we
have the following result as a consequence of Theorem 4.20.

CoroLLARY 4.22. Let X be a real reflexive smooth Banach space and A € K(X) with
[|All = 1. Then there exists a unit vector x € X such that for any y € My, the following
statements are equivalent:

i xlly
(ii) Ax| Ay.

Next let A, B € B(X, Y). If x e My N Mp and Ax || Bx, then there exists 1 € T such
that ||]Ax + ABx]|| = ||Ax|| + ||Bx||. Hence,

AL+ 11BIl = lAxI| + [|Bx]| = [|Ax + ABx]| < ||A + AB|| < [|All + ||B|.

Thus, ||A + ABJ| = ||A|| + ||B|| and hence A || B. There are examples in which A || B but
not Ax || Bx for any x € My N Mp (see [38, Example 2.17]).

In a Hilbert space H and for A, B € B(H), we [37, Corollary 4.2] proved that A || B
if and only if there exists a sequence of unit vectors {£,} in H such that

lim Ay, BE| = [IANl1IBII

It follows that if the Hilbert space % is finite dimensional, then A || B if and only if
Ax || Bx for some x € M4 N Mp.
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In the case when HH is infinite dimensional, there are examples showing that A || B
but there is no x € My N Mp such that Ax || Bx (see [38, Example 2.17]). This indicates
that for such a result to be true in an infinite-dimensional Hilbert space, we need
to impose certain additional condition(s). In [38, Theorem 2.18], it is proved that
for A € B(H), if Sy, = My where H, is a finite-dimensional subspace of H and
sup{||Az]| : z € Ho™, ||zl = 1} < ||A|l, then for any B € B(H), A || B if and only if there
exists a vector x € M4 N Mj such that Ax || Bx.

Furthermore, for A, B € K(H), it is proved in [36, Theorem 2.10] that A || B © Ax ||
Bx for some x € My N Mjp. Notice that the condition of compactness is essential (see
[36, Example 2.7]).

The following auxiliary result is needed in our next theorem.

Lemma 4.23 [33, Theorem 3.1]. Let X, Y be real reflexive Banach spaces, Y be smooth
and strictly convex and A, B € K(X, Y). Let either My be connected or My = {—u, +u}
for some unit vector u € X. If A Lg; B, then there exists a vector x € My such that
Ax Lp; Bx.

TueoreM 4.24. Let X, Y be real reflexive Banach spaces, Y be smooth and strictly
convex and A, B € K(X,Y). Let either My be connected or My = {—u, +u} for some
unit vector u € X. Then the following statements are equivalent:

(i) Al B;
(i1) there exists a vector x € My N Mp such that Ax || Bx.

In addition, if x satisfies (ii), then Ax/||Al| = +Bx/||B.

Proor. Let A || B. By (1.4), there exists 4 € T such that A Lp; (||B||A + A||A||B).
Note that since X is a reflexive Banach space and A € K(X, V), we have M, # 0.
It follows from Lemma 4.23 that there exists a vector x € My such that Ax 1g;
(II1BIlIAx + A||A||Bx). Hence, ||Ax + u(||B||Ax + A||A||Bx)|| > ||Ax|| for all u € R. Let
u=—1/||B||. Then
1

Ax Bl (I|BllAx + A||A||Bx)
Thus, [|Al| [|Bx]| > [|BI| |Ax]|. Since [|Ax]| = ||All, we get [|Bx]| > ||B]|. So, ||B|| = ||Bx|| and
hence x € Mp. Since Ax Lp; (||Bl|Ax + A||A||Bx), we get Ax Lp; (||Bx||Ax + A||Ax]||Bx).
Again applying (1.4), we obtain Ax || Bx. Then ||Ax + aBx|| = ||Ax|| + ||Bx|| for some
a €T, from which, by the strict convexity of VY, we get Ax = £cBx with ¢ > 0.
Consequently, ¢ = ||Ax]|/||Bx|| = ||All/||B]|. Thus, Ax/||A|| = =cBx/c||B|| = =Bx/||B]|.

The converse is obvious. O

> [|Ax]|.

Remark 4.25. If H is a real finite-dimensional Hilbert space, then B(H) = K(H). It
is well known that My # 0 for every A € K(H). Also, it is easy to see that either
My is connected or My = {—u, +u} for some unit vector u € X. So, as an immediate
consequence of Theorem 4.24, we get Theorem 2.13 of [38].
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CoroLLARY 4.26. Let X, Y be real reflexive Banach spaces. Let Y be smooth and
strictly convex and let there exist [-,-] : Y X Y — R, a semi-inner product generating
its norm. Let A, B € K(X, Y) and M, be either connected or My = {—u, +u} for some
unit vector u € X. If A || B, then

1Bl = sup {I[Bx,y]| : x€Sx,y € Sy,Ax|l y}.
Proor. Obviously,
sup{|[Bx,yll: x € Sx,y € Sy,Ax ||y} <|BIl.

Due to A || B, by Theorem 4.24, there exists a vector xy € My N Mp such that
Axo/||All = £Bxo/||B||- Put x := xp and y := Axo/||Axgl|- Then x € Sx,y € Sy and Ax || y.
We have
Axo on ||BJCO||2

S = [ Bro, =2 | = = 1B
(1A xol I BI| 1Bl

Thus, the supremum is attained. O

|[Bx, y]l =

xO’

Since every finite-dimensional normed space is reflexive on which every linear
operator is compact, as a consequence of Theorem 4.24, we have the following result.

CoroLLARY 4.27. Let X be a finite-dimensional real normed space and M be any
real normed space. Assume that A, B € B(X,Y) and My = Sx. Then the following
statements are equivalent:

i) AllB;
(i1) there exists x € Mp such that Ax || Bx.
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