ON EXTENSIONS OF VALUATIONS TO SIMPLE TRANSCENDENTAL EXTENSIONS

by SUDESH K. KHANDUJA and USHA GARG

(Received 1st October 1987)

0. Introduction

Let v_0 be a valuation of a field K_0 with residue field k_0 and value group Z, the group of rational integers. Let $K_0(x)$ be a simple transcendental extension of K_0 . In 1936, Maclane [3] gave a method to determine all real valuations V of $K_0(x)$ which are extensions of v_0 . But his method does not seem to give an explicit construction of these valuations. In the present paper, assuming K_0 to be a complete field with respect to v_0 , we explicitly determine all extensions of v_0 to $K_0(x)$ which have Z as the value group and a simple transcendental extension of k_0 as the residue field. If V is any extension of v_0 to $K_0(x)$ having Z as the value group and a transcendental extension of k_0 as the residue field, then using the Ruled Residue theorem [4, 2, 5], we give a method which explicitly determines V on a subfield of $K_0(x)$ properly containing K_0 .

In Section 1, we prove some results needed for the main results. These results, however, turn out to be of independent interest.

1. Certain extensions of any real valuation to a simple transcendental extension

In this section, v_0 is a real valuation of a field K_0 (not necessarily discrete or complete) with residue field k_0 and $K_0(x)$ is a simple transcendental extension of K_0 . We shall denote by V_0 the valuation of $K_0(x)$ defined on $K_0[x]$ by

$$V_0\left(\sum_{i=0}^n c_i x^i\right) = \min_i v_0(c_i).$$

Let P(x) be a monic polynomial with coefficients in the valuation ring o of v_0 such that the corresponding polynomial $\bar{P}(x)$ with coefficients in the residue field k_0 of v_0 is irreducible over k_0 . Let θ be any positive real number. By successive division by powers of P(x), any non-zero polynomial f(x) in o[x] can be uniquely represented as

$$f(x) = \sum_{i=0}^{m} f_i(x) P(x)^i$$

where the polynomial $f_i(x)$ in o[x] is either zero or has degree less than that of P(x). (The above representation of f(x) will be referred to as the canonical representation of f(x)). We define $V_{P(x)}$ on o[x] by

$$V_{P(x)}(f(x)) = \min_{i} (V_0(f_i(x)) + i\theta).$$

We shall soon prove that $V_{P(x)}$ is a valuation of o[x]. Its unique extension to $K_0(x)$ will also be denoted by $V_{P(x)}$.

Lemma 1. If a non-zero polynomial F(x) in o[x] is written, by the division algorithm, as

$$F(x) = P(x)q(x) + r(x),$$

then

$$V_0(r(x)) \ge V_0(F(x))$$

and consequently

$$V_0(q(x)) = V_0(P(x)q(x)) \ge V_0(F(x)).$$

Proof. This follows at once if we write $F(x) = \alpha F_1(x)$ with α in α such that $V_0(F_1(x)) = 0$ and then write by the division algorithm $F_1(x)$ as $P(x)q_1(x) + r_1(x)$.

The following remark follows immediately from above.

Remark 1. With notation as in Lemma 1, $V_0(r(x)) > V_0(F(x))$ if and only if $\bar{P}(x)$ divides $\bar{F}_1(x)$ over k_0 , where $F_1(x)$ is any constant multiple of F(x) with $V_0(F_1(x)) = 0$.

Lemma 2. If a(x) and b(x) are two non-zero polynomials in o[x], each of degree less than the degree of P(x), then

$$V_{P(x)}(a(x)b(x)) = V_{P(x)}(a(x)) + V_{P(x)}(b(x)).$$

Proof. Let α , β be elements of σ such that

$$a(x) = \alpha a_1(x), b(x) = \beta b_1(x), V_0(a_1(x)) = V_0(b_1(x)) = 0.$$

On dividing $a_1(x)b_1(x)$ by P(x), we can write

$$a_1(x)b_1(x) = P(x)q_1(x) + r_1(x);$$
 (1.1)

where either $r_1(x) = 0$ or $\deg r_1(x) < \deg P(x)$. Since $\deg (a_1(x)b_1(x)) < \deg P(x)^2$, therefore $\deg q_1(x) < \deg P(x)$. Also $V_0(r_1(x)) = 0$, i.e. the polynomial $\bar{r}_1(x) \neq 0$ in $k_0[x]$; for other-

wise by (1.1) $\bar{P}(x)$ will divide $\bar{a}_1(x)\bar{b}_1(x)$ and being irreducible must divide at least one of $\bar{a}_1(x)$ or $\bar{b}_1(x)$, which is impossible in view of the degrees of $\bar{a}_1(x)$ and $\bar{b}_1(x)$. On multiplying (1.1) by $\alpha\beta$, we have

$$a(x)b(x) = P(x)\alpha\beta q_1(x) + \alpha\beta r_1(x)$$
.

Now by definition of $V_{P(x)}$, we have

$$\begin{aligned} V_{P(x)}(a(x)b(x)) &= \min \left\{ V_0(\alpha\beta q_1(x)) + \theta, V_0(\alpha\beta r_1(x)) \right\} \\ &= \min \left\{ v_0(\alpha\beta) + V_0(q_1(x)) + \theta, v_0(\alpha\beta) \right\} \\ &= v_0(\alpha\beta) = V_{P(x)}(a(x)) + V_{P(x)}(b(x)), \end{aligned}$$

and the lemma is proved.

Theorem 1. $V_{P(x)}$ is a valuation on o[x].

Proof. Let f(x) and g(x) be non-zero polynomials over o with canonical representations

$$f(x) = \sum_{i=0}^{m} f_i(x) P(x)^i, f_m(x) \neq 0$$
 (1.2)

$$g(x) = \sum_{j=0}^{n} g_j(x) P(x)^j, g_n(x) \neq 0.$$
 (1.3)

On adding (1.2) and (1.3) we obtain the canonical representation for f(x)+g(x) and the triangle law, i.e.,

$$V_{P(x)}(f+g) \ge \min\{V_{P(x)}(f), V_{P(x)}(g)\}$$

follows immediately. Also it is easy to prove using Lemma 2 and the triangle law that

$$V_{P(x)}(fg) \ge V_{P(x)}(f) + V_{P(x)}(g).$$

Now, it remains to prove that

$$V_{P(x)}(fg) \le V_{P(x)}(f) + V_{P(x)}(g).$$
 (1.4)

Let t and u be the smallest indices such that

$$V_{P(x)}(f(x)) = V_0(f_t(x)) + t\theta, \quad V_{P(x)}(g(x)) = V_0(g_u(x)) + u\theta.$$

Let $r_i(x)$ and $q_i(x)$ be the polynomials over o determined by the division algorithm from the following equations.

$$f_0(x)g_0(x) = q_o(x)P(x) + r_0(x)$$

$$f_0(x)g_1(x) + f_1(x)g_0(x) + q_0(x) = q_1(x)P(x) + r_1(x)$$

$$\vdots \qquad \vdots$$

$$f_m(x)g_n(x) + q_{m+n-1}(x) = q_{m+n}(x)P(x) + r_{m+n}(x).$$

Observe that the degree of each $q_i(x)$ and $r_i(x)$ is less than the degree of P(x). Thus the representation of f(x)g(x) as

$$f(x)g(x) = \sum_{i=0}^{m+n} r_i(x)P(x)^i + q_{m+n}(x)P(x)^{m+n+1}$$

is the canonical representation.

The inequality (1.4) follows at once if we prove that

$$V_0(r_{t+u}(x)) = V_0(f_t(x)) + V_0(g_u(x)). \tag{1.5}$$

We first show that

$$V_0(f_i(x)g_j(x)) > V_0(f_i(x)g_u(x))$$
 if $i + j < t + u$ (1.6)

and

$$V_0(f_i(x)g_j(x)) > V_0(f_i(x)g_j(x))$$
 if $i + j = t + u$, $i \neq t$. (1.7)

Both (1.6) and (1.7) follow immediately from the following observation.

For $0 \le i \le m$, $V_0(f_i) + i\theta \ge V_0(f_i) + t\theta$ with strict inequality if i < t; and for $0 \le j \le n$, $V_0(g_j) + j\theta \ge V_0(g_u) + u\theta$ with strict inequality if j < u.

Define a polynomial F(x) over \mathfrak{o} by

$$F(x) = \sum_{i+j=t+u} f_i(x)g_j(x) + q_{t+u-1}(x).$$

Recall that $q_{t+u}(x)$ and $r_{t+u}(x)$ are respectively the quotient and remainder when F(x) is divided by P(x) i.e.

$$F(x) = q_{t+u}(x)P(x) + r_{t+u}(x).$$

In view of (1.6) and Lemma 1, it is clear that

$$V_0(q_{t+u-1}) > V_0(f_t g_u). (1.8)$$

In view of (1.7), we have

$$V_0\left(\sum_{i+j=t+u}f_ig_j\right)=V_0(f_ig_u);$$

consequently

$$V_0(f_1g_u) = V_0(F(x)). (1.9)$$

Let α and β be elements of α such that $f_t(x) = \alpha F_t(x)$, $g_u(x) = \beta G_u(x)$ with $V_0(f_t(x)) = v_0(\alpha)$ and $V_0(g_u(x)) = v_0(\beta)$.

Let $F_1(x)$ be the polynomial over α defined by $F(x) = \alpha \beta F_1(x)$. In view of (1.7) and (1.8) it is clear that

$$\bar{F}_1(x) = \bar{F}_t(x)\bar{G}_u(x).$$

Since both $\bar{F}_{t}(x)$ and $\bar{G}_{u}(x)$ are of degree less than that of $\bar{P}(x)$, therefore $\bar{P}(x)$ does not divide $\bar{F}_{1}(x)$. It now follows from equation (1.9), Lemma 1 and the remark following the lemma that

$$V_0(f_1g_1) = V_0(F) = V_0(r_{1+1})$$

which proves (1.5) and hence completes the proof of the fact that $V_{P(x)}$ is a valuation of o[x].

Notation. If α is an element of the valuation ring of a valuation V of a field K, then $\bar{\alpha}$ will denote its image in the residue field of V.

The following theorem determines the residue fields of the valuations V_0 and $V_{P(x)}$. The residue field of V_0 is wellknown [1, §10.2, Prop. 2]. For the sake of completeness we determine it here also.

Theorem 2. With v_0 , k_0 , V_0 , θ , $V_{P(x)}$ as before and with G_0 as the value group of v_0 , we have:

- (i) The residue field of the valuation V_0 is $k_0(\bar{x})$ with \bar{x} (the image of x in the residue field of V_0) transcendental over k_0 .
- (ii) If θ is free modulo G_0 , then the residue field of $V_{P(x)}$ is $k_0(\bar{x})$ with \bar{x} (the image of x in the residue field of $V_{P(x)}$) algebraic over k_0 .
- (iii) If θ is torsion modulo G_0 , with s as the smallest positive integer such that $s\theta(=v_0(\alpha))$ is in G_0 , then the residue field of $V_{P(x)}$ is $k_0[\bar{x}](t)$ where t= the residue class of $P(x)^s/\alpha$ (in the residue field of $V_{P(x)}$), is transcendental over $k_0[\bar{x}]$ and \bar{x} is algebraic over k_0 .

Proof. In all the three cases, we denote by Δ the residue field of the valuation under

consideration and by $\bar{\xi} = (f(x)/g(x))^-$ an arbitrary non-zero element of Δ , with f(x) and g(x) in o[x].

(i) It is easy to verify that the image \bar{x} of x in the residue field of V_0 is transcendental over k_0 in this case. Let β be an element of σ such that

$$V_0(f(x)) = V_0(g(x)) = v_0(\beta).$$

Then

$$V_0(f(x)/\beta) = 0$$
, $V_0(g(x)/\beta) = 0$.

So $\bar{\xi} = \bar{\xi}_1 \bar{\xi}_2^{-1}$ where $\bar{\xi}_1 = (f(x)/\beta)^-$ and $\bar{\xi}_2 = (g(x)/\beta)^-$ are in $k_0[\bar{x}]$. This proves that $\Delta = k_0(\bar{x})$.

(ii) Let

$$f(x) = \sum_{i} f_i(x) P(x)^i$$

$$g(x) = \sum_{i} g_{j}(x) P(x)^{j}$$

be the canonical expression for f(x) and g(x) respectively. For non-zero polynomials $f_i(x)$ and $g_i(x)$, define polynomials $F_i(x)$ and $G_i(x)$ with coefficients in o by

$$f_i(x) = \beta_i F_i(x), \ g_j(x) = \gamma_j G_j(x)$$

where $v_0(\beta_i) = V_0(f_i(x))$ and $v_0(\gamma_i) = V_o(g_i(x))$. Thus

$$f(x) = \sum_{i} \beta_{i} F_{i}(x) P(x)^{i}, \qquad (1.10)$$

$$g(x) = \sum_{i} \gamma_{i} G_{j}(x) P(x)^{j}. \tag{1.11}$$

Since $V_{P(x)}(f(x)) = V_{P(x)}(g(x))$, i.e., $\min_i(v_0(\beta_i) + i\theta) = \min_j(v_0(\gamma_j) + j\theta)$, therefore there exist subscripts h and k such that

$$v_0(\beta_h) + h\theta = v_0(\gamma_k) + k\theta.$$

In this case, θ being free modulo G_0 , the above equality is possible only if h=k and $v_0(\beta_h)=v_0(\gamma_h)$, also $v_0(\beta_i)+i\theta>v_0(\beta_h)+h\theta$ if $i\neq h$ and $v_0(\gamma_j)+j\theta>v_0(\beta_h)+h\theta$ if $j\neq h$. So if we write $\xi_1=f(x)/\beta_hP(x)^h$ and $\xi_2=g(x)/\beta_hP(x)^h$, we have $\xi=\xi_1/\xi_2=\overline{F}_h(\bar{x})((\gamma_h/\beta_h)^-\overline{G}_h(\bar{x}))^{-1}$ is in $k_0(\bar{x})$; here $\overline{G}_h(\bar{x})\neq 0$, because the degree of the polynomial $\overline{G}_h(y)$ is less than the degree of $\overline{P}(y)$ which is the minimal polynomial of \bar{x} over k_0 . This proves that $\Delta=k_0(\bar{x})$ which is an algebraic extension of k_0 .

(iii) Let s be the smallest positive integer such that $s\theta \in G_0$, (say) $s\theta = v_0(\alpha)$ with α in o.

We first prove that the residue class $(P(x)^s/\alpha)^- = t$ (say) is transcendental over k_0 . Suppose t is algebraic over k_0 . Let $y^m + \bar{a}_1 y^{m-1} + \cdots + \bar{a}_m$ be a polynomial over k_0 satisfied by t. Therefore

$$V_{P(x)}((P(x)^{s}/\alpha)^{m} + a_{1}(P(x)^{s}/\alpha)^{m-1} + \cdots + a_{m}) > 0$$

i.e., if we write

$$F(x) = P(x)^{sm} + a_1 \alpha P(x)^{s(m-1)} + \dots + a_m \alpha^m$$
 (1.12)

then

$$V_{P(x)}(F(x)) > v_0(\alpha^m) = ms\theta,$$

which is impossible because (1.12) is a canonical expression for F(x) and by definition of $V_{P(x)}$, we must have $V_{P(x)}(F(x)) \le sm\theta$. This contradiction proves that t is transcendental over k_0 ; in fact t is transcendental over $k_0(\bar{x})$ because \bar{x} , satisfying the polynomial $\bar{P}(y)$, is algebraic over k_0 .

Let expressions for f(x) and g(x) be as in (1.10) and (1.11). Let β be an element of α and α an integer such that

$$v_0(\beta) + h\theta = \min_{i} (v_0(\beta_i) + i\theta) = \min_{j} (v_0(\gamma_j) + j\theta).$$

Write $\xi_1 = f(x)/\beta P(x)^h$, $\xi_2 = g(x)/\beta P(x)^h$. Then

$$\overline{\xi}_1 = \sum_i \overline{F}_i(\bar{x}) (\beta_i P(x)^i / \beta P(x)^h)^{-1}$$

where the sum \sum' is carried over all those i for which $v_0(\beta_i) + i\theta = v_0(\beta) + h\theta$ (the rest of the terms are zero in the residue field). For each i in \sum' , $v_0(\beta_i) + i\theta = v_0(\beta) + h\theta$, i.e., $(i-h)\theta = v_0(\beta) - v_0(\beta_i)$. So (i-h) is an integral multiple of s, say $(i-h) = m_i s$. Therefore the residue class of $\beta_i P(x)^i / \beta P(x)^h = (P(x)^s / \alpha)^{m_i} \cdot (\beta_i \alpha^{m_i} / \beta)$ is an integral power of $t = (P(x)^s / \alpha)^-$ multiplied by an element of k_0 . Thus ξ_1 is in the field $k_0[\bar{x}](t)$. Similarly ξ_2 and hence ξ are in the same field. This proves (iii).

Remark 2. As in [1, §10.2, Prop. 2], it is easy to prove that if V is a real valuation of $K_0(x)$ extending the valuation v_0 of K_0 with V(x) = 0 and if \bar{x} is transcendental over k_0 then $V = V_0$.

2. Construction of extensions of v_0 with residue field $k_0(t)$

In what follows, K_0 is a complete valuation field with respect to a valuation v_0 having the value group Z, the valuation ring o and the residue field k_0 . As before x is an indeterminate, We shall consider only those extensions V of v_0 to $K_0(x)$ for which $V(x) \ge 0$.

Theorem 3. Let V be an extension of v_0 to $K_0(x)$ with value group Z and residue field Δ such that $\Delta \cap$ (the algebraic closure of $k_0 = k_0(\bar{x})$, then $V = V_{P(x)}$ for some monic polynomial P(x) over \bar{v} where $\bar{P}(y)$ is the minimal polynomial of \bar{x} over k_0 .

Proof. Let π be a uniformizer of v_0 in K_0 and $\phi(y)$ be the minimal polynomial of \bar{x} over k_0 of degree n. We claim that there exists a monic polynomial P(x) over v_0 with $\bar{P}(x) = \phi(x)$ such that the residue class $(P(x)/\pi^n)^-$ (in the residue field of V) is transcendental over k_0 , r being given by V(P(x)) = r. Let $P_1(x)$ be any monic polynomial with coefficients in v_0 such that $\bar{P}_1(x) = \phi(x)$. Since $\bar{P}_1(\bar{x}) = \phi(\bar{x}) = \bar{0}$, therefore $s_1 = V(P_1(x)) > 0$. If $(P_1(x)/\pi^{s_1})^-$ is transcendental over k_0 then our claim is proved. If it is algebraic over k_0 then by hypothesis there exists a polynomial $f_1(x)$ in $v_0[x]$ of degree $v_0 = 1$ such that

$$(P_1(x)/\pi^{s_1})^- = \overline{f}_1(\bar{x}).$$

So

$$V(P_1(x)-\pi^{s_1}f_1(x))>s_1.$$

Write $P_2(x) = P_1(x) - \pi^{s_1} f_1(x)$ and define an integer $s_2 > s_1$ by $V(P_2(x)) = s_2$. If $(P_2(x)/\pi^{s_2})^-$ is transcendental over k_0 , we stop here otherwise we continue the process. We show that the process cannot continue indefinitely. Suppose it does. So we obtain a sequence of polynomial $f_i(x)$ in o[x] each of degree $\le n-1$ and a strictly increasing sequence of positive integers $s_1 < s_2 < \cdots$ such that

$$V\left(P_1(x) - \sum_{j=1}^{t} f_j(x)\pi^{s_j}\right) = s_{t+1}.$$

Since K_0 is complete and since each $f_i(x)$ is of degree $\leq n-1$, therefore $\sum_{j=1}^{\infty} f_j(x) \pi^{s_j}$ is a polynomial over \mathfrak{o} of degree $\leq n-1$, which we shall denote by F(x). By choice $V(P_1(x)-F(x))>s_t$ for all t, so $P_1(x)-F(x)$ must be the zero polynomial. Which is impossible because $P_1(x)-F(x)$ is a monic polynomial of degree n over \mathfrak{o} . This contradiction proves the claim.

Let P(x) be a monic polynomial over \mathfrak{o} such that $\overline{P}(x) = \phi(x)$, V(P(x)) = r and $(P(x)/\pi^r)^-$ is transcendental over k_0 and hence over $k_0(\bar{x})$. We now prove that the valuation V is nothing but $V_{P(x)}$ with $\theta = V_{P(x)}(P(x)) = r$. Since the minimal polynomial satisfied by \bar{x} over k_0 has degree n, therefore for any polynomial a(x) over n of degree n = 1, $V(a(x)) = V_0(a(x))$ holds. Let f(x) be any non-zero element of n and let

$$f(x) = \sum_{i=1}^{m} f_i(x) P(x)^i$$
 (2.1)

be the canonical representation of f(x). If $f_i(x) \neq 0$ then deg $f_i(x) \leq n-1$. So

$$V(f_i(x)) = V_0(f_i(x)) = a_i,$$
 (say).

By definition of $V_{P(x)}$, we have

$$V_{P(x)}(f(x)) = \min_{i} (a_i + ir)$$

where the minimum is carried over those i for which $f(x) \neq 0$. We shall prove that

$$V(f(x)) = \min_{i} (a_i + ir) = V_{P(x)}(f(x)).$$
 (2.2)

Since $V(f_i(x)P(x)^i) = a_i + ir$, it follows from (2.1) that

$$V(f(x)) \ge \min_{i} (a_i + ir). \tag{2.3}$$

We now prove (2.2). Let h (be the smallest subscript such that $\min_i(a_i+ir)=a_h+hr$. For a non-zero polynomial $f_i(x)$ define $F_i(x)$ in $\mathfrak{o}[x]$ by $f_i(x)=\pi^{\alpha_i}F_i(x)$, so that $V_0(F_i(x))=V(F_i(x))=0$. Suppose strict inequality holds in (2.3). Then there exist positive integers $h=h_0< h_1<\cdots< h_l\le m$, such that

$$V\left(\sum_{i=0}^{l} \pi^{a_{h_i}} F_{h_i}(x) P(x)^{h_i}\right) > a_h + hr$$
 (2.4)

and

$$V(\pi^{a_{h_i}}F_{h_i}(x)P(x)^{h_i}) = a_h + hr$$
 (2.5)

for $0 \le i \le l$. It follows from (2.5) that

$$(a_h - a_{h_i}) = (h_i - h_0)r = n_i r,$$
 (say) (2.6)

for $1 \le i \le l$. Observe that $n_1 < n_2 < \cdots < n_l$. It follows at once from (2.4) and (2.6) that

$$V\left(F_{h_0}(x) + \sum_{i=1}^{l} (P(x)/\pi^r)^{n_i} F_{h_i}(x)\right) > 0$$

which shows that $(P(x)/\pi^r)^-$ is algebraic over $k_0[\bar{x}]$. This contradiction proves that equality holds in (2.3) and hence $V = V_{P(x)}$.

Remark 3. If V is as in the above theorem then we have shown in Theorem 2, part (iii) of Section 1 that the residuce field of V is a simple transcendental extension of $k_0(\bar{x})$.

Theorem 4. Let V be an extension of v_0 to $K_0(\bar{x})$ with value group Z and residue field a simple transcendental extension of k_0 then either $V = V_0$ or $V = V_{P(x)}$ for some monic linear polynomial P(x) over o.

Proof. If \bar{x} is transcendental over k_0 then by the remark in the end of Section 1, $V = V_0$. Suppose now that \bar{x} is algebraic over k_0 , therefore \bar{x} is in k_0 . So the minimal polynomial of \bar{x} over k_0 is a linear polynomial. The desired assertion now follows immediately from Theorem 3.

3. Method of construction of valuations with residue field transcendental over k_0

Notation and assumptions are as in the previous section. Now we assume that k_0 is a perfect field. Let V be an extension of v_0 to $K_0(x)$ with value group Z and residue field Δ transcendental over k_0 . By the Ruled Residue theorem [5], there exists a finite extension k_1 of k_0 such that $\Delta = k_1(t)$ with t transcendental over k_0 . If $k_1 = k_0$, then by Theorem 4, either $V = V_0$ or $V = V_{P(x)}$ where P(x) is a linear polynomial over 0. Suppose now that k_1 is a proper extension of k_0 . Since k_0 is perfect, therefore there exists y in $K_0(x)$ such that V(y) = 0 and $k_1 = k_0(\bar{y})$. Then y does not belong to K_0 , so $K_0(x)$ is a finite extension of $K_0(y)$. Let V_1 denote the restriction of V to $K_0(y)$. The hypotheses of Theorem 3 are clearly satisfied for the valuation V_1 of $K_0(y)$, so by this theorem $V_1 = V_{P(y)}$ for some monic polynomial P(y) with coefficients in 0. Thus the valuation V is completely determined on $K_0(y)$.

REFERENCES

- 1. N. BOURBAKI, Commutative Algebra, Chapter 6, Valuations (Hermann, Publishers in arts and science, 1972).
- 2. W. J. Heinzer, Valuation rings and simple transcendental field extensions, J. Pure Appl. Algebra 26 (1982), 189-190.
- 3. S. Maclane, A construction for absolute values in polynomial rings, *Trans. Amer. Math. Soc.* 40 (1936), 363-395.
- 4. M. NAGATA, A theorem on valuation rings and its applications, *Nagoya Math. J.* 29 (1967), 85–91.
- 5. J. Ohm, The ruled residue theorem for simple transcendental extensions of valued fields, *Proc. Amer. Math. Soc.* 89 (1983), 16–18.

DEPARTMENT OF MATHEMATICS PANJAB UNIVERSITY CHANDIGARH-160014 INDIA