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0. Introduction

Let v0 be a valuation of a field Ko with residue field fc0 and value group Z, the group
of rational integers. Let K0(x) be a simple transcendental extension of Ko. In 1936,
Maclane [3] gave a method to determine all real valuations V of K0(x) which are
extensions of v0. But his method does not seem to give an explicit construction of these
valuations. In the present paper, assuming Ko to be a complete field with respect to v0,
we explicitly determine all extensions of v0 to K0(x) which have Z as the value group
and a simple transcendental extension of k0 as the residue field. If V is any extension of
v0 to K0(x) having Z as the value group and a transcendental extension of k0 as the
residue field, then using the Ruled Residue theorem [4, 2, 5], we give a method which
explicitly determines V on a subfield of K0(x) properly containing Ko.

In Section 1, we prove some results needed for the main results. These results,
however, turn out to be of independent interest.

1. Certain extensions of any real valuation to a simple transcendental extension

In this section, v0 is a real valuation of a field Ko (not necessarily discrete or
complete) with residue field k0 and K0(x) is a simple transcendental extension of Ko. We
shall denote by Vo the valuation of K0(x) defined on K0[x] by

= minuo(c,).
i = 0 / i

Let P(x) be a monic polynomial with coefficients in the valuation ring o of v0 such
that the corresponding polynomial P(x) with coefficients in the residue field k0 of v0 is
irreducible over k0. Let 6 be any positive real number. By successive division by powers
of P(x), any non-zero polynomial f(x) in o[x] can be uniquely represented as

i = O
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where the polynomial ft{x) in o[x] is either zero or has degree less than that of P(x).
(The above representation of / (x) will be referred to as the canonical representation of
/(x)). We define VP(x) on o[x] by

We shall soon prove that VP(x) is a valuation of o[x]. Its unique extension to K0(x) will
also be denoted by VP(X).

Lemma 1. / / a non-zero polynomial F(x) in o[x] is written, by the division algorithm,
as

F(x)=P(x)q(x) + r(x),

then

V0(r(x))7zV0(F(x))

and consequently

V0(q(x)) = F0(P(x)<z(x)) ̂  V0(F(x)).

Proof. This follows at once if we write F(x) = <xFl(x) with a in o such that
V0(F1(x)) = 0 and then write by the division algorithm Ft(x) as P(x)ql(x) + rl(x).

The following remark follows immediately from above.

Remark 1. With notation as in Lemma 1, F0(r(x)) > V0(F(x)) if and only if P(x)
divides F\(x) over k0, where F^x) is any constant multiple of F(x) with Vo(F1(x)) = 0.

Lemma 2. / / a(x) and b(x) are two non-zero polynomials in o[x], each of degree less
than the degree of P(x), then

VPM(a(x)b(x)) = FP(x)(a(x)) + VP(x)(b{x)).

Proof. Let a, /? be elements of o such that

a(x) = aa1(x), b{x) = $bi{x), K0(fll(x)) = Fo(b1(x))=0.

On dividing a^xjfc^x) by P(x), we can write

; (1.1)

where either rt(x) = 0 or degr,(x)<degP(x). Since deg(a1(x)b1(x))<degP(x)2, therefore
degg,(x)<degP(x). Also Fo(r1(x)) = 0, i.e. the polynomial r t (x)#O in feo[x]; for other-
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wise by (1.1) P{x) will divide d^E^x) and being irreducible must divide at least one of
d^x) or E^x), which is impossible in view of the degrees of d^x) and Et(x). On
multiplying (1.1) by a/?, we have

a(x)b(x) = P(x)«pqi(x)

Now by definition of VP{x), we have

VPix)(a(x)b(x)) = min{V0Wqi(x)) + 0, K>(«^i(*))}

= min {»o(a0) + V0(qi(x)) + Q,

and the lemma is proved.

Theorem 1. VP{X) is a valuation on o[x].

Proof. Let f(x) and g(x) be non-zero polynomials over o with canonical
representations

(1.2)
i = 0

g(x)=£gj(x)P(xy,gn(x)*O. (1.3)
J = 0

On adding (1.2) and (1.3) we obtain the canonical representation for f(x)+g{x) and the
triangle law, i.e.,

follows immediately. Also it is easy to prove using Lemma 2 and the triangle law that

Now, it remains to prove that

Let t and u be the smallest indices such that

VpUfM)=K.OM)+te, vP{x)(g(x))=vo(gu(x))+ud.
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Let r,{x) and q,{x) be the polynomials over o determined by the division algorithm from
the following equations.

Observe that the degree of each qfoc) and r^x) is less than the degree of P(x). Thus the
representation of f(x)g(x) as

f(x)g(x) = Y ri(x)P(xY + qm+n(x)P(xr+"+1

i = O

is the canonical representation.
The inequality (1.4) follows at once if we prove that

V0(r, + u(x)) = V0(ft(x)) + V0(gu(x)). (1.5)

We first show that

V<Jiftx)gJLx)) > V0(f,(x)gu(x)) iii + j<t + u (1.6)

and

=t+u, i/t. (1.7)

Both (1.6) and (1.7) follow immediately from the following observation.
For Og/^m, V0(fd + iO^ V0(f,) + td with strict inequality if i<t; and for O^j^n,

K(gj) + ft ̂  Vo(gJ + uQ with strict inequality if ;' < u.
Define a polynomial F(x) over o by

F(x)= X / W x ) + «,+,-i(4
i+j=t+u

Recall that q,+u(x) and r,+u(x) are respectively the quotient and remainder when F(x) is
divided by P(x) i.e.

In view of (1.6) and Lemma 1, it is clear that

Vo(q,+u-1)>Vo(fSu). (1.8)

In view of (1.7), we have
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consequently

Vo(fg ) — ^ (F(x))- (1-9)

Let a and fi be elements of o such that f,(x) = <xF,(x), gu(x) = flGu(x) with V0(f(x)) = vo(a.)

and V0(gu(
x)) = vo(P)-

Let Ft(x) be the polynomial over o defined by F(x) = aPFl(x). In view of (1.7) and
(1.8) it is clear that

Since both Ft(x) and Gu(x) are of degree less than that of P(x), therefore P(x) does not
divide Ft(x). It now follows from equation (1.9), Lemma 1 and the remark following the
lemma that

Vo(f,gu)=Vo(F)=V0(rt+u),

which proves (1.5) and hence completes the proof of the fact that VP(X) is a valuation of
o[x].

Notation. If a is an element of the valuation ring of a valuation V of a field K,
then a will denote its image in the residue field of V.

The following theorem determines the residue fields of the valuations Vo and VP{X).
The residue field of Vo is wellknown [1, § 10.2, Prop. 2]. For the sake of completeness
we determine it here also.

Theorem 2. With v0, k0, Vo, 6, VP(x) as before and with Go as the value group of v0, we
have:

(i) The residue field of the valuation Vo is ko(x) with x (the image of x in the residue
field of Vo) transcendental over k0.

(ii) / / 9 is free modulo Go, then the residue field of VP(x) is ko(x) with x (the image of
x in the residue field of VP(X)) algebraic over k0.

(iii) / / 0 is torsion modulo Go, with s as the smallest positive integer such that
s6( = vo(a)) is in Go, then the residue field of VP(x) is fco[x](t) where t = the residue
class of P(x)s/a (in the residue field of VPM), is transcendental over /co[x] and x is
algebraic over k0.

Proof. In all the three cases, we denote by A the residue field of the valuation under
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consideration and by <f= (/(x)/g(x)) ~ an arbitrary non-zero element of A, with f(x) and
g(x) in o[x].

(i) It is easy to verify that the image x of x in the residue field of Vo is transcendental
over fe0 in this case. Let /} be an element of o such that

Then

Vo(f(xW)=0, Vo(g(x)/P) = 0.

So ^=l^2l w h e re Ji = ( / ( * ) / $ " and ?2=(g(x)//?)- are in ko[x]. This proves that
A = ko(x).

(ii) Let

be the canonical expression for f(x) and g{x) respectively. For non-zero polynomials
f,{x) and gj(x), define polynomials F,(x) and Gj(x) with coefficients in o by

where »0(fl) = *o(/i(*)) and wo(y,) = Vo{g]{x)). Thus

i (1.10)

(1.11)

Since VP(x)(f(x)) = VPM(g(x)), i.e., mini(yo()SI) + i0) = minJ(yo()'J)-i-;0), therefore there exist
subscripts h and k such that

In this case, 6 being free modulo Go, the above equality is possible only if h = k and
»o(0*) = »o(y»). also v,JLPd + iO>vdLPii + M i f ' ^ ^ a n d »(JLyj) + j6>»dPk) + M if
So if we write ^=f(x)/phP(x)h and ^2=g(x)/^P(x)h, we have f =
Fh{x){(yjph) Gh(x)) i is in fco(x); here GA(x)#0, because the degree of the polynomial
Gh(y) is less than the degree of P(y) which is the minimal polynomial of x over k0. This
proves that A = /co(x) which is an algebraic extension of k0.

(iii) Let s be the smallest positive integer such that s6eG0, (say) s9 = vo(a) with a in o.
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We first prove that the residue class (P(x)s/a)"=t (say) is transcendental over fe0.
Suppose t is algebraic over k0. Let ym + dly

m~1+ ••• +dm be a polynomial over k0

satisfied by t. Therefore

7«)" + «i( W / « ) " ~l + • • • + aj > 0

i.e., if we write

F(x) = P(x)sm + a1aP(x)s(m-1)+ ••• +amam (1.12)

then

which is impossible because (1.12) is a canonical expression for F(x) and by definition of
VPU), we must have VP(x)(F(x))^sm9. This contradiction proves that t is transcendental
over k0; in fact t is transcendental over ko(x) because x, satisfying the polynomial P(y),
is algebraic over k0.

Let expressions for f(x) and g(x) be as in (1.10) and (1.11). Let P be an element of o
and h an integer such that

vo(P) + hQ = min (D0(ft) + id) = min (

Write ^=f(x)/pP{x)\ {;2=g(xWP(x)h. Then

where the sum ^ ' is carried over all those i for which vo(Pi) + id = vo(P) + hQ (the rest of
the terms are zero in the residue field). For each j in £ ' , vo(Pi) + i9 = vo(P) + h6, i.e.,
(i — h)6 = vo(P) — vo(Pi). So (i—h) is an integral multiple of s, say (i — î) = m,s. Therefore
the residue class of piP{x)i/pP(x)k = (P(x)s/oi)m<-(Pia.m</P) is an integral power of
t = (P(x)s/a)~ multiplied by an element of k0. Thus cfj is in the field ko[x](t). Similarly
f2 and hence <f are in the same field. This proves (iii).

Remark 2. As in [1, § 10.2, Prop. 2], it is easy to prove that if V is a real valuation
of K0(x) extending the valuation v0 of Ko with F(x) = 0 and if x is transcendental over
k0 then V=V0.

2. Construction of extensions of v0 with residue field ko(t)

In what follows, Ko is a complete valuation field with respect to a valuation v0 having
the value group Z, the valuation ring o and the residue field k0. As before x is an
indeterminate, We shall consider only those extensions V of v0 to K0(x) for which
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Theorem 3. Let V be an extension of v0 to K0(x) with value group Z and residue field
A such that A n (the algebraic closure of k0) = ko(x), then V = VPM for some monic
polynomial P(x) over o where P(y) is the minimal polynomial of x over k0.

Proof. Let n be a uniformizer of v0 in Ko and (f>(y) be the minimal polynomial of x
over k0 of degree n. We claim that there exists a monic polynomial P(x) over o with
F(x) = (j)(x) such that the residue class (P(X)/K")~ (in the residue field of V) is
transcendental over k0, r being given by F(P(x)) = r. Let Pt(x) be any monic polynomial
with coefficients in o such that P1(x) = ())(x). Since P1(x) = <j)(x) = 0, therefore st =
V(P1(x))>0. If (P^x) /^ 1 ) " is transcendental over ko then our claim is proved. If it is
algebraic over k0 then by hypothesis there exists a polynomial /i(x) in o[x] of degree
^ n — 1 such that

So

Write P2(x) = P1(x)-7tSl/i(^) and define an integer s2>sl by V(P2(x)) = s2. If
(P2(x)/if2)~ is transcendental over k0, we stop here otherwise we continue the process.
We show that the process cannot continue indefinitely. Suppose it does. So we obtain a
sequence of polynomial fix) in o[x] each of degree :gn—1 and a strictly increasing
sequence of positive integers sl<s2< ••• such that

Since Ko is complete and since each fj^x) is of degree ^n— 1, therefore £jLi fj(x)v?J is a
polynomial over o of degree ^ « —1, which we shall denote by F(x). By choice
V(P1(x) — F(x))>s, for all t, so Pl(x)-F(x) must be the zero polynomial. Which is
impossible because Pl(x) — F(x) is a monic polynomial of degree n over o. This
contradiction proves the claim.

Let P(x) be a monic polynomial over o such that P(x) = <£(x), V(P(x)) = r and
(P(x)/7ir)~ is transcendental over k0 and hence over ko(x). We now prove that the
valuation V is nothing but VP(x) with 9 = VP{x)(P(x)) = r. Since the minimal polynomial
satisfied by x over k0 has degree n, therefore for any polynomial a(x) over o of degree
^n— 1, V(a(x))= V0(a{x)) holds. Let /(x) be any non-zero element of o[x] and let

be the canonical representation of/(x). l(f{x)^0 then deg f,{x)^n —I. So

) = a,, (say).
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By definition of VP[X), we have

where the minimum is carried over those i for which ft{x) ^ 0. We shall prove that

V(f(x)) = min(«, + ir) = KP(x)(/(x)). (2.2)

Since V{f^x)P(x)') = ai + ir, it follows from (2.1) that

(2.3)

We now prove (2.2). Let h (be the smallest subscript such that min,-(a,- + ir) = ak + hr. For
a non-zero polynomial /,(*) define F,(x) in o[x] by fi(x)-n"Fi(x), so that F0(F,(x)) =
K(F,(x)) = 0. Suppose strict inequality holds in (2.3). Then there exist positive integers
h = ho<hl< ••• <h,^m, such that

v( X ifh>Fht(x)P(x'A >ah + hr (2.4)
V = o /

and

K(;ra'»Fhi(x)P(x)'") = a, + ^ (2.5)

for O^i^l. It follows from (2.5) that

(ah-ahl) = (hi-h0)r = nir, (say) (2.6)

for l ^ i ^ / . Observe that n ^ n ^ • •• <nt. It follows at once from (2.4) and (2.6) that

(P(x)/nTFhi(x)\>0

which shows that (P(x)/nr)~ is algebraic over ko[x]. This contradiction proves that
equality holds in (2.3) and hence V= VPM.

Remark 3. If V is as in the above theorem then we have shown in Theorem 2, part
(iii) of Section 1 that the residuce field of V is a simple transcendental extension of ko(x).

Theorem 4. Let V be an extension of v0 to K0(x) with value group Z and residue field
a simple transcendental extension of k0 then either V=V0 or V = VPix) for some monk
linear polynomial P(x) over o.
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Proof. If x is transcendental over fe0 then by the remark in the end of Section 1,
V=V0. Suppose now that x is algebraic over k0, therefore x is in k0. So the minimal
polynomial of x over fc0 is a linear polynomial. The desired assertion now follows
immediately from Theorem 3.

3. Method of construction of valuations with residue field transcendental over k0

Notation and assumptions are as in the previous section. Now we assume that k0 is a
perfect field. Let V be an extension of v0 to K0(x) with value group Z and residue field
A transcendental over k0. By the Ruled Residue theorem [5], there exists a finite
extension /q of k0 such that A = kl(t) with t transcendental over k0. If kl = k0, then by
Theorem 4, either V=V0 or V = VP(X) where P(x) is a linear polynomial over o. Suppose
now that kt is a proper extension of k0. Since k0 is perfect, therefore there exists y in
K0(x) such that V(y) = 0 and kl = k0(y). Then y does not belong to Ko, so Ko(x) is a
finite extension of K0(y). Let Vl denote the restriction of V to K0(y). The hypotheses of
Theorem 3 are clearly satisfied for the valuation Vx of K0(y), so by this theorem
Vt = VP(y) for some monic polynomial P(y) with coefficients in o. Thus the valuation V is
completely determined on K0{y).
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