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Abstract

The embedding problem of Markov chains examines whether a stochastic matrix P can
arise as the transition matrix from time 0 to time 1 of a continuous-time Markov chain.
When the chain is homogeneous, it checks if P = exp Q for a rate matrix Q with zero row
sums and non-negative off-diagonal elements, called a Markov generator. It is known
that a Markov generator may not always exist or be unique. This paper addresses finding
Q, assuming that the process has at most one jump per unit time interval, and focuses on
the problem of aligning the conditional one-jump transition matrix from time 0 to time
1 with P. We derive a formula for this matrix in terms of Q and establish that for any P
with non-zero diagonal entries, a unique Q, called the 1-generator, exists. We compare
the 1-generator with the one-jump rate matrix from Jarrow, Lando, and Turnbull (1997),
showing which is a better approximate Markov generator of P in some practical cases.
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1. Introduction

The embedding problem of Markov chains is a long-standing challenge. It involves inves-
tigating whether a given stochastic matrix P can be considered as the matrix of transition
probabilities from time 0 to time 1 of a continuous-time Markov chain. The problem was first
proposed by Elfving [12] with a first in-depth study by Kingman [24]. If the Markov chain
is homogeneous, this problem boils down to checking whether P is the exponential of some
matrix Q having all non-negative off-diagonal entries and zero row-sums, called a rate matrix.
This matrix Q then represents the transition rates of the underlying continuous-time homo-
geneous Markov chain (CTHMC). If exp Q = P for some rate matrix Q, it is said that P is
embeddable and that Q is a Markov generator of P. For the non-homogeneous case, it has
been proved that if P belongs to the interior of the set of embeddable matrices, then P is equal
to a finite product of exponentials of extreme rate matrices, i.e. rate matrices with only one
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The Markov chain embedding problem in a one-jump setting 675

off-diagonal element strictly positive; see [20]. This characterization is known as a Bang-Bang
representation.

The characterizations described above are general and theoretically significant, yet they
are difficult to verify practically. As of now, a complete solution to the embedding problem
in terms of the matrix elements remains to be found. Currently, embeddability criteria have
been established in the homogeneous case for chains up to four states; see [4], [5], [7], and
[21]. In the non-homogeneous case, research has focused on the Bang-Bang representation of
embeddable stochastic matrices, leading to more concrete results for the 3 × 3 case; see [13]
and [22]. In this paper we focus on the homogeneous embedding problem and will therefore
omit the word ‘homogeneous’.

The issue of embeddability presents significant challenges in various aspects. Even if P is
confirmed as embeddable, there could be more than one Markov generator associated with it.
Using a CTHMC as a foundational model necessitates decisions on handling non-embeddable
transition matrices or multiple Markov generators. In the case of non-embeddability, a regular-
ization algorithm is proposed to obtain a rate matrix Q that minimizes ‖P − exp Q‖; see [10],
[17], and [25]. When there are multiple Markov generators, the practitioner can try to identify
and select the rate matrix reflecting the nature of the system under study; see [28].

Rather than accounting for the system’s nature when determining an appropriate Markov
generator for P, model-specific embedding problems have recently been considered for certain
classes of stochastic matrices, leading to further results. For example, the elements of the tran-
sition matrix can be limited to certain values reflecting the characteristics of the system under
study; see [1], [2], [3], [19], and [27].

An alternative train of thought is to derive a rate matrix from the empirical transition
matrix based on the assumption that there is a maximum of one transition per unit of time.
Considering that a discrete-time Markov chain allows only one transition or jump per time
step, it seems reasonable to view the underlying continuous-time process through a similar
perspective. Furthermore, this one-jump hypothesis has not only theoretical but also practical
grounds. In financial risk management, credit rating migration models evaluate how borrowers
move between credit rating categories over time. These changes in credit ratings usually occur
gradually and infrequently. Similarly, in healthcare, transitions between health states occur
slowly over extended periods, resulting in infrequent state changes within short time intervals.
In their study of credit risk migration, Jarrow, Lando, and Turnbull (JLT) assume that each firm
has made zero or one transition per year; see [18]. Fundamentally, their approach designates
the empirical transition probability pij to represent the probability of jumping from state i to
state j by or before t = 1. This facilitates the formulation of an approximate Markov generator
for the empirical transition matrix in closed form.

In this study, we explore the one-jump hypothesis through a data-centric approach. Our only
assumption is that the sampled entities or individuals adhere to the one-jump hypothesis; we do
not presume any specific number of jumps for the entire population under study. Considering
that a CTHMC model allows for several jumps in any given period, this approach appears to
be more fitting if the goal is to employ the CTHMC to explore population dynamics. Hence
we study a conditional version of the embedding problem by aligning the empirical transi-
tion matrix with the conditional transition matrix over a single unit of time of the CTHMC
given the event that at most one jump has occurred during a unit length time interval. The
main result of this paper is that, regardless of the number of states, precisely one rate matrix
solves our conditional embedding problem in the case where the empirical transition matrix
has non-zero diagonal elements; see Theorem 3.2. We also describe how to obtain this rate
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matrix from the empirical transition matrix. In summary, the conditional embedding problem,
when considered in a one-jump context, yields a solution that avoids the regularization and
identification challenges associated with the original embedding problem.

Our paper is structured as follows. In Section 2 we formalize and define the notion of a con-
ditional one-step probability matrix given an event of interest. We derive an explicit expression
for the conditional transition probabilities for the event that the number of jumps between t and
t + 1 is zero or one. In Section 3 we dive into the conditional one-jump version of the embed-
ding problem, introducing and focusing on the concepts of 1-embeddability and 1-generator.
Our key finding in this section asserts that any stochastic matrix of order n with non-zero
diagonal elements is 1-embeddable and possesses a unique 1-generator. Section 4 highlights
the difference in one-jump setting approaches leading to the 1-generator and the rate matrix
QJLT derived by Jarrow et al. [18]. We also show which of these two matrices serves as a bet-
ter approximate Markov generator of the empirical transition matrix for a number of specific
cases. We conclude with a discussion in Section 5. The supporting lemmas and their proofs are
gathered in the Appendix.

2. Conditional transition probabilities

To state the conditional embedding problem, we first introduce the concept of conditional
transition probability.

Consider a continuous-time homogeneous Markov chain (‘CTHMC’) (Xt)t≥0 on a proba-
bility triple (�, F, P) with state space S = {1, 2, . . . , n}.
Definition 2.1. Let t ≥ 0 and Et ∈ F. We call the matrix PEt (t) with elements

pEt
ij (t) = P(Xt+1 = j | Xt = i, Et), i, j ∈ S,

the conditional transition probability matrix from time t to time t + 1 given the event Et of the
CTHMC.

Remark 2.1. The (classical) transition probabilities pij(t) = P(Xt+1 = j | Xt = i) can be
obtained using Et := �, i.e. pij(t) = p�

ij (t).

In this paper, for given t, the event of interest is the occurrence of at most one jump of the
CTHMC in the interval (t, t + 1], i.e. Et = {Nt+1 − Nt ≤ 1}, where Ns represents the number
of state changes (‘jumps’) of the CTHMC up to and including time s ≥ 0. For simplicity, we
denote P1(t) := PEt (t).

For a CTHMC with rate matrix Q, the connection between P1(t) = (p1ij (t)) and Q is
established by the following proposition.

Proposition 2.1. For a CTHMC with rate matrix Q = (qij), it holds that

p1ij (t) = p∗
ij∑

k∈S p∗
ik

for all i, j ∈ S and t ≥ 0,

where

p∗
ij =

{
qij τ (qii, qjj) if i �= j,

τ (qii, qii) if i = j,
(2.1)
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and where the function τ : R2 →R is defined as

τ (x, y) =
∫ 1

0
eux+(1−u)y du =

⎧⎨
⎩

ex − ey

x − y
if x �= y,

ex if x = y.
(2.2)

Proof. Using the definition of conditional probability, we have

P(A | B ∩ C) = P(A ∩ B | C)

P(B | C)
, if P(B | C) > 0,

whence

p1ij (t) = P(Xt+1 = j | Xt = i, Et) = P(Xt+1 = j, Et | Xt = i)

P(Et | Xt = i)
.

Let us denote

p∗
ij(t) := P(Xt+1 = j, Et | Xt = i). (2.3)

By the sum rule for disjoint events, we have

p1ij (t) = p∗
ij(t)∑

k∈S p∗
ik(t)

,

so it remains to be shown that p∗
ij(t) = p∗

ij for all i, j ∈ S , where p∗
ij is given by (2.1).

Denote S as the disjoint union of ST := {i ∈ S : qii < 0} (the subset of transient states)
and SA := {i ∈ S : qii = 0} (the subset of absorbing states). Let Yt := inf{s > 0: Xt+s �= Xt} be
the residual time in state Xt until the first jump after t. In a CTHMC, the holding times are
memoryless, hence the conditional distribution of Yt, given state Xt, does not depend on time t.
For k ∈ ST, let fk denote the conditional probability density function of Yt given Xt = k and Fk

its associated cumulative distribution function. Lastly, we shall write sij to denote the transition
probability from state i to state j conditional on transitioning out of state i.

We start with the case i, j ∈ ST, i �= j. Then (2.3) entails

p∗
ij(t) = P(Yt ≤ 1, Xt+Yt = j, Yt+Yt > 1 − Yt | Xt = i),

and hence, by marginalizing on Yt, we obtain

p∗
ij(t) =

∫ 1

0
P(Xt+u = j, Yt+u > 1 − u | Yt = u, Xt = i)fi(u) du

=
∫ 1

0
P(Yt+u > 1 − u | Xt+u = j, Yt = u, Xt = i) P(Xt+u = j | Yt = u, Xt = i)fi(u) du

=
∫ 1

0
(1 − Fj(1 − u)) sij fi(u) du.

Since both residual and holding times in a transient state k have an exponential distribution
with rate parameter −qkk and since sij = qij/−qii, we arrive at

p∗
ij(t) =

∫ 1

0
eqjj(1−u) qij

−qii
(−qii)e

qiiu du = qij

∫ 1

0
eqiiu+qjj(1−u) du = qij τ (qii, qjj) = p∗

ij,

where p∗
ij and τ are given by (2.1) and (2.2).
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We now turn to the case i ∈ ST and j ∈ SA. Then, using (2.3) and marginalizing on Yt, we
get

p∗
ij(t) = P(Yt ≤ 1, Xt+Yt = j | Xt = i)

=
∫ 1

0
P(Xt+u = j | Yt = u, Xt = i)fi(u) du

=
∫ 1

0
sij fi(u) du

=
∫ 1

0

qij

−qii
(−qii)e

qiiu du

= qij

∫ 1

0
eqiiu du = qijτ (qii, 0).

Consequently, p∗
ij(t) = qijτ (qii, qjj) = p∗

ij, as qjj = 0.

When i ∈ SA and j ∈ S , j �= i, we obviously have p∗
ij(t) = 0. Hence

p∗
ij(t) = qijτ (qii, qjj) = p∗

ij,

as qij = 0 under these conditions.
Finally, if i ∈ ST, (2.3) yields

p∗
ii(t) = P(Yt > 1 | Xt = i) = 1 − Fi(1) = eqii = τ (qii, qii) = p∗

ii,

and if i ∈ SA, then
p∗

ii(t) = 1 = τ (0, 0) = τ (qii, qii) = p∗
ii. �

We note that Minin and Suchard [26] arrive at the same formula for p∗
ij, using a matrix dif-

ferential equation involving the matrix with elements qij(k, t) representing the joint probability
of transitioning in k jumps from state i to state j within a time-interval of length t.

According to Proposition 2.1, the matrix P1(t) does not depend on t. We will therefore write
P1 := P1(t) and refer to it as a conditional one-jump transition matrix.

Corollary 2.1. For all i ∈ S , we have p1ii > 0.

Proof. This follows from the fact that p∗
ii = τ (qii, qii) = eqii > 0. �

Remark 2.2. Corollary 2.1 can also be justified as follows. The only way to go from state i at
time t to state i at time t + 1, given the event {Nt+1 − Nt ≤ 1}, is to stay in that state for the
entire time interval. The probability of this event is non-zero due to the exponential distribution
governing the holding time in a state.

According to Proposition 2.1, the conditional one-jump transition matrix P1 is fully spec-
ified by the rate matrix Q of the CTHMC. In what follows, and when needed, we explicitly
indicate this dependence using the notation P1(Q).

3. Conditional embedding problem

The following question then naturally arises. Given a stochastic matrix P, is there a rate
matrix Q such that P1(Q) = P? And if so, is this rate matrix Q unique?

It will be helpful to introduce some terminology before proceeding.
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Definition 3.1. A stochastic matrix P is called 1-embeddable if and only if there exists a
CTHMC with rate matrix Q satisfying P = P1(Q). This rate matrix is called a 1-generator
of P.

For a transition matrix P that is not embeddable, a 1-generator can be seen as a solution to
a conditional version of the embedding problem where the rate matrix Q satisfies P1(Q) = P.
Corollary 2.1 establishes that a 1-embeddable stochastic matrix must not contain a zero on
its main diagonal. Consequently, our subsequent analysis will focus on stochastic matrices
P = (pij) where pii > 0 for all i. Note that this necessary condition for 1-embeddability is not
more restrictive than the necessary embedding condition

∏n
i=1 pii ≥ det P > 0 as formulated

by Goodman in [16].
Interestingly, the off-diagonal elements of a 1-generator of P are uniquely defined by its

diagonal elements and the elements of P. To express this relationship, we introduce the function
ρ : R2+ →R+, defined as follows:

ρ(x, y) = e

τ (1 − ln x, 1 − ln y)
=
⎧⎨
⎩xy

ln x − ln y

x − y
if x �= y,

x if x = y.
(3.1)

Proposition 3.1. Suppose P = (pij) is an n × n stochastic matrix that satisfies pii > 0 for all i.
If Q = (qij) is a 1-generator of P, then

qij = ρ(θi, θj)pij

θipii
for all i �= j,

where θi = e1−qii for all i and the function ρ : R2+ →R+ is given by (3.1).

Proof. Suppose Q is a 1-generator of P = (pij) and let i �= j. Then, according to Proposition
2.1, we have

pij

pii
= p1ij

p1ii
= p∗

ij

p∗
ii

= qijτ (qii, qjj)

τ (qii, qii)
.

Consequently, since τ (qii, qii) = eqii = e/θi and τ (qii, qjj) = τ (1 − ln θi, 1 − ln θj) =
e/ρ(θi, θj), we get

qij = τ (qii, qii)pij

τ (qii, qjj)pii
= (e/θi)pij

(e/ρ(θi, θj))pii
= ρ(θi, θj)pij

θipii
for all i �= j. �

The outcome of Proposition 3.2 provides a requirement concerning the diagonal elements
of any 1-generator of P.

Proposition 3.2. Let P = (pij) be an n × n stochastic matrix that satisfies pii > 0 for all i. If
Q = (qij) is a 1-generator of P, then the n-tuple (e1−q11 , . . . , e1−qnn ) is a fixed point of the
vector function T = (T1, . . . , Tn) : Rn+ →R

n+, which is defined as

Ti(x1, . . . , xn) = exp W0

(
1

pii

∑
j∈S

pijρ(xi, xj)

)
for all i ∈ S, (3.2)

where W0 represents the principal branch of the Lambert W function, and where the function
ρ : R2+ →R+ is defined as in (3.1).
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Proof. Denote θi = e1−qii for all i ∈ S . Then θi > 0 and qii = 1 − ln θi for all i. Using
Proposition 3.1 and the fact that Q is a rate matrix, we then have

−1 + ln θi = −qii =
∑

j∈S\{i}
qij =

∑
j∈S\{i}

ρ(θi, θj)pij

θipii
for all i ∈ S,

which can be rewritten, using the fact that ρ(θi, θi) = θi, as

θi ln θi = 1

pii

∑
j∈S

pijρ(θi, θj) for all i ∈ S . (3.3)

Using the principal branch W0 of the Lambert W function (which is the multi-valued inverse
of the function w 
→ wew (w ∈C); see [9]), we find that

ln θi = W0

(
1

pii

∑
j∈S

pijρ(θi, θj)

)
for all i ∈ S,

which proves the result. �

Propositions 3.1 and 3.2 imply that a 1-generator of P defines a fixed point of the vector
function T. The reverse is also true, as stated in the following proposition.

Proposition 3.3. Suppose P = (pij) is a stochastic matrix that satisfies pii > 0 for all i ∈ S . Let
θ = (θ1, . . . , θn) be a fixed point of the vector function T : Rn+ →R

n+, defined in (3.2). Then
the matrix Q = (qij) with elements

qii = 1 − ln θi, qij = ρ(θi, θj)pij

θipii
, i �= j, (3.4)

where ρ is defined by (3.1), is a 1-generator of P.

Proof. Let θ = (θ1, θ2, . . . , θn) ∈R
n+ be a fixed point of T and let the matrix Q be defined

by (3.4). We first show that Q is a rate matrix. By (3.4), all off-diagonal elements of Q are
non-negative. Since Ti(θ) = θi, we have

ln θi = W0

(
1

pii

∑
j∈S

pijρ(θi, θj)

)
,

yielding

θi ln θi = 1

pii

∑
j∈S

pijρ(θi, θj),

by definition of the Lambert W0 function. Using (3.4) and since ρ(θi, θi) = θi, we can rewrite
this equation as

θi(1 − qii) = θi + 1

pii

∑
j∈S\{i}

qijθipii.

After simplification, we get qii = −∑
j∈S\{i} qij. Thus Q has zero row sums. Consequently, Q

is a rate matrix.
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It remains to be proved that p1ij (Q) = pij for all i and j. Let p∗
ij be defined by (2.1) and (2.2).

Using (3.4) and (3.1), we have

p∗
ij = qijτ (qii, qjj) = ρ(θi, θj)pij

θipii
τ (1 − ln θi, 1 − ln θj) = e pij

θipii
, if i �= j,

and
p∗

ii = τ (qii, qii) = eqii = e1−ln θi = e

θi
for all i,

hence
p∗

ij =
e pij

θipii
for all i and j.

Consequently, by Proposition 2.1 and since P is a stochastic matrix, we now have

p1ij (Q) = p∗
ij∑

k∈S p∗
ik

= e pij

θipii

/
e

θipii
= pij,

which concludes the proof. �

By combining Propositions 3.1, 3.2, and 3.3, we establish a one-to-one relationship between
the 1-generators of P and the fixed points of the vector function T. The subsequent lemma
describes the properties of the vector function T, which are crucial to determining its number
of fixed points.

Lemma 3.1. Let P = (pij) be an n × n stochastic matrix. Let δ = min{pii, i ∈ S} and � =
max{pii, i ∈ S}. Suppose pii > 0 for all i. Consider the vector function T : Rn+ →R

n+, defined
as in (3.2), and the set

X = {(x1, . . . , xn) ∈R
n : e1/� ≤ xi ≤ e1/δ ∀i}. (3.5)

Then

(i) every fixed point of T belongs to X .

(ii) T maps X into X .

Proof. (i) Let θ = (θ1, . . . , θn) ∈R
n+ be a fixed point of T. Let m = min{θ1, . . . , θn} and

M = max{θ1, . . . , θn}. We shall prove that m ≥ e1/� and that M ≤ e1/δ .

Let r be an index such that θr = m. Then, by Lemma A.2(iv), we have ρ(θr, θj) ≥ m for all
j. Since Tr(θ ) = θr, we have

ln θr = W0

(
1

prr

∑
j∈S

prjρ(θr, θj)

)
,

yielding

θr ln θr = 1

prr

∑
j∈S

prjρ(θr, θj)

by definition of the Lambert W0 function. Using the fact that
∑

j∈S prj = 1, we then obtain

m ln m = θr ln θr = 1

prr

∑
j∈S

prjρ(θr, θj) ≥ m

prr
≥ m

�
,
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which implies ln m ≥ 1/� and thus m ≥ e1/�. To prove the second inequality, let s be an index
such that θs = M. Then, by Lemma A.2(iv), we have ρ(θs, θj) ≤ M for all j. Hence, by Ts(θ ) =
θs and the unit row sum property of P,

M ln M = θs ln θs = 1

pss

∑
j∈S

psjρ(θs, θj) ≤ M

pss
≤ M

δ
,

which yields ln M ≤ 1/δ and thus M ≤ e1/δ .
(ii) Let (x1, . . . , xn) ∈X . By Lemma A.2(iv),

e1/� ≤ min{xi, xj} ≤ ρ(xi, xj) ≤ max{xi, xj} ≤ e1/δ for all i and j.

Then, since P has unit row sums, we have for all i

e1/�

�
≤ e1/�

pii
≤ 1

pii

∑
j∈S

pijρ(xi, xj) ≤ e1/δ

pii
≤ e1/δ

δ
.

Now, W0 and exp are increasing functions, and therefore

exp W0

(
1

�
e1/�

)
≤ Ti(x1, . . . , xn) ≤ exp W0

(
1

δ
e1/δ

)
for all i.

The result now follows by applying the property W0(xex) = x for x > 0. �
Lemma 3.1 implies that the maximal and minimal diagonal elements of P impose a lower

and upper bound on the diagonal elements of the 1-generators of P.

Proposition 3.4. Let P = (pij) be an n × n stochastic matrix. Let � = max{pii, i ∈ S} and δ =
min{pii, i ∈ S}. Suppose pii > 0 for all i. Then, if Q = (qij) is a 1-generator of P, we have

1 − 1

δ
≤ qii ≤ 1 − 1

�
for all i.

Proof. If Q = (qij) is a 1-generator of P, we have by Proposition 3.2 that the vector
(θ1, . . . , θn), where θi = e1−qii for all i, is a fixed point of T. Applying Lemma 3.1(i), we
have e1/� ≤ θi ≤ e1/δ for all i, from which the result now follows. �

With regard to the number of fixed points of T, we now prove the following important
result.

Theorem 3.1. Suppose P = (pij) is an n × n stochastic matrix that satisfies pii > 0 for all i.
Then the vector function T : Rn+ →R

n+, defined as in (3.2), has a unique fixed point.

Proof. According to Lemma 3.1(ii), T maps the compact convex set X ⊂R
n+, defined by

(3.5), into itself. In addition, T is continuous as the function ρ, defined by (3.1), is continuous
(Lemma A.2(ii)) and continuity is preserved by linear combination and composition of contin-
uous functions. Hence, according to the Brouwer fixed point theorem, T has a fixed point. By
the definition of T, this fixed point must have all positive components. We now show that the
function g : Rn+ →R

n defined as g = T − Id, where Id : Rn+ →R
n+ is the identity mapping,

satisfies all conditions of Theorem 3.1 in [23]. This theorem presents sufficient conditions for
the function g to have at most one vector x ∈R

n+ with g(x) = (0, . . . , 0). These conditions
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are that (a) g is quasi-increasing and (b) g is strictly R-concave. Both (a) and (b) are proved
in the Appendix; see Lemma A.4. So, we have established that T has precisely one fixed
point. �

We are now ready to state and prove our main result in the following theorem.

Theorem 3.2. Suppose P = (pij) is an n × n stochastic matrix that satisfies pii > 0 for all i.
Then P has precisely one 1-generator. Moreover, this 1-generator Q = (qij) is given by

qii = 1 − ln θi, qij = ρ(θi, θj)pij

θipii
, i �= j, (3.6)

where the scalar function ρ : R2+ →R+ is defined by (3.1), and (θ1, . . . , θn) is the unique fixed
point of the vector function T : Rn+ →R

n+ defined by (3.2).

Proof. We first prove that P has a 1-generator. By Theorem 3.1, the vector function T has
a unique fixed point θ = (θ1, θ2, . . . , θn) ∈R

n+. Starting from θ , construct the matrix Q = (qij)
according to (3.6). Then Q is a 1-generator of P, by Proposition 3.3.

To prove the uniqueness of the 1-generator, suppose that P has 1-generators R = (rij)
and S = (sij). Then, by Proposition 3.2, the vectors θR = (e1−r11 , . . . , e1−rnn ) and θS =
(e1−s11 , . . . , e1−snn ) are fixed points of the vector function T. By Theorem 3.1, θR = θS. Hence,
by Proposition 3.1, we must have R = S.

Finally, the requirement that the elements of a 1-generator comply with (3.6) is inferred
from Propositions 3.1 and 3.2. The proof is now complete. �

Since pii > 0 for all i is a necessary condition for embeddability (see [16]), Theorem 3.2
immediately establishes a link between embeddability and 1-embeddability.

Corollary 3.1. An embeddable stochastic matrix is 1-embeddable.

According to Theorem 3.2, the unique 1-generator is entirely characterized by the fixed
point of the function T : X →X . When T acts as a contraction on X , the Banach fixed
point theorem ensures the convergence of the fixed point iteration method, which can then
be used to estimate (θ1, . . . , θn). In the case when not all diagonal elements of P are equal,
Proposition 3.5 produces a necessary condition for T to behave as a contraction under the infin-
ity vector norm. This condition is based on the largest and smallest diagonal elements of the
matrix P.

Proposition 3.5. Let P = (pij) be an n × n stochastic matrix such that 0 < δ < �, where δ =
min{pii, i ∈ S} and � = max{pii, i ∈ S}. Let the set X be defined by (3.5) and the function T
as in (3.2). Then, with respect to the infinity norm, the function T is Lipschitz-continuous on X
with Lipschitz constant

K = 1 + (1/δ − 1)C(α)

1 + 1/�
,

where

C(α) = −1 + α + 1

α − 1
ln α and α = e1/δ−1/�.

Proof. Using Lemmas A.6 and A.7, we can prove that

|Ti(x) − Ti(y)| ≤ K‖x − y‖∞ for all x, y ∈X and for all i,
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where

K = 1 + (1/δ − 1)C(α)

1 + 1/�
, C(α) = −1 + α + 1

α − 1
ln α and α = e1/δ−1/�.

For more details we refer the reader to the Appendix. �

If all diagonal elements of P are identical, there is a closed-form expression for the unique
1-generator, which is detailed in the following proposition. Such matrices occur as substitution
matrices in Markov models for DNA evolution, among others. See [6] for a discussion of the
embeddability of such matrices in the context of the so-called JC69, K80, and K81 models.

Proposition 3.6. Suppose P = (pij) is an n × n stochastic matrix satisfying pii = p > 0 for all i.
Then its unique 1-generator Q is given by Q = 1

p (P − I), where I is the n × n identity matrix.

Proof. Let Q = (qij) be a 1-generator of P. It follows from Proposition 3.4 that qii = 1 − 1/p
for all i. Moreover, if i �= j, Theorem 3.2 and equation (3.1) imply that

qij = ρ(e1−qii, e1−qjj)pij

e1−qiipii
= ρ(e1/p, e1/p)pij

e1/pp
= pij

p
.

In summary, we have

qii = 1 − 1

p
= 1

p
(pii − 1), qij = 1

p
pij, i �= j,

concluding the proof. �

4. Comparison of alternative one-jump approaches and illustrations

Consider a continuous-time Markov chain that is discretely observed at times t =
0, 1, 2, . . . , T (T ≥ 2). Let P be the empirical transition matrix estimated from these obser-
vations. If P is not embeddable, there is no Markov generator of P, making it a challenge to
find an approximate generator. However, if one assumes that the likelihood of more than one
transition occurring between two consecutive observations is very low – a scenario referred to
as a one-jump setting – it is possible to find a unique rate matrix serving as an approximate
generator of P.

Let us adopt the notation QJLT, employed in [17], to denote the one-jump rate matrix of
Jarrow et al. [18]. Furthermore, we denote Q1 for the 1-generator of P. In this section we
discuss the specifics of both approaches and compare the resulting rate matrices QJLT and
Q1 as approximate generators of P. To effectively represent the distinction between the two
approaches, we use the recursively defined jump times τ0 := 0 and τk = inf{t ≥ τk−1 : Xt �=
Xτk−1} (k = 1, 2, . . .) of the associated CTHMC (Xt)t≥0.

In their interpretation of the one-jump scenario, Jarrow et al. [18] deduce the rate matrix
QJLT = (qJLT

ij ) directly from P = (pij) through

qJLT
ii = ln pii, qJLT

ij =
⎧⎨
⎩

pij ln pii

pii − 1
if 0 < pii < 1,

0 if pii = 1,

i �= j, (4.1)

assuming 0 < pii for all i. From a probabilistic perspective considering jump times, the
elements qJLT

ij are defined as the solutions to the equations

P(τ1 > 1 | X0 = i) = pii, P(τ1 ≤ 1, Xτ1 = j | X0 = i) = pij, i �= j. (4.2)

https://doi.org/10.1017/jpr.2024.96 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.96


The Markov chain embedding problem in a one-jump setting 685

Essentially, their one-jump approach designates pij to represent the probability of jumping from
state i to state j at or before time t = 1.

In this paper we derive the 1-generator via an alternative approach, as expressed by

P(X1 = j | X0 = i, τ2 > 1) = pij for all i and j, (4.3)

which implies that pij represents the likelihood of going from state i at t = 0 to state j at t = 1
via at most one jump before or at t = 1. Hence the difference between the methods (4.2) and
(4.3) depends on how the empirical transition probability matrix P is viewed in the scenario of a
single jump. Both approaches have the merit of bypassing the identification and regularization
stages (see [10], [17], and [25]) associated with the embedding problem.

In regularization problems where the transition matrix P is not embeddable, the goal is
to find an approximate Markov generator Q for P by minimizing the discrepancy between
exp Q and P. The magnitude of this difference ‖P − exp Q‖ depends on the norm used.
Davies [10] explored the use of the infinity norm in addressing the regularization problem.
For an n × n matrix M = (mij), the infinity norm is given by ‖M‖∞ = max1≤i≤n

∑n
j=1 |mij|.

This norm proves useful in comparing transition matrices, since both P and exp Q consist of
rows that are stochastic vectors. The Manhattan or Taxicab distance between the correspond-
ing rows, the ith rows in particular, i.e.

∑n
j=1 |Pij − ( exp Q)ij|, is a simple indicator of the

discrepancy between the transition probability distributions from state i. Consequently, the
maximum absolute row sum of P − exp Q offers a distinct measure to evaluate the differ-
ence between P and exp Q. The infinity norm will be used consistently in the remainder of
this paper.

An interesting question arises as to whether systematically exp QJLT or exp Q1 is the best
approximation to P, or whether this answer depends on the transition matrix P. In the follow-
ing sections, we analyse the discrepancies ‖P − exp QJLT‖∞ and ‖P − exp Q1‖∞ for specific
categories of the transition matrix P.

4.1. Credit rating transition matrix

Consider the empirical transition matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8910 0.0963 0.0078 0.0019 0.0030 0.0000 0.0000 0.0000
0.0086 0.9010 0.0747 0.0099 0.0029 0.0029 0.0000 0.0000
0.0009 0.0291 0.8896 0.0649 0.0101 0.0045 0.0000 0.0009
0.0006 0.0043 0.0656 0.8428 0.0644 0.0160 0.0018 0.0045
0.0004 0.0022 0.0079 0.0719 0.7765 0.1043 0.0127 0.0241
0.0000 0.0019 0.0031 0.0066 0.0517 0.8247 0.0435 0.0685
0.0000 0.0000 0.0116 0.0116 0.0203 0.0754 0.6492 0.2319
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is derived from Table 3 in Jarrow et al. [18, p. 506]. We have made minor adjustments to
five entries on the main diagonal to ensure that all row sums are equal to one, as some rows in
Table 3 did not add up to one because of rounding. For this matrix, the vector function T : X →
X , defined by (3.2), is a contraction mapping with Lipschitz constant K < 1 (K ≈ 0.7833); see
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Proposition 3.5. Using fixed-point iteration and (3.6), we find that the unique 1-generator,
truncated to four decimal places, is given by

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1221 0.1075 0.0088 0.0022 0.0036 0.0000 0.0000 0.0000
0.0096 −0.1114 0.0836 0.0114 0.0035 0.0034 0.0000 0.0000
0.0010 0.0325 −0.1271 0.0752 0.0122 0.0053 0.0000 0.0009
0.0007 0.0049 0.0755 −0.1874 0.0798 0.0192 0.0024 0.0049
0.0005 0.0026 0.0094 0.0886 −0.2759 0.1301 0.0178 0.0270
0.0000 0.0022 0.0036 0.0079 0.0647 −0.2121 0.0592 0.0746
0.0000 0.0000 0.0152 0.0157 0.0287 0.1031 −0.4460 0.2834
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In contrast, the rate matrix QJLT, published in Jarrow et al. [18] and defined by equation
(4.1), is

QJLT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1154 0.1020 0.0083 0.0020 0.0032 0.0000 0.0000 0.0000
0.0091 −0.1043 0.0787 0.0104 0.0031 0.0031 0.0000 0.0000
0.0010 0.0308 −0.1170 0.0688 0.0107 0.0048 0.0000 0.0010
0.0007 0.0047 0.0714 −0.1710 0.0701 0.0174 0.0020 0.0049
0.0005 0.0025 0.0089 0.0814 −0.2530 0.1180 0.0144 0.0273
0.0000 0.0021 0.0034 0.0073 0.0568 −0.1927 0.0478 0.0753
0.0000 0.0000 0.0143 0.0143 0.0250 0.0929 −0.4320 0.2856
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We find ‖P − exp Q1‖∞ ≈ 0.0247 and ‖P − exp QJLT‖∞ ≈ 0.0277 (accurate to four deci-
mal places). Hence it appears that Q1 is a better approximate generator of P than QJLT, when
using the infinity norm.

Observe that the magnitudes of the diagonal entries in QJLT are smaller compared to those in
the 1-generator. This observation persists across all matrices P with non-zero diagonal entries,
as demonstrated by the following proposition.

Proposition 4.1. Suppose P = (pij) is an n × n stochastic matrix that satisfies pii > 0 for all i.
Then q1ii ≤ qJLT

ii for all i.

Proof. By Theorem 3.2, q1ii = 1 − ln θi for all i, where θ = (θ1, . . . , θn) is the unique fixed
point of the vector function T = (T1, . . . , Tn), defined by (3.2). For i ∈ S , we have by (3.3) that

θi ln θi = 1

pii

∑
j∈S

pijρ(θi, θj).

Using the definition of the function ρ in (3.1), the above equation can be rewritten as(
θi

e
− 1

)
ρ(θi, e) = θi ln θi − θi = 1

pii

∑
j∈S\{i}

pijρ(θi, θj). (4.4)

Now, since 1 − ln θj = q1jj ≤ 0, we have θj ≥ e for all j. By Lemma A.2(iii), ρ(θi, θj) ≥ ρ(θi, e)
for all j. Hence, from (4.4), it follows that(

θi

e
− 1

)
ρ(θi, e) ≥ 1

pii

∑
j∈S\{i}

pijρ(θi, e) =
(

1

pii
− 1

)
ρ(θi, e),
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which simplifies to θi ≥ e/pii. Taking logarithms from both sides of this inequality and using
q1ii = 1 − ln θi, we arrive at q1ii ≤ ln pii = qJLT

ii . �

4.2. Transition matrices with identical diagonal entries

When the stochastic matrix P has identical diagonal entries pii = p > 0, for all i,
Proposition 3.6 indicates that the 1-generator can be explicitly represented as

Q1 = 1

p
(P − I),

with I denoting the n × n identity matrix. Furthermore, by (4.1), we have

QJLT = ln p

p − 1
(P − I).

Both Q1 and QJLT share a similar structure; indeed, they can be expressed as

Q1 = Q
(

1

p

)
and QJLT = Q

(
ln p

p − 1

)
,

where

Q(k) = k(P − I), k ≥ 0. (4.5)

In this section, we explore which matrix, either Q1 or QJLT, is the better approximate generator
of P according to the infinity norm.

For the 2 × 2 case,

P =
[

p 1 − p

1 − p p

]
, 0 < p < 1,

it is known from [24] that P is embeddable if and only if its trace exceeds 1, i.e. p > 1
2 . The

unique Markov generator of P is then given by

Q
(

ln (2p − 1)

2(p − 1)

)
;

see [28, p. 392]. If P is not embeddable (p ≤ 1
2 ), it turns out that ‖P − exp Q1‖∞ < ‖P −

exp QJLT‖∞, an inequality that even holds for all p ∈ (0, 1). This is proved in Lemma A.8 in
the Appendix.

For the n × n case where n ≥ 3, the answer to our question seems no longer clear-cut. For
instance, if

P =
⎡
⎢⎣

p 1 − p 0
1
2 (1 − p) p 1

2 (1 − p)

0 1 − p p

⎤
⎥⎦, 0 < p < 1, (4.6)

we have ‖P − exp Q1‖∞ < ‖P − exp QJLT‖∞; see Lemma A.9. However, if

P =
⎡
⎢⎣

p 0 1 − p

0 p 1 − p

0 1 − p p

⎤
⎥⎦, 0 < p < 1, (4.7)
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we have the reversed inequality, i.e. ‖P − exp Q1‖∞ > ‖P − exp QJLT‖∞; see Lemma A.10.
We note that the transition matrices of (4.6) and (4.7) are not embeddable, since for some
i �= j we have Pij = 0 but (P2)ij > 0; see [8, Theorem 5, p. 126], highlighting the importance of
investigating Q1 and QJLT as approximate Markov generators.

5. Discussion and future research avenues

From a one-jump perspective, we obtain a modified version of the Markov embedding prob-
lem, producing for each n × n transition matrix P having non-zero diagonal elements a unique
rate matrix Q1. If P is embeddable, its Markov generator does not necessarily equal Q1.
However, if the one-jump assumption is acceptable, we might expect the Markov generator
to be close to Q1 in some sense.

The existence and uniqueness of a 1-generator is an advantage of our conditional embed-
ding approach because neither regularization nor identification is needed. For some types of
transition matrix (as in Proposition 3.6) there exists a closed form for the 1-generator; in other
situations the 1-generator can be determined based on Theorem 3.2.

Comparing our conditional one-jump approach with that of Jarrow et al. in [18], we observe
reduced discrepancies ‖P − exp Q‖∞ for certain transition matrices P when using Q = Q1

over Q = QJLT. Future research could focus on quantifying the improvements achieved by
using Q1 over QJLT. It would also be valuable to determine which transition matrices P are
better approximately generated by Q1 compared to QJLT. Furthermore, exploring how the devi-
ations of exp (Q1) and exp (QJLT) from P vary with different matrix norms beyond the infinity
norm used in this study could provide deeper insights. In addition to the comparison based on
the discrepancies ‖P − exp Q‖∞, it would also be interesting to consider other criteria, such
as the extent to which Q1 and QJLT are in line with the specificity of the model. Moreover, for
an embeddable transition matrix P, a comparison of Q1 and QJLT with the Markov generators
of P could be of interest.

To study the dynamics of CTHMCs with Markov generators Q1 and QJLT, we can evaluate
the mobility index M(Q) = − 1

n TrQ (see [15]), where Q is an n × n rate matrix and TrQ its
trace. Proposition 4.1 indicates M(Q1) > M(QJLT), suggesting more dynamic transitions in the
CTHMC governed by Q1. More comparative research on Q1 and QJLT using other mobility
indices would be valuable.

Appendix. Lemmas and proofs

Lemma A.1. The function f with f (t) = eW0(t), t ≥ 0, is strictly concave.

Proof. By taking second-order derivatives and since

W ′
0(t) = W0(t)

t(1 + W0(t))
and W ′′

0 (t) = −2W0(t)2 − W0(t)3

t2(1 + W0(t))3

(see e.g. [11]), we find

f ′′(t) = f (t)
(
W ′

0(t)2 + W ′′
0 (t)

)= f (t)
−W0(t)2

t2(1 + W0(t))3
,

which is negative for all t > 0 since W0(t) > 0 if t > 0. �
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Let o = (0, . . . , 0) ∈R
n. In what follows, we consider the partial ordering of Rn induced

by componentwise ordering. That is, if x = (x1, . . . , xn) ∈R
n, and y = (y1, . . . , yn) ∈R

n, we
write x � y if and only if xi ≤ yi for all i. Likewise, we write x � o if and only if xi > 0 for all i.

Lemma A.2. The function ρ : R2+ →R+, defined as in (3.1), satisfies the following properties:

(i) ρ is linearly homogeneous, i.e. ρ(λx) = λρ(x) for all x ∈R
2+ and λ > 0,

(ii) ρ is continuous on R
2+,

(iii) ρ is increasing, i.e. ρ(x) ≤ ρ(y) for all x, y ∈R
2+ with x � y,

(iv) min{x, y} ≤ ρ(x, y) ≤ max{x, y} for all (x, y) ∈R
2+,

(v) ρ is concave.

Proof. Let u = (u1, u2) ∈R
2+. It is easy to see that ρ(u) = u2f (u1/u2) = u1f (u2/u1), where f

is the continuous function defined by

f (t) =
⎧⎨
⎩

t ln t

t − 1
if t > 0 and t �= 1,

1 if t = 1.

Property (i) follows directly from the above. Property (ii) is a direct consequence of the above.
For property (iii), by standard calculus, we have

f ′(t) =
⎧⎨
⎩

t − 1 − ln t

(t − 1)2
if t > 0 and t �= 1,

1/2 if t = 1,

hence f is (strictly) increasing on the positive real half-line since ln t < t − 1 for all t > 0 with
t �= 1. Now, take x = (x1, x2) and y = (y1, y2), so that o ≺ x � y. Then, as f is increasing, ρ(x) =
x2f (x1/x2) ≤ x2f (y1/x2) = y1f (x2/y1) ≤ y1f (y2/y1) = ρ(y).

(iv) Consider the case 0 < x ≤ y. Since f is increasing on R+, we have

x = xf (1) ≤ xf (y/x) = ρ(x, y) = yf (x/y) ≤ yf (1) = y.

The result for the case 0 < y ≤ x is proved analogously.
(v) Since ρ(x, y) = xρ(1, y/x) by the homogeneity property (i) from Lemma A.2, ρ is

the perspective of the continuous function t 
→ f (t) = ρ(1, t). A straightforward computation
reveals

f ′′(t) = g(t)

(t − 1)3
,

where g(t) = 1/t − t + 2 ln t. Since

g′(t) = − (t − 1)2

t2
< 0 for all t > 0,

we have g(t) > g(1) = 0 for all 0 < t < 1 and g(t) < g(1) = 0 for all t > 1. Hence f ′′(t) < 0
for all t > 0, t �= 1. Therefore f is concave, so ρ is concave as the perspective of a concave
function. �
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Lemma A.3. The vector function T : Rn+ →R
n+ from Proposition 3.2 is increasing, i.e. T(x) �

T(y) for all x, y ∈R
n+ with x � y.

Proof. Let i ∈ {1, . . . , n} and take x, y ∈R
n+ so that x � y. Denote

Fi(u) = 1

pii

(
n∑

j=1

pijρ(ui, uj)

)
for u = (u1, . . . , un).

By Lemma A.2(iii) we have Fi(x) ≤ Fi(y), which yields Ti(x) = eW0(Fi(x)) ≤ eW0(Fi(y)) = Ti(y)
since the principal branch W0 of the Lambert W function is increasing (see e.g. [9]). �

Lemma A.4. Let the vector function g : Rn+ →R
n given by g(x) = T(x) − x for all x � o,

where the vector function T : Rn+ →R
n+ is defined as in (3.2). Then g = (g1, . . . , gn) is

(i) quasi-increasing, i.e. for all i it holds that o ≺ x � y and xi = yi imply gi(x) ≤ gi(y),

(ii) strictly R-concave, i.e. if x � o, g(x) = o and 0 < λ < 1, then g(λx) � o.

Proof. (i) Take i ∈ {1, . . . , n} and suppose that o ≺ x � y with xi = yi. Then gi(x) ≤ gi(y),
since xi = yi and Ti(x) ≤ Ti(y) (Lemma A.3).

(ii) Let x = (x1, . . . , xn) � o be such that g(x) = o. Let 0 < λ < 1 and take i ∈ {1, . . . , n}.
Denote

Fi(x) = 1

pii

(
n∑

j=1

pijρ(xi, xj)

)
.

By Lemma A.2(i), Fi(λx) = λFi(x). Hence

Ti(λx) = eW0(Fi(λx)) = eW0(λFi(x)) > λeW0(Fi(x)) = λTi(x),

where the inequality follows from the fact that the function t 
→ eW0(t) is strictly concave
(Lemma A.1) and W0(0) = 0. Consequently, for all i,

gi(λx) = Ti(λx) − λxi > λ(Ti(x) − xi) = λgi(x) = 0,

i.e. g(λx) � o. �

Lemma A.5. For all 0 < p < 1, it holds that

(i) 1 + e2−2/p − 2p > 0,

(ii) 1 − e1−1/p < 4
3 (1 − p).

Proof. (i) Let f (t) = 1 + e2−2/t − 2t, which is continuous on the half-open interval (0, 1].
A straightforward calculation reveals f ′(t) = 2t−2(e2−2/t − t2) and f ′′(t) = 4t−4(1 − t)e2−2/t.
So, f ′′(t) > 0 for all t ∈ (0, 1). Consequently, f ′(t) < 0 for all t ∈ (0, 1) because f ′ increases
monotonically on (0,1) and f ′(1) = 0. Hence f is monotonically decreasing on (0,1). The result
now follows from the fact that f (1) = 0.

(ii) Consider the function f (t) = 4
3 (1 − t) − 1 + e1−1/t which is differentiable on R+ \ {0}.

Let p0 be a critical point of f , then f ′(p0) = − 4
3 + e1−1/p0p−2

0 = 0, yielding e1−1/p0 = 4
3 p2

0.
Clearly p0 �= 1

2 , and hence

f (p0) = 4

3
(1 − p0) − 1 + 4

3
p2

0 = 4

3

(
1

4
− p0 + p2

0

)
= 4

3

(
1

2
− p0

)2

> 0.
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So, all critical points of f have positive function values. In addition, we have f (1) = 0 and
limt→0+ f (t) = 1/3 > 0. Therefore f (t) > 0 for all t ∈ (0, 1). �

Lemma A.6. For all x, y ≥ 0, x �= y, it holds that

|eW0(x) − eW0(y)| < |x − y|
1 + min{W0(x), W0(y)} .

Proof. Assume x, y ≥ 0 and x �= y. To simplify, consider the function f (t) = eW0(t) where
t ≥ 0. Given that W0 is a monotonically increasing function, it follows that f is also increasing.
Hence, according to the mean value theorem, there is a value c in the interval between x and y
such that

|f (x) − f (y)| = f ′(c) · |x − y|.
It remains to be proved that

f ′(c) <
1

1 + W0( min{x, y}) .

Since

W ′
0(t) = W0(t)

t(1 + W0(t))

(see [9]), we have

f ′(t) = eW0(t) W0(t)

t(1 + W0(t))
= 1

1 + W0(t)
,

where the last equality follows from the identity W0(t)eW0(t) = t. Hence, because W0 is an
increasing function, we have

f ′(c) = 1

1 + W0(c)
<

1

1 + W0( min{x, y}) = 1

1 + min{W0(x), W0(y)} .
�

Lemma A.7. Let P = (pij) be an n × n stochastic matrix such that pii > 0 for all i. Let δ =
min{pii, i ∈ S}. For all i and x = (x1, . . . , xn) ∈R

n+, denote

Fi(x) = 1

pii

n∑
j=1

pijρ(xi, xj). (A.1)

For m > 0 and α > 1, define the set

Xm,α = {(x1, . . . , xn) ∈R
n : m ≤ xi ≤ mα ∀i}. (A.2)

Then

|Fi(x) − Fi(y)| ≤ K‖x − y‖∞ for all x, y ∈Xm,α and for all i,

where

K = 1 +
(

1

δ
− 1

)
C(α) and C(α) = −1 + α + 1

α − 1
ln α.
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Proof. Take x, y ∈Xm,α and take i, j ∈ {1, . . . , n}. If ρ(xi, xj) ≤ ρ(yi, yj), then, by concavity
of the function ρ(x, y) and the fact that its partial derivatives are non-negative (as stated in
Lemma A.2, items (v) and (iii)), it follows that

|ρ(xi, xj) − ρ(yi, yj)| = ρ(yi, yj) − ρ(xi, xj)

≤ ∂ρ

∂x
(xi, xj)(yi − xi) + ∂ρ

∂y
(xi, xj)(yj − xj)

≤ C‖x − y‖∞,

where

C = max

{
∂ρ

∂x
(u, v) + ∂ρ

∂y
(u, v) : m ≤ u, v ≤ mα

}
. (A.3)

Similarly, if ρ(xi, xj) > ρ(yi, yj), the concave nature of the function ρ along with the non-
negativity of its partial derivatives imply

|ρ(xi, xj) − ρ(yi, yj)| = ρ(xi, xj) − ρ(yi, yj)

≤ ∂ρ

∂x
(yi, yj)(xi − yi) + ∂ρ

∂y
(yi, yj)(xj − yj)

≤ C‖x − y‖∞.

Hence, since P is a stochastic matrix,

|Fi(x) − Fi(y)| ≤ 1

pii

n∑
j=1

pij|ρ(xi, xj) − ρ(yi, yj)|

≤ 1

pii

(
pii|xi − yi| +

n∑
j=1,j �=i

pij|ρ(xi, xj) − ρ(yi, yj)|
)

≤ ‖x − y‖∞ + 1 − pii

pii
C‖x − y‖∞

=
(

1 +
(

1

pii
− 1

)
C

)
‖x − y‖∞

≤
(

1 +
(

1

δ
− 1

)
C

)
‖x − y‖∞.

It remains to be shown that

C = C(α) = −1 + α + 1

α − 1
ln α.

For u > 0 and v > 0, the homogeneity of the function ρ (see Lemma A.2(i)) and a simple
calculation of its partial derivatives entail

∂ρ

∂x
(u, v) + ∂ρ

∂y
(u, v) = −1 + u + v

uv
ρ(u, v) = −1 +

(
1 + v

u

)
ρ

(
u

v
, 1

)
.
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Denoting t = u/v and f (t) = (1 + 1
t )ρ(t, 1), it then follows from (A.3) that

C = −1 + max

{
f (t) :

1

α
≤ t ≤ α

}

Using (3.1), we obtain

f (t) =
⎧⎨
⎩

t + 1

t − 1
ln t if t �= 1,

2 if t = 1,

and by standard calculus, we find that max{f (t) : 1/α ≤ t ≤ α} = f (α). The proof is
complete. �

Proof of Proposition 3.5. Let i ∈ {1, . . . , n} and x, y ∈X . Using (3.2) and (A.1), we have
Ti(u) = exp W0(Fi(u)) for all u ∈R

n+. Since T maps X into itself (see Lemma 3.1(ii)), we have
min{Ti(x), Ti(y)} ≥ e1/�, hence min{W0(Fi(x)), W0(Fi(y))} ≥ 1/�. Therefore, by Lemma A.6,

|Ti(x) − Ti(y)| ≤ |Fi(x) − Fi(y)|
1 + min{W0(Fi(x)), W0(Fi(y))} ≤ |Fi(x) − Fi(y)|

1 + 1/�
.

Denote m = e1/� and α = e1/δ−1/�, then by (A.2), X =Xm,α . The proposition now follows
from Lemma A.7. �
Lemma A.8. Let

P =
[

p 1 − p

1 − p p

]
, 0 < p < 1,

and let Q(k) be defined as in (4.5). Then∥∥∥∥P − exp Q
(

1

p

)∥∥∥∥∞
<

∥∥∥∥P − exp Q
(

ln p

p − 1

)∥∥∥∥∞
.

Proof. It can be shown (e.g. by using Lagrange–Sylvester interpolation to compute functions
of matrices; see [14]), that

P − exp Q(k) =
(

1

2
+ e2k(p−1)

2
− p

) [−1 1

1 −1

]
,

so that
‖P − exp Q(k)‖∞ = |f (k)|,

where f (k) = 1 + e2k(p−1) − 2p. Since p < 1, the function f is strictly decreasing, hence

f

(
ln p

p − 1

)
> f

(
1

p

)
.

Furthermore, f (1/p) > 0 by Lemma A.5(i). Consequently,∥∥∥∥P − exp Q
(

1

p

)∥∥∥∥∞
= f

(
1

p

)
< f

(
ln p

p − 1

)
=
∥∥∥∥P − exp Q

(
ln p

p − 1

)∥∥∥∥∞
. �

Lemma A.9. For

P =
⎡
⎢⎣

p 1 − p 0
1
2 (1 − p) p 1

2 (1 − p)

0 1 − p p

⎤
⎥⎦, 0 < p < 1,
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and Q(k) defined as in (4.5), it holds that∥∥∥∥P − exp Q
(

1

p

)∥∥∥∥∞
<

∥∥∥∥P − exp Q
(

ln p

p − 1

)∥∥∥∥∞
.

Proof. It can be shown (e.g. by applying Sylvester’s theorem for computing functions of a
matrix) that

P − exp Q(k) =
⎡
⎢⎣

−α(k) β(k) α(k) − β(k)
1
2β(k) −β(k) 1

2β(k)

α(k) − β(k) β(k) −α(k)

⎤
⎥⎦,

where

α(k) = 1

4
γ (k)2 + 1

2
γ (k) + 1

4
− p, β(k) = 1

2
γ (k)2 + 1

2
− p, γ (k) = ek(p−1). (A.4)

A simple calculation reveals

α(k) − β(k) = −1

4
(1 − γ (k)2), (A.5)

hence α(k) − β(k) ≤ 0. Therefore, by the triangle inequality,

‖P − exp Q(k)‖∞ = |α(k)| + |β(k)| + β(k) − α(k). (A.6)

Since

γ

(
ln p

p − 1

)
= p,

we have

α

(
ln p

p − 1

)
> 0 and β

(
ln p

p − 1

)
> 0,

so that (A.6) leads to∥∥∥∥P − exp Q
(

ln p

p − 1

)∥∥∥∥∞
= 2β

(
ln p

p − 1

)
= (1 − p)2. (A.7)

Furthermore, Lemma A.5(i) entails that β(1/p) > 0. We now need to consider two cases
related to α(1/p). If α(1/p) ≥ 0, we have by (A.6), (A.7) and the fact that β is strictly
decreasing (because p < 1) that∥∥∥∥P − exp Q

(
1

p

)∥∥∥∥∞
= 2β

(
1

p

)
< 2β

(
ln p

p − 1

)
=
∥∥∥∥P − exp Q

(
ln p

p − 1

)∥∥∥∥∞
.

When α(1/p) < 0, we have by (A.6) and (A.5)∥∥∥∥P − exp Q
(

1

p

)∥∥∥∥∞
= 2β

(
1

p

)
− 2α

(
1

p

)
= 1

2

(
1 − γ

(
1

p

))2

.

By Lemma A.5(ii) and the assumption 0 < p < 1, we have 0 < 1 − γ (1/p) < 4
3 (1 − p).

Hence ∥∥∥∥P − exp Q
(

1

p

)∥∥∥∥∞
<

8

9
(1 − p)2 < (1 − p)2 =

∥∥∥∥P − exp Q
(

ln p

p − 1

)∥∥∥∥∞
.

In either case, we have proved the result. �
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Lemma A.10. For

P =
⎡
⎢⎣

p 0 1 − p

0 p 1 − p

0 1 − p p

⎤
⎥⎦, 0 < p < 1,

and Q(k) defined as in (4.5), it holds that∥∥∥∥P − exp Q
(

1

p

)∥∥∥∥∞
>

∥∥∥∥P − exp Q
(

ln p

p − 1

)∥∥∥∥∞
.

Proof. It can be shown (e.g. by applying Sylvester’s theorem for computing functions of a
matrix) that

P − exp Q(k) =
⎡
⎢⎣

p − γ (k) γ (k) − p − β(k) β(k)

0 −β(k) β(k)

0 β(k) −β(k)

⎤
⎥⎦,

where β(k) = 1
2 γ (k)2 + 1

2 − p and γ (k) = ek(p−1). Therefore, by the triangle inequality,

‖P − exp Q(k)‖∞ = |p − γ (k)| + |p − γ (k) + β(k)| + |β(k)|. (A.8)

Let δ(k) = (γ (k) − 1)2. Since

γ

(
ln p

p − 1

)
= p,

we have

β

(
ln p

p − 1

)
= 1

2
(p − 1)2 > 0,

so that (A.8) leads to∥∥∥∥P − exp Q
(

ln p

p − 1

)∥∥∥∥∞
= 2β

(
ln p

p − 1

)
= (p − 1)2 = δ

(
ln p

p − 1

)
. (A.9)

Moreover, Lemma A.5(i) shows that β(1/p) > 0. Also,

γ

(
1

p

)
< γ

(
ln p

p − 1

)
= p,

because γ is a strictly decreasing function of k. Thus it follows from (A.8) that∥∥∥∥P − exp Q
(

1

p

)∥∥∥∥∞
= 2

(
p − γ

(
1

p

)
+ β

(
1

p

))
= δ

(
1

p

)
.

The proof is now complete because δ is a strictly increasing function of k, leading to

δ

(
ln p

p − 1

)
< δ

(
1

p

)
. �
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