ON GENERALIZED MORSE-TRANSUE FUNCTION
SPACES

H. W. ELLis

1. Introduction. Marston Morse and William Transue (6, 8) have
introduced and studied function spaces, called MT-spaces, for which the
elements of the topological dual are of integral type. Their theory does not
admit certain classical Banach function spaces including spaces of bounded
functions and ¥¢* spaces. The theory of function spaces determined by a
length function (A-spaces) (4, 5), which depends on a fixed measure, admits
many of the maximal M7 -spaces, the spaces ¥¢* and spaces of locally inte-
grable functions but does not admit certain maximal M7T-spaces including
the space & ¢ of complex continuous functions with compact supports.

In (4) the definition of MT-spaces was weakened by dropping the require-
ment that ® be dense in the space and making no hypothesis concerning
the dual. The resulting spaces were called MT*-spaces and the elements of
intregal type in the dual then constituted the M7T-conjugate of the space. A
A-space (4) is an MT*-space if it contains ® ¢. The M T-spaces are just those
MT*-spaces for which the dual and MT-conjugate coincide. The space of
bounded functions on a suitable space E is an MT*-space that is neither an
MT- nor a A-space.

In the development of the theory of MT-spaces an important role was
played by the fact that the semi-norm M4 could be defined in 4 and extended
to all of GF by (3.2) below. Since there are M T*-spaces for which the MT-
conjugate reduces to the zero element of the dual (§ 3), (3.2) is not valid for
every MT*-space. For an N4-extensible MT*-space (Definition 3.2) (3.2)
holds. Since N4 is then a reflexive semi-norm, the MT-conjugate is then
dense in the dual of 4 in the ¢(4’, A) topology (Theorem 3.1). The N4-
extensible M T*-spaces have many of the properties of general MT-spaces.

The last part of this paper is mainly concerned with the role played in
the general theory of M T*-spaces by the A-spaces. When E is countable at
infinity this can be simply stated as follows. If A is a \-space containing
fe, 4 is an NA-extensible M T*-space for which every measure in %* is of
base u (Theorem 3.3.). Conversely if 4 is an N4-extensible M T*-space for
which every measure in UA* is of base u, M* extended by (3.2) determines
a length function A (Theorem 4.1) and 2¢*, the A-space determined by A, and
Q4 (§3), coincide on some p-measurable set B with E — B A*-negligible
(Theorem 4.3). If then 4 is an MT*-space of Cauchy type, 4 = {; = Q4
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on B. Thus an MT-space of Cauchy type on a locally compact space E that
is countable at infinity coincides with a \-space for u on the restriction of
E to some u-measurable set B with E — B %*-negligible if and only if every
element of 4’ is of base u.

2. The MT-conjugates as vector spaces. Let E be a locally compact
space, GZ the vector space of functions on E valued in C the field of complex
numbers. A semi-norm on a vector subspace 4 of G¥ will be called monotone
if N4(x) < N4(y) when [x(8)] < [y(@)], x, ¥y € 4; non-trivial if N4(x) & 0
over 4 (6).

Definition. A vector subspace 4 of GZ will be called an MT*-space if it
contains R ¢, if with x it contains |x| and £ and if it has a non-trivial, monotone
semi-norm N4,

If A" is the dual of 4 topologized by M# as a semi-norm and if y € 4/,
then the restriction of y to & ¢ determines a C-measure 51 and

(2.1) y(x) = [xdy,

for every x € 8¢ (6). We denote by 4* the subspace of elements y of 4’
for which every x € A is y-integrable with (2.1) holding and call such a y
an element of integral type. We call 4* the MT-conjugate of 4. As in (6)
the mapping y — » of 4* into M, the space of measures on E, is an iso-
morphism. We denote by U’ and UA* the images of 4, 4* in M, and call
* the MT-measure conjugate of 4. We define for each y € A*, y ¢ A*,

[Y]gpe = sup | [ d¥|/N*(x) = sup [y() [/ (x) = [ylax = [yl
70 r#0
TEA TeA
where |y| 4 is the usual norm on A4’. There are corresponding definitions for
real MT*-spaces.

A* 15 a vector subspace of A’. Let Y1, 2 € 4* a,b € C. Then z = ay; +
by, € A’ and determines a C-measure z. From (2.1) for R¢ it follows that
2 = ay; + bys. By (6, Corollary 9.1) every x € 4 is ay; + by, = z-integrable
and

fx dz = fx d(ay; + bys) = ayi(x) + bys(x) = 2(x).

The spaces A* and UA* are thus normed vector spaces, equivalent by definition.
Morse and Transue (6, p. 153) associate with each C-measure n on E a
unique positive measure || such that for x € K, x > 0,

(2.2) n|(x) = ‘Tﬂ‘i,””d”l‘
ue&@c

The absolute measure |y| defined by 7 then has a unique extension |5/, as a
real C-measure on E (6, p. 151).

Condition 2.1. If 5 € A*, ||, € A* and lnfﬂ* = Hnlelm*.
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Condition (2.1) is the analogue for the MT-conjugate spaces of the con-
dition for 4 that |x| € 4 if x € 4 (noting that the monotone property of
N4 implies that N4 (x) = N4(|x])). If, for a positive measure u, the C-measure
7 is of base p (that is, can be written in the form g(¢) . p with g(f) locally
p-integrable (3, p. 42; 7, § 3).

(2.3) lg(t) . ul = lg@®)] . n.

When all the elements of A* are of base g, 4% can be identified with the
collection of functions {g(¢)}. If then A* is an MT*-space Condition 2.1 is
necessarily satisfied. We note also that it is trivially satisfied when 4* = 0,
that it is satisfied by the measure dual of every MT-space (6, Lemma 11.2)
and by the measure dual of every MT*-space that is a A-space with the
MT- and \-conjugates coinciding (4).

Suppose that a;, ¢ = 1,2,..., are positive measures with «,, € A* and
that E!amf%[* < o, Then for every x € &, x > 0,

Z lai(x)| = Z ai(lx]) < N4 (x) Z lai.elg[* < »,

1 1 1

so that the a; form a summable family of positive measures on E and determine
a positive measure oy = =,%«; (3, § 3, no. 5).

THEOREM 2.1. Let A be an MT*-space for which Condition 2.1 holds. If every
real x in A is ag-integradle for every oo defined as in the preceding paragraph,
then A* is complete.

Proof. The theorem is trivial when A* = 0. In the general case let {7,}
denote a Cauchy sequence in q* and choose a subsequence {7,;} with

Inmlm* + Zl l"]’n,‘n - nnil QI*': L< o,
Define

o

oy = 177111l1 o = l"ln.'+1 - 77n.'|r7: =2,3,...,a0= Zl o7
Condition 2.1 implies that each «;,, is in A* with
[al,eiﬂ* = ’777“[2[*7
[ai,e[%* = l’7n.‘+1 - nml%{*vi =12,....

By hypothesis each real x € 4 is ag-integrable so that (3, Proposition 5, 3°)

fx dog = Z fx do.
1

If x € 4, x = x, + 4xs, with x; and x, real and in 4, x is ay integrable
(6, Lemma 4.3) and
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deaoe=fx1dag+ifx2dao= > fxldai+iz fxgdai
1 1
= E fxdai,e;

e

It follows that [x dao . determines a continuous linear functional y of integral
type with y = a9, and therefore a,,, € U*.
For each x € 4,

< Z.: f[xldai,e < LR ().

[Wniﬂ(x) - Wni(x)]
is a Cauchy sequence in C since

;f e () — 1 ()]| < z ae(Jx]) =0

as p, g — ». Thus

oo}

(2.4) n(x) = 10y (%) + Z (it s(x) — nas ()] = 111_)1.’11 s (%)

1

is defined in C for every x € A. Now 7 is linear on 4 and continuous since
(2.5) In(@)| < ao(lx]) < LNA(x)

for all x € 4. Thus n determines an element of 4’.

It follows from (2.2) and (2.5) that |5|(x) < ao(x) for every x > 0, x € K.
This implies that [n|*(x) < a*o(x) for every x > 0. Thus every a,-negligible
set is |7l-negligible and every ao,-measurable function is |g|-measurable (2,
p. 180). Thus if x € A4, |x| is |g|-measurable and x is n-measurable (6, p. 168).
Since

flxldn < flxldao < LN (x) < =,

every x in 4 is g-integrable (6, Theorem 9.4). This with (2.5) shows that
[x dy determines an element y € A* with y = 5 so that 5 € *,
Then

1= g =, Sup | [xd(n — m) /R (x)
< sup 3 ol day/ o)

O=red i+1
< Z [ai.elﬂ*
+1
which approaches zero as 7 — «. The full sequence {7,} then converges to
7 in A* so that A* is complete.

COROLLARY. If E is countable at infinity and A is an MT*-space for which
Condition 2.1 holds, A* and N* are Banach spaces.
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Proof. By (3, Corollaire 2, p. 28) every x € A is ap-integrable.

Length functions for a positive measure p are defined in (4, 5). We denote
by &, € the subspaces of R¥ and GF respectively consisting of u-measurable
functions x(¢) with Mx) = M(|x|) < o (cf. 5, p. 577). (If x(¢) € CE, it is
u-measurable for u > 0 if its Riesz components are u-measurable (6. p. 168).)

We show that if 4 = R;(E, u) (4, §2) with E and p defined as in (2,
Exercise 4, pp. 116) A* is not complete. We define g;(P) = 1/Inn, P = (1/n,
k/n?, n =2,3,...4; g,(P) = 0 elsewhere; g(P) = 1/1nn, P = (1/n, k/n?),
n=23,...; g(P) =0 elsewhere. The g; form a Cauchy sequence in A’
and converge to g. Each g;. u is in 2* but g . u is not.

The A-conjugate of every \-space is complete since it is also a A\-space (4).
Thus the MT-conjugate of an arbitrary A-space containing £ is complete
when it coincides with the \-conjugate.

3. N4-extensible MT*-spaces. For a normed or semi-normed space X
we let X, denote the subunit elements of X, that is, the elements with norm
or semi-norm not exceeding unity (cf. 6, p. 171).

Definition 3.1. A semi-norm N4 on an MT*-space 4 will be called reflexive
if for every x € 4,

(3.1) N*(x) = sup | [ x dn].
'l‘mt

THEOREM 3.1. In order that M4 be a reflexive semi-norm on the MT*-space
A it is necessary and sufficient that A*, be dense in A, for the s(A’, A) topology.

Proof. Since 4,/ and 4,* are équilibré parts of A’, the polars of 4," and 4,
are respectively 4,/ = (x € 4 :|y(x)| < 1forally € 4,/)and 4,*° = (x € 4:
ly(x)] < 1 forall y € 4%,) (1, p. 52). We first show that 4*°, = 4,'°. Since
A*, C A4/, 4,)° D A*%, and it is sufficient to prove the opposite inequality.
If x € A*%, the hypothesis that M# is reflexive implies that

N*(x) = sup Ifxd&I <1
v e ¥

Thus |y(x)] < A |yl < 1 if y € 4, so that x € 4,/°.

Thus 4*%, = 4,/° and it follows that A4*%, = A4,/ = 4,. Since 4%, is
convex and contains 0, the argument of (1, Proposition 3, p. 52) shows that
A, = A*9, is the closure of A*, for ¢(4’, 4).

We next prove that the condition is sufficient. Since the definition of |y|*
implies that > holds in (3.1) we need only show that, given ¢ > 0, there
exists y € A%, with N4 (x) < [[xdyl + e

By an extension of the Hahn-Banach Theorem there exsits y, € 4," with
yo(x) = N4(x), |yo|lar = 1. The set [y € A’; [(y — y0)(x)| < €] is a neigh-
bourhood of v, for the ¢(A4’, 4) topology and by hypothesis contains y, € 4%*,.
Then

0 < M) — [xdyl < lyo®) — ym@)] = [(3o —y0) ()] < e
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We note the analogy with the relation between E and E" for Banach
spaces (1, Proposition 5, p. 114).

Definition 3.2. A semi-norm on an M T*-space will be called extenstble if 4
satisfies Condition 2.1 and N4 is reflexive. An MT*-space will be called
N4-extensible if it has an extensible semi-norm.

For an extensible semi-norm

3.2) N4 (x) = sup f " loldln|
2eUF

holds with outer integrals replaced by integrals for every x € A. Formula
(3.2) then extends the definition of N4 to all of G¥ and all of RZ.

Given a collection of C-measures M a function x € CZ or R will be called
M-negligible if !x(¢)| is |n/-negligible for every 5 € M. M-negligible sets,
M-equivalence and almost everywhere () are then defined by analogy
with the case where It reduces to a single C-measure . When 4 is an 4-
éxtensible M T*-space, M4 (x) = 0 if x is A*-negligible. If then x(¢) is defined
and valued in C or R almost everywhere (U*), x is ¥*-equivalent to some
% in G¥ or R? and we define N4 (x) = N4(%). When U* = 0 every function
is A*-negligible but N4 (x) > 0 holds for some x € 4.

THEOREM 3.2. For 1 < p < o, A = {2 (E, p) is an NA-extensible MT*-
space.

LemMA 3.1. If A = QA (E, n) is an MT*-space for which the \-conjugate
contains the MT-conjugate, then Condition 2.1 is satisfied and every element
of A* s of base p.

Proof of Lemma 3.1. Every g in the A\-conjugate is locally u-integrable and
therefore determines a measure g . p (that is, a measure of base u) (4, § 3).
If g € A* g = g. p and thus the elements of %* are of base u.

The definition of the A-conjugate then implies that |g(¢)| € @*. By (7, § 3)
lg| . u = |g.ul. Now [lx|lgldp < N(x)A*(g) < = and the g. p-integrability of
x implies that [lx!d|g . u| < @ (6, Theorem 9.4). Thus by (7, Theorem 1.1),
for every x € A4,

lg(x) = [xlgldu = [xd(g| . w).
so that (Ig| . u). € A*. It then follows from the definitions that
(el w)elge = M*(lg)) = N (2) = g wlgps
Proof of Theorem 3.2. It remains to be shown that N7 is reflexive as a

semi-norm on 4 = .. Since N? is reflexive as a length function,

N(x) =sup | [agdu|>sup |[xgdul,
0e(RE). PRt

and it is sufficient to determine g € A*, with |[xg du| arbitrarily near to Rt (x).
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If N(x) < = there exists Ey = \U;"K;, where {K;} is an increasing
sequence of compact sets for which, writing f5 for the product of the function
f(¢) and the characteristic function of the set B,

W(x) = Wixm,) = W ()
(4, § 2). Now
Xg, € L
and {7 is N4-extensible as an M7 -space. Thus
N(x) = NW(xm,) = sup | [ xm, gd ul.
0e(20).
Since E, is u-measurable and
lgee ()] < g, gz € ¥
if g € L, Thus
NP (x) = N (xmy) = sup | [ x gao d ul.
050¢(¥0).
For g € (¢9), fixed,
lfngedﬂl”" [fngod#]
as ¢ — » and
gx; € (R0)w
Thus for ¢ sufficiently large and a suitable
g € ()uw gr: € ()

with Ifx gx.du| arbitrarily near M?(x). The C-measure gg;.p has compact
support so that CK; is gg, . p-negligible (2, Proposition 5, p. 119). Thus
if f € 4 and fgk,; vanishes in E,

f*lfld!gKi vl < f*lf]CKi d(lgx:| - w) + f*‘flKid(ngil u) = flfgxildl-‘ =0
and the complex analogue of (4, Theorem 3.1) implies that

gri - M € 2Iu*'

THEOREM 3.3. If \ is a reflexive length function for the positive measure u,
if E is countable at infinity or if E is arbitrary and A = 8 is an MT*-space
for which the MT- and \-conjugates coincide, then A is NA-extensible and every
measure in A* is of base u.

Proof. Theorem 3.3 is a consequence of Lemma 3.1 and the fact that the
reflexivity of M4 = A\ as a length function implies that it is reflexive as a
semi-norm on 4.

When 4 is an N4-extensible M T*-space we denote by 4 the vector sub-
space of GF of mappings x with N4(x) < . Then N4 is a non-trivial,
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monotone semi-norm on 4 and F4 is an MT*-space for which Condition 2.1
holds. If for each 5 0 in 2* there exists a relatively compact set e(y) that
is not p-measurable the MT-conjugate of F4 reduces to the zero element
of A’. Such non-measurable sets exist, for example, if 4 = {.? (E, u) with
E = (0,1) and p Lebesgue measure on E, 1 < p < «. In contrast, if E is
arbitrary, if A = 8¢ and N4 is the uniform semi-norm, N4 extends to CF
in the form (6, Theorem 15.3),

N4 (x) = sup [x(1)]

and §4 is the space of all bounded functions on E which is an ft“-extensible
MT*-space.

We note that if B = §4, where 4 is an arbitrary N4-extensible MT*-
space, N4(x) > 0 is possible for a B*-negligible function in B but N4(x) = 0
for every A*-negligible function in B.

The properties of the extended semi-norm N4 and of F4 for MT-spaces
(6, § 12) extend to N4-extensible MT*-spaces with A’-negligibility replaced
by U*-negligibility. In particular 4 is complete.

Generalizing (6) we define

' =N ?é‘(E, 7)
nell*
for every MT*-space A. We define Q¢4 = Q4 M F4. Then Q4 is an MT*-
space with M4 (extended) as a semi-norm.

TuEOREM 3.4. If A is an NA-extensible MT*-space and if A* is complete
or, more generally, tonnelé (1, § 1), then Q* = Q4.

Proof. The argument of (8, Theorem 5.1) applies. We note in particular
that Q¢4 = Q4 for every N4-extensible MT*-space 4 if E is countable at
infinity (Theorem 2.1, Corollary).

4. \-spaces generated by 4-extensible MT*-spaces.

THEOREM 4.1. Let A be an NA-extensible MT*-space, u a positive measure
on E. Then N4, extended by (3.2), defines a length function for u if and only
if every u-negligible set 1s W*-negligible.

Proof. By (3.1) and the subsequent remarks N4 (x) is defined for every
x(f) that is defined almost everywhere (A*) and valued in RZ and therefore
for every x(f), u-measurable and defined, non-negative and valued in R almost
everywhere (2*). That M4 then satisfies Conditions (L2)—(L5) for length
functions (5) is then easily verified. We verify (L5). If x,(f) € R is non-
negative and w-measurable, » = 1,2,..., and if x,(f) increases to x(¢) as
n — o, then for each 4 € A¥,

f*x(t> dlﬂl = Supnf*xn(t) dl"’ly
by (2, Theorem 3, p. 110). Thus
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N*(x) = sup f* x(t) d|n| = sup sup, f* x,(t) dln|
1762[1*: ﬂfg[z
= sup, N* (x,).

If (L1) (5) holds every u-negligible set is 2*-negligible. Conversely if every
w-negligible set is A*-negligible, N# is defined and non-negative for every
x(¢) that is non-negative a.e. (u) (and therefore a.e. (¥*)) and if x(¢) is u-
negligible and e = [t : x(t) # 0], e is p-negligible (2, Theorem 1, p. 119) and
therefore A*-negligible. This implies that x(¢) is n-negligible for every 5 € A*
and (3.2) then shows that M4 (x) = 0 giving (L1).

We note that there exist N“-extensible M T*-spaces, in fact MT-spaces on
a compact set E, for which “ cannot define a length function for any measure
u. Consider the M7T-space A = E¢(E) of complex valued functions con-
tinuous in E = [0, 1] with semi-norm N4 (x) = sup,z/x(¢)| and suppose that
N4 defines a length function for some positive measure u. Then, since A*
contains all the point measures, the empty set is the only A*-negligible set
and therefore, by the preceding theorem, the only u-negligible set. For each
t, 0 <t < 1, the set {#} consisting of the point ¢ is closed and therefore u-
measurable and u({t}) > 0. For some @ > 0 there is a collection of points ¢;
of E with u({t;}) > a, 2 =1,2,.... Thus for the characteristic function
Of E: XEy

w(xz) = w(E) > lim, u(U7t,) > lim, na = o,

contradicting the assumption that u is a measure since xz € Ce.
The following theorem is a partial converse of Theorem 3.3.

THEOREM 4.2. Let A be an NA-extensible MT*-space, u a positive measure
on E and suppose that all of the elements of A* are of base u. Suppose that every
u-negligible set is A*-negligible and that every A*-negligible set is locally u-neg-
ligible. Then A C A C & = Qo C FA.

Proof. By Theorem 4.1 N4 determines a length function \ for u. We denote
by ¢ the A-space determined by A. By hypothesis every n € U* can be
written 7 = g . u where g(¢) is locally u-integrable. We identify the functions
g(t) with A*, the measures g.pu with %*. If E(g) = (¢t:¢(¢) # 0), E(g) is
wu-measurable and, for every x € Q4, x g, (f) is u-measurable (3, Proposition 3,
p. 43). Given a compact set K in E with u(K) > 0 consider, for all g € 4%,
the collection of subsets E(g) of K with u[E(g)] > 0. From this collection
form a maximal collection of disjoint sets and let B denote their union. Since
this collection will be at most countable B will be u-measurable. If g € 4%,
gx—n € A* and u[E(gx—p)] = 0 for otherwise B \U E(gx_p) properly contains
B contradicting the definition of B. Thus, for every g € A*, g(¢) = 0 almost
everywhere in K — B, g.u(K — B) =0 and K — B is A*-negligible and
therefore, by hypothesis, K — B is u-negligible. If x € @4, x5 is u-measurable
and therefore xx is u-measurable. It follows from (2, Proposition 4, p. 182)
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that every x € Q4 is y-measurable. If x € Q¢4, N4(x) < © and x € L. Thus
A C Q* C R Since Lo is complete it is closed in §# and contains A, the
closure of 4.

To prove that 2.* C Q* we must show that every u-measurable function
x () with M4(x) < « is in Ll(g. p) for every g € A*. Every x(¢) € ¢ is
p-measurable by definition so that the Riesz components of x(f) are u-measur-
able (6, p. 168). The Riesz components are then measurable (Jg. u| = lgl . w)
for every g € A* (3, Proposition 3, p. 43). Thus x(¢) is measurable (g. u) for
every g € A*. Since for each g € A*, |g. ul, € A*, it follows from (3.2) and
(6, Theorem 9.4) that x(f) € L' (g. ).

We note that if to each compact set K corresponds g(t) € A* with g(¢) £ 0
a.e. (u) in K, every UA*-negligible set is locally u-negligible. This is true in
particular if %* contains §¢ or the characteristic function of every compact
set.

TaEOREM 4.3. Suppose that E is countable at infinity or that E = E,\JU,"K,,
with each K; compact and Eo locally u-negligible, u a positive measure. Let A
be an NA-extensible MT*-space for which all of the elements of A* are of base

4 . .
p. Then, if Ey is A*-negligible, the normed spaces LsgE and Qo4 associated with
8’6‘{‘4 and Qu* are equivalent and contain A, the normed space associated with A.

Proof. As in Theorem 4.2 each K, is the union of a u-measurable set B; and
an A*-negligible set. If B = \U,"B, xp is u-measurable for every x € Q4.
Every g € A* vanishes a.e. (A*) in \U;”K; — B. If not, for some g, 7,

wlE (gKi—-B)] >0,

contradicting the definition of B,. It follows that B’ = E — B is A*-negligible.
Thus for each x(¢) € Q4, x5(?) is u-measurable and N4(x — x5) = 0. If then
x(t) € 4, xp() € 8 N = N4, with N4 (x) = N*(xp) and Q* C L. The
proof that L C Q0 is similar to the corresponding part of the proof of
Theorem 4.2,

When E is countable at infinity Q% = Q4. The space E defined in (2,
Exercise 4, p. 116) is of the form D \U,"K; with D locally p-negligible for the
measure u defined there. For the spaces ¢¢?, 1 < p < «, Dis A*-negligible.

We note that if R¢ is dense in €, 4 = €¢* in Theorem 4.2 and 4 = L
in Theorem 4.3.

5. MT*-spaces of Cauchy type. If 4 is an MT*-space, let B be the
vector subspace of 4 over R of real mappings in 4, B the associated real
normed vector space. As in (8), with a natural definition of a partial order
on B, B becomes a ‘‘Riesz space.”

Definition 5.1. A complete N4-extensible MT*-space will be called an
MT*-space of Cauchy type if each subset H of B, bounded in norm and
filtering for the relation < defines a Cauchy filter.
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For a maximal MT-space the definition reduces to that given in (8, § 1).
The theory of M T-spaces of Cauchy type given in (8) extends to M T*-spaces
of Cauchy type with A’-negligibility replaced by *-negligibility and with
Q4 replaced by Q4.

THEOREM 5.1. If A is an MT*-space of Cauchy type then A = Q4. If the
hypotheses of Theorem 4.2 are then satisfied, A = Lt = Q* and, if the hypo-
theses of Theorem 4.3 are satisfied A = L = Q4.

We note that if A = ¢ is an MT*-space of Cauchy type, the analogue
of (8, Corollary 6.1) implies that \ satisfies (L9) (4, ((L9) as modified on
p. 592)). Thus if E = [0, 1], u Lebesgue measure, the space £¢° (E, u) is not
of Cauchy type.
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