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1. Introduction. Marston Morse and William Transue (6, 8) have 
introduced and studied function spaces, called Mr-spaces, for which the 
elements of the topological dual are of integral type. Their theory does not 
admit certain classical Banach function spaces including spaces of bounded 
functions and Sc°° spaces. The theory of function spaces determined by a 
length function (X-spaces) (4, 5), which depends on a fixed measure, admits 
many of the maximal Mr-spaces, the spaces £c°° and spaces of locally inte-
grable functions but does not admit certain maximal M ^-spaces including 
the space $c of complex continuous functions with compact supports. 

In (4) the definition of iliT-spaces was weakened by dropping the require­
ment that $c be dense in the space and making no hypothesis concerning 
the dual. The resulting spaces were called Mr*-spaces and the elements of 
intregal type in the dual then constituted the MT-con]ugate of the space. A 
X-space (4) is an Mr*-space if it contains $ c . The Mr-spaces are just those 
M7"*-spaces for which the dual and MT-con]ugate coincide. The space of 
bounded functions on a suitable space E is an Mr*-space that is neither an 
MT- nor a X-space. 

In the development of the theory of Mr-spaces an important role was 
played by the fact that the semi-norm ytA could be defined in A and extended 
to all of GE by (3.2) below. Since there are MT*-spaces for which the M r -
conjugate reduces to the zero element of the dual (§ 3), (3.2) is not valid for 
every MjP*-space. For an ^-extensible Mr*-space (Definition 3.2) (3.2) 
holds. Since 3tA is then a reflexive semi-norm, the MF-conjugate is then 
dense in the dual of A in the <r(A'yA) topology (Theorem 3.1). The %lA-
extensible M7^*-spaces have many of the properties of general M7"-spaces. 

The last part of this paper is mainly concerned with the role played in 
the general theory of Mr*-spaces by the X-spaces. When E is countable at 
infinity this can be simply stated as follows. If A is a X-space containing 
$CJ A is an ?lA-extensible MjH*-space for which every measure in 21* is of 
base fji (Theorem 3.3.). Conversely if A is an ^-extensible M7"*-space for 
which every measure in 21* is of base /x, 91A extended by (3.2) determines 
a length function X (Theorem 4.1) and 8C

X, the X-space determined by X, and 
QA (§3), coincide on some /z-measurable set B with E — B 2I*-negligible 
(Theorem 4.3). If then A is an Mr*-space of Cauchy type, A = ? c

x = tiA 
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on B. Thus an iliT-space of Cauchy type on a locally compact space E that 
is countable at infinity coincides with a X-space for \x on the restriction of 
E to some /x-measurable set B with E — B 2I*-negligible if and only if every 
element of A1 is of base jit. 

2. The MT-conjugates as vector spaces. Let £ be a locally compact 
space, C^ the vector space of functions on E valued in C the field of complex 
numbers. A semi-norm on a vector subspace A of C^ will be called monotone 
if VlA(x) < yiA(y) when \x(t)\ < \y(t)\, x, y G A; non-trivial if yiA(x) §é 0 
over A (6). 

Definition. A vector subspace A oi GE will be called an ikfJ^-space if it 
contains $Ci if with x it contains \x\ and x and if it has a non-trivial, monotone 
semi-norm %lA. 

If A' is the dual of A topologized by %lA as a semi-norm and if y G A', 
then the restriction of y to $ c determines a C-measure y and 

(2.1) y(x) = Jx d;y> 

for every JC G J?c (6). We denote by ^4* the subspace of elements y of A' 
for which every x G 4̂ is ^-integrable with (2.1) holding and call such a ;y 
an element of integral type. We call A* the MT-conjugate of A. As in (6) 
the mapping y-^ y of A* into SDîc» the space of measures on JE, is an iso­
morphism. We denote by 21' and 21* the images of A', A* in 3Jlc and call 
21* the Mr-measure conjugate of A. We define for each y G A*, y G 2Ï*, 

|y| * = sup I jxdy\/mA(x) = sup b W | / ^ ( x ) = \y\A* = \y\A.t 
xeA xeA 

where \y\A' is the usual norm on A'. There are corresponding definitions for 
real MT*-spaces. 

^4* is a vector subspace of A'. Let yu y2 G A*, a, b G C. Then z = ayi + 
by2 G A' and determines a C-measure z. From (2.1) for $ c it follows that 
z = «9i + ^2- By (6, Corollary 9.1) every x G A is a^i + fry2 = s-integrable 
and 

Jx dz = Jx ^(a^i + by2) = ayi(x) + by2(x) = z(x). 

The spaces A* and 21* are thus normed vector spaces, equivalent by definition. 
Morse and Transue (6, p. 153) associate with each C-measure rj on E a 

unique positive measure \rj\ such that for x G K, x > 0, 

(2.2) M (a) = sup I J udr)\. 
\u\<x 

uMc 

The absolute measure |rç| defined by 77 then has a unique extension |7?|g as a 
real C-measure on £ (6, p. 151). 

Condition 2.1. If rj G 21*, h|e G 21* arcd |^| = \\v\e\ 
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Condition (2.1) is the analogue for the iWT-con jugate spaces of the con­
dition for A that |x] 6 A if x £ A (noting that the monotone property of 
%lA implies that 5ftA(x) = yiA(\x\)). If, for a positive measure JJL, the C-measure 
rj is of base /x (that is, can be written in the form g{t) . p with g(t) locally 
M-integrable (3, p. 42; 7, §3) . 

(2.3) \g(t).n\ = \g(t)\.». 

When all the elements of 31* are of base /z, A* can be identified with the 
collection of functions {g(t)}. If then A* is an ikfr*-space Condition 2.1 is 
necessarily satisfied. We note also that it is trivially satisfied when A* = 0, 
that it is satisfied by the measure dual of every ikf^-space (6, Lemma 11.2) 
and by the measure dual of every Mr*-space that is a X-space with the 
MT- and X-conjugates coinciding (4). 

Suppose that au i = 1, 2, . . . , are positive measures with al>e Ç §1* and 
that Elai.eL^ < oo. Then for every x Ç fi, x > 0, 

PC OO OO 

]T) \at(x)\ = X) a<(l*l) < 9^0*0 X) la«.«L* < °°» 
i l l <i 

so that the at form a summable family of positive measures on £ and determine 
a positive measure ce0 = 2iœai (3, § 3, no. 5). 

THEOREM 2.1. Let A be an MT*-space for which Condition 2.1 holds. If every 
real x in A is a0-integrable for every a0 defined as in the preceding paragraph, 
then 31* is complete. 

Proof. The theorem is trivial when 21* = 0. In the general case let {y]n\ 
denote a Cauchy sequence in 31* and choose a subsequence {rjni} with 

OO 

Define 
PC 

Oil = \Vni\,Oti = \Vni+i — Vnil, i = 2 , 3 , . . . , «o = X ) a i -
1 

Condition 2.1 implies that each ait6 is in 31* with 

si* = ' ^ ' J I * ' 

I e * i . clew-* = iVrii+i Vni I ay*» ^ = = 1 » ^ » • • • • 

By hypothesis each real x £ A is a0-integrable so that (3, Proposition 5, 3°) 

I x dao = z^/ I x don* 

If x f i , x = Xi + ix2, with Xi and x2 real and in A, x is a0,e-integrable 
(6, Lemma 4.3) and 
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J /» /» 00 /» 00 /» 

x daoe = I Xi dao + i I #2 dao = 2^ I #1 dat + i 2-/ I #2 da* 
CO /» 

= E xdaite\ 

I r I °° c 
I xda0,J < Z \x\daitG <, LyiA{x). 

It follows that Jx cfao.e determines a continuous linear functional y of integral 
type with y = a0,e and therefore a0,e G 3Ï*. 

For each x Ç i , 

fan;+i 0*0 - lto<C*0] 

is a Cauchy sequence in C since 

v 

as p, q —> 00. Thus 

< Z «<(!*!)-> 0 

(2.4) iy(*) = iywl(x) + X) hni+zW ~ i?n,-(*)] = limijn,(aO 
1 i^co 

is denned in C for every x (z A. Now 77 is linear on A and continuous since 

(2.5) \ri(x)\ <aQ(\x\) < LVlA(x) 

for all x £ A. Thus 77 determines an element of A*. 
It follows from (2.2) and (2.5) that \r\\{x) < a0(x) for every # > 0, x Ç $ . 

This implies that |r?|*(x) < a*o(x) for every x > 0. Thus every a0-negligible 
set is 17j I -negligible and every a0-measurable function is |??| -measurable (2, 
p. 180). Thus iî x £ A, \x\ is 1771-measurable and x is 77-measurable (6, p. 168). 
Since 

f\x\dr) <J\x\da0 < L %lA(x) < 00, 

every x in A is 77-integrable (6, Theorem 9.4). This with (2.5) shows that 
jxdr) determines an element y G A* with y = 77 so that 77 Ç 21*. 

Then 

\n " ^*L* = sup i J " * d ^ - */».•) 1/9^0*0 '31* 
CO /» 

< sup Z I |x] daj/yiA(pc) 
OyéxeA i+1 J Oy*xeA i+ 

00 

which approaches zero as i —* 00. The full sequence {77̂ } then converges to 
77 in 21* so that 21* is complete. 

COROLLARY. If E is countable at infinity and A is an MT*-space for which 
Condition 2.1 holds, A* and 21* are Banach spaces. 
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Proof. By (3, Corollaire 2, p. 28) every x £ A is a0-integrable. 

Length functions for a positive measure /x are defined in (4, 5). We denote 
by 8 \ £ c

x the subspaces of R^ and CE respectively consisting of ^-measurable 
functions x(t) with \(x) = \(\x\) < œ (cf. 5, p. 577). (If x(t) G G*, it is 
M-measurable for fx > 0 if its Riesz components are ^-measurable (6. p. 168).) 

We show that if A = ZcKE, /*) (4, § 2) with E and /z defined as in (2, 
Exercise 4, pp. 116) A* is not complete. We define gt(P) = 1/ln w, P == (1/n, 
k/n2), » = 2, 3, . . . i\ gi{P) = 0 elsewhere; g(P) = 1/ln n, P = (1/n, k/n2), 
n = 2, 3, . . . ; g(P) = 0 elsewhere. The gt form a Cauchy sequence in A' 
and converge to g. Each g^. /x is in 21* but g . M is not. 

The X-conjugate of every X-space is complete since it is also a X-space (4). 
Thus the MT-conjugate of an arbitrary X-space containing ®c is complete 
when it coincides with the X-conjugate. 

3. ^ -ex tens ib l e MT*-spaces. For a normed or semi-normed space X 
we let Xu denote the subunit elements of X, that is, the elements with norm 
or semi-norm not exceeding unity (cf. 6, p. 171). 

Definition 3.1. A semi-norm %lA on an ikfP*-space A will be called reflexive 
if for every x £ A, 

(3.1) WA(x) = sup \fxdri\. 
9]* 

THEOREM 3.1. In order that %lA be a reflexive semi-norm on the MT*-space 
A it is necessary and sufficient that A*u be dense in Au

f for the a (A', A) topology. 

Proof. Since Au' and Au* are équilibré parts of A', the polars of Au
f and Au 

are respectively A J ° = (x Ç A : \y(x)\ < 1 for ally Ç AJ) and , 4 / ° = (x £ A: 
\y(x)\ < 1 for all y e A*u) (1, p. 52). We first show that A*\ = AJ°. Since 
A*u C Au

r, Au'° D 4̂*°M and it is sufficient to prove the opposite inequality. 
If x G A*°UJ the hypothesis that 91A is reflexive implies that 

yiA(x) = sup | jxS\ < i. 

Thus \y(x)\ < ^ A (x ) |yL ' < 1 if y Ç 4„ ' so that x G ,4W'°. 
Thus A*\ = y l j 0 and it follows that ,4*00

w = Au'
00 = AJ. Since .4*w is 

convex and contains 0, the argument of (1, Proposition 3, p. 52) shows that 
AJ = A*«\ is the closure of A*w for <r(A',A). 

We next prove that the condition is sufficient. Since the definition of \y\A* 
implies that > holds in (3.1) we need only show that, given e > 0, there 
exists y £ A*u with ïïîA(x) < \jxdy\ + e. 

By an extension of the Hahn-Banach Theorem there exsits y0 € AJ with 
yo(x) = W*(x), \y0\A> = 1. The set [y £ A'; \(y - yQ)(x)\ < e] is a neigh­
bourhood of y0 for the <J(A' , A) topology and by hypothesis contains yx Ç A*u. 
Then 

0 < $lA(x) - ]jxdyi\ < \y0(x) - yi(x)\ = |(y0 - yi)(*)| < e-

https://doi.org/10.4153/CJM-1959-042-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-042-x


GENERALIZED MT SPACES 421 

We note the analogy with the relation between E and E" for Banach 
spaces (1, Proposition 5, p. 114). 

Definition 3.2. A semi-norm on an Af7"*-space will be called extensible if A 
satisfies Condition 2.1 and $1A is reflexive. An ik/T*-space will be called 
$tA-extensible if it has an extensible semi-norm. 

For an extensible semi-norm 

(3.2) mA(x) = sup (*\x\d\ri\ 
51* 

holds with outer integrals replaced by integrals for every x Ç A. Formula 
(3.2) then extends the definition of $lA to all of C^ and all of R*. 

Given a collection of C-measures 9ft a function x Ç C^ or R^ will be called 
9ft-negligible if \x(t)\ is \rj\-negligible for every r\ £ 9ft. 9ft-negligible sets, 
9ft-equivalence and almost everywhere (9ft) are then defined by analogy 
with the case where 9ft reduces to a single C-measure rj. When A is an 9lA-
èxtensible il4T*-space, SflA(x) = 0 if x is 2I*-negligible. If then x(t) is defined 
and valued in C or R almost everywhere (SI*), x is 2l*-equivalent to some 
x in C^ or R^ and we define %lA(x) = 3tA(x). When 21* = 0 every function 
is 2l*-negligible but ç$lA(x) > 0 holds for some x Ç A. 

THEOREM 3.2. For 1 < p < °°, A = gc
p(E,/x) is an %lA-extensible MT*-

space. 

LEMMA 3.1. If A = ?cxCE> AO is an MT*-space for which the \-conjugate 
contains the MT-conjugate, then Condition 2.1 is satisfied and every element 
of 21* is of base /x. 

Proof of Lemma 3.1. Every g in the X-conjugate is locally /x-integrable and 
therefore determines a measure g . /JL (that is, a measure of base /x) (4, § 3). 
H g £ A*, g = g . fj. and thus the elements of 21* are of base /x. 

The definition of the X-conjugate then implies that \g(t)\ Ç Sx*. By (7, § 3) 
|g| . /x = \g . JU|. Now f\x\\g\diJL < X(x)X*(g) < oo and the g . jii-integrability of 
x implies that J\x\d\g . /x| < oo (6, Theorem 9.4). Thus by (7, Theorem 1.1), 
for every x £ A, 

\g\ (x) = Jx\g\d» = jx d(\g\ . n)e 

so that (|g| . n)e G 21*. It then follows from the definitions that 

l(|gl.M)«lr = x*(|g|) =x*(g) = lg.M!r-

Proof of Theorem 3.2. It remains to be shown that ytp is reflexive as a 
semi-norm on 4̂ = ?</• Since $ftp is reflexive as a length function, 

yip(x) = sup | J xg d{j,\ > sup | J xg d /x|, 

and it is sufficient to determine g Ç ^4*w with \jxg d/x| arbitrarily near to ytp(x). 
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If ytp(x) < œ there exists EQ = \J™KU where {Kf} is an increasing 
sequence of compact sets for which, writing fB for the product of the function 
f(f) and the characteristic function of the set B, 

9TO = 5R*(**o) = 5W(**o) 
(4, § 2). Now 

xEo e ?</ 

and 8C
P is %lA-extensible as an MT-space. Thus 

yip(x) = yip(xEo) = sup \jxEogdn\. 

Since Eo is /z-measurable and 

lfoo(OI< \g(t)\,gBo e f t t 
if g e Lu*. Thus 

y?(x) = W?(xEo) = sup I J x g*0 d M|. 

For g e (%cQ)u fixed, 

\JxgKidfx\ -*\fxgKodn] 

as i —> œ and 

&•• € (8'c)„. 

Thus for i sufficiently large and a suitable 

g 6 (8&)„, fc 6 (S#« 

with l/x gi^d/xl arbitrarily near 9tp(V). The C-measure gKi > V has compact 
support so that CKt is gKi . ju-negligible (2, Proposition 5, p. 119). Thus 
if / G A and /g^,. vanishes in E, 

Nf\d\gK< • MI < I*\f\c*i d(\gKt\ . /*) + J"*i/M(|fc| • M) = JV&Jrf/* = 0 
and the complex analogue of (4, Theorem 3.1) implies that 

g^ • M e a,*. 

THEOREM 3.3. ijf X is a reflexive length function for the positive measure y, 
if E is countable at infinity or if E is arbitrary and A = £ c

x is an MT*-space 
for which the MT- and \-conjugates coincide, then A is %lA-extensible and every 
measure in 21* is of base /z. 

Proof. Theorem 3.3 is a consequence of Lemma 3.1 and the fact that the 
reflexivity of 5ftA = X as a length function implies that it is reflexive as a 
semi-norm on A. 

When A is an 9îA-extensible MT*-space we denote by $A the vector sub-
space of C^ of mappings x with %lA(x) < °°. Then 5ftA is a non-trivial, 
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monotone semi-norm on %A and %A is an .MT*-space for which Condition 2.1 
holds. If for each 77 ^ 0 in 21* there exists a relatively compact set e{rj) that 
is not ^-measurable the .MT-conjugate of %A reduces to the zero element 
of A'. Such non-measurable sets exist, for example, if A — 2C

P (-Ë, M) with 
E = (0, 1) and /x Lebesgue measure on E, 1 < p < 00. In contrast, if E is 
arbitrary, if A = $c and %lA is the uniform semi-norm, 91A extends to GB 

in the form (6, Theorem 15.3), 

yiA(x) = sup 1* (01 
teE 

and %A is the space of all bounded functions on E which is an 9lA-extensible 
ikf r*-space. 

We note that if B = $A , where A is an arbitrary SkA-extensible MT*-
space, 3tA(x) > 0 is possible for a 33*-negligible function in B but SStA(x) = 0 
for every 2I*-negligible function in B. 

The properties of the extended semi-norm *3lA and of § A f° r Mr-spaces 
(6, § 12) extend to ^-extensible Mr*-spaces with ^'-negligibility replaced 
by 2l*-negligibility. In particular %A is complete. 

Generalizing (6) we define 

oA = n ?c(£, v) 
„c2t* 

for every il4T*-space A. We define tt0
A = ÛA H %A. Then O0

A is an MT*-
space with 9îA (extended) as a semi-norm. 

THEOREM 3.4. If A is an %lA-extensible MT*-space and if A* is complete 
or y more generally, tonnelé (1, § 1), then O0

A = 0A. 

Proof. The argument of (8, Theorem 5.1) applies. We note in particular 
that O0

A = 0A for every ^-extensible Mr*-space A if E is countable at 
infinity (Theorem 2.1, Corollary). 

4. A-spaces generated by 9lA-extensible MT*-spaces. 

THEOREM 4.1. Let A be an ^-extensible MT*-space, /z a positive measure 
on E. Then yiA, extended by (3.2), defines a length function for \x if and only 
if every fx-negligible set is 21*-negligible. 

Proof. By (3.1) and the subsequent remarks %lA(x) is defined for every 
x(t) that is defined almost everywhere (21*) and valued in RE and therefore 
for every x(t), //-measurable and defined, non-negative and valued in R almost 
everywhere (21*). That yiA then satisfies Conditions (L2)-(L5) for length 
functions (5) is then easily verified. We verify (L5). If xn{t) 6 R^ is non-
negative and ju-measurable, n = 1, 2, . . . , and if xn(t) increases to x(t) as 
n —» 00 f then for each rj £ 21*, 

/**(*) d\ri\ = supnf*xn(t) d\rj\, 

by (2, Theorem 3, p. 110). Thus 
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yiA(x) = sup j * x(t) d\r]\ = sup supn j * xn(t) d\rj\ 

= supnyiA(xn). 

If (Ll) (5) holds every /z-negligible set is 2l*-negligible. Conversely if every 
/x-negligible set is 2l*-negligible, %lA is defined and non-negative for every 
x(t) that is non-negative a.e. (/x) (and therefore a.e. (§1*)) and if x(i) is /x-
negligible and e = [t : x(t) ^ 0], e is /x-negligible (2, Theorem 1, p. 119) and 
therefore 2l*-negligible. This implies that x(t) is ^-negligible for every 77 Ç 21* 
and (3.2) then shows that ^lA(x) = 0 giving (Ll). 

We note that there exist ^-extensible Mr*-spaces, in fact iliT-spaces on 
a compact set E, for which yiA cannot define a length function for any measure 
/x. Consider the MT-space A — (§<?(£) of complex valued functions con­
tinuous in E = [0, 1] with semi-norm 3lA(x) = sup;e#jx(/)| and suppose that 
yiA defines a length function for some positive measure /x. Then, since 21* 
contains all the point measures, the empty set is the only 2l*-negligible set 
and therefore, by the preceding theorem, the only /x-negligible set. For each 
t, 0 < t < 1, the set {t} consisting of the point t is closed and therefore /x-
measurable and n({t}) > 0. For some a > 0 there is a collection of points tt 

of E with jj,({ti}) > a, i = 1,2, . . . . Thus for the characteristic function 
of E, XB, 

M(X*) = M CE) > Hmn/*(UÎ*«) > limv na = 00, 

contradicting the assumption that /x is a measure since XE G @c-
The following theorem is a partial converse of Theorem 3.3. 

THEOREM 4.2. Let A be an %lA-extensible MT*-space, /x a positive measure 
on E and suppose that all of the elements of 21* are of base /x. Suppose that every 
fi-negligible set is %*-negligible and that every 21*-negligible set is locally \x-neg-
ligible. Then i C i C ? c À = ^ C SA. 

Proof. By Theorem 4.1 yiA determines a length function X for /x. We denote 
by 2C

X the X-space determined by X. By hypothesis every rj G 21* can be 
written rj = g . /x where g(t) is locally /x-integrable. We identify the functions 
g(t) with A*, the measures g ./x with 21*. If E(g) = it : g(t) ^ 0), E(g) is 
/x-measurable and, for every x G ŒA, xE(g){t) is /x-measurable (3, Proposition 3, 
p. 43). Given a compact set K in E with n(K) > 0 consider, for all g Ç A*, 
the collection of subsets E{g) of K with n[E(g)] > 0. From this collection 
form a maximal collection of disjoint sets and let B denote their union. Since 
this collection will be at most countable B will be /x-measurable. If g £ A*f 

gK-B G A* and n[E(gK-B)] — 0 for otherwise B VJ E{gK-B) properly contains 
B contradicting the definition of B. Thus, for every g Ç A*, g(t) = 0 almost 
everywhere in K — B, g . /JL(K — B) = 0 and K — B is ^4*-negligible and 
therefore, by hypothesis, K — B is /x-negligible. If x Ç fiA, x# is /x-measurable 
and therefore xK is /x-measurable. It follows from (2, Proposition 4, p. 182) 
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that every x G QA is /x-measurable. If x G 120
A, 5ftA(x) < oo and x G 8C

X- Thus 
4̂ C &oA C 8cx- Since £ c

x is complete it is closed in gA and contains Â, the 
closure of A. 

To prove that 8cx C ^oA we must show that every /x-measurable function 
x(t) with yiA(x) < œ is in ScKg • M) for every ^ Ç i * . Every x(t) G Sc

x is 
/x-measurable by definition so that the Riesz components of x(t) are /x-measur­
able (6, p. 168). The Riesz components are then measurable (\g . /x| = |g| . /x) 
for every g G A* (3, Proposition 3, p. 43). Thus x{i) is measurable (g . /x) for 
every g G ^4*. Since for each g G ^4*, |g . ML G 2I*> it follows from (3.2) and 
(6, Theorem 9.4) that x{t) G ScKg./*). 

We note that if to each compact set K corresponds g(t) G A* with g(t) ^ 0 
a.e. (M) in i£, every 2I*-negligible set is locally /x-negligible. This is true in 
particular if 31* contains ®c or the characteristic function of every compact 
set. 

THEOREM 4.3. Suppose that E is countable at infinity or that E = E0 KJi°°Ki, 
with each Ki compact and EQ locally ^-negligible, /x a positive measure. Let A 
be an yiA-extensible MT*-space for which all of the elements of A* are of base 

<X\A 

fi. Then, if E0 is 21*-negligible, the normed spaces L^ and Œ0
A associated with 

2^A and O0
A are equivalent and contain A, the normed space associated with A. 

Proof. As in Theorem 4.2 each Kt is the union of a /x-measurable set Bt and 
an 2l*-negligible set. If B = KJiœBi, xB is /x-measurable for every x G ŒA. 
Every g G A* vanishes a.e. (SI*) in \J™Kt — B. If not, for some g, i, 

fx[E(gKi-B)] > 0, 

contradicting the definition of Bt. It follows that Bf = E — B is 3I*-negligible. 
Thus for each x(t) G ŒA, xB(t) is /x-measurable and 9îA(x — xB) = 0. If then 
x(t) G ti0

A, xB(t) e%cx, X = %lA, with VlA(x) = VlA(xB) and ÛoA C L c \ The 
proof that L c

x C &oA is similar to the corresponding part of the proof of 
Theorem 4.2. 

When E is countable at infinity Œ0
A = 12A. The space E defined in (2, 

Exercise 4, p. 116) is of the form D \J™Ki with D locally /x-negligible for the 
measure /x defined there. For the spaces 8C

P, 1 < p < œ , D is 2l*-negligible. 
We note that if $c is dense in £c

x , À — ? c
x in Theorem 4.2 and Â = L c

x 

in Theorem 4.3. 

5. MT*-spaces of Cauchy type. If A is an Mr*-space, let B be the 
vector subspace of A over R of real mappings in A, B the associated real 
normed vector space. As in (8), with a natural definition of a partial order 
on B, B becomes a "Riesz space." 

Definition 5.1. A complete S^-extensible ik/T*-space will be called an 
AfJ^-space of Cauchy type if each subset xY of B, bounded in norm and 
filtering for the relation < defines a Cauchy filter. 
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For a maximal Mr-space the definition reduces to that given in (8, § 1). 
The theory of MT-spaces of Cauchy type given in (8) extends to ATr*-spaces 
of Cauchy type with ^4'-negligibility replaced by 2t*-negligibility and with 
12A replaced by £20

A. 

THEOREM 5.1. If A is an MT*-space of Cauchy type then A = Q0
A. If the 

hypotheses of Theorem 4.2 are then satisfied, A = £ c
x = iï0

A and, if the hypo­
theses of Theorem 4.3 are satisfied A = L c

x = ÛQ
A. 

We note that if A = Sc
x is an liT*-space of Cauchy type, the analogue 

of (8, Corollary 6.1) implies that X satisfies (L9) (4, ((L9) as modified on 
p. 592)). Thus if E = [0, 1], /x Lebesgue measure, the space ?c°° CE, /x) is not 
of Cauchy type. 
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