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An analytical formulation is provided that describes the first two natural modes of the
fluid–structure interaction of an incompressible current with a pitching and heaving
flexible plate. The objective is twofold: first, to present a general derivation of analytical
expressions for the lift, moment and the flexural moments exerted by an inviscid flow on
a pitching and heaving plate whose deformation is general enough that the coupling of
the flexural moments with the structural equations allows solving analytically the first two
natural modes of the system; second, to analyse the propulsion performance of the foil
when actuated near the first two natural frequencies. For the second purpose, one also
needs the thrust force generated through the motion and the general deformation of the
foil considered, which is analytically derived using the linearized vortex impulse theory,
extending and systematizing previous works. The analytical expressions, once viscous
effects are taken into consideration through nonlinear transverse damping and offset drag
coefficients, are compared with small-amplitude available experimental data, discussing
their limitations. It is found that low stiffness pitching and heaving are quite different,
with a pitching flexible foil only generating thrust near the second resonant frequency,
whereas heaving always generates thrust, with the maximum slightly below the second
natural frequency. Maximum thrust for large stiffness pitching is around the first natural
frequency. The maximum efficiency occurs at frequencies close to the first natural mode
if the foil is sufficiently rigid, but it is not related to the natural frequencies as the rigidity
decreases.
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1. Introduction
The fluid–structure interaction (FSI) of a fluid current with a two-dimensional (2-D) thin
foil or plate with chordwise flexibility has been extensively investigated theoretically,
numerically and experimentally as a simple model to understand the propulsion
mechanisms and performance of flapping appendages of natural fliers and swimmers, as
well as their use to efficiently propel bioinspired aquatic and aerial robots (see, e.g. Shyy
et al. (2010), Smits (2019) and Wu et al. (2020) for comprehensive reviews). Within the
vast literature on the subject, the present work is focused on the role that resonances play
in improving propulsion performance, contributing to the field with a new theoretically
based analytical model to try to shed new light on the subject.

Theoretical approximations based on the 2-D linearized inviscid flow theory coupled
to the Euler–Bernoulli (E–B) beam equation, although limited to small deformations
of the foil and high Reynolds numbers, have proved to be very useful to facilitate the
understanding of many relevant aspects of this complex FSI problem, helping to elucidate
the mechanisms for the high efficiency obtainable by such propulsion systems. This
approach, first used by Wu (1971b), and then by Katz & Weihs (1978) for large amplitude
oscillation of the foil, has been followed by a number of investigators (Alben 2008;
Michelin & Llewellyn Smith 2009; Alben et al. 2012; Quinn et al. 2014, 2015; Moore
2014; Paraz, Schouveiler & Eloy 2016; Piñeirua et al. 2017; Floryan & Rowley 2018
and others) to analyse the influence of the bending rigidity and inertia on the propulsion
performance of 2-D flexible flapping foils. It has generally been found from these inviscid
flow theories that flexibility produces greater thrust when actuated near a fluid–structure
natural frequency, but less otherwise, with larger propulsive efficiency than that of a rigid
foil over a broad range of stiffnesses and frequencies. However, when viscous flow with
nonlinearities associated with flow separation are considered, numerical and experimental
investigations show that optimal performance can be achieved outside of the structural
resonance conditions (Thiria & Godoy-Diana 2010; Ramananarivo, Godoy-Diana & Thiria
2011; Dewey et al. 2013; Olivier & Dumas 2016; Goza, Floryan & Rowley 2020; D’Adamo
et al. 2022), but structural resonance always playing a relevant role in enhancing the
propulsion performance for sufficiently small mass ratios of the foil (Zhang, Zhou & Luo
2017).

Although linear inviscid theories represent a very significant simplification in relation
to numerical simulations of the full FSI problem, and their results have provided very
relevant advances in this field, they still require a considerable amount of numerical
work, typically decomposing the displacement of the foil and the fluid motion into a
Chebyshev series with a large number (infinite in theory) of parameters which have to be
obtained numerically to capture the multiple resonant modes (e.g. Alben 2009; Michelin
& Llewellyn Smith 2009; Moore 2017; Floryan & Rowley 2018; Anevlavi et al. 2020;
Mavroyiakoumou & Alben 2021). Analytical solutions for the FSI of flexible flapping
foils, which may be obtained with additional simplifications within the same framework
of the linear inviscid theories and the E–B beam equation, are undoubtedly very helpful
in understanding the propulsive performance of flying and swimming animals, as well as
for the preliminary design and improvement of bioinspired flying and swimming robotic
models. For example, the interesting analytical approach by Moore (2014), who considered
the particular case of a rigid foil with a prescribed heaving displacement and a passive
pitching motion about its leading edge, relating the finite torsional stiffness of the leading
edge with the kinematics of the rigid pitching motion and, hence, with the propulsive
performance of the foil. A similar analytical model for a heaving foil was considered by
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Kodaly & Kang (2016), but for passive pitching associated with the flexibility of the foil
rather than to its elastic support at the leading edge. More recently, Du & Wu (2024)
obtained simple analytical expressions that help to interpret the effect of the flexibility and
regulate the propulsive performance of the flexible foil when only pitching is considered.
A more general analytical approach for pitching and heaving flexible foils was considered
by Fernandez-Feria & Alaminos-Quesada (2021), where the foil passive deformation was
modelled by a quartic polynomial approximation, reproducing previous numerical inviscid
results up to the first resonant frequency of the system.

In the present work, the formulation in Fernandez-Feria & Alaminos-Quesada (2021)
is extended to cover consistently actuating frequencies up to the second resonance of
the system by using a fifth-order polynomial approximation satisfying the boundary
conditions at the leading and trailing edges of a general pitching and heaving flexible
foil. This approach thus covers up to the frontier between the purely oscillatory behaviour
and the undulatory behaviour of a 2-D flexible foil, for which analytical results from
the E–B equation are no longer feasible due to the difficulty of satisfying the free-end
boundary conditions at the trailing edge for prescribed leading edge conditions using
simple undulatory approximations of the foil. Although the present approach sometimes
yields trailing-edge deformation amplitudes at the second resonance of the system that
are outside the validity limit of the linear theory, it is known that this behaviour can
be easily corrected using a nonlinear transverse damping term in the E–B equation (e.g.
Eloy, Kofman & Schouveiler 2012; Paraz et al. 2016), so that the results remain within the
linear framework, showing a good agreement with experimental data on the deformation
of flexible oscillating foils. Therefore, with this corrected deformation one may obtain the
thrust, power and propulsive efficiency of the foil using the analytical expressions, also
derived in the present work, from the linearized inviscid flow theory coupled with the
E–B equation for a pitching and heaving foil whose deformation is given by a general
fifth-order polynomial satisfying the boundary conditions.

As indicated in the abstract, this work is also intended to give a more systematic
account of the analytic derivation of the lift, moment and the different flexural moments
exerted by the inviscid fluid on a general flexible foil configuration. These are needed
to derive the new expressions for the analytical approximation of the FSI through the
successive moments of the E–B beam equation, containing the new contributions that
allow us to capture both the first and the second resonance of the system. Similarly it is
done for the thrust and power, with a more compact derivation that integrates the new
contributions of the flexible foil into the circulatory and added mass terms in a way easier
to use and to understand than in previous works. Obviously, many of these expressions
contain common terms with some of these previous works (especially, Fernandez-Feria
& Alaminos-Quesada (2021)). But for the analytical formulation to be intelligible the
new contributions cannot be presented in isolation, but within the complete expressions,
which are written here. This is even more necessary due to the more systematic, and
therefore partially different derivations, used here. Details about these differences are
given throughout their derivations.

The paper is organized as follows. The problem is formulated in § 2, where it is also
corroborated that the analytical approximate solution of the E–B equation recovers almost
exactly the first two resonant frequencies of the system in vacuum. Section 3 presents
the derivation of the lift, moment and the different flexural moments using a formulation
based on the pressure difference in terms of the vorticity distribution, closing the new
analytical approximation of the FSI of the system. Section 4 presents some flexural
deformation results and their validation with experimental data after a nonlinear damping
correction through a transverse drag coefficient. With this passive deformation, the thrust
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Figure 1. Schematic of the foil motion (different instants of time for a particular case given by (2.8) and
(2.20)–(2.21) are represented, with different scales in x and in z). The pivot axis is located at the leading edge.

force can then be obtained with the new analytical expression derived in § 5 from the
linearized vortex impulse theory for the pitching and heaving flexible foil with the general
deformation considered in the present work. The input power and, therefore, the propulsive
efficiency can finally be obtained through the first two moments of the E–B beam equation,
whose analytical expressions are also given in § 5 along with a comparison with available
experimental data on deformation, thrust, power and efficiency of small-amplitude heaving
foils. All these expressions are used in § 6 to characterize and compare the propulsive
performance of heaving and pitching flexible foils when actuated around the first and
second natural modes. Finally, the conclusions are presented in § 7.

2. Formulation of the problem
The interaction of a uniform fluid current of velocity U with a 2-D pitching and heaving
flexible foil of chord length c and thickness ε is considered. For a thin plate, ε� c,
one may use the 2-D E–B beam equation (e.g. Doyle 2001), which for an approximately
inextensible plate with small amplitude of the heaving, pitching and flexural deformation
in relation to its chord length and in the inviscid flow limit can be written as

ρsε
∂2zs
∂t2 + ∂2

∂x2

(
E I
∂2zs
∂x2

)
=�p + Fpzδ(x − xp)− gδ′(x − xp), (2.1)

where (see figure 1) z is the coordinate perpendicular to the plate at rest, x is the coordinate
along the uniform free stream, both coordinates centred at the midchord length of the plate,
zs(x, t) is the displacement of the plate centreline in the z-direction, satisfying |zs | � c, ρs
is the solid density and E I = Eε3/12 is the structural bending rigidity per unit span. On
the right-hand side, �p = p− − p+ is the fluid pressure difference between the lower and
upper sides of the foil, whereas Fpz and g stand for any additional point force and point
moment (per unit span) acting at the pivot axis x = xp (e.g. to generate the heave and pitch
motions of the foil, or exerted by springs and dampers for passive heave and pitch about
the pivot axis).

In particular, the first four moments of that equation are used here (e.g. Fernandez-Feria
(2023), (6)–(10) in the small-amplitude and inextensible (Eε/(ρU2c)� 1) limit, plus an
additional moment): ∫ c/2

−c/2
ρsε

∂2zs
∂t2 dx = Fz + Fpz, (2.2)
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−c/2

(
x + c

2

)
ρsε

∂2zs
∂t2 dx = M + Mp, (2.3)

∫ c/2

−c/2

(
x + c

2

)2
ρsε

∂2zs
∂t2 dx +

∫ c/2

−c/2
2E I

∂2zs
∂x2 dx = D1, (2.4)

∫ c/2

−c/2

(
x + c

2

)3
ρsε

∂2zs
∂t2 dx +

∫ c/2

−c/2
6
(
x + c

2

)
E I
∂2zs
∂x2 dx = D2. (2.5)

In deriving these moment equations, free leading and trailing edges of the foil have been
assumed, but with the pivot axis very close to the leading edge, so that the moments are
approximately taken in relation to the point x = xp = −c/2. This selection is chosen for
two main reasons: first, because thrust and efficiency are maximized when a pitching and
heaving flexible foil is actuated at its leading edge (Moore 2014, 2015); second, because the
analytical approximation for zs(x, t) satisfying the leading and trailing edge constraints of
the E–B beam equation is the simplest when the pivot axis is close to the leading edge
(Fernandez-Feria 2023). Linearized potential flow theory is assumed, with Fz and M the
z-component of the force (the lift) and the moment, respectively, exerted by the fluid flow
on the foil,

Fz =
∫ c/2

−c/2
(�p)dx , M =

∫ c/2

−c/2

(
x + c

2

)
(�p)dx (2.6)

(note that M is here positive when it is anticlockwise). Here D1 and D2 are the first and
second flexural deformation moments of the foil,

D1 =
∫ c/2

−c/2

(
x + c

2

)2
(�p)dx , D2 =

∫ c/2

−c/2

(
x + c

2

)3
(�p)dx . (2.7)

Finally, Fpz and Mp are, as commented on above, the point force and the point moment
per unit span acting on the pivot axis.

In relation to previous analytical models based on a linearized FSI theory (e.g. Moore
2014; Kodaly & Kang 2016; Fernandez-Feria & Alaminos-Quesada 2021; Du & Wu 2024),
this is the only one which is based on a set of FSI equations that consistently considers the
passive flexural deformation of the plate using two degrees of freedom through (2.4)–(2.5),
thus covering a wider range of frequencies and stiffnesses, and for a general configuration
of a pitching and heaving flexible plate.

2.1. Non-dimensional equations
The equations are non-dimensionalized using the fluid density ρ, the free stream velocity
U and the half-chord length c/2. To simplify the notation, the same symbols are kept for
the coordinates (x, z), the time t (scaled with 2U/c) and the foil displacement zs . For
zs(x, t) to take into account the pitch and heave motions of the foil about the leading edge,
as well as two flexural deformation degrees of freedom, at least a fifth-order polynomial
must be used in x , instead of the quartic one used in Fernandez-Feria & Alaminos-
Quesada (2021). Thus, imposing a pitch and heave motion at the leading edge (x = −1)
and a free trailing edge (∂2zs/∂x2 = ∂3zs/∂x3 = 0 at x = 1), this fifth-order polynomial
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approximation can be written as

zs(x, t)= h(t)− α(t)(x + 1)+ d1(t)[24(x + 1)2 − 8(x + 1)3 + (x + 1)4]
+ d2(t)[160(x + 1)2 − 40(x + 1)3 + (x + 1)5] , −1 � x � 1, (2.8)

where h(t) and α(t) characterize the heave and pitch motions, respectively, and the
unknown functions d1(t) and d2(t) characterize the flexural deformation. Note that the
pitch angle α is positive when it is clockwise, as it is usual in airfoil aerodynamics, and that
d(t) in Fernandez-Feria & Alaminos-Quesada (2021) is 24d1(t) here. The corresponding
non-dimensional velocity of the foil’s centreline can be written as

v0(x, t)= ∂zs
∂t

+ ∂zs
∂x

= ḣ − α + (x + 1)[−α̇ + 48ḋ1 + 320ḋ2] + (x + 1)2[24ḋ1

+ 160ḋ2 − 24d1 − 120d2] + (x + 1)3[−8ḋ1 − 40ḋ2 + 4d1] (2.9)

+ (x + 1)4[ḋ1 + 5d2] + (x + 1)5ḋ2,

where dots are used for the derivatives with respect to the non-dimensional time t .
Assuming that ρs , ε and E are constant along the foil’s chord length, the non-

dimensional counterparts of (2.2)–(2.5) can be written as

R

(
ḧ − α̈+ 96

5
d̈1 + 416

3
d̈2

)
=CL +CL p , (2.10)

R

(
1
2
ḧ − 2

3
α̈ + 208

15
d̈1 + 704

7
d̈2

)
=CM +CMp , (2.11)

R

(
4
3
ḧ − 2α̈ + 4544

105
d̈1 + 944

3
d̈2

)
+ S

(
32
3
d1 + 80d2

)
=CF1, (2.12)

R

(
2ḧ − 16

5
α̈ + 496

7
d̈1 + 32512

63
d̈2

)
+ S (16d1 + 128d2)=CF2, (2.13)

where the non-dimensional parameters

R = 4ρsε
ρc

and S = 4Eε3

ρU 2c3 (2.14)

are the mass ratio (or inertia parameter) and the bending stiffness parameter, respectively,
and the following fluid force and moment coefficients have been defined:

CL = Fz
1
2ρU

2c
=
∫ 1

−1
(�P)dx , with �P = �p

ρU 2 , (2.15)

CM = M
1
2ρU

2c2
= 1

2

∫ 1

−1
(x + 1)(�P)dx = 1

2
CL + 1

2

∫ 1

−1
x(�P)dx, (2.16)

CF1 = D1

ρU 2
( c

2

)3 =
∫ 1

−1
(x + 1)2(�P)dx = −CL + 4CM +

∫ 1

−1
x2(�P)dx, (2.17)
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CF2 = D2

ρU 2
( c

2

)4 =
∫ 1

−1
(x + 1)3(�P)dx =CL − 6CM + 3CF1 +

∫ 1

−1
x3(�P)dx ;

(2.18)
together with the point force and moment coefficients,

CL p = Fpz
1
2ρU

2c
, CMp = Mp

1
2ρU

2c2
. (2.19)

The above expressions of the fluid coefficients are written in terms of the non-
dimensional pressure difference �P = (p− p+)/(ρU 2) to facilitate their computation
in terms of h(t), α(t), d1(t) and d2(t), and their derivatives (see § 3). Although the
expressions for the coefficients will be obtained for any temporal variation of these
functions, a general harmonic motion of the plate with frequency ω will be considered
in the computations; i.e. the real parts (say) of

h(t)= h0e
ikt , α(t)= α0e

ikt with α0 = a0e
iφ, (2.20)

d1(t)= d10e
ikt , d2(t)= d20e

ikt , with d10 = d1me
iψ1, d20 = d2me

iψ2, (2.21)

where h0 and a0 are the heave and pitch amplitudes, d1m and d2m the amplitudes of the
first and second flexural deflection modes, and the heave phase is taken zero as usual, so
that φ, ψ1 and ψ2 are the phase shifts of pitch and the two deflection modes, respectively,
in relation to the heave phase. Finally,

k = ωc

2U
= π f c

U
(2.22)

is the non-dimensional, or reduced, frequency.

2.2. Validation of the FSI model with the first two natural frequencies in vacuum
Before deriving the fluid coefficients CL ,CM ,CF1 and CF2 , it is shown here that the
above formulation with the fifth-order polynomial approximation (2.8) for zs captures very
accurately the first two natural frequencies of the foil in vacuum.

Substituting (2.20)–(2.21) into the moment equations (2.12) and (2.13) with CF1 =
CF2 = 0, i.e. in absence of fluid–foil interaction, one obtains the following linear equation
for the two deflection amplitudes d10 and d20 in terms of the pitch and heave amplitudes,
α0 and h0, the structural parameters and the frequency k:

A0 · d0 = b0, (2.23)

with

A0 =

⎛
⎜⎜⎜⎝

32
3

S − 4544
105

Rk2 80 S − 944
3

Rk2

16 S − 496
7

Rk2 128 S − 32512
63

Rk2

⎞
⎟⎟⎟⎠, (2.24)

d0 =
⎛
⎝ d10

d20

⎞
⎠, b0 =

⎛
⎜⎜⎜⎝

4
3
Rk2h0 − 2Rk2α0

2Rk2h0 − 16
5
Rk2α0

⎞
⎟⎟⎟⎠ . (2.25)
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The resonant frequencies, or frequencies where the flexural deformation amplitudes d10
and d20 diverge, are obtained from det(A0)= 0, yielding the first two resonant frequencies
in vacuum as the two real positive roots of that equation,

kr10 =
√

7
953

(
629 − 2

√
88 189

) S

R
� 0.507521

√
S

R
, (2.26)

kr20 =
√

7
953

(
629 + 2

√
88 189

) S

R
� 2.997118

√
S

R
. (2.27)

These values are in very good agreement with the exact results for the first two resonant
frequencies of a beam clamped at the leading edge (e.g. Timoshenko, Young & Weaver
1974, § 5.11): ωi = λ2

i

√
Eε2/(12ρsεc4), with λ1 = 1.87510 and λ2 = 4.69409, which in

the present non-dimensional notation are k1 = 0.507491
√
S/R and k2 = 3.180403

√
S/R

(relative errors with (2.26) and (2.27) of 0.006 % and 5.7 %, respectively). Thus, (2.8) is
the simplest model for the chordwise deformation of a pitching and heaving flexible plate
covering the first two resonant natural modes.

3. Fluid force and moment coefficients
To obtain CL ,CM ,CF1 and CF2 in a systematic way from (2.15) to (2.18) it is convenient
to write the non-dimensional pressure difference �P in terms of the non-dimensional
vorticity density distribution on the plate. In a linearized theory it is assumed that vorticity
is concentrated along the x-axis, both on the plate surface and its trailing wake (e.g.
Newman (1977), chapter 5). On the surface of the plate, the non-dimensional vorticity
density distribution is 
s(x, t)= u+ − u−, where u+ and u− are the non-dimensional
fluid velocity on the upper and lower sides of the plate, respectively. Using the unsteady,
linearized Bernoulli equation the non-dimensional pressure difference can be written as
(see Appendix A)

�P = ∂

∂t

∫ x

−1

s(ξ, t)dξ +
s(x, t). (3.1)

The nth moment of �P , appearing in (2.15)–(2.18) for n = 0, 1, 2 and 3, can then be
expressed, after integrating by parts, as∫ 1

−1
xn(�P)dx = d

dt

∫ 1

−1

1 − xn+1

n + 1

s(x, t)dx +

∫ 1

−1
xn
s(x, t)dx . (3.2)

Following von Kármán & Sears (1938), the vorticity distribution on the foil can be
decomposed as


s(x, t)=
0(x, t)+
se(x, t), (3.3)

where
0 is the contribution from the motion of the foil (2.9) through the integral equation
(see, e.g. Newman (1977), § 5.15)

v0(x, t)= 1
2π

∫
−

1

−1


0(ξ, t)

ξ − x
dξ, (3.4)

with
∫− denoting Cauchy’s principal value of the integral, whereas 
se is the contribution

from the wake vorticity 
e(x, t), which in the long time extends to infinity in first
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approximation, 1 � x <∞, and is given by von Kármán & Sears (1938), (7), as


se(x, t)= 1
π

√
1 − x

1 + x

∫ ∞

1

√
ξ + 1
ξ − 1


e(ξ, t)

ξ − x
dξ. (3.5)

The solution of (3.4) yields


0(x, t)= 2

π
√

1 − x2

[
− 2
π

∫
−

1

−1

√
1 − ξ2

ξ − x
v0(ξ, t)dξ + Γ0(t)

2

]
, (3.6)

with

Γ0(t)=
∫ 1

−1

0(x, t)dx = −

∫
−

1

−1

√
1 + x

1 − x
v0(x, t)dx (3.7)

the quasisteady bound circulation around the foil (i.e. without considering the effect of the
unsteady wake). From Kelvin’s circulation theorem these vorticity distributions are related
to each other through∫ 1

−1

s(x, t)dx +

∫ ∞

1

e(x, t)dx = Γ0(t)+

∫ ∞

1

√
x + 1
x − 1


e(x, t)dx = 0, (3.8)

where use has been made of (3.3) and (3.5) for the integral of 
se and the definition (3.7)
of Γ0.

3.1. Lift coefficient
According to (2.15) and (3.2), the lift coefficient can be obtained from

CL(t)= d
dt

∫ 1

−1
(1 − x)
s(x, t)dx +

∫ 1

−1

s(x, t)dx . (3.9)

After using Kelvin’s theorem (3.8), integrating by parts and performing the integral∫ 1
−1 x
sedx using (3.5), this can be written as (von Kármán & Sears 1938)

CL(t)= − d
dt

∫ 1

−1
x
0(x, t)dx −

∫ ∞

1

x 
e(x, t)√
x2 − 1

dx ≡CL0(t)+CLe(t). (3.10)

The first term, CL0 , is the added-mass or non-circulatory contribution to the lift, which
can be readily obtained once 
0(x, t) is computed from (3.6) using (2.9):


0(x, t)=
√

1 − x

1 + x

[
−2ḣ + α̇(4 + 2x)+ 2α + ḋ1

(
−371

4
− 65x − 5x2 + 6x3 − 2x4

)

+ d1

(
−72 − 4x + 16x2 − 8x3

)
+ ḋ2

(
−1353

2
− 1943

4
x − 46x2 + 49x3 − 12x4 − 2x5

)

+ d2

(
−2175

4
− 45x + 135x2 − 50x3 − 10x4

)]
; (3.11)
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CL0(t)= − d
dt

∫ 1

−1
x
0(x, t)dx

= π

(
α̇+ α̈− ḧ − 25ḋ1 − 149

8
d̈1 − 1465

8
ḋ2 − 1073

8
d̈2

)
. (3.12)

Obviously, the contributions from the pitch and heave, α(t) and h(t), coincide with those
obtained by Theodorsen (1935) and von Kármán & Sears (1938), while the contribution
from d1(t) coincide with that obtained in Alaminos-Quesada & Fernandez-Feria (2020)
with d(t)= 24d1(t). Only the contributions from d2(t), which captures the second natural
frequency of the foil, is new here. Similarly it happens for all the other coefficients
calculated in the rest of this section, except for CF2 , which is completely new, but their
derivations are summarized here for completeness, and because the new contributions
from d2(t) have to be obtained together with the rest to be integrated into the new
expressions derived here.

To compute the circulatory contribution CLc , the wake vorticity distribution 
e is ob-
tained from Kelvin’s theorem (3.8) assuming the harmonic motion (2.20)–(2.21) and tak-
ing into account that
e(x, t)=
e(X), with X = x − t , so that, writing Γ0(t)= G0eikt , it
results that 
e(x, t)= geik(t−x) with g = −G0/

∫∞
1

√
(x + 1)/(x − 1) e−ikxdx . Solving

this integral in terms of the Hankel functions H (2)
0 (k) and H (2)

1 (k), and writing the result
again in terms of Γ0(t), one gets (von Kármán & Sears 1938)

CLc(t)= −
∫ ∞

1

x√
x2 − 1


e(x, t)dx = Γ0(t)C(k), (3.13)

where

C(k)= H (2)
1 (k)

H (2)
1 (k)+ i H (2)

0 (k)
(3.14)

is Theodorsen’s function. This result coincides formally with Theodorsen (1935) and von
Kármán & Sears (1938), but now Γ0(t) contains more terms. It is obtained from (3.7)
using (2.9):

Γ0(t)= π

[
−2ḣ + 3α̇ + 2α − 263

4
ḋ1 − 59d1 − 3831

8
ḋ2 − 1755

4
d2

]
. (3.15)

Note that although (3.13) has been derived for a harmonic motion, it can be extrapolated
to more general foil motions using this expression for Γ0(t), not restricted to a harmonic
motion of the foil.

3.2. Moment coefficient
Once CL is obtained, to compute CM from (2.16) it suffices to obtain∫ 1

−1
x(�P)dx = d

dt

∫ 1

−1

1 − x2

2

s(x, t)dx +

∫ 1

−1
x
s(x, t)dx . (3.16)

Again, after some manipulations using Kelvin’s theorem (3.8), integration by parts,
performing the integrals

∫ 1
−1 x

2
sedx and
∫ 1
−1 x
sedx using (3.5) and taking into account

that d(
∫∞

1 A(x)
e(x − t)dx)/dt = ∫∞
1 A′(x)
e(x − t)dx when A(x = 1)= 0, one
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gets ∫ 1

−1
x(�P)dx = 1

4
dΓ0

dt
− 1

2
d
dt

∫ 1

−1
x2
0(x, t)dx

+
∫ 1

−1
x
0(x, t)dx − 1

2

∫ ∞

1


e(x, t)√
x2 − 1

dx . (3.17)

Only the last term contributes to the circulatory moment. Combining this expression with
CL in (2.16) and performing the integrals in a similar way to how it has been done for CL ,
the moment coefficient can be conveniently written as

CM(t)=CM0(t)+CMc(t), (3.18)

with the added-mass term

CM0(t)=
π

256

(
192α̇ + 144α̈ − 128ḧ − 576d1 − 5248ḋ1 − 2800d̈1

−4640d2 − 38680ḋ2 − 20213d̈2
)
, (3.19)

and

CMc(t)= 1
4Γ0(t)C(k), (3.20)

where Γ0(t) is given by (3.15) and C(k) by (3.14).

3.3. First flexural moment coefficient
According to (2.17), to obtain CF1 one needs the additional computation of∫ 1

−1
x2(�P)dx = d

dt

∫ 1

−1

1 − x3

3

s(x, t)dx +

∫ 1

−1
x2
s(x, t)dx, (3.21)

which after some lengthy manipulations can be written as∫ 1

−1
x2(�P)dx = −1

2
Γ0 − 1

3
d
dt

∫ 1

−1
x3
0(x, t)dx

+
∫ 1

−1
x2
0(x, t)dx − 1

2

∫ ∞

1

x
e(x, t)√
x2 − 1

dx . (3.22)

Thus, performing the integrals and using the above expressions of CL and CM in (2.17),
one gets

CF1(t)=CF10(t)+CF1c(t), (3.23)

with

CF10(t)=
π

192

(
384α̇ + 288α̈ − 240ḧ − 1056d1 − 10848ḋ1 − 5745d̈1

−8640d2 − 80190ḋ2 − 41540d̈2
)
, (3.24)

CF1c(t)= 1
2Γ0(t)C(k). (3.25)

Except for the new terms with d2(t), this expression coincides with CF obtained in
Fernandez-Feria & Alaminos-Quesada (2021) by a slightly different approach, with d(t)=
24d1(t) in that reference.
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3.4. Second flexural moment coefficient
Finally, to obtain CF2 one needs to compute∫ 1

−1
x3(�P)dx = d

dt

∫ 1

−1

1 − x4

4

s(x, t)dx +

∫ 1

−1
x4
s(x, t)dx, (3.26)

which can be written as∫ 1

−1
x3(�P)dx = 3

32
dΓ0

dt
− 1

4
d
dt

∫ 1

−1
x4
0(x, t)dx

+
∫ 1

−1
x3
0(x, t)dx − 3

8

∫ ∞

1


e(x, t)√
x2 − 1

dx . (3.27)

Substituting into (2.18) and performing the integrals, the second flexural moment
coefficient can be written as

CF2(t)=CF20(t)+CF2c(t), (3.28)

with the added-mass term

CF20(t)=
π

128

(
368α̇ + 280α̈ − 224ḧ − 912d1 − 10580ḋ1 − 5680d̈1

−7530d2 − 78350ḋ2 − 41117d̈2
)
, (3.29)

and the circulatory term

CF2c(t)=
5
8
Γ0(t)C(k), (3.30)

where Γ0(t) is given by (3.15) and C(k) by (3.14).

4. Validation of flexural deformation
Once the necessary aerodynamic loads on the flexible plate have been calculated for zs
given by (2.8), (2.10)–(2.13) are closed. In particular, with the expressions for CF1 and
CF2 one may solve (2.12)–(2.13) to obtain the passive flexural deformation of the plate,
which is done in this section, before considering the propulsion problem in § 5.

For given pitching and heaving harmonic motions h(t) and α(t), the corresponding
flexural deformation functions d1(t) and d2(t) can be computed from (2.12) and (2.13)
once the flexural coefficients CF1 and CF2 obtained in §§ 3.3 and 3.4 are written in terms
of the harmonic motion (2.20)–(2.21). Equations (2.12) and (2.13) can then be written as

A · d0 = b, (4.1)

where

A =

⎛
⎜⎜⎜⎝

32
3

S − 4544
105

Rk2 − D11 80 S − 944
3

Rk2 − D12

16 S − 496
7

Rk2 − D21 128 S − 32512
63

Rk2 − D22

⎞
⎟⎟⎟⎠, (4.2)

d0 =
⎛
⎝ d10

d20

⎞
⎠, b =

⎛
⎜⎜⎜⎝

4
3
Rk2h0 − 2Rk2α0 + Dh1h0 + Da1α0

2Rk2h0 − 16
5
Rk2α0 + Dh2h0 + Da2α0

⎞
⎟⎟⎟⎠, (4.3)
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with the FSI functions of k coming from CF1 and CF2 given by

D11(k)= π

192

(
5745k2 − 10848ik − 1056

)
− πC(k)

2

(
263

4
ik + 59

)
, (4.4)

D12(k)= π

192

(
41540k2 − 80190ik − 8640

)
− πC(k)

2

(
3831

8
ik + 1755

4

)
, (4.5)

D21(k)= π

128

(
5680k2 − 10580ik − 912

)
− 5πC(k)

8

(
263
4

ik + 59
)
, (4.6)

D22(k)= π

128

(
41117k2 − 78350ik − 7530

)
− 5πC(k)

8

(
3831

8
ik + 1755

4

)
, (4.7)

Dh1(k)= 5π
4
k2 − πC(k) ik , Da1(k)= π

(
2ik − 3

2
k2
)

+ πC(k)
2

(2 + 3ik), (4.8)

Dh2(k)= 7π
4
k2 − 5πC(k)

4
ik , Da1(k)= π

(
23
8

ik − 35
16

k2
)

+ 5πC(k)
8

(2 + 3ik).

(4.9)

When the FSI is not considered, i.e. when these D-coefficients are not taken into account
in (4.1), one obviously recovers the flexural deflection equations in vacuum (2.23). The
two first resonant, or natural, frequencies which takes into account the FSI are obtained
by minimizing | det(A)|. They will be denoted by kr1 and kr2, and tend to kr10 and kr20,
respectively (given by (2.26) and (2.27)), as the mass ratio R increases for sufficiently
large stiffness S (see results below).

To characterize the magnitude and the phase shift of the flexural deflection for a given
heaving and pitching motion one may use the trailing edge displacement, AT = |zs(1, t)|,
normalized with the rigid foil counterpart A0, and its phase shift ψt from the heaving
motion:

AT

A0
= |h0 − 2α0 + 48d10 + 352d20|

|h0 − 2α0| , (4.10)

ψt = phase(h0 − 2α0 + 48d10 + 352d20). (4.11)

Figure 2 shows these two quantities on the (S, k)-plane when R = 10 for a pure heaving
motion (α0 = 0) set at the leading edge. Also plotted are the first two resonant frequencies,
both in vacuum and taking into account the FSI, which in this case are very close to
each other for large S because R is large enough (the inertia of the foil is much greater
than that of the fluid). It is observed that the flexural deformation magnitude AT /A0
presents local maxima around the two natural frequencies for large stiffness, particularly
for S larger than the stiffness Sr where the two natural frequencies merge, which in
this case with R = 10 is Sr ≈ 1.5. The flexural deformation decays very rapidly outside
these regions around the two natural frequencies up to the merging point. Also plotted
in the figure is the first resonant frequency obtained in Fernandez-Feria & Alaminos-
Quesada (2021) using a quartic polynomial approximation for zs , which can only capture
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Figure 2. Normalized flexural deflection amplitude at the trailing edge AT /A0 (a), and its phase shift ψt (b),
for pure heave as k and S are varied when R = 10. The thick black lines correspond to kr1 and kr2, computed by
minimizing | det(A)|, and the corresponding dashed lines are kr10 and kr20 from (2.26) and (2.27). Also shown
in (a) with thin red lines are kr1 and kr10 from Fernandez-Feria & Alaminos-Quesada (2021).
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Figure 3. As in figure 2(a), but for R = 1 (a), and R = 0.01 (b).

the first natural mode. The value of kr10 in vacuum from this simpler approximation
is practically the same as the present one for all S; when the FSI is considered, kr1
from the quartic approximation practically coincides with the present one for S larger
than the merging value Sr (note than in Fernandez-Feria & Alaminos-Quesada (2021),
S and R are defined as S/4 and R/4 of the present work, respectively). It is also worth
mentioning that the second natural frequency with FSI computed here coincides with that
obtained by Floryan & Rowley (2018) from the numerical solution of the full E–B beam
equation. In relation to the phase shift of the deformation at the trailing edge, figure 2(b)
shows that ψt ≈ −160o when AT /A0 reaches its maximum values around the natural
frequencies.

As R decreases, kr10 and kr20 grow as R−1/2 (see (2.26) and (2.27)), but kr1 and
kr2 grow at a much slower pace, so that the natural frequencies with FSI separate from
their vacuum counterparts as the relative inertia of the solid decreases (see figure 3 for
R = 1 and R = 0.01). In fact, for R = 0.01, kr2 becomes even smaller than kr10. But the
qualitative pattern of AT /A0 remains: local maxima about kr1 and kr2 for sufficiently large
S, in any case larger than the stiffness S where the two natural frequencies merge, and rapid
decay of AT /A0 outside these regions. It must be recalled that the present approximation
fails when the frequency k exceeds kr2(S, R).
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4.1. Comparison with experimental data. Deflection correction
with a nonlinear fluid damping

Although the natural frequencies around which the flexural deflection reaches its
maximum are quite well predicted by the present formulation, it is well known that the
amplitudes of these resonant deflections are greatly overestimated by the linear theory.
Actually, they reach infinity in vacuum (see § 2.2), and, as shown in figures 2 and 3,
AT /A0 may become much larger than unity near the natural frequencies, violating the
linear hypothesis. This behaviour can be corrected by taking into account an external
resistive term in the E–B equation modelling the lateral (or transverse) fluid dynamic
drag (Taylor 1952; Eloy et al. 2012). Since the correction has to be mainly done around
the natural frequencies, for outside these regions the flexural deflection amplitude remain
within the limits of the linear theory, the use of a nonlinear damping term on the left-hand
side of (2.1) of the form

1
2
CDz

∣∣∣∣∂zs
∂t

∣∣∣∣ ∂zs
∂t
, (4.12)

where CDz is an empirically fitted transverse drag coefficient, would be enough (Paraz
et al. 2016; Piñeirua et al. 2017). In fact, only terms involving products of the flexural
deflections d1 and d2 would be relevant in (4.12), because any other quadratic term would
be negligible for small pitching and heaving amplitudes. But, for completeness, all the
terms are retained.

In non-dimensional form, the nonlinear damping (4.12) would introduce, for the
harmonic motion (2.20)–(2.21), the following terms into the left-hand side of the flexural
deflection moment equations (2.12) and (2.13), respectively:

ik2CDz

(∣∣∣∣43h0 − 2α0 + k1h1d10 + k1h2d20

∣∣∣∣ h0 +
∣∣∣∣−2h0 + 16

5
α0 + k1a1d10 + k1a2d20

∣∣∣∣ α0

+ |k1h1h0 + k1a1α0 + k111d10 + k112d20| d10

+ |k1h2h0 + k1a2α0 + k112d10 + k122d20| d20

)
, (4.13)

and

ik2CDz

(∣∣∣∣2h0 − 16
5
α0 + k2h1d10 + k2h2d20

∣∣∣∣ h0

+
∣∣∣∣−16

5
h0 + 16

3
α0 + k2a1d10 + k2a2d20

∣∣∣∣ α0

+ |k2h1h0 + k2a1α0 + k211d10 + k212d20| d10

+ |k2h2h0 + k2a2α0 + k212d10 + k222d20| d20

)
, (4.14)

where the k...-constants are given in Appendix B. Thus, instead of (4.1), the equation for
determining the flexural deflection amplitude and phase becomes

(A + Ac) · d0 = b + bc, (4.15)

where the new matrix Ac and vector bc, which depend on d0, are also given in
Appendix B.

This is a nonlinear equation for d0 which can easily be solved iteratively starting from
the solution for CDz = 0 given by (4.1). Since both Ac and bc are proportional to k2, the
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Figure 4. Comparison of experimental results by Paraz, Eloy & Schouveiler (2014) for AT /A0 = AT E/ALE
versus the frequency (triangles, case B = 0.053 N m in their figure 5a) with the present linear results (CDz = 0,
dashed line), and damped with CDz = 1, 10 and 12 (solid lines). Also shown with a dotted line is the linear
result from Fernandez-Feria & Alaminos-Quesada (2021), which only captures the first natural frequency.

correction to the linear solution will be more important as the frequency k increases, which
is consistent with the fact that the largest deflection amplitude coming from the linear
theory is commonly observed at the second natural frequency kr2, so that, as we shall see
below, the nonlinear damping correction must be the greatest around this frequency.

Figure 4 shows a comparison of the flexural deflection amplitude obtained from the
present theoretical formulation with experimental results reported by Paraz et al. (2014) for
a flexible plate with c = 12 cm undergoing a pure heaving motion in a water current with
velocity U = 0.05 m s–1 (Re =Uc/ν = 6000). The mass ratio of the foil is R = 0.16 and
its bending rigidity 0.053 N m, corresponding to the non-dimensional stiffness S = 589
in the present notation. This example also serves to illustrate how the nonlinear fluid
damping described above corrects the flexural deflection amplitude as the drag coefficient
CDz and the forcing frequency f are varied. The figure plots the trailing-edge amplitude
AT E normalized with the heaving amplitude, ALE = 0.004 m (h0 � 0.067), a ratio that
coincides with AT /A0 defined in (4.10) for a pure heaving motion, versus the dimensional
frequency in hertz. The present linear theory with no damping (CDz = 0, dashed line)
presents two marked maxima at the first two natural frequencies, fr1 = 1.03 Hz and
fr2 = 7.90 Hz. Also shown for comparison sake is the deflection obtained with a quartic
polynomial approximation for zs in Fernandez-Feria & Alaminos-Quesada (2021) (dotted
line with CDz = 0), which captures only the first resonant frequency, obviously coinciding
with the present results around fr1, but decaying beyond that frequency without presenting
any other peak. The trailing edge deflection ratio AT /A0 is also plotted for three values of
CDz 
= 0 to show how the linear resonant peaks are damped as CDz increases, but barely
affecting the rest of the deflection amplitude. It is found that the present theoretical results
with CDz = 10 best fit the experimental results around the first natural frequency, which is
close to the value CDz = 12 found by Paraz et al. (2016) to best fit their analytical model
with the experimental data. The present results with CDz = 12 are also plotted to show
that their differences with CDz = 10 are quite small. Around the second natural frequency,
the agreement of the present results (using either CDz = 10 or 12) with the experimental
data is poorer than around the first natural frequency, but they qualitatively capture the
magnitude of the experimental deflection. Figure 5 illustrates the shape of the flexible
plate along a flapping cycle at the two natural frequencies.
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Figure 5. Plate shape at different times for the same case plotted in figure 4 (h0 = 0.067, α0 = 0, R = 0.16,
S = 589) at the first (a) and second (b) resonant frequencies.

Further comparison of the present flexural deflection theoretical results with other
experimental data is provided in § 5.4.

5. Propulsion performance

5.1. Thrust coefficient
Before deriving the expression for the thrust force generated by the flexible foil’s
kinematics, (2.8)–(2.9), in the present framework of linear potential theory, it is instructive
to write the lift coefficient (2.15) in terms of the vorticity distribution, but not in the form
(3.9) used in § 3.1, but according to the general vortical impulse theory (Wu 1981; Saffman
1992).

Starting from (3.9) and using Kelvin’s theorem,
∫ 1
−1 
s(x, t)dx + ∫∞

1 
e(x, t)dx = 0,
it can be written as

CL(t)= − d
dt

∫ 1

−1
x
s(x, t)dx − d

dt

∫ ∞

1

e(x, t)dx −

∫ ∞

1

e(x, t)dx . (5.1)

Now, since 
e(x, t)=
e(X), with X = x − t (von Kármán & Sears 1938),

d
dt

∫ ∞

1
(x − 1)
e(X)dx = d

dt

∫ ∞

1−t
(X + t − 1)
e(X)dX =

∫ ∞

1

e(x, t)dx . (5.2)

Substituting this expression into the last term of (5.1) one gets the lift coefficient as
the z-component of the 2-D force F in terms of vortical impulse, F = −ρd(∫V∞(x ∧
ω)dV)/dt , where ω is the vorticity field and V∞ the entire fluid domain. In non-
dimensional form and in the small-amplitude linearized limit,

CL(t)= − d
dt

∫ 1

−1
x
s(x, t)dx − d

dt

∫ ∞

1
x
e(x, t)dx . (5.3)

This expression was already used by von Kármán & Sears (1938) in their pioneering
work on unsteady airfoil theory, recovering the previous result by Theodorsen (1935) from
the standard expression (2.15) for a rigid foil undergoing a general harmonic pitching and
heaving motion of small amplitude. Likewise, the non-dimensional x-component of the
force Cx , or better, the thrust coefficient CT = −Cx , can be written as

CT (t)= − d
dt

∫ 1

−1
zs(x, t)
s(x, t)dx − d

dt

∫ ∞

1
ze(x, t)
e(x, t)dx, (5.4)
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where ze(x, t) is the displacement of the vortex wake in the z-direction. This expression,
valid for |zs | � 1 and |ze| � 1 as it is (5.3), is now used for the flexible foil’s kinematics
(2.8)–(2.9).

Assuming that ze(x, t) is, like 
e(x, t), a function only of X = x − t , i.e. that the wake
is stationary relative to the fluid (von Kármán & Sears 1938), the last term can be written
as

− d
dt

∫ ∞

1
ze(x, t)
e(x, t)dx = −ze(1, t)
e(1, t)= −zs(1, t)
e(1, t). (5.5)

The thrust force obtained with this assumption in the simplest case of a rigid pitching and
heaving foil has shown to compare very well with several sets of experimental data for
small-amplitude oscillations (Fernandez-Feria 2016, 2017; Alaminos-Quesada 2021).

Taking into account (3.3), the first term in (5.4) contains terms associated with
0(x, t)
and to 
se(x, t). The terms corresponding to 
0 are easily computed using (2.8) and
(3.11), to yield

− d
dt

∫ 1

−1
zs(x, t)
0(x, t)dx = − d

dt

[
h(t)Γ0(t)+ α(t)Γa(t)+ d1(t)Γd1(t)+ d2(t)Γd2(t)

]
,

(5.6)
where Γ0(t), defined in (3.7), is given by (3.15), whereas the other functions Γ...(t) are
given in Appendix C. It is understood that the terms inside brackets are the product of the
real parts of each factor; e.g. Re[h(t)]Re[Γ0(t)].

For the terms coming from
se, one can first use Kelvin’s theorem (3.8), and then make
use the expression (3.5) for
se to integrate in x (except for the term corresponding to h(t)
in zs(x, t) for which this last step is not needed):

− d
dt

∫ 1

−1
zs(x, t)
se(x, t)dx = − d

dt

[
h(t)

(
−Γ0(t)−

∫ ∞

1

e(ξ, t)dξ

)

+ α(t)

(
Γ0(t)+

∫ ∞

1

e(ξ, t)dξ −

∫ ∞

1
Ia(ξ)
e(ξ, t)dξ

)

+ d1(t)

(
−163

8
Γ0(t)− 163

8

∫ ∞

1

e(ξ, t)dξ +

∫ ∞

1
Id1(ξ)
e(ξ, t)dξ

)

+ d2(t)

(
−1183

8
Γ0(t)− 1183

8

∫ ∞

1

e(ξ, t)dξ +

∫ ∞

1
Id2(ξ)
e(ξ, t)dξ

)]
, (5.7)

where

Ia(ξ)=
√
ξ2 − 1 − ξ, (5.8)

Id1(ξ)= 1
8

[
27 − 224ξ − 48ξ2 + 32ξ3 − 8ξ4 +

√
ξ2 − 1

(
8ξ3 − 32ξ2 + 52ξ + 208

)]
,

(5.9)

Id2(ξ)= 1
8

[
215 − 1640ξ − 400ξ2 + 240ξ3 − 40ξ4 − 8ξ5

+
√
ξ2 − 1

(
8ξ4 + 40ξ3 − 236ξ2 + 420ξ + 1523

)]
. (5.10)

The factors 163/8 and 1183/8 appear when applying Kelvin’s theorem to the terms
corresponding to d1 and d2, respectively, because these factors are subtracted to the
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functions of x multiplying d1 and d2 in zs , so that the functions Id1(ξ) and Id2(ξ)
appearing in the integrals in ξ are regular at the leading edge ξ = 1; particularly, their
values at ξ = 1 are

Id1(1)= −221
8
, Id2(1)= −1633

8
. (5.11)

This regularity is important to compute the time derivatives of these integrals taking into
account that 
e(ξ, t)=
e(X), with X = ξ − t , so that, for any function G(ξ) regular at
ξ = 1, the time derivative can be written as (von Kármán & Sears 1938)

d
dt

∫ ∞

1
G(ξ)
e(ξ, t)dx =

∫ ∞

1

dG(ξ)
dξ


e(ξ, t)dξ + G(1)
e(1, t). (5.12)

Performing these time derivatives in (5.7) and then the resulting integrals in ξ , taking
into account that 
e(ξ, t) can be written as (see text above (3.13))


e(ξ, t)= Γ0(t)H(k)e−ikξ , H(k)= 2
π

1

i H (2)
0 (k)+ H (0)

1 (k)
, (5.13)

and substituting (5.5), (5.6) and (5.7) into (5.4), the thrust coefficient can finally be
expressed as

CT (t)=CT 0(t)+CTc(t), (5.14)

with

CT 0 = − d
dt

[αΓa + d1Γ0d1 + d2Γ0d2], (5.15)

and

CTc =
(
ḣ − α̇+ 163

8
ḋ1 + 1183

8
ḋ2

)
[Γ0Ch] + α̇[Γ0Ca1] + α[Γ0Ca0]

+ ḋ1[Γ0Cd11] + d1[Γ0Cd10] + ḋ2[Γ0Cd21] + d2[Γ0Cd20], (5.16)

where the different functions Γ0...(t) and complex functions C...(k) are given in the
Appendices C and D, respectively. Note that all the terms involving 
e(1, t) in (5.7),
some of them affected by the constants (5.11) after time derivation, cancel exactly out,
this being an indication of the coherence of the method and the correctness of the
computations. All the terms in (5.15) and (5.16) are actually the product of the real parts
of two factors, the second one always written between brackets in (5.16) for clarity sake.
The new contributions to CT due to the second flexural mode d2(t) are, in addition to
those which are explicit in (5.15)–(5.16), scattered inside the different functions Γ0...(t)
(see Appendix C). With the use of these Γ0... functions, the present notation (5.14)–(5.16)
is more compact, and with a clearer separation between added-mas and circulatory terms,
than in Fernandez-Feria & Alaminos-Quesada (2021).

5.2. Cycle-averaged thrust
Time-averaged quantities over the flapping cycle 2π/k are more useful for practical
applications than the instantaneous ones. Thus, one may define the cycle-averaged
(non-dimensional) thrust as

CT = k

2π

∫ t+2π/k

t
CT (t)dt. (5.17)

1015 A35-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
39

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10390


R. Fernandez-Feria

Clearly, the time average of the added-mass component (5.15) vanishes exactly because it
is the time derivative of products of periodic functions of t with zero mean. Therefore, all
the time-averaged thrust comes from the circulatory part (5.16), and can be written as

CT =CTc = thh
2
0 + taa

2
0 + td1d

2
1m + td2d

2
2m + thah0a0 + thd1h0d1m

+ thd2h0d2m + tad1a0d1m + tad2a0d2m + td1d2d1md2m, (5.18)

where the coefficients th, ta, td1, td2, tha, thd1, thd2, tad1, tad2 and td1d2 multiplying the
heave, pitch and flexural deformation amplitudes, which are functions of the reduced
frequency k, and eventually of the phases φ, ψ1 and ψ2, are given in Appendix E. For
d2m = 0 this expression coincides with that in Fernandez-Feria & Alaminos-Quesada
(2021) for a pivot axis at the leading edge, though written in a slightly different notation.

An offset drag CDx is usually subtracted to this theoretical expression coming from
the linear potential theory to account for the streamwise viscous friction. Its value is
obviously much smaller than the transversal drag coefficient CDz used above to account
for the nonlinear viscous damping of the flexural deflection amplitude near the resonant
frequencies. Typically, CDx ≈ 0.05 for small amplitude pitching and heaving motions
(Mackowski & Williamson 2015; Senturk & Smits 2019). Its correction to CT is usually
quite irrelevant, except for very small frequencies, since the theoretical CT → 0 as k → 0.
However small, its use important to avoid an unphysical singularity in the efficiency as
k → 0 (e.g. Mackowski & Williamson 2015; Fernandez-Feria 2017).

5.3. Power coefficient and efficiency
The power required to generate the pitching and heaving motion about the leading edge is
given, in non-dimensional form, by

CP(t)= ḣ(t)CL p (t)− 2α̇(t)CMp (t). (5.19)

On using (2.10)–(2.11) and the results of §§ 3.1 and 3.2, it can be written as

CP =CPR +CPF =CPR +CP0 +CPc , (5.20)

where

CPR = R

[
ḣ

(
ḧ − α̈+ 96

5
d̈1 + 416

3
d̈2

)
− 2α̇

(
1
2
ḧ − 2

3
α̈ + 208

15
d̈1 + 704

7
d̈2

)]
(5.21)

is the contribution due to the inertia of the foil of mass ratio R, whereas

CPF = −ḣCL + 2α̇CM (5.22)

is the fluid contribution, which in turn can be decomposed into an added-mass part,
associated with the fluid inertia, and circulatory part,

CP0 = −ḣCL0 + 2α̇CM0, (5.23)

CPc = −ḣCLc + 2α̇CMc =
(

−ḣ + 1
2
α̇

)
[Γ0C(k)], (5.24)
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where CL0 and CM0 are given by (3.12) and (3.19), respectively, and use has been made of
(3.13) and (3.20) for CLc and CMc . The contribution to CP associated with the nonlinear
damping term (4.12) in (2.10)–(2.11) has been neglected because it has already used to
damp the resonant peaks in the flexural deformation amplitude through its inclusion in
(2.12) and (2.13), so that the resulting cubic terms from this nonlinear damping in ḣCL p

and α̇CMp become negligible once |d1| and |d2| are small.
The time-averaged power coefficient,

CP = k

2π

∫ t+2π/k

t
CP(t)dt, (5.25)

can also be decomposed into the above three contributions. The contribution from the
inertia of the foil vanishes for a rigid foil (Fernandez-Feria 2023), i.e. when the flexural
deflection amplitudes d1m and d2m are zero:

CPR = − 16
105

Rk3 {d1m [91a0 sin(φ −ψ1)+ 63h0 sinψ1]

+ d2m [660a0 sin(φ −ψ2)+ 455h0 sinψ2]} . (5.26)

This contribution is important at high frequencies when R is not small, e.g. for a flapping
foil in air. As it will seen in the results reported below, it may help to reduce the power
consumption and thus to increase the propulsion efficiency for large R.

In general, the total time-averaged power coefficient can be written as

CP = phh
2
0 + paa

2
0 + phah0a0 + phd1h0d1m + phd2h0d2m + pad1a0d1m + pad2a0d2m,

(5.27)

where the coefficients ph, pa, pha, phd1, phd2, pad1 and pad2, which are functions of the
reduced frequency k, and eventually of the mass ratio R and the phases φ, ψ1 and ψ2,
are given in Appendix F. These coefficients are written there separating the foil inertia
contribution (5.26) (terms containing the parameter R), the circulatory contribution (terms
containing the real, F , or imaginary, G, parts of Theodorsen’s function C), and the added-
mass contribution (remaining terms). It is worth noticing from the expressions given there
that CP0 also contains cubic terms in k, like CPR , but also quadratic and linear terms,
whereas the terms in CPc are, at most, quadratic in k. This means that what could most
affect power, and therefore, efficiency near the second natural frequency are the terms
coming from the inertia, both of the fluid and of the solid.

Once the thrust and power are computed, the (Froude) propulsive efficiency can be
obtained as η=CT /CP . However, this expression is valid provided that CP is positive,
and this is not always so because some contributions to CP may become negative,
especially those coming from the inertia (e.g. Yin & Luo 2010; Fernandez-Feria 2023),
so that there is energy transfer from the foil back to the driving system. To avoid this
situation, a conservative assumption is usually adopted (Yin & Luo 2010), which the
negative power in either one of the two terms in (5.19) is not reusable. Consequently, we
define an alternative time-averaged power coefficient CP+ where only the positive parts
of ḣ(t)CL p (t) and −2α̇(t)CMp (t) in (5.19) are averaged over the entire flapping cycle. The
propulsion efficiency is thus defined as

η= CT

CP+
. (5.28)

In what follows, CP will be used to simplify the notation, but understanding that it means
CP+ , except otherwise specified.
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Figure 6. Comparison between the present theoretical results (continuous lines) for AT /A0 (a), CT /(k2h2
0)

(b), CP/(k3h2
0) (c) and η (d) with experimental data (symbols) by Quinn, Lauder & Smits (2014) for a flexible

heaving foil with h0 � 0.1. The experimental data are extracted from figure 9 of Paraz et al. (2016). Dashed
lines correspond to the results for the rigid foil counterpart.

5.4. Comparison with experimental results
Figure 6 compares the present results for the trailing-edge deflection amplitude, the thrust
coefficient, the power coefficient and the efficiency with experimental results by Quinn
et al. (2014) for a heaving foil with h0 � 0.1 in a water current with U � 0.1 m s–1.
The experimental data, extracted from figure 9 of Paraz et al. (2016) and plotted against
f/ fr1 = k/kr1, are for the panel A in Quinn et al. (2014), with bending stiffness per unit
span Eε3/12 � 1.96 N m and thickness-to-chord ratio ε/c = 0.0034, which correspond to
S � 1269 and R � 0.1 in the present notation. The flexural deflection plotted in figure 6(a)
is obtained with CDz = 12, a value also used by Paraz et al. (2016) in their model, showing
a very good agreement with the experimental data of Quinn et al. (2014). An offset drag
coefficient CDx = 0.05 is used in the theoretical CT plotted in figure 6(b), in accordance
with the experimental data reported in figure 13 of Quinn et al. (2014) as the frequency
tends to zero. The corresponding time-averaged power coefficient CP and efficiency η
are plotted in figures 6(c) and 6(d), respectively, showing also a good agreement with the
experimental data. For reference sake, the theoretical results for the rigid foil counterpart
are also plotted with dashed lines, showing the enhancement of the propulsive performance
due to flexibility, especially around the two natural frequencies (kr1 � 11.6 and kr2 � 89.6
in this case).

The experimental results plotted in figure 6 do not reach frequencies around the second
natural mode. Paraz et al. (2016) report some experimental measurements of the thrust
force for higher frequencies in their figure 8(a), but they are made ‘in water at rest’, which
represents a difficulty for comparison with current theoretical results because U is used
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Figure 7. Comparison between the present theoretical results for CT /(k2h2
0) at two high values of S

(continuous lines) with experimental data (symbols) by Paraz et al. (2016) for a flexible heaving foil with
h0 = 0.07.

here to make dimensionless CT , k and S. Formally, their experimental data corresponds
to S → ∞ and, since these authors report results for CT /(k2h2

0) in the present notation, in
whose non-dimensionalization does not intervene U , figure 6 compares the experimental
data for the case h0 = 0.07 with the present theoretical results for two large values of
the stiffness, S = 5 × 103 and S = 104. The mass ratio used is R = 0.16, that coincides
with that in figure 4, and the same values of the drag coefficients CDz and CDx of the
previous comparison are used. The present results underestimate the thrust around the
first natural frequency and overestimate it around the second. But taking into account
that the limit U = 0 cannot be well captured by the present theoretical approximation, the
agreement is not that bad, reproducing correctly the two thrust peaks near the first two
natural frequencies. It should also be noted that the thrust is scaled with k2 in figure 7, so
that the greatest thrust peak really happens around the second mode.

All the other experimental data found by the author in the literature for frequencies near
the second natural mode are for large oscillation amplitudes, or for a foil with small aspect
ratio, or both, so that the present theory could not be applied.

6. Results and discussion

6.1. Heaving
Figure 8 shows the present theoretical results for the same values of R and h0 considered
in figure 6, but for a wide range of the stiffness parameter. The value of S used for the
comparison with experimental data in figure 6 is marked with a white dashed line (note
that CT and CP are normalized in figure 6 with k2h2

0 and k3h2
0, respectively, which is

not done in figures 8b and 8d). Though the largest thrust for this value of the stiffness
(S = 1269) is reached close to the second natural frequency, the power also presents a
maximum value there, so that the largest efficiency is obtained near to the first natural
frequency, as it is more clearly observed in figure 6.

As the stiffness decreases, this behaviour remains qualitatively the same, increasing the
propulsion efficiency until reaching a peak of approximately 50 % for S ≈ 30 and for a
frequency quite above the corresponding first natural frequency (for k � 2.75).
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Figure 9. Evolution of the frequencies for ηmax (squares) and CTmax (circles) with the mass ratio R, for a
heaving foil with S = 1500 (a) and S = 50 (b). For reference, the different lines represent the first and second
natural frequencies, as indicated.

The model predicts that the propulsive performance improves slightly with the mass
ratio R, with a pattern similar to that of figure 8: the highest efficiency around kr1 for large
S, but moving to frequencies in between the two natural modes as S decreases. This is
better appreciated in figure 9, where the evolutions of the frequencies for the maximum
efficiency and the maximum thrust coefficient as R is varied are plotted for S = 1500 and
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Figure 10. Normalized flexural deflection amplitude at the trailing edge (a), thrust (b), power (c) and efficiency
(d) for a pitching foil with α0 = 2◦ and R = 0.1 as k and S are varied. Here CDz = 12 and CDx = 0.0373. For
the lines related to the natural frequencies see caption of figure 2.

S = 50. The maximum thrust is reached slightly below the second natural frequency, while
the maximum efficiency is obtained for frequencies just below the first natural frequency
for sufficiently rigid foils, and for frequencies higher than that of the first mode for more
flexible foils. In general, both CTmax and ηmax increase with the mass ratio R.

6.2. Pitching
For a flexible pitching foil the propulsion pattern when S and k vary is different from that
of a heaving foil, as shown in figure 10 for α0 = 2◦ and R = 0.1. The offset viscous drag
selected in the computations of figure is CDx = 0.0373, according to the experimental
value given by Mackowski & Williamson (2015) for this pitching amplitude, whereas
CDz = 12 as in the previous cases.

To begin with, figure 10(a) shows that there is no trailing-edge deflection peak at the
second natural frequency. Actually, for low stiffnesses, the trailing-edge flexural deflection
amplitude is below that of the rigid foil counterpart for all the frequencies, as it is
better appreciated in figure 11(a), where two profiles of AT /A0 versus k are plotted for
S = 30 and S = 1500. Nonetheless, these low-stiffness pitching foils show marked thrust
and power peaks around the second natural frequency (see figure 10b,c and figure 11 for
S = 30), whereas for large stiffnesses, the highest peaks of CT and CP are close to the
first natural frequency, which is better appreciated in figures 11(c) and 11(d) for S = 1500.
As a consequence, the propulsive efficiency pattern is quite different from that of a pure
heaving foil (compare figures 10d and 11d with figures 8d and 6d, respectively): for large
and moderate stiffnesses the highest efficiencies are around the first natural frequency,
whereas, for lower stiffnesses, pitching foils actuated at the second natural frequency show
larger propulsive efficiencies than when actuated at the first one. Actually, according to
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Figure 12. Evolution of the frequencies for ηmax (squares) and CTmax (circles) with the mass ratio R, for
a pitching foil with S = 1500 (a) and S = 50 (b). The different lines represent the first and second natural
frequencies, as indicated.

the present results, a pitching foil with high flexibility only generates thrust when the
frequency is around the second natural frequency.

The propulsion pattern for a mass ratio R = 0.1 shown in figures 10 and 11 remains
qualitatively the same for other values of R, as shown in figure 12. For high stiffnesses, the
largest thrust is always reached slightly below the second natural frequency, whereas the
maximum efficiency is obtained for frequencies slightly below the first natural frequency
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Figure 13. Here AT /A0 (a), CT (b), CP (c) and η (d) for a pitching and heaving foil with α0 = 2◦, h0 = 0.05,
φ = 0 and R = 0.1 as k and S are varied. Here CDz = 12 and CDx = 0.05.

(figure 12a). For more flexible foils, both maxima are attained at practically the same
frequencies, below the second mode (figure 12b).

6.3. Pitching and heaving
Figures 13 and 14 show the results for a combined pitching and heaving motion with
a0 = 2◦ and h0 = 0.05, both with a mass ratio R = 0.1. In figure 13 without phase
shift (φ = 0) and in figure 14 when pitch lags heave by φ = −90◦, which approximately
corresponds to the rigid foil kinematics with the highest efficiency (Lighthill 1970; Wu
1971a). Drag coefficients CDz = 12 and CDx = 0.05 are used.

In both cases the flexural deflection has peaks around the two natural frequencies if the
stiffness is high enough. But, when heave and pitch are in phase (figure 13a) the local
maximum of AT /A0 around the first natural mode is very weak, whereas it is almost
suppressed about the second one for φ = −90◦ (figure 14a). Despite these differences, the
largest thrust is always generated around the second mode for large stiffnesses (figures 13b
and 14b), which also needs the largest input power (figures 13c and 14c), so that the largest
efficiency is not reached near neither of these natural frequencies for large stiffnesses. Only
for φ = 0 there is a local maximum of η around kr2 for large S (figure 13d). The largest
efficiency is reached in both cases for S of order 10 or below (recall that the present theory
fails as S becomes of order unity, when the two natural frequencies merge). It is close to
(but clearly below) the second mode for φ = 0, which presents the largest efficiency, while
for φ = −90◦ the highest efficient is not related to the resonant frequencies (figure 14d).

As shown in figure 15, these propulsion patterns for R = 0.1 remain qualitatively the
same as R is varied. For large stiffness (figure 15a) and φ = 0, both CTmax and ηmax are
obtained practically at the second natural frequency, whereas for φ = −90◦, the maximum
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Figure 14. As figure 13 but for φ = −90◦.
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Figure 15. Evolution of the frequencies for ηmax (squares) and CTmax (circles) with the mass ratio R, for
a pitching and heaving foil (a0 = 2◦ and h0 = 0.05) with S = 1500 (a) and S = 50 (b) for φ = 0◦ (filled
symbols) and φ = −90◦ (open symbols). The different lines represent the first and second natural frequencies,
as indicated.

thrust is generated for a frequency below kr2 and the maximum propulsive efficiency for
frequencies lower than the first natural frequency. For more flexible foils (figure 15b), the
main difference is that the maximum propulsive efficiency when φ = −90◦ is obtained for
frequencies in between the two natural frequencies, with no apparent relation to any of
them. Both CTmax and ηmax increase with R in all the cases considered.

For other phase shifts different from φ = 0◦ and φ = −90◦ the results are found to be
very similar to those depicted in figure 13 for φ close to zero or to 180◦, whereas the results
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in figure 14 are representative for any φ around ±90◦. It may be concluded that for large
stiffnesses one must operate around the second natural frequency with pitch and heave in
phase to obtain the largest thrust and efficiency. Out of phase (for φ around ±90◦), though
the largest thrust is still generated close to the second mode, the efficiency is the highest
near the first mode. For low stiffness S, no relation is found between high efficiencies and
resonant frequencies, especially when pitch and heave are out of phase.

7. Conclusion
An analytical formulation of the FSI between a uniform fluid current and a 2-D pitching
and heaving flexible plate, which models the interaction up to the first two natural
frequencies of the system, is presented in this work, and their results are compared with
available experimental data for small-amplitude oscillations. It is based on a fifth-order
polynomial profile for the flexible plate, the simplest approximation for the deformation of
a thin plate governed by the E–B beam equation that is capable of fulfilling the trailing-
edge boundary conditions and capturing the first two resonant frequencies when subjected
to an arbitrary pitching and heaving motion about a pivot axis close to the leading edge.
The main contribution is the analytical derivation of the force, moment and the first
two flexural moments that the inviscid flow exerts on the flexible plate, extending and
systematizing previous works, together with the coupling of these expressions with the
first four moments of the E–B equation. These equations allow the analytical computation
of the dynamic deformation of the foil for a given pitching and heaving motion, along with
the power needed to generate this motion which includes the sometimes-ignored effects of
the inertia of the plate. The approach is based on the linearized potential flow theory
and the E–B beam equation, so that it is limited to small-amplitude oscillations and
deformations of the plate. With the fifth-order polynomial approximation this limitation
can be met when a nonlinear damping term is included in the E–B equation to cushion the
deformation peaks at the two resonant frequencies, especially at the second, after whose
correction the deformation shows a good agreement with experimental results for small-
amplitude pitch and heave. This approximation is also at the edge between the purely
oscillatory behaviour and the undulatory one of the foil. For this last behaviour the present
approach based on the moments of the E–B equation would not be possible, so that it
wouldn’t be possible or practical to extend this approximation to cover the following
natural modes, which are normally obtained numerically from a modal decomposition
of the E–B equation, typically with a Chebyshev expansion.

These analytical results may be of interest to analyse easily problems where the
knowledge of the FSI of a flexible plate up to the second natural mode is needed. Here it
has been applied to the propulsion problem. To that end, the thrust force exerted by the fluid
on the pitching and heaving foil whose deformation is approximated by a general fifth-
order polynomial has also been obtained analytically in the linearized potential flow limit
using the vortex impulse formulation. The derivation extends and systematize previous
works. The resulting thrust has also been validated against available experimental data for
small-amplitude oscillations of the foil. In general, the results of the present model for the
different magnitudes agree better with experimental results for frequencies around the first
natural mode than around the second one, with the latter experimental data being much
scarcer.

With these two analytical tools, the propulsion performance of a pitching and/or heaving
flexible plate actuated at its leading edge with frequencies up to the second natural
frequency has been analysed. The maximum thrust generated, and the maximum input
power required, are generally achieved with frequencies close to the natural ones, in
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agreement with some previous works, whereas the maximum propulsive efficiency occurs
at frequencies close to that of the first natural mode if the foil is sufficiently rigid, but
it is not related to the natural frequencies as the rigidity decreases, being the optimum
efficiency somewhere between the two natural modes for low stiffnesses. However, it is
found that the propulsion patterns as the stiffness varies are quite different for pitching and
for heaving foils. Thus, for instance, it is found that a pitching foil with high flexibility only
generates thrust when the frequency is around the second natural frequency, whereas for
large and moderate stiffnesses the highest thrust and efficiency are around the first natural
frequency, with negligible thrust as the second natural frequency is approached. On the
other hand, for heaving foils, the maximum thrust is reached slightly below the second
natural frequency, while the maximum efficiency is obtained for frequencies just below
the first natural mode for sufficiently rigid foils, and for frequencies higher than that of
the first mode for more flexible foils. When pitch and heave are actuated simultaneously,
one must operate around the second natural frequency to obtain the largest thrust and
efficiency when pitch and heave are phase, whereas, out of phase, the largest thrust is still
generated close to the second mode, but the efficiency is the highest near the first mode.
For low stiffness, no relation is found between high efficiencies and resonant frequencies,
especially when pitch and heave are out of phase. The approach ceases to be valid when
the two natural modes provided by the model merge for values of the stiffness parameter
of order unity.

Obviously, the present results cannot be extrapolated to cases when the pitch/heave
amplitude is not small, or when the plate undergoes deformations of great amplitude,
because the separation phenomena would be very important. But even for small
amplitudes, the results would not be applicable to low-Reynolds-number flows, when the
viscous effects are very relevant and cannot be taken into consideration through simple
drags coefficients, or when the aspect ratio of the plate is not sufficiently large, because
three-dimensionality effects cannot be disregarded. But, in any case, the formulation
provides a useful analytical tool to quickly estimate the behaviour of a small-amplitude
oscillating foil immersed in a fluid current.

Funding. This research has been supported by the MCIyU/AEI grant PID2023-150588NB-I00.

Declaration of interests. The author reports no conflict of interest.

Appendix A. Equation (3.1)
The unsteady, linearized Bernoulli equation for the inviscid and incompressible flow on
the plate can be written, in non-dimensional form, as

�P = ∂(�Φ)

∂t
+ 1

2
[(u+)2 − (u−)2], (A1)

where Φ is the non-dimensional velocity potential (u = ∂Φ/∂x) and �Φ =Φ+ −Φ−,
with superscripts + and − denoting the upper and lower surfaces of the plate, respectively,
as defined in the main text (recall that the non-dimensional pressure difference has
been defined as �P = (p− − p+)/(ρU 2)). Using the non-dimensional vorticity density
distribution on the plate, 
s(x, t)= u+(x, t)− u−(x, t), one may write

�Φ =
∫ x

−1

s(ξ, t)dξ. (A2)
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Since (u+ + u−)/2 is the free stream velocity in the present linearized theory, which is
unity in non-dimensional variables, introducing these expressions into (A1) one obtains
(3.1).

Appendix B. The A c and bc in (4.15)
Here Ac and bc are given by

Ac = ik2CDz

×
⎛
⎝|k1h1h0 + k1a1α0 + k111d10 + k112d20| |k1h2h0 + k1a2α0 + k112d10 + k122d20|

|k2h1h0 + k2a1α0 + k211d10 + k212d20| |k2h2h0 + k2a2α0 + k212d10 + k222d20|

⎞
⎠,
(B1)

bc = −ik2CDz

×

⎛
⎜⎜⎝
∣∣∣4

3h0 − 2α0 + k1h1d10 + k1h2d20

∣∣∣ h0 +
∣∣∣−2h0 + 16

5 α0 + k1a1d10 + k1a2d20

∣∣∣ α0

∣∣∣2h0 − 16
5 α0 + k2h1d10 + k2h2d20

∣∣∣ h0 +
∣∣∣−16

5 h0 + 16
3 α0 + k2a1d10 + k2a2d20

∣∣∣ α0

⎞
⎟⎟⎠,

(B2)

where the k...-coefficients are given by

k1h1 = 4544
105

, k1h2 = 944
3
, k1a1 = −496

7
, k1a2 = −32512

63
, (B3)

k2h1 = 496
7
, k2h2 = 32512

63
, k2a1 = −7552

63
, k2a2 = −30592

35
, (B4)

k111 = 5481472
3465

, k112 = 4438528
385

, k122 = 756936704
9009

, (B5)

k211 = 148992
55

, k212 = 25432064
1287

, k222 = 99897344
693

. (B6)

Appendix C. Functions Γ...(t) and Γ0...(t) in (5.6) and (5.15)
The functions Γa(t), Γd1(t) and Γd2(t) appearing in (5.6) are

Γa(t)= −π
8

[
8(α − ḣ)+ 16α̇ − 272d1 − 377ḋ1 − 2045d2 − 2758ḋ2

]
, (C1)

Γd1(t)=
π

64

[
1008(α − ḣ)+ 2200α̇ − 35172d1 − 53138ḋ1 − 265410d2 − 389427ḋ2

]
,

(C2)

Γd2(t)=
π

64

[
7208(α − ḣ)+ 15792α̇ − 251656d1 − 381889ḋ1

−1899285d2 − 2798978ḋ2
]
. (C3)
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The different functions Γ0...(t) appearing in (5.15) are defined in terms of Γ0(t) (3.15)
and the above functions as

Γ0a = Γa + Γ0

= π

[
α + α̇ − ḣ − 1

8

(
200d1 + 149ḋ1 + 1465d2 + 1073ḋ2

)]
, (C4)

Γ0d1 = Γd1 − 163
8
Γ0

= π

[
25(ḣ − α)+ 1

32

(−856α̇ + 20882d1 + 16300ḋ1 + 153360d2 + 117513ḋ2
)]
,

(C5)

Γ0d2 = Γd1 − 1183
8
Γ0

= − π

64

[
11720(α − ḣ)+ 12600α̇ − 306720d1 − 240369ḋ1

−2253045d2 − 1733095ḋ2
]
. (C6)

Appendix D. Functions C...(k) in (5.16)
In addition to the well-known Theodorsen function C(k), defined in (3.14) and appearing
in the circulatory parts of the lift and the other moment coefficients obtained in § 3,
some other complex functions of the reduced frequency k appear in the circulatory part
(5.16) of the thrust coefficient. They are defined as the following integrals involving the
k-dependence of the wake vorticity distribution (5.13):

Ch(k)=H(k)
∫ ∞

1
e−ikξdξ, (D1)

Ca1(k)=H(k)
∫ ∞

1
Ia(ξ)e

−ikξdξ =H(k)
∫ ∞

1
(

√
ξ2 − 1 − ξ)e−ikξdξ, (D2)

Ca0(k)=H(k)
∫ ∞

1

dIa
d

e−ikξdξ =H(k)
∫ ∞

1

(
ξ√
ξ2 − 1

− 1

)
e−ikξdξ, (D3)

Cd11(k)= −H(k)
∫ ∞

1
Id1(ξ)e

−ikξdξ, (D4)

Cd10(k)= −H(k)
∫ ∞

1

dId1

dξ
e−ikξdξ, (D5)

Cd21(k)= −H(k)
∫ ∞

1
Id2(ξ)e

−ikξdξ, (D6)

Cd20(k)= −H(k)
∫ ∞

1

dId2

dξ
e−ikξdξ, (D7)

where H(k) is defined in (5.13) and Ia(ξ), Id1(ξ) and Id2(ξ) in (5.8)–(5.10).
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Figure 16. Real and imaginary parts of the functions C...(k).

The first three ones can easily be obtained analytically (von Kármán & Sears 1938;
Fernandez-Feria 2016; Alaminos-Quesada & Fernandez-Feria 2020),

Ch(k)= −2iC1(k)

π
, (D8)

Ca1(k)= i

k
C(k)+ 2(1 + ik)

πk
C1(k), (D9)

Ca0(k)= −C(k)+ 2iC1(k)

π
, (D10)

where C(k) is Theodorsen’s function (Theodorsen 1935), and C1(k), defined in Fernandez-
Feria (2016), is

C1(k)= e−ik/k

i H (2)
0 (k)+ H (0)

1 (k)
. (D11)

The analytical expressions for the remaining functions (D4)–(D7) are so involved that
they are better computed numerically, which is a quite straightforward and quick task. For
validation, the numerical integration code for these functions has also been used for Ca1(k)
and Ca0(k), reproducing the analytical expressions (D9)–(D10) with great accuracy. The
real and imaginary parts of these later functions are plotted in figure 16(a), whereas those
corresponding to the functions Cd11(k) and Cd10(k) obtained numerically are plotted in
figure 16(b). Functions Cd21(k) and Cd20(k) are no represented because they turn out to be
related to Cd11(k) and Cd10(k) through

Cd21(k)� Id2(1)
Id1(1)

Cd11(k) , Cd20(k)� − Id2(1)
Id1(1)

Cd10(k), (D12)

with Id2(1)/Id1(1)= 1633/221 (see (5.11)). Note also that Re[Cd11] = −Im[Cd10], so that
Re[Cd21] = Im[Cd20].

Appendix E. Coefficients of the cycle-averaged thrust (5.18)
In the following expressions for th, ta, td1, td2, tha, thd1, thd2, tad1, tad2 and td1d2, the
functions F...(k) and G...(k) are the real and imaginary parts, respectively, of the
complex functions C...(k) defined in Appendix D; thus, for instance, Fh(k)= Re[Ch(k)] =
2G1(k)/π and Gh(k)= Im[Ch(k)] = −2F1/π (these functions F...(k) and G...(k) are
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plotted in figure 16):

th = −k2Fh ,

ta =Fa0 + k

(
Ga1 − 3

2
Ga0 − Gh + 3

2
Fa1

)
− 3

2
k2Fh ,

td1 = −59
2
Fd10 + k

(
263
8

Gd10 − 59
2
Gd11 − 9617

16
Gh
)

− k2
(

263
8

Fd11 + 42869
64

Fh

)
,

td2 = −1755
8

Fd20 + k

(
3831
16

Gd20 − 1755
8

Gd21 − 2076165
64

Gh
)

− k2
(

3831
16

Fd21 + 4532073
128

Fh

)
,

tha = k

[
Ga0 + Gh + k

(
5
2
Fh −Fa1

)]
cos φ + k

[
−Fa0 +Fh − k

(
1
2
Gh + Ga1

)]
sin φ ,

thd1 = k

[
Gd10 − 59

2
Gh − k

(
213
4

Fh +Fd11

)]
cosψ1

+ k

[
−Fd10 − 59

2
Fh + k

(
25
2
Gh − Gd11

)]
sinψ1 ,

thd2 = k

[
Gd20 − 1755

8
Gh − k

(
6197
16

Fh +Fd21

)]
cosψ2

+ k

[
−Fd20 − 1755

8
Fh + k

(
1465
16

Gh − Gd21

)]
sinψ2 ,

tad1 =
[
Fd10 − 59

2
Fa0 + k

(
263
8

Ga0 − 59
2
Ga1 − 3

2
Gd10 + Gd11 + 399

8
Gh
)

+ k2
(

3
2
Fd11 − 263

8
Fa1 + 1015

16
Fh

)]
cos(φ −ψ1)

+
[
−Gd10 − 59

2
Ga0 + k

(
−263

8
Fa0 + 59

2
Fa1 − 3

2
Fd10 +Fd11 − 73

8
Fh

)

+ k2
(

−3
2
Gd11 − 263

8
Ga1 + 37

16
Gh
)]

sin(φ −ψ1)

tad2 =
[
Fd20 − 1755

8
Fa0 + k

(
3831
16

Ga0 − 1755
8

Ga1 − 3
2
Gd20 + Gd21 + 1469

4
Gh
)

+ k2
(

−3831
16

Fa1 + 3
2
Fd21 + 1845

4
Fh

)]
cos(φ −ψ2)

+
[
−Gd20 − 1755

8
Ga0 + k

(
−3831

16
Fa0 + 1755

8
Fa1 − 3

2
Fd20 +Fd21 − 143

2
Fh

)

k2
(

−3831
16

Ga1 − 3
2
Gd21 + 141

8
Gh
)]

sin(φ −ψ2) ,

td1d2 =
[
−59

2
Fd20 − 1755

8
Fd10

+k

(
3831
16

Gd10 − 1755
8

Gd11 + 263
8

Gd20 − 59
2
Gd21 − 565253

64
Gh
)
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−k2
(

3831
16

Fd11 + 263
8

Fd21 + 1246711
128

Fh

)]
cos(ψ1 −ψ2)

+
[

59
2
Gd20 − 1755

8
Gd10

+k

(
−3831

16
Fd10 + 1755

8
Fd11 + 263

8
Fd20 − 59

2
Fd21 + 6877

64
Fh

)

+ k2
(

−3831
16

Gd11 + 263
8

Gd21 − 2195
128

Gh
)]

sin(ψ1 −ψ2). (E1)

Appendix F. Coefficients of the cycle-averaged power (5.27)
The coefficients of the cycle-averaged power (5.27) are

ph = πk2F , pa = πk

(
3
4
k + 1

2
G + 3

4
kF
)
,

pha = πk

[
−1

2
cos φ − (G + 2kF) cos φ + (kG −F) sin φ

]
,

phd1 = −48
5

R k3 sinψ1 + πk2
(

−149
16

k sinψ1 + 25
2

cosψ1

)

+ πk

2

[(
59G + 263

4
kF
)

cosψ1 +
(

59F − 263
4

kG
)

sinψ1

]
,

phd2 = −208
3

R k3 sinψ2 − πk2
(

1073
16

k sinψ2 + 11720
103

cosψ2

)

+ πk

[(
1755

8
G + 3831

16
kF
)

cosψ2 +
(

1755
8

F − 3831
16

kG
)

sinψ2

]
,

pad1 = −208
15

R k3 sin(φ −ψ1)− πk

[
41
2
k cos(φ −ψ1)+

(
175
16

k2 − 9
4

)
sin(φ −ψ1)

]

+ πk

[
−
(

59
4
G + 263

16
kF
)

cos(φ −ψ1)+
(

59
4
F − 263

16
kG
)

sin(φ −ψ1)

]
,

(F1)

and

pad2 = −704
7

R k3 sin(φ −ψ2)

− πk

[
4835

32
k cos(φ −ψ2)+

(
20213
256

k2 − 145
8

)
sin(φ −ψ2)

]

+ πk

[
−
(

1755
16

G + 3831
32

kF
)

cos(φ −ψ2)+
(

1755
16

F − 3831
32

kG
)

sin(φ −ψ2)

]
.

(F2)
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