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Abstract
Traditional techniques for calculating outstanding claim liabilities such as the chain-ladder are notoriously
at risk of being distorted by outliers in past claims data. Unfortunately, the literature in robust methods of
reserving is scant, with notable exceptions such as Verdonck & Debruyne (2011, Insurance: Mathematics
and Economics, 48, 85–98) and Verdonck & Van Wouwe (2011, Insurance: Mathematics and Economics,
49, 188–193). In this paper, we put forward two alternative robust bivariate chain-ladder techniques to
extend the approach of Verdonck & Van Wouwe (2011, Insurance: Mathematics and Economics, 49, 188–
193). The first technique is based on Adjusted Outlyingness (Hubert & Van der Veeken, 2008. Journal
of Chemometrics, 22, 235–246) and explicitly incorporates skewness into the analysis while providing
a unique measure of outlyingness for each observation. The second technique is based on bagdistance
(Hubert et al., 2016. Statistics: Methodology, 1–23) which is derived from the bagplot; however; it is able
to provide a unique measure of outlyingness and a means to adjust outlying observations based on this
measure.

Furthermore, we extend our robust bivariate chain-ladder approach to an N-dimensional framework.
The implementation of the methods, especially beyond bivariate, is not trivial. This is illustrated on a
trivariate data set from Australian general insurers and results under the different outlier detection and
treatment mechanisms are compared.
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1. Introduction
1.1 Motivation
At anymoment, the number, timing, and severity of future claims payments for a general insurer is
shrouded in uncertainty. Reserves are set up to ensure, with a given degree of confidence, that nec-
essary claims payments are met as they arise. The reserving problem is one of solvency; however, it
is also one of capital efficiency; if an insurer holds reserves over and above what is needed, they for-
feit the opportunity to utilize this capital elsewhere, and insurance becomes more expensive than
necessary. It is critical that the results from models and techniques applied to the loss-reserving
problem are as accurate as possible when tasked to a range of different data sets.

Some of these data sets may include abnormal observations; outliers; or deviations frommodel
assumptions. Full inclusion of these data points in an analysis may prove detrimental to the accu-
racy of reserve estimates and the resulting inference. This is an issue that needs to be addressed
if these models and techniques are going to reflect reality and be used to inform decisions.
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Robustness refers to the ability of a model or estimation procedure to not be overtly influenced
by outliers in the data set under investigation and/or deviations from the underlying assumptions
of the model. Understanding how outliers may impact the results of a model and having statisti-
cally sound procedures to detect and treat abnormal observations will improve the robustness of
reserving techniques and ultimately lead to more informed and reliable decisions.

While some authors have explored the issue of robustness in reserving, the body of literature in
this area is relatively scant. Of particular importance for this paper is the robust GLM chain-ladder
of Verdonck&Debruyne (2011) and the robust bivariate chain-ladder of Verdonck&VanWouwe
(2011); however, there has been notable work that moves away from the chain-ladder technique.
For robust non-chain-ladder methods, please also see for example Chan & Choy (2003), Chan
et al. (2008), Pitselis et al. (2015).

Verdonck et al. (2009) provide a two-stage deterministic robust chain-ladder technique which
fundamentally relies on the analysis of residuals given after fitting an over-dispersed Poisson
(ODP)GLM to the cumulative and then incremental claims data as described in England&Verrall
(1999). A boxplot is employed on the Pearson residuals after fitting the ODP GLM at each stage
to detect outlying observations. Under their robust technique, development factors are calculated
as medians which are known to be much more robust than means. Unfortunately, in its original
formulation, results were poor as reserves were still being heavily influenced by outliers.

The approach of Verdonck et al. (2009) was refined by Verdonck & Debruyne (2011). In par-
ticular, it was found that the standard threshold value of 1.345 to identify outliers was often too
low for triangular loss data. To combat this, an additional stage was added to the methodology
whereby the threshold point was taken to be the 75%-quantile of the residuals after an initial fit
using the threshold value of 1.345 which led to better results in terms of robustness. Verdonck &
Debruyne (2011) also showed that the influence function for reserves with respect to incremental
claims is unbounded when assuming a Poisson GLM specification. This provides a formal basis
for the non-robustness of the chain-ladder technique and related techniques. A comprehensive
study of impact functions of central estimates, mean squared errors, and quantiles of reserves can
be found in Avanzi et al. (2023).

1.2 Statement of contributions
The refined robust GLM chain-ladder technique is an integral component of the robust bivariate
chain-ladder as developed by Verdonck & Van Wouwe (2011). In particular, the residuals given
after fitting the robust GLM chain-ladder are used to generate a bagplot (Rousseeuw et al., 1999)
which may be considered as a bivariate boxplot. The second approach employed to detect and
treat outliers is the minimum covariance determinant (MCD) (Rousseeuw, 1984) Mahalanobis
distance, also applied to the residuals.

Each of these two techniques has shortcomings that this paper aims to address. In partic-
ular, they fail to take skewness of the data sufficiently into account, which may lead to the
misclassification of data points between regular and outliers.

We introduce two alternative methodologies that offer a consistent and structured approach to
the detection, measurement and treatment of outlying observations with statistical backing. Our
methods are based on Adjusted Outlyingness (AO) (Hubert & Van der Veeken, 2008) and bagdis-
tance (Hubert et al., 2016). AO provides a unique measure of outlyingness for each observation
and explicitly incorporates a robust measure of skewness into the detection process. Bagdistance is
derived from the bagplot and provides a measure of outlyingness for each observation. Through
calculation of the bagdistance, a greater variety of alternative treatments for outliers becomes avail-
able than when simply using the bagplot. These methodologies are applied and compared on real
data. Improvements over the techniques introduced in Verdonck &VanWouwe (2011) are shown
to be material and significant.
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Additionally, we extend the methodologies beyond the bivariate case. Multivariate reserving
techniques primarily benefit from the consideration of the dependence structure between loss tri-
angles. Such consideration should provide a more accurate estimation of reserves; however, the
impact of outliers can still be significant in this setting. Furthermore, information about other
lines of business may inform the identification and adjustment of outliers. Hence, appropriate
detection techniques and adjustment procedures help ensure that the benefits of multivariate
reserving analysis are not lost due to a lack of robustness. This is also a focus of this paper,
which develops a multivariate robust reserving technique.We extend the bivariate chain-ladder to
an N-dimensional framework and illustrate the implementation of all four outlier detection and
treatment techniques on a trivariate example.

Implementation of the methodology is not trivial, and R codes are freely available on GitHub
for any interested user; see section 5.

2. Outlier Detection Techniques
In section 2.1, we start by reviewing some basic concepts related to robust statistics, which are
required to introduce four detection techniques in section 2.2.

2.1 Preliminary: general robustness concepts
2.1.1 Influence functions and breakdown points
When considering robust methodologies, two common concepts are influence functions and
breakdown points, which we define here for later reference:

Influence functions consider an estimation technique and calculate the potential ‘influence’ a
single data point could have on that estimator. For robustness, it is desirable to have a bounded
influence function such that no single data point can have an unlimited impact on estimators. An
example of an estimator with an unbounded influence function is the mean, whereas the median
has a bounded influence function.

Breakdown points describe the proportion of the data set required to be contaminated (or out-
lying, however this may be defined) before an estimator provides inaccurate results. For example,
when calculating the mean only one data point has to be contaminated to render the technique
invalid, however, when calculating the median, 50% of data points need to be contaminated to
invalidate the technique.

2.1.2 Halfspace depth and Tukey median
Both the bagplot (Rousseeuw et al., 1999) and the bagdistance (bd) (Hubert et al., 2016) are based
on the concept of halfspace depth (Tukey, 1975).

The halfspace depth (Tukey, 1975) of a point is defined as the minimum number of points
(from the data sample) in a closed halfplane through the point of interest. We refer to Fig. 1
which illustrates the concept of halfspace depth in the bivariate case (note that this is scalable to
higher dimensions). In Fig. 1, to calculate the halfspace depth of the point marked with a green
asterisk, we would consider numerous lines through this point (such as the lines denoted as L1
and L2 in the Figure) and look for the minimum number of points on either side of each of these
lines. Romanazzi (2001) showed that halfspace depth has a bounded influence function. Thismeans
that the impact an outlier may have on the halfspace depth of a given observation is limited and
highlights the robustness of this statistic.

The depth median (Tukey median) T∗ is the point with the greatest halfspace depth. It rep-
resents a central point of the data and is marked by the red asterisks in Fig. 2. If the point is not
unique, the center of gravity of the deepest region is used.
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Figure 1. Halfspace depth illustration in 2 dimensions.

Figure 2. Bagplot with fence drawn.

2.1.3 MCD estimation procedure
A popular technique to estimate location and dispersion parameters in a robust fashion is the
MCD (Rousseeuw, 1984) procedure, whereby one finds the⌊

n+ p+ 1
2

⌋
≤ h≤ n (1)
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observations whose classical estimator of the covariance matrix has the smallest determinant
where n represents the number of observations and p represents the dimension of the data. The
variable h represents the number of observations that are ultimately used, and the procedure puts
conditions around the minimum number of observations to avoid selection of a small set that
does not truly represent the data. The location vector is then the arithmetic mean of these points,
and the scale matrix is taken as a multiple of this covariance matrix. Heuristically, this procedure
identifies a ‘core’ set of data points which are mostly related to one another.

2.1.4 Swamping andmasking
Inappropriate outlier detection techniques may lead to swamping or masking. Swamping occurs
when one classifies too many observations as outliers, that is, the impact outliers have on the tech-
nique being applied results in regular observations incorecctly appearing to be outliers.Masking,
on the other hand, refers to the failure to classify outliers as such, that is, outliers have impacted
the technique being applied in a way that ‘masks’ them from being detected as outliers.

2.2 Outlier detection techniques
A robust bivariate chain-ladder technique hinges on the detection and adjustment of bivariate
outliers. Verdonck & Van Wouwe (2011) put forward two techniques to be used for this task: the
MCD (Rousseeuw, 1984)Mahalanobis Distance, and the bagplot (Rousseeuw et al., 1999). In this
section, we outline these approaches and two different techniques; the bagdistance andAO – that
can be applied to the multivariate reserving problem and which address some of the shortcomings
of the former two.

2.2.1 MCDmahalanobis distance
A standard method used to detect outliers in multivariate analysis is to calculate some measure
of distance of each data point from the center of the data. A popular measure is theMahalanobis
Distance (MD), given by,

MD(xi)=
√
(xi − μ̂)′�̂(−1)(xi − μ̂), (2)

where μ̂ represents the sample location vector and �̂ represents the sample scale matrix. If these
are not estimated in a robust manner, then outliers may fail to be detected due to masking and
swamping effects. Essentially this means that outlying observations will influence the estimate
of the central point and dispersion of the data leading to outliers themselves having small MD
(masking) and/or non-outlying observations having high MD (swamping). To combat this, the
MCD estimates of location and dispersion are used, and outliers are then flagged as observations
that have a MD greater than a certain threshold. Note that MD2 ∼ χ2

p if the underlying data is
normal.

2.2.2 Bagplot
We refer to Fig. 2 to outline the components of a bagplot.

The bag (B) is shown in Fig. 2 by the darker inner area surrounding T∗ and is constructed as
follows. First, denote Dk as the region of all data points that have halfspace depth greater than
k and #Dk as the number of data points contained in this region. The bag is given by the linear
interpolation with respect to T∗ of the two regions that satisfy #Dk ≤ �n

2 � < #Dk−1. Here, linear
interpolation refers to the method of constructing new data points that are in the range of both of
#Dk and #Dk−1.
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The fence is then given by multiplying the bag by some factor relative to T∗. Typically this
factor is three and Rousseeuw et al. (1999) point out that this value was chosen based on simu-
lations. However, in their recent R package, mrfDepth, Segaert, Hubert, Rousseeuw, Raymaekers,
and Vakili (2017) have instead opted to use the square root of the 99th percentile of a chi-squared
distribution where the degrees of freedom is equal to the number of dimensions being considered.
This new fence factor was chosen after derivation of the distribution of the bagdistance (Hubert
et al., 2015); see also the next section. In the two-dimensional case, it is very close to three. We will
use this newly developed fence factor throughout the paper.

When displaying a bagplot, the fence is generally not drawn (Rousseeuw et al., 1999). Fig. 2,
however, shows the same bagplot with the fence drawn in green, and we can see that the four
outlying points marked in red are outside this fence. Note that the choice of this fence factor will
directly influence both the number of outliers detected and how they are adjusted. Data points out-
side the fence are considered outliers and are adjusted to facilitate the application of loss-reserving
techniques. The adjustment may be done in a purely graphical manner, that is, bringing outliers
back to the fence or loop or a weighting function based on bagdistancemay be employed.

The perimeter of the lighter blue area is known as the loop and is given by the convex hull of
all non-outlying points. This is analogous to the whiskers in a univariate boxplot (Tukey, 1977).

2.2.3 Bagdistance
Now we present the bagdistance (bd) (Hubert et al., 2016). This statistic provides a measure of
outlyingness for each observation and hence does not rely solely on graphical representations. It
can also handle skewness often found in loss data. However, similarly to the bagplot, the bd utilizes
the bag to capture the shape of the data and subsequently detect outliers. As the bag is formulated
based on circa 50% of the data points, there is potential that it does not fully encapsulate the
skewness in the set. When this is the case, the ensuant outlier detection results may be flawed.
To calculate the bd, firstly define cx as the intersections of the boundary of the bag (B) and the
ray from the Tukey median T∗ through the points x (red lines in Fig. 2). The bd is defined as
follows

bd(x; Pn)=
{
0 if x= T∗;
||x−T∗||
||cx−T∗|| elsewhere,

(3)

where Pn represents the distribution of the data set and ||.|| is the Euclidean norm such that ||x|| =√
x21 + . . . + x2n. The denominator scales the distance of the data point (x) to T∗, relative to the

dispersion of the bag (in that direction of the projected ray). A cutoff point is then set, such that
data points with a bd beyond this threshold are considered outliers and are adjusted back to an
appropriate point on the ray emanating from T∗ passing through x. Note that if the cutoff value is
chosen to be the same as the fence factor under the bagplot technique, then the same outliers will
be detected.

2.2.4 Adjusted Outlyingness
AO (Hubert & Van der Veeken, 2008) is based on an adjustment of the Stahel-Donoho estimate
of outlyingness (Donoho, 1982) to explicitly incorporate skewness. Furthermore, it is based on
robust estimates of location, scale, and skewness such that it achieves a theoretical breakdown
point of 25%. Further highlighting its robustness, the Adjusted Outlyingness (AO) technique has
a bounded influence function (Hubert &Van der Veeken, 2008). The technique is applied by firstly
considering a p-dimensional sample Xn = (x1, . . . , xn)′ where xi = (xi1, . . . , xip)′ and a ∈R

p. The
measure of AO for xi is given by

AOi = sup
a∈Rp

AO(1)(a′xi,Xna), (4)
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where

AO(1)(xi, Xn)=

⎧⎪⎨⎪⎩
xi−med(Xn)
w2−med(Xn) , if xi >med(Xn),

med(Xn)−xi
med(Xn)−w1

, if xi <med(Xn),
(5)

where w1 and w2 are the lower and upper whiskers of the skew-adjusted boxplot (Hubert &
Vandervieren, 2008) applied to the data set Xn and med(Xn) denotes the median of that data
set. The skew-adjusted boxplot for all the AO values is then constructed and those that are beyond
the cutoff value

cut-off=Q3 + 1.5e3MCIQR (6)

are declared as outliers, where Q3 represents the third quartile of the data, MC represents the
medcouple (a robust measure of skewness; see Brys et al., 2004), and where IQR is the interquartile
range (i.e., Q3 −Q1, where Q1 represents the first quartile of the data). We are only concerned
with the upper cutoff value as we are performing the skew-adjusted boxplot technique on the
measures of outlyingness, and hence, small results in this context are not of interest. An alternative
AO cutoff value of

√
χ2{99,p} ·median(AO) is given in mrfDepth (Segaert et al., 2017), where p

represents the dimension of the data, χ2{99,p} is the 99th percentile of the chi-squared distribution
with p degrees of freedom and AO represents the set of all AO values for the data set. This cutoff
value aligns closely with the fence factor used for the bagplot approach. In this paper, we consider
both cutoff values.

Under the AO methodology, not all univariate vectors a can be considered; however, Hubert
& Van der Veeken (2008) note that taking m= 250p directions provides a good balance between
‘efficiency’ and computation time. From here, if p= 2, to visualize the bivariate data a version of
the bagplot based on the AO values (rather than halfspace depth) may be constructed (Hubert &
Van der Veeken, 2008).

When constructing an AO-based bagplot, the bag is given by the convex hull of the 50% of
data points with the smallest AO (note this is different from Fig. 2, which was based on halfspace
depth). There are three possible approaches, which differ in the mechanism used to detect and
hence treat outliers:

1. A fence is drawn by multiplying the AO-based bag by 3 (or some other factor) relative to
the point with the lowest AO. Outliers are then flagged as those observations outside the
fence, and the loop is the convex hull of all points within the fence.
Since the fence is generated from the bag which only considers 50% of the data points, it
may fail to fully capture the shape of the data and in particular the skewness in the set.

2. Utilize the alternative cutoff value given in mrfDepth where no fence is drawn.
Here, the cutoff does not incorporate a robust measure of skewness and instead relies on
the median value of the AOs and a quantile of the chi-squared distribution.

3. Outliers are flagged using the traditional cutoff value given by equation (6). In this case,
the loop will be generated by the convex hull of all points with AO less than this value and
no fence will be generated.
The traditional AO cutoff value incorporates a robust measure of skewness known as the
medcouple which considers the whole data set. Hence, it is more equipped to capture the
total skewness, and the loop that is generated by this approach more fully captures the
skewness in the data in comparison to the fence methodology.

For the reasons explained above and unless stated otherwise, we will use the third approach.
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3. An Extension of the Robust Bivariate Chain-ladder
In this section, we implement the AO and bagdistance (see section 2) outlier detection and treat-
ment techniques in a bivariate reserving setting. We show that the four techniques often lead to
different results (although the bagplot and bagdistance will be the same if you use the fence factor
as the cutoff distance). The differences are not only in the number of outliers flagged but also in
which observations are detected and hence treated. In each case, the different techniques should
be implemented and results compared.

This section is motivated by some of the shortcomings of the current robust bivariate
chain-ladder methodology. Firstly, the MCD Mahalanobis distance approach assumes elliptical
symmetry of the multivariate data. If this assumption is not met, we may fail to detect outly-
ing observations as well as falsely declare regular observations as outliers due to masking and
swamping effects. The bagplot is better able to effectively visualize bivariate data, highlighting any
correlation, skewness, and tail behavior.

We now present comparisons between these four outlier detection techniques when applied to
real non-life insurance data.

3.1 The robust bivariate chain-ladder
The robust bivariate chain-ladder technique was put forward by Verdonck & VanWouwe (2011),
and the general steps involved are as follows:

1. Apply the robust Poisson GLM chain-ladder technique (Verdonck & Debruyne, 2011) to
each triangle separately. Obtain residuals from each triangle given by

rij = Xij − μ̂ij

V
1
2 (μi,j)

, (7)

where Xij represents the incremental claim for accident year i and development year j.
2. Store residuals from each triangle as bivariate observations in a n× 2 matrix X=

(x1, . . . , xn)′ where xi = (rkj1, rkj2). We have that n= I(I + 1)/2.
3. Apply either the bagplot or MCD Mahalanobis Distance (see section 2) to these bivariate

residuals.
4. Adjust outliers. For the bagplot, outlying observations are brought back to the fence or

loop. For the MCDMahalanobis distance technique, observations are brought back to the
tolerance ellipse representing the 95% quantile of the χ2

2 distribution.
5. Backtransform adjusted residuals to obtain robust incremental claims XRob

i,j .
6. Apply the multivariate time series chain-ladder (Merz & Wüthrich, 2008) to the robust

(adjusted) observations.

We now provide an example of the above framework on real bivariate data. We however
include two alternative outlier detection and treatment techniques: the AO and bagdistance.

3.2 Bivariate example using belgian data
The data for this example are from Belgian non-life insurers and are given in Appendix A.1 (from
Shi et al., 2012).

3.2.1 Bagplot
We begin by illustrating the major shortcoming of the bagplot approach in that it does not pro-
vide a measure of outlyingness that is unique for each observation. This is because the bagplot
approach is based on halfspace depth whereby multiple different observations can have the same
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Figure 3. Bagplot.

halfspace depth even if they are at different levels of outlyingness. Fig. 3 shows the bagplot for
this data, where 6 outliers have been detected. Four of these observations have the lowest half-
space depth of 1 which may be expected for outliers. However, two of these outliers, X6,5 and
X7,3, have a halfspace depth of 2 and 3, respectively. These points are marked with red crosses.
Additionally, one non-outlying observation, X9,2, has a halfspace depth of 1 and is marked with
a purple ‘+.’ Hence without the corresponding bagplot, little inference can be made about how
outlying the outliers are and importantly about whether an observation is outlying or not. This
will become an even bigger concern when extending this technique to higher dimensions where
graphical representations become less available. Indeed, the bagplot is purely based on a form of
ranking (halfspace depth) (see section 2.2.2). As a result, without having the graph available (such
as for higher dimensions as considered in the next section) it is difficult to communicate how
outlying an observation is.

3.2.2 MCDmahalanobis distance
When employing the MCD Mahalanobis Distance technique, a graphical representation is also
available in the bivariate case. In particular, we can plot each data point as well as tolerance ellipses
of which have a squared distance to the central estimate of the data equal to a quantile of the
χ2
2 distribution. The classical tolerance ellipse is constructed when the Mahalanobis Distance is

calculated using the classical estimators of the location vector and scale matrix rather than their
robust counterparts from the MCD procedure outlined in section 2.1.3. Outliers are adjusted by
a technique known as bivariate Winsorization such that an outlying observation x is adjusted
according to

min
(√

c
MD2(x)

, 1
)

· x, (8)

where c is equal to the 95% quantile of a χ2
2 distribution (χ2

0.95,2). Under this methodology, 7
observations are detected as outliers. These are the same observations as was flagged under the
bagplot approach as well as X9,2, the only other observation with a halfspace depth of 1. Fig. 4
gives these plots before and after outliers have been adjusted.
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Figure 4. Tolerance ellipses.

Figure 5. Adjusted outlyingness bagplot using traditional cutoff value (Approach 3).

3.2.3 AO
We now explore AO as an outlier detection and adjustment technique. AO explicitly incorpo-
rates a robust measure of skewness and provides a measure of outlyingness for each multivariate
observation, alleviating the aforementioned issue with the bagplot based on halfspace depth.
Additionally, it may be better equipped to handle more extreme levels of skewness. A bagplot
based on AO is also available in the two-dimensional case as shown in Figs. 5 and 6, which
illustrate all three methods outlined in section 2.2.4.

For these plots, the red asterisk is the point with the lowest AO and represents a central point
of the data analogous to the Tukey median, the dark blue area represents the bag which contains
the 50% of points with the lowest AO, and the light blue area represents the loop whose perimeter
is constructed by the convex hull of all points not declared as outliers when using the traditional
cutoff method (Hubert & Van der Veeken, 2008).

In Fig. 5, we have used approach 3 with the traditional cutoff value given in Hubert & Van der
Veeken (2008) (cut-off=Q3 + 1.5e3MCIQR) which incorporates a robust measure of skewness
calculated from the whole data set and hence more fully considers the shape of the data to declare
outliers, which are shown in red. This cutoff value was calculated to be 5.5813. The light blue area
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Figure 6. Adjusted outlyingness bagplots (Approaches 1–2).

represents the convex hull of all points not declared as outliers under this methodology and may
be considered as an AO-based loop.

The fence approach (approach 1) only captures the shape of the data from the 50% of observa-
tions determined to be least outlying. Fig. 6(a) shows the AO bagplot with the fence drawn, and
we see that under this approach an additional 6 observations are detected as outliers. A further
issue that presents itself in this situation is the adjustment to the fence or the loop.

Finally, we may use the alternative cutoff value as given in the mrfDepth package (Segaert
et al., 2017) (Approach 2). The cutoff value under this approach is calculated to be 7.6227 com-
pared with 5.5813 under the traditional calculation. An AO bagplot for this approach is shown in
Fig. 6(b) where no fence is drawn. In this case, we detect 1 less outlier in comparison to the tradi-
tional case. Based on our previous arguments regarding the potential lack of total consideration of
skewness under the two alternative approaches, we recommend use of the traditional cutoff value
(Approach 3).

3.2.4 Bagdistance
The second outlier detection approach we propose is the bagdistance (bd) (see section 2.2.3) which
utilizes the bag to capture the shape of the data and provides a distance measure for each observa-
tion to represent its outlyingness. A cutoff point is set such that observations with a bd beyond this
threshold are classified as outliers and are adjusted back to an appropriate point on the ray ema-
nating from T∗ passing through x. An illustration of the bd is given in Fig. 7 where the bd for the
outliers is given by taking the ratio of the orange line to the white line (noting that the orange line
continues through toT∗). If we choose the bd cutoff distance to be uniformly the same as the fence
factor for a corresponding bagplot, we will detect the same outliers under the two approaches.

3.2.5 Summary of detection results
Table 1 summarizes the observations that were detected as outliers by the four techniques dis-
cussed here where a tick indicates that the observation was flagged under the relevant technique
and a cross indicates that it was not. All observations not listed here were not flagged by any of the
techniques. Further, the results in brackets correspond to the halfspace depth, MCDMahalanobis
distance, AO, and bd values for each observation, respectively.
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Table 1. Outlier detection results.

Outliers Bagplot MCD AO∗ bagdistance∗∗

X6,5 � (2) � (11.4205) X (3.8184) � (3.5744)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X7,3 � (3) � (17.3909) X (3.7012) � (3.9989)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X7,4 � (1) � (22.3643) X (5.5598) � (4.9284)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X8,2 � (1) � (50.4314) � (6.2001) � (6.8217)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X8,3 � (1) � (43.4263) � (7.9189) � (7.0153)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X9,1 �(1) � (262.9189) � (15.7057) � (15.7549)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X9,2 X (1) � (7.6540) X (1.6197) X (4.4161)

∗As detected by Approach 3 (traditional AO cutoff value).
∗∗Using cutoff distance of

√
χ20.99,2.

Figure 7. Bagdistance illustration.

3.3 Adjustment of outliers
In the previous section, we outlined how outliers may be detected. Of course, an equally crucial
task is to determine how to treat those outliers. In this section, we discuss different methods for
such treatment.

In some robust analyses, if a data point is extremely outlying, it is simply removed.
Unfortunately, this option is not available in most triangular reserving techniques (which require
a fully populated triangle), and hence, we must formulate and choose appropriate adjustment
mechanisms.

3.3.1 Bagplot based adjustments
Under the bagplot approach, Verdonck & Van Wouwe (2011) suggest that outlying observations
should be brought back to the fence however upon inspecting their plots they appear to have
brought observations back to the loop.

Fig. 8(a) and (b) show the bagplot with the fence drawn in green and the bagplot after adjusting
residuals back to the fence, respectively. In Fig. 8(b), all of the adjusted outliers are within the
loop; however, this is not always the case as after adjustment of the outlying observations, the
bagplot methodology is performed again and with some data sets, some of the observations will
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Figure 8. Bagplot before and after adjusting outliers to fence.

Figure 9. Bagplot after adjusting outliers to loop.

be outlying because the overall shape of the data has changed which will lead to a different bag
and hence fence.

Fig. 9 shows the bagplot after adjusting outliers to the loop. Note that the adjustment in this
case is more drastic in comparison to the fence adjustment.

3.3.2 MCDmahalanobis distance based adjustments
The adjustment methodology under the MCD Mahalanobis Distance approach is outlined in
section 3.2.2.
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3.3.3 Bagdistance based adjustments
Through calculation of the bd for each observation, a similar adjustment technique as was used
in the MCD Mahalanobis example can be employed in that we adjust an outlying observation x
according to

min
(

f
bd

, 1
)
(x− T∗)+ T∗, (9)

where f represents the factor of the bag that we wish to adjust outliers back to. For adjustment
back to the bagplot-fence, we choose f =

√
χ2
0.99,2. Note that other adjustment functions may be

employed.
For illustration purposes, we have considered two other adjustment functions such that, depen-

dant on the level of outlyingness as measured by bd, observations are adjusted to differing
degrees.

In the first case, all observations (x) are adjusted according to

xrob =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, if bdx ≤ f ;

min
(

f
bdx , 1

)
(x− T∗)+ T∗, if f < bdx ≤ 1

2

(
2f + √

4f + 1+ 1
)
;

f+√
bdx

bdx (x− T∗)+ T∗, if bdx > 1
2

(
2f + √

4f + 1+ 1
)
.

(10)

This means that moderate outliers will be brought back to the fence, whereas more extreme
outliers will be adjusted to points beyond the fence according to their levels of outlying-
ness. Specifically, the 1

2 (2f + √
4f + 1+ 1) constraint is chosen as it is the value of bdx where

the adjustment function in case 3 of equations 10 and 11 (i.e., f+√
bdx

bdx
)
is equal to 1. For

bdx > 1
2

(
2f + √

4f + 1+ 1
)
, f
bdx <

f+√
bdx

bdx < 1 which means that the points that fall into case 3
will be adjusted back towards the center of the data, however, to a point beyond the fence.
For completeness, f+√

bdx
bdx > 1 for bdx < 1

2

(
2f + √

4f + 1+ 1
)
, which means that if the con-

straint was set at a lower value, then case 3 could lead to outliers being adjusted further
away from the central point of the data rather than closer to it. This takes one view point
on outliers whereby if an observation is very far outlying then it should still represent mod-
erately rare events in the data. Another approach would be to consider outliers beyond a
certain limit as misleading or errors and adjust them further towards the center of the data,
limiting their influence. Further investigation will be required based on the data set being
analyzed, and the adjustment functions can then be designed depending on the conclusions
drawn.

The second approach we consider is given by

xrob =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x, if bdx ≤ f ;

min
(

f
bdx , 1

)
(x− T∗)+ T∗, if f < bdx ≤ 1

2

(
2f + √

4f + 1+ 1
)
OR bdx > u> f ;

f+√
bdx

bdx (x− T∗)+ T∗, if 1
2

(
2f + √

4f + 1+ 1
)

< bdx ≤ u.
(11)

Under this adjustment function, we set an additional limit u such that if outliers are beyond
this point they are also brought back to the fence. The rationale for this approach is that if an
observation is this far outlying, it should be given full adjustment back to the fence as it either
represents a data entry error or the information contained in that observation is too irrelevant for
the current task to include more fully. Note that u is an arbitrary selection that will be dependent
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Figure 10. Bagdistance adjusted bagplots.

on the data set under review. The key takeaway is that with unique measures of outlyingness for
each observation, there is significantly greater flexibility in how observations can be adjusted.

Fig. 10(a) shows the outliers after adjustment according to equation (10), and Fig. 10(b) shows
the outliers after adjustment according to equation (11) where we have set f =

√
χ2
0.99,2 and u= 15.

Under the latter approach with u= 15, observation X9,1 which has bagdistance of 15.8 as shown
in Table 1 is brought back to the fence whereas it remains beyond the fence in Fig. 10(a).

Remark 3.1. Additionally, we may use the bd values as a residual term when fitting a model with
a robust loss function (e.g., robust M-estimation). For example, we could utilize the bd in Huber’s
loss function such that we have

Lbdc (x)=
{

1
2bd

2, if bd≤ c;
c(|bd| − 1

2 c) otherwise.
(12)

3.3.4 AO-based adjustments
The AO approach provides a measure of outlyingness for each observation. This measure is based
on numerous one-dimensional projections of the individual multivariate observations and the
total multivariate sample. For each of these projections, the univariate measure of AO is calcu-
lated. The maximum of these univariate AO values after all the projections is taken to be the AO
measure in the multivariate case. Without knowing which direction has led to the final AO, we are
seemingly unable to backtransform the AO measure to lead to adjusted residuals and ultimately
adjusted claim amounts. A solution is to use the AO-based bagplot such that we adjust outliers
back to the fence or loop. Consideration must be given to which cutoff value or whether a fence
has been drawn to detect outliers under the AO approach. In each case, the loop may be differ-
ent. We recommend using the traditional cutoff value (Approach 3) as it explicitly incorporates
skewness.

3.3.5 Summary of adjustment mechanisms
Tables 2 and 3 summarize the claim values for the outliers detected and their adjusted values for
Triangle 1 and 2, respectively. Note that in the case of the AO-Fence and AO-Loop adjustments,
we are only considering those observations that were flagged as outliers based on the traditional
cutoff.
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Table 2. Triangle 1 outlier adjustment results.

Outliers Initial MCD BP-Fence BP-Loop AO-Fence AO-Loop AO-mrfDepth bd-(10) (no limit) bd-(11) (limit)

X6,5 238,375 226,990 231,580 219,269 - - - 232,213 232,213


X7,3 633,500 652,977 645,490 656,826 - - - 645,081 645,081


X7,4 432,257 403,580 409,118 393,805 - - - 409,668 409,668


X8,2 1,458,541 1,557,335 1,543,798 1,565,203 1,802,824 1,588,895 - 1,484,742 1,484,742


X8,3 727,098 713,520 715,180 710,780 702,174 700,640 700,177 723,168 723,168


X9,1 2,210,754 2,139,306 2,143,332 2,137,794 2,119,751 2,133,590 2,133,589 2,164,880 2,144,073


X9,2 1,517,501 1,538,538 - - - - - - -

Table 3. Triangle 2 outlier adjustment results

Outliers Initial MCD BP-Fence BP-Loop AO-Fence AO-Loop AO-mrfDepth bd-(10) (no limit) bd-(11) (limit)

X6,5 6,650 9,124 8,215 11,050 - - - 8,049 8,049


X7,3 86,734 75,546 80,162 73,947 - - - 80,344 80,344


X7,4 18,109 29,028 27,279 33,348 - - - 26,990 26,990


X8,2 132,208 98,329 103,742 96,595 17,257 88,685 - 123,419 123,419
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X8,3 20,923 49,957 47,709 57,597 76,939 80,387 81,427 29,809 29,809


X9,1 112,103 43,470 47,024 41,679 24,263 37,621 37,620 67,438 47,179


X9,2 33,250 34,062 - - - - - - -

For the AO-mrfDepth approach, we are considering outliers flagged under this methodology
and outliers are adjusted back to the loop in this case. As we adjust residuals back in the direction
of the central estimate of the data, this may lead to an upward or downward adjustment for each
residual and similar adjustments will be seen for the corresponding claim observations. Note that
‘-’ values are provided where outliers were not detected under that methodology.

3.4 Final reserves and discussion
Once the outliers have been appropriately identified and treated, the data can be used to compute
reserves estimates. Here, we used the multivariate time series chain-ladder technique as described
in Merz &Wüthrich (2008).

Table 4 summarizes the final reserve estimates and their associated RMSE for each individual
triangle and total reserves under each outlier detection and adjustment technique as well as when
we simply apply the multivariate chain-ladder without adjusting any observations. However, we
consider the last three development periods as separate univariate triangles. This is because there
are few data points for these development periods and applying the multivariate chain-ladder to
such periods often leads to highly volatile results or potentially failure in that elements of the
estimated correlation matrices may have absolute values greater than one. This in turn may lead
to a lack of convergence. Note that some authors (including Merz & Wüthrich, 2008) suggest
extrapolation of these correlation variables from the previous periods however as our main focus
is on outlier detection and adjustment we have not pursued this option.

The robust reserves in this example are always modestly less than the original reserves. This
phenomenon is well known in the robust literature and is obviously related to all adjustments
being reductions; losses are thus decreased and so are the associated calculated reserves. The
greatest adjustment is for the bagdistance technique where a limit is set for the adjustment
function.

In each case, we saw a much greater reduction in the RMSE than reserves. For example, the
bagplot-loop methodology leads to a 0.91% reduction in reserves and a 12.17% reduction in
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Table 4. Bivariate example reserves.

No. of outliers Triangle 1 Triangle 2 Total Difference (%)
detected Reserve RMSE Reserve RMSE Reserve RMSE Reserve RMSE

Original – 6,435,951 322,573 489,028 90,542 6,924,978 337,001 – –


MCD 7 6,438,541 283,054 438,497 45,552 6,877,037 293,870 −0.69 −12.80


Bagplot-Fence 6 6,427,705 291,416 441,754 50,822 6,869,460 301,923 −0.80 −10.41


Bagplot-Loop 6 6,416,549 283,191 445,097 41,669 6,861,647 295,999 −0.91 −12.17


AO-Fence 3 6,509,807 294,572 389,602 62,491 6,899,409 288,668 −0.37 −14.34


AO-Loop 3 6,456,446 292,021 444,764 47,660 6,901,210 297,914 −0.34 −11.60


AO-mrfDepth 2 6,456,381 291,999 445,496 47,722 6,901,876 297,901 −0.33 −11.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bd-(10) (no limit) 6 6,417,482 304,232 456,439 68,329 6,873,921 315,131 −0.74 −6.49


bd-(11) (limit) 6 6,412,956 301,127 438,432 61,425 6,851,388 306,010 −1.07 −9.20

RMSE. This suggests that even if the change in reserve estimates is only minor, the accuracy of
such estimates may be enhanced considerably as a result of these robust techniques.

4. Detection and Treatment of Outliers in N-Dimensional Reserving
4.1 An N-dimensional framework
We now put forward a framework for N-dimensional robust chain-ladder reserving. The method-
ology is as follows. Firstly, perform the robust Poisson GLM chain-ladder technique on each
triangle separately to obtain residuals. These residuals are then stored in anN-dimensional matrix.
It is these N-dimensional residuals that outlier detection and adjustment techniques are applied to.
The techniques are based on AO, halfspace depth, MCDMahalanobis distance, and bagdistance.

Under the AO approach outliers are detected using the standard cutoff value (see section 2.2.4).
In the three-dimensional case, a graphical representation is also constructed. Firstly, declare the
point with the lowest AO as the AO-median. Next, form the convex polyhedron that contains the
50% of points with the lowest AOwhich can be considered as a N-dimensional AO-based bag. We
then construct an N-dimensional AO-based loop by forming the convex polyhedron that contains
all non-outlying points.

Outliers are adjusted by bringing them back to the intersection point of the ray from the
AO-median to the outlying point and the AO-based loop. This intersection is found using the
parametric line clipping algorithm (Cyrus & Beck, 1978; Liang & Barsky, 1984). Adjusted resid-
uals are then backtransformed to give robust incremental claims. The multivariate time series
chain-ladder (Merz &Wüthrich, 2008) is applied on these robust claims.

For the halfspace depth approach, we calculate residuals in the same fashion; however, the out-
lier detection and treatment methodology is altered. The halfspace depthmethodology outlined in
section 2.1.2 can be applied in N dimensions with Fig. 1 providing an illustration in 2 dimensions.
Firstly, calculate the halfspace depth of each observation. The Tukey Median is then the observa-
tion with the greatest halfspace depth or the center of gravity of the deepest region if this is not
a unique point. Next, formulate the N-dimensional bag. Firstly, let Ds represent the region that
contains all points with halfspace depth greater than or equal to s. Let #Ds be the number of data
points in Ds. The bag is constructed by linearly interpolating the two convex regions that satisfy
#Ds ≤ �n

2 � < #Ds−1 with respect to the Tukey Median. This interpolation is done in the same way
as for the bivariate bagplot as described in Miller et al. (2003) however now applicable for any
polytype rather than only two-dimensional polygons. Firstly, calculate

λ =
n
2 − #Ds

#Ds−1 − #Ds
. (13)
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The bag is given by λ · outer polytype+ (1− λ) · inner polytype. Next, the N-dimensional
fence is constructed by multiplying the N-dimensional bag by a fence factor with respect to the
Tukey Median. Outliers are declared as points beyond the fence. The fence factor we use is

√
χ2
N .

For all N > 1, this is greater than the previously used arbitrary value of 3 in the two-dimensional
case, and hence, less outliers will be detected and adjusted. Then, construct the N-dimensional
loop by forming the convex hull of all non-outlying points. Outliers are treated by bringing them
back to either the fence or loop. In three dimensions, the bag, loop, and fence are convex polyhe-
drons and graphical representation is available. Adjusted residuals are backtransformed and the
multivariate time series chain-ladder applied.

The MCD Mahalanobis distance and bagdistance approaches are implemented in the same
fashion as they were for the bivariate case. For the trivariate case, a graphical representation of
the tolerance ellipsoid for the MCD Mahalanobis technique may be displayed. We now show the
implementation of these four techniques on real data and compare the results.

4.2 Illustration with the AUSI dataset
For the purposes of illustration, we use data from three different lines of business of twoAustralian
insurers. A short discussion of this data is provided in Appendix A.2.

4.2.1 Data adjustments
The fitting of the robust Poisson GLM stage of the methodology is only possible if there are no
negative incremental claims in each triangle. However, of the 820 observations for each line, the
CTP line from insurer 1, the CTP line from insurer 2, and the Home line from insurer 1 have 1,
21, and 57 negative claims, respectively. We have set all these claims to zero. To ensure that this
did not significantly impact results, we calculated development factors under the classical chain-
ladder technique before and after the adjustment. The largest change in a development factor was
0.231%, and hence, the effect of the adjustment is small and is deemed acceptable.

4.2.2 Detection of outliers
Firstly, we perform the AO technique on these residuals. 34 outliers were flagged under this
approach. We then construct a 3D version of the AO-based bagplot such that the 50% of data
points with the lowest AO are contained in a convex polyhedron analogous to the bag, and an
additional convex polyhedron is formed for all non-outlying observations analogous to the loop.
Fig. 11(a) shows the residuals with the 3D AO bag drawn in yellow, and Fig. 11(b) shows the
residuals with the 3D AO-loop in orange and the corresponding bag contained inside. Outliers
are shown in red in each case.

We note that this loop extends in the various directions of the data’s dispersion and seemingly
captures its general shape. For completeness, we have also investigated the use of the cutoff value
for AO of

√
χ2{99,N} ·median(AO) as suggested in Segaert et al. (2017). Under this approach, 48

outliers are detected.
We now illustrate the halfspace depth-based approach. Fig. 12(a) shows the residuals with the

bag drawn in yellow, and Fig. 12(b) shows the residuals with the bag loop and fence all drawn.
The loop is again in orange and is within the light blue fence. Outliers are declared as the points
outside the fence, and under this methodology, we detect 48 outliers. Interestingly, 29 of the 34
observations flagged as outliers under the traditional AOmethodology are also detected under the
halfspace depth approach. This highlights some agreement between the two methodologies. Note
that the bags under both the AO and halfspace depth approaches are relatively similar; however,
the fence which is used to declare outliers under the halfspace depth methodology appears unable
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Figure 11. AO based detection.

Figure 12. Halfspace depth-based detection.

to capture the three-dimensional skewness in the data. Rather, it remains relatively elliptical in
shape whereas the AO-loop stretches in each direction that the data are further reflected in the
number of outliers flagged. We conject that the halfspace depth approach may be misclassifying
regular observations as outliers in this instance.

To highlight the differences between a fence-based approach and AO approach, we may also
draw an AO-based fence by multiplying the AO bag by three and declare as outliers observations
outside this fence. Fig. 13(a) shows the residuals with the AO bag drawn in yellow and AO-fence
in light blue. In Fig. 13(b), we have drawn the AO bag, loop, and fence. In this case, the convex
polyhedrons representing the loop and fence are overlapping, and in particular, the loop seem-
ingly extends further in each direction that the data are dispersed. Notably, the AO-fence appears
reasonably elliptical in shape, similar to its halfspace depth counterpart.
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Figure 13. AO based detection (Approach 1 versus Approach 3).

Under this fence-based approach, 66 observations are flagged as outliers. We believe that using
an AO-based fence may again fail to fully capture the shape of the data as we suspect has occurred
for the halfspace depth approach. In particular, we believe this will be of the greatest concern when
there is significant skewness in the data set.

Now, the MCD Mahalanobis Distance technique which does not consider skewness in the
data set at all. Analogous to tolerance ellipses as described in section 3.2.2, tolerance ellipsoids
have a squared distance to the central estimate of the data equal to a quantile of the χ2

3 dis-
tribution. This concept is extendable to higher dimensions where the squared distance is equal
to a quantile of the χ2

p distribution where p represents the dimension of the data. Fig. 14(a)
shows the residuals with the 97.5% robust tolerance ellipsoid drawn in orange, and Fig. 14(b)
shows the non-robust tolerance ellipsoid drawn in green with its robust counterpart encapsulated
within it.

This is analogous to what we saw in the bivariate case (see Fig. 6). Under theMCDMahalanobis
distance approach, 120 observations were flagged as outliers. This approach saw a substantially
greater number of observations detected as outliers than the other available techniques as it does
not consider skewness, likely leading to misclassifications, for example, swamping as the tolerance
ellipsoid does not extend towards the skewed data.

4.2.3 Treatment of outliers
Now we turn to the treatment of outliers. Under the AO, halfspace depth, and MCDMahalanobis
distance approaches, outlying observations are brought back to a relevant convex polyhedron (i.e.,
loop or fence) or tolerance ellipsoid. Under the bagdistancemethodology, an alternative approach
may be used which weights the degree of adjustment according to the level of outlyingness of each
observation. In particular, we have again considered the weighting functions given by equations
(10) and (11) and set f =

√
χ2
3 and u= 10. As noted in section 3.3.3, u is an arbitrary selection

that will be dependent on the data set under review. Adjusted residuals under each methodology
are backtransformed to give robust incremental observations.
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Table 5. Trivariate reserves (Scaled values with different radix).

No. of outliers LOB 1 LOB 2 LOB 3 Total Difference (%)
detected Reserve RMSE Reserve RMSE Reserve RMSE Reserve RMSE Reserve RMSE

Original – 900.00 66.62 1,300.00 112.34 800.00 74.48 3,000.00 176.69 – –


MCD 120 826.15 42.19 1,241.05 97.84 750.55 39.81 2,802.70 138.34 −6.58 −21.71


HD Fence 48 904.73 56.61 1,134.21 96.41 770.12 47.26 2,843.71 156.06 −5.21 −11.68


HD Loop 48 905.34 56.25 1,131.76 95.82 765.90 46.17 2,841.63 155.07 −5.28 −12.24


AO-Fence 66 903.41 55.39 1,128.94 95.20 759.14 41.51 2,834.21 153.22 −5.53 −13.28


AO-Loop 34 924.92 61.04 1,130.74 96.31 765.70 45.93 2,875.41 162.25 −4.15 −8.17


AO-mrf Depth 48 876.42 57.85 1,256.43 104.58 764.17 42.68 2,909.42 160.23 −3.02 −9.32


bd (no limit) 48 887.55 61.79 1,286.06 108.27 783.01 54.57 2,961.24 167.60 −1.29 −5.15


bd (limit) 48 888.25 61.82 1,286.33 108.29 773.03 54.26 2,960.83 167.75 −1.31 −5.06

Figure 14. MCDmahalanobis distance detection.

4.2.4 Final reserves and discussion
The time series multivariate chain-ladder technique (Merz & Wüthrich, 2008) is performed on
these robust observations. The results for final reserves and estimated RMSE are given in Table 5.
Note that we have scaled the presented results within each LOB to ensure commercial data
confidentiality.

Under each methodology, reserves have been reduced. The greatest reduction was seen when
outliers were detected and adjusted using the MCDMahalanobis distance approach. This is likely
because there was a much greater proportion of observations detected as outliers under this
approach. However as this methodology does not consider the skewness in the data set, it may
be inappropriate in this situation (likely excessive). Rather, the AO technique based on the tradi-
tional cutoff value is likely more equipped to capture the shape of the data in this regard and we
believe it to be the most suitable approach for this data set. The smallest reduction in reserves is
given for the bd approach where there was no upper limit on the weighting function. This is likely
because under this approach outliers have been adjusted to a smaller degree than in compari-
son to the alternative mechanisms. Additionally, we have seen the RMSE of reserves decrease in
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each case. The MCD Mahalanobis distance approach saw the greatest reduction in this metric of
21.71%, whereas the traditional AO approach (loop) saw a 8.17% reduction. Notably, the shift in
the RMSE for each approach was significantly greater than the corresponding change in reserves.
This highlights that even for small adjustments in terms of the point estimate of reserves when
using these robust techniques, we may see significant improvements in accuracy.

5. R Codes
All relevant R codes used for the bivariate and trivariate illustrations can be found at
https://github.com/agi-lab/reserving-robust, along with a synthetic dataset (with
features inspired by the AUSI data used in section 4) to help replication of results.

6. Conclusion
We put forward two alternative robust bivariate chain-ladder techniques. The first technique is
based on AO and explicitly incorporates skewness into the analysis while providing a unique mea-
sure of outlyingness for each observation. The second technique is based on bagdistance which is
derived from the bagplot; however, it is able to provide a unique measure of outlyingness and
a means to adjust outlying observations based on this measure. Using a real bivariate data set,
we illustrated how those techniques compared to existing ones. While the (inevitable) reduc-
tion in central estimates is (desirably) modest, the reduction in RMSE is much more significant.
This highlights that even for small adjustments in terms of the point estimate of reserves when
using these robust techniques, we may see significant improvements in accuracy. We showed
that our methodology offers material and significant improvements, compared to the techniques
introduced in Verdonck & VanWouwe (2011).

We then extended our framework to N dimensions and implemented all four outlier detection
and treatment techniques on a real trivariate data set. The mathematical generalization of the
bivariate methodologies was not trivial. The illustration demonstrated good performance again,
and results were qualitatively similar to those discussed in the bivariate example.

Through our expositions and extension to higher dimensions, we have added to the toolbox of
techniques available to detect and treat outliers in multivariate reserving. We believe that the new
techniques applied in this paper address some of the shortcomings of the previous approaches
and should be explored as common practice when implementing robust multivariate reserving
techniques in practice.

While we focused on the multivariate time series chain-ladder model of Merz & Wüthrich
(2008) for our illustrations, it should be noted that the detection and treatment methodologies
developed in this paper can be applied to other reserving techniques, including in most recent
machine learning actuarial procedures (see, e.g., Richman, 2018). Notably, our work is concerned
with the detection and treatment of outliers rather than finding the best reserving model for the
data and we have used the chain-ladder model for illustrative purposes. In the case that one pro-
ceeds to model the robustified data, back-testing of results compared to those from unadjusted
data may provide useful insights into the effectiveness of the techniques.
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Appendix
A. Data
A.1 Bivariate
The data used to illustrate the robust bivariate chain-ladder techniques are provided in this
section. It is of incremental claims for Personal (Table A.1) and Commercial (Table A.2) auto
insurance from a major U.S. property-casualty insurer from 1988 to 1997. The data are taken
from Shi et al. (2012).
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Table A.1. Bivariate data set (a) (Shi et al., 2012).

i/j 1 2 3 4 5 6 7 8 9 10

1 1,376,384 1,211,168 535,883 313,790 168,142 79,972 39,235 15,030 10,865 4,086
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1,576,278 1,437,150 652,445 342,694 188,799 76,956 35,042 17,089 12,507
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 1,763,277 1,540,231 678,959 364,199 177,108 78,169 47,391 25,288
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1,779,698 1,498,531 661,401 321,434 162,578 84,581 53,449
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1,843,224 1,573,604 613,095 299,473 176,842 106,296
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1,962,385 1,520,298 581,932 347,434 238,375
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 2,033,371 1,430,541 633,500 432,257
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 2,072,061 1,458,541 727,098
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 2,210,754 1,517,501
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 2,206,886

Table A.2. Bivariate data set (b) (Shi et al., 2012).

i/j 1 2 3 4 5 6 7 8 9 10

1 33,810 45,318 46,549 35,206 23,360 12,502 6,602 3,373 2,373 778
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 37,663 51,771 40,998 29,496 12,669 11,204 5,785 4,220 1,910
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 40,630 56,318 56,182 32,473 15,828 8,409 7,120 1,125
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 40,475 49,697 39,313 24,044 13,156 12,595 2,908
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 37,127 50,983 34,154 25,455 19,421 5,728
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 41,125 53,302 40,289 39,912 6,650
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 57,515 67,881 86,734 18,109
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 61,553 132,208 20,923
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 112,103 33,250
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 37,554

A.2 Trivariate
We use data from three different lines of business of two Australian insurers to illustrate our
robust multivariate chain-ladder techniques in section 4.2. In particular, we investigate CTP and
home insurance lines from one insurer and a CTP line from another. The data are quarterly and
run from the beginning of 2004 through 2013.

The complete data set that these three lines of business have been taken from was developed
as part of a Linkage Project grant awarded by the Australian Research Council until 2016 for a
project titledModelling claim dependencies for the general insurance industry with economic capital
in view: an innovative approach with stochastic processes. It is referred to as the AUSI dataset, an
acronym of the names of the project partners (Allianz Australia Insurance Ltd, UNSW Australia,
Suncorp Metway Ltd, and Insurance Australia Group Ltd).

Cite this article: Avanzi B, Lavender M, Taylor G and Wong B (2024). Detection and treatment of outliers for multivariate
robust loss reserving, Annals of Actuarial Science, 18, 102–125. https://doi.org/10.1017/S1748499523000155
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