CHARACTERS WITH PREASSIGNED VALUES

W. H. MILLS
Let & and ¢ be positive integers; let ¢y, ¢s, . . . , ¢, be distinct prime numbers;
and let {1, {2 ..., {: be kth roots of unity, not necessarily primitive. Recent

investigations on consecutive kth power residues have led to the following
question: Under what conditions do there exist primes p that have a kth
power character x such that

1) x(q) = ¢ 1 <1< 82

It has been known for a long time that if & is a prime, then for any ¢y, . . .,
Gun 1. .., ¢, there exist an infinite number of such primes p (4; 3, p. 426; or 5).
However, for most even values of k there are certain restrictions. If p is a prime,
p =1 (mod k), then it follows from the quadratic reciprocity law that:

(i) If m|k, m = 1 (mod 4), then m is a square modulo p.

(i) If 4ml|k, then m is a square modulo p.

Now (i) and (ii) impose certain restrictions on the {; in order that x satisfy
(1). The object of this paper is to show that if these conditions are satisfied,
then there exist primes p that have a kth power character x that satisfies (1).
In particular this is always the case if kisodd, if & = 2,if £ = 4, orif & = 2Q
where Q is a prime of the form 4N + 3. Moreover, if there is one such prime p,
then there are an infinite number of them.

1. Let & be a positive integer, let R be the field of rational numbers, let ¢
be a primitive kth root of unity, and let /¥ = R({). Let aq, @s, . . ., &, be non-
zero elements of F, and let ¢y, {9, . .., {, be kth roots of unity, not necessarily
primitive. Let 8; be a root of x* = a;, 1 <7 < ¢, and let E = F(B4, B2, . - . ,
B:). Then E is normal over F. Let G be the Galois group of E over F. Our
starting point is the following special case of the Tschebotareff density theorem
(2, p. 133):

THEOREM 1. If there is a ¢ in G such that

(2) U.Bi=§'151,1<’i<t;

then there exist an infinite number of prime ideals p of the first degree in F such
that

3) <%>=9, 1<i<t,
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where (a/p) is the kth power residue symbol. If there are no ¢ in G satisfying
(2), then there are no prime ideals p in F satisfying (3).

Let F* denote the set of all elements of the form o, o € F. It follows from
the theory of Kummer extensions (see, for example, (1)) that the existence
of a ¢ in G satisfying (2) is equivalent to the following condition:

(1) If my, ms, ..., m, are rational integers such that Il ai € F* then
H g—lmz = 1.

If a1, @, . . ., a; are rational then (I) is equivalent to the following:

(11) If my, ms, . .., m, are non-negative rational integers such that Ila /7

€ RN F*, then Il¢mi = 1.

By a kth power character modulo a prime p we mean a homomorphism of
the multiplicative group of integers modulo p onto the group of kth roots of
unity. This implies that p is of the form 2N + 1. For such a prime p the kth
power characters modulo p are the mappings x of the form

x(n) = (%)

where p is a prime ideal in F that divides p. Now every prime ideal p of the
first degree in I either divides %k or divides a prime p of the form BN + 1.
Therefore we have the following result:

THEOREM 2. Let aj s, ...,a; be mnon-zero rational integers, and let
$1,C2y o oy C4 be kth roots of unity. If (11) holds, then there exist an infinite
number of rational primes, p, for each of which there is a kth power character
x modulo p, such that x(a;) = ¢ 1 <2 < ¢ If (I1) does not hold, then there
are no such primes p.

2. If & is odd let S be the set of all elements of the form af, a € R. If & is
even let S be the set of all elements of the form ea*d*/?, where a € R, d is a
positive square free integer, d|3k, and

—1if k=4 (mod 8) and 2/d,
(4) e=<—1if =2 (mod4) and d = —1 (mod 4),
1 otherwise.

LEMMA. RN FF = S.

Proof. The field of the gth roots of unity contains /¢ if ¢ = 1 (mod 4),
and it contains 4/ —¢q if ¢ = —1 (mod 4). Moreover the field of the fourth
roots of unity contains (—4)%. It follows from these facts that S C R M F*.

Suppose m € R M F* and that k is odd. Then there is a real number « in F
such that m = o&*. Since F is an abelian extension of R, it follows that R(a)
is a normal extension of R. Hence every conjugate of « is real. Since x* = m
has only one real root, it follows that « is rational, and hence m € S.

Finally, suppose that m € R/ F* and that k is even. Without loss of
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generality we suppose that m is a kth power-free integer. Furthermore m
= o* for some a € F. Since o is real, it follows that there exists a 2kth root
of unity o such that wa is a positive real number. Then (wa)* = |m|. Put
K = F(w). Then K is an abelian extension of R and wa € K. Hence R(wa)
is a normal extension of R. Therefore every conjugate of wa is real. Since the
only real roots of x*¥ = |m| are wa it follows that (wa)? is rational. Put
d = (we)? Then d is a positive rational integer and |m| = d*/2. Therefore
m = ed"’?, where ¢ = =&1. Since m is kth power free, it follows that d is
square free. If ¢ is a prime number and if g|d, then ¢ is ramified in the extension
R(@) and hence in F. This implies q|3k. Hence d|3k. Therefore ed*/2 € S C R
M F*¥, where € is given by (4). Thus eepm € R M F*. Now m and —m cannot
both belong to F*since — 1 does not. Hence eeg = 1, ¢g = ¢, and m = ed*/? € S.

We have proved that R M F* C S in all cases. Hence R M F* = S, and the
proof of the lemma is complete.

3. Using the lemma we now apply Theorem 2 to the case where the «;
are distinct primes. This gives us our final result:

THEOREM 3. Let q1, qs, - . ., g, be distinct positive rational prime numbers.
Let ¢1,¢2 -« ., &y be kth roots of unity. Let P be the set of all rational prime
numbers p such that there exists a kth power character x modulo p satisfying

X(gl) :§1v1<l<t-

If k is odd, then P is infinite, If k = 2 (mod 4); if {*/* = 1 for all i such that
gilk, g; = 1 (mod 4); and if {/* = ¢} for all pairs i, j such that g.q;lk, ¢; = q;
(mod 4); then P is infinite. If 4|k, and if ¢/ =1 for all 1 such that 4q.|k,
then P s infinite. In all other cases P is empty.

In particular P is always infinite if %k is odd, if 2 = 2 or 4, or if £ = 2Q
where Q is a prime of the form 4N + 3.
The primes p in P are all of the form kN + 1.
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