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On Curved Barriers.

By Dr S. BKODETSKY.

(Read 18th May 192S. Received 11th May 1928.)

In two-dimensional discontinuous fluid motion one point of
considerable importance has not hitherto been given sufficient
attention. I raise it formally in a paper to be published soon
(Fluid Motion past Circular Barriers, Scripta Universitatis atque
Bibliothecae Heirosolymitanarum, 1923, Vol. I., XL, 1-14)
in the following manner. Given the form of the barrier by means
of, say, the radius of curvature in terms of the angle of con-
tingence, how does the solution take into account the angular
extent of the barrier? Clearly barriers which are defined by
the same curve, but differ in the extent of curve used, must
necessarily give rise to different solutions. Further, there must
be a limiting extent of barrier, so that if it extends beyond this
limit the part of the barrier in excess must lie in the "dead " fluid.

The case of the circular barrier is dealt with in the paper
referred to above, where the solution is obtained for circular
barriers both concave and convex to the streaming fluid. I t is
shown how a simple criterion establishes the limiting extent for the
convex circular barrier, this limiting extent being the one defined
and discussed in another paper (Proc. Roy. Soc, A. 102, 542-553.
1923). The limiting extent is in fact to about 55° on either side
of the " nose " for the circular barrier.

The limiting extents for convex elliptic barriers of various
eccentricities or "fineness ratios" are also given in the latter
paper.

It is my object here to lay down the criterion generally, with-
out any assumption of symmetry. Ultimately the process is based
on an idea mentioned by M. Brillouin (Ann. Chim. Phyg. (VIII.),
XXIII., 1911, 145-230) ; but he leaves it rather vague.

Brillouin proves that the free stream line must be convex on
the side of the streaming fluid, concave on the side of the dead
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fluid. Now let us have some definite functional form of a barrier.
Starting off with a small angular extent, practically a plane, the
free stream line at either end has, to commence with, zero radius
of curvature. As the angular extent increases, the stream line
changes, but the radius of curvature of the stream line is still zero
where the stream line leaves the barrier. If we suppose the extent
to continue to increase, we reach a stage where the radius of curva-
ture of the free stream line at the point where it leaves the barrier
suddenly becomes finite. This is the critical extent of the barrier—
beyond this the barrier lies in the dead fluid.

To prove this I shall show that when the radius of curvature
becomes finite at the beginning of the free stream line, we have
the limit beyond which the free stream line would be concave to
the streaming fluid and convex to the dead fluid. Further, I shall
prove that at this stage the initial radius of the curvature of the
free stream line is the same as that of the barrier where the free
stream line leaves it.

Using the notation of my paper (Proc. Roy. Soc, A. 102, 1922,
361-72) let the complex variable z ( = x + iy) define position in a
plane perpendicular to the generators of the two-dimensional, i.e.
cylindrical, barrier, the x axis being parallel to the direction of the
stream at infinity. If u, v are the velocity components we define
<f>, \p so that

d<j> d\j/ dtf> dip

dx dy' dy dx'

Let w = <t> + i\f/ and define 12 = log (dz/dw) = r + iO. The solution of
any problem is given by defining some relation between fl and w.

Levi-Civita's method is somewhat as follows. Put

= — ( T 1 - sin <r0

where T is a new complex variable defined as pe™. Clearly p = 1,
<r = cr0, gives M> = 0, and this defines the point in the T plane corre-
sponding to the nose, i.e., the point in the barrier in the z plane
where the fluid divides into two streams on the two sides of the
barrier. We get a semicircle in the T plane, so that T = e<<r is a

point on the barrier ( o- between —— and + — J; T = ip is a point
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on either free stream line, p= 1 to 0 for one and p = - 1 to 0 for
the other. The general solution is

1 + e1(ro T
il = X log + A,T + I I ^ T 2 + £.43T3 + \iAtr

l +...
1 - e "'or

where Xtr is the angle formed by the barrier at the "nose"—
measured on the side away from the moving fluid. The values of
X, <ra, Ax, A2, ... define any particular barrier.

Consider the free stream line, T = ip, p= 1 to 0. For brevity put

J2 = ê T + i U^T" +

where an = An + the coefficient due to the first part of 12. We get

logr + i0= i (a, p - Ja2p2 - -Ja3p
3 + \atp* -...).

Hence r = 1 and

•in

Hence — = a, - a2 p - a3 p2 + a4 p3 + a6 p* - ...
dp

6 represents the direction at any point of the free stream line.
If ds is an element of length on it we have

ds = rdcf> = d<f>

while

„ ds ds d<^ 1-p2

Hence ^ = ^ ^ = — 7 "

<f> = I j ( / H ) - s i n <roj.

To get the radius of curvature we need dsldd, i.e., -j-l-r-. We get
dpi dp

d0 a, - a210 - a3 p2 + a4 p" + ...

I t is clear that in general we get zero radius of curvature for p— 1,
namely, at the point where the free stream line leaves the barrier.

For finite radius of curvature at p = 1 we must evidently have
dd/dp zero at p= 1. We therefore have the condition

a, - a2 - a3 + a4 + o5 - ae - a7 + a8 + ... = 0.
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We have already mentioned that the free stream line has zero
radius of curvature for small angular extent, so that it is convex
to the moving fluid at p = 1, and dd/dp is positive. In the limiting
case just mentioned we have dO/dp zero, so that we are at the
passage from convexity to concavity.

Putting p= 1 - e and proceeding to the limit where «->0, with
the assumption that the condition for finite radius of curvature at
p = 1 is satisfied, we get

ds _ 2 ( 1 - sin cr0) 2 (1 - sin <re)
d6 a2 + 2a, - 3a4 - 4a6 + 5a6 + ... al-2a% - 3as+4a4 + 5a5 - 6»6-.. .

Now consider the barrier itself; we do this by putting

r = e"7. We get

log r + id = a, ew + \w^ eaa + ...

so that log r — a^ coser - |a2 sin 2a- + Aa3 cos 3cr - £a4 sin 4cr + ...,

0 = a, sincr + ioscos 2<r + -Ja3sin 3a-+ |a4cos 4cr+ ...

Hence -5- = a, cosa- — a., sin 2a + a3 cos 3cr - a4 sin 4o- + ...
dcr

— . — , i.e., of rd<j>lda. Also we have now
d<p d<r

To find ds/dO we need to know the value of ds/d<r, i.e., of

Also we have no

= (sin a- - sin o-0)
2.

= 2cos o-(sin u - sin cr0

Hence

ds
——
do-

The radius of curvature is therefore

dO axcoso- - a2sin 2o-+a3cos 3a- - at sin 4or+ ...

When cr is taken equal to TT/2 we get

ds 2 (1 -sincr0)
ad Oj - 2a2 - 3o3 + 4a4 + 5a6 - 6a6 - ...

Thus the radius of curvature of the free stream line at p = 1 is the
same as chat of the barrier at o- = ir/2, which is what we set out to
prove.
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Exactly similar reasoning applies to the other stream line,
p from — 1 to 0. At p — - 1 we have in general zero radius of
curvature. But in the limit, when the radius of curvature is
finite, the free stream line is just at the limit of convexity to the
moving fluid, and the radius of curvature is the same as that of
the barrier at a- = - x/2. I t is not necessary for both sides of the
barrier to have the same property; one can extend to the limit or
beyond, while the other has an extent less than the limit. Of
course, for the symmetrical case we must have the same conditions
on both sides.
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