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On the Largest Dynamic Monopolies of
Graphs with a Given Average Threshold

Kaveh Khoshkhah and Manouchehr Zaker

Abstract. Let G be a graph and let 7 be an assignment of nonnegative integer thresholds to the
vertices of G. A subset of vertices, D, is said to be a 7-dynamic monopoly if V(G) can be partitioned
into subsets Do, Dy, . . ., Dy such that Dy = D and forany i € {0, ..., k—1}, each vertex v in D;; has
atleast 7(v) neighbors in DgU- - -UD;. Denote the size of smallest 7-dynamic monopoly by dyn_(G)
and the average of thresholds in 7 by 7. We show that the values of dyn_(G) over all assignments 7
with the same average threshold is a continuous set of integers. For any positive number ¢, denote
the maximum dyn_(G) taken over all threshold assignments 7 with T < t, by Ldyn,(G). In fact,
Ldyn, (G) shows the worst-case value of a dynamic monopoly when the average threshold is a given
number ¢. We investigate under what conditions on ¢, there exists an upper bound for Ldyn,(G) of
the form |G|, where ¢ < 1. Next, we show that Ldyn,(G) is coNP-hard for planar graphs but has
polynomial-time solution for forests.

1 Introduction

In this paper we deal with simple undirected graphs. For any such graph G = (V, E),
we denote the cardinality of its vertex set by |G| and the edge density of graph G by
€(G) = |E|/|G|. We denote the degree of a vertex v in G by deg (v). For other graph
theoretical notations we refer the reader to [2]. By a threshold assignment for the ver-
tices of G we mean any function 7: V(G) - N u {0}. A subset of vertices D is said
to be a 1-dynamic monopoly of G or simply 7-dynamo of G, if for some nonnegative
integer k, the vertices of G can be partitioned into subsets Dy, Dy, ..., Dy such that
Dy = D and for any i,1 < i < k, the set D; consists of all vertices v which has at least
7(v) neighbors in Dy U --- U D;_;. Denote the smallest size of any 7-dynamo of G by
dyn_(G). Dynamic monopolies are in fact modeling the spread of influence in social
networks. The spread of innovation or a new product in a community, the spread of
opinion in Yes-No elections, the spread of a virus on the internet, and the spread of
disease in a population are some examples of these phenomena. Obviously, if for a
vertex v we have 7(v) = deg (v) +1, then v should belong to any dynamic monopoly
of (G, 7). We call such a vertex v self-opinioned (from another interpretation it can be
called vaccinated vertex). Irreversible dynamic monopolies and the equivalent con-
cepts target set selection and conversion sets have been the subject of active research
in recent years by many authors [3,4,6-8,10-13].
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In this paper, by (G, 7) we mean a graph G and a threshold assignment for the ver-
tices of G. The average threshold of 7, denoted by 7, is 3.,y () 7(v)/|G|. In Proposi-
tion 2.2 we show that the values of dyn_(G) over all threshold assignments with the
same average threshold form a continuous set of integers. The maximum element of
this set was studied for first time in [10], where the following notation was introduced.
Let t be a non-negative rational number such that #|G| is an integer, then Dyn,(G)
is defined as Dyn,(G) = max,z-, dyn_ (G). The smallest size of dynamic monop-
olies with a given average threshold was introduced and studied in [13]. Dynamic
monopolies with given average threshold was also recently studied in [5]. In the def-
inition of Dyn,(G), it is assumed that ¢|G| is integer. In order to consider all values
of t, we modify the definition slightly, but we are forced to make a new notation, i.e.,
Ldyn,(G) (which stands for the largest dynamo). The formal definition is as follows.

Definition 1.1 Let G be a graph and let ¢ be a positive number. We define
Ldyn,(G) = max{dyn_ (G)[T < t}. Assume that a subset D ¢ V(G) and an as-
signment of thresholds 7o are such that 7y < £, [D| = dyn, (G) = Ldyn,(G) and D is
a 79-dynamic monopoly of (G, 7). Then we say that (D, 7o) is a t-Ldynamo of G.

Ldyn,(G) does in fact show the worst-case value of a dynamic monopoly when the
average threshold is a prescribed given number. The following concept is motivated
by the concept of dynamo-unbounded family of graphs, defined in [12], concerning
the smallest size of dynamic monopolies in graphs.

Definition 1.2 For any n € N, let G, be a graph and t, be a number such that
0<t, <2e(G,). Wesay {(Gy, ty) } nen is Ldynamo-bounded if there exists a constant
A <1such that for any n, Ldyn, (G,) < A[G,|-

The outline of the paper is as follows. In Section 2, we show that the values of
dyn,(G) over all assignments 7 with the same average threshold is a continuous set
of integers (Proposition 2.2). Then we obtain a necessary and sufficient condition for
a family of graphs to be Ldynamo-bounded (Propositions 2.4 and 2.5). In Section 3, it
is shown that the decision problem Ldynamo(k) (to be defined later) is coNP-hard for
planar graphs (Theorem 3.1) but has polynomial-time solution for forests (Theorem
3.8).

2 Some Results on Ldyn,(G)

We first show that the values of dyn_(G) over all threshold assignments 7 with the
same average threshold are continuous. We need the following lemma from [11].

Lemma 2.1 ([11]) Let G be a graph and let T and 1’ be two threshold assignments to

the vertices of G such that T(u) = ©'(u) for all vertices u of G except for exactly one
vertex, say v. Then

{dynxc) ~1<dyn,(G) <dyn,(G), ift(v)>7'(v),
dyn_(G) <dyn_(G) <dyn_(G) +1, ift(v)<7'(v).
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The continuity result is as follows.

Proposition 2.2 Let T and T’ be two threshold assignments for the vertices of G such
that T = T'. Let also r be an integer such that dyn_(G) < r < dyn_,(G). Then there
exists T with T = 7" such that dyn_,,(G) =r.

Proof For any two threshold assignments 7 and 7’ with the same average threshold,
define (7, 7') = ¥y.2(4)>w(v) (T(¥) = 7'(v) ). We prove the proposition by the induc-
tion on 8(7,7"). If §(7,7") = 0, then for any vertex v, 7(v) < 7'(v). But the average
thresholds are the same, hence 7 = 7/, and the assertion is trivial. Let k > 1 and as-
sume that the proposition holds for any two 7 and 7’ with the same average threshold
such that §(7, ') < k. We prove it for k + 1. Assume that 7 and 7’ are given such that
0(r,7’)=k+1and 7 # 7. Define W = {v: 7(v) > 7/(v) }. Let w € W. There exists a
vertex u such that 7(u) < 7/(u), since otherwise by T = T we would have 7 = 7’. De-
fine a new threshold 7"’ as follows. For any vertex v with v ¢ {u, w} set 7”(v) = 7(v).
Also, set " (w) = 7(w) —1and 7"/ (u) = 7(u) + 1. We have §(7”,7’') = k, and the
average threshold of 7 is the same as that of 7. So the assertion holds for 7 and 7’.
By Lemma 2.1 we have |dyn_(G) — dyn_,(G)| < 1. We conclude that the assertion
also holds for 7 and 7'. u

Let G be a graph and let ¢ be a positive number such that |G| is integer. Let T
be any assignment with average ¢ such that 7(v) < deg;(v) for any vertex v. Let
dy <dy <---<d, beadegree sequence of G in increasing form. It was proved in [10]
that the size of any 7-dynamic monopoly of G is at most

k
max{k: Y(di+1) < nt}.

i=1
The proof of this result in [10] shows that if we allow 7(v) = deg.(v) + 1 for some
vertices v of G, then the same assertion still holds. We have the following proposition
concerning this fact.
Proposition 2.3  Let t be a positive number. Assume that the threshold assignments in
the definition of Ldyn,(G) are allowed to have self-opinioned vertices. Then Ldyn,(G)

can be easily obtained by a polynomial-time algorithm.

Proof Letd; < d, <---<d, beadegree sequence of G in increasing form. By the
argument we made before Proposition 2.3, we have

k
Ldyn,(G) < max{k Y (di+1) < nt}.
i=1
Let ko = max{k : ¥*_,(d; +1) < nt}. We obtain a threshold assignment  as follows:

7(vi) = {degG(Vi) +1 i<ko,

0 otherwise.

Let D = {v1,v3,..., Vg, }. It is clear that (D, 7) is a t-Ldynamo of G. [ |
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In [10], it was proved that there exists an infinite sequence of graphs Gy, Ga, ...
such that |G,| — oo and lim, e Ldyn, g, )(Gn)/|Gu| = 1. In the following proposi-
tion, we show that a stronger result holds. In fact we show that not only the same result
holds for Ldyn, E(Gn)(G,,), where k is any constant with 0 < k < 2, but also it holds
for any sequence k,, for which k,|G,| — co. In the opposite direction, Proposition
2.5 shows that if k, = O(1/|Gy|), then lim, .o Ldyn; . (¢,(Gn)/|Gnl # L

Proposition 2.4  There exists an infinite sequence of graphs {(G, T,) } ey satisfying
|G| = o0 and €(G,) /|G| = o(T,) such that

lim 2Y2(Gn)
n—o0 |Gl

Proof We construct G, as follows. The vertex set of G, is disjoint union of a com-
plete graph K, and n copies of complete graphs K,,,;. There exists exactly one edge
between each copy of K,,,; and K,,. Set 7,,(v) = 0 for each vertex v in K, and 7,,(v) =
deg(v) for each vertex v in any copy of K,,,;. It is clear that any dynamic monopoly of
G, includes at least n vertices of each copy of K41 and hence Ldyn_(G,) > n?. Then
we have

Ldyn_(G,) o n? ] n

1> lim =1

n—oo |G7l|

= lim
nooco n(n+2) n-con+2

Ty .
To complete the proof we show that EGVGHE ~

- T, ~ lim (n*+n+1)/(n+2) . =
n=oo |E(G,)|/|V(G)? n2o (n2 + n+n(n+n?))/2(n?+2n) '

Proposition 2.4 shows that if ¢, is such that €(G, ) /|G| = o(t,), then {(G,, t,) }
is not necessarily Ldynamo-bounded. In the opposite direction, the next proposition
shows that if there exists a positive number ¢ such that ¢, satisfies ¢, < ce(G,) /|G|,
then any family {(G,, t,) }, is Ldynamo-bounded.

Proposition 2.5 Let G be a graph and let ¢ and t be two constants such that t < ¢ El(gl) .

Then

C
Ldyn,(G) < —|G]|.
yn, ( )<C+1||

Proof Let n be the order of G. If n < ¢/2, then [cn/(c + 1)] = n, and hence the
inequality Ldyn,(G) < ¢|G|/(c +1) is trivial. Assume now that n > ¢/2. Let d; < d, <
.-~ < d, be a degree sequence of G in increasing form and set ko = max{k : ¥, (d; +
1) < nt}. As we mentioned before, by a result from [10] we have Ldyn,(G) < ko. The
assumption ¢ < c¢(e(G)/n) implies that nt < (¢/2n) Y7 ;d; and hence Zfz"l(d,- +1) <
(¢/2n)¥ . d; or equivalently

(2n/c) S(

n

1

ko
di)/ 3 (di+1).
1 i=1
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Assume on the contrary that ko > cn/(c +1). Then

k k 2
2n < Ziil di + Z?=k0+1 di < (Zigl dl) + ﬁ

¢ o(TRd)+Sn T (SR d) S

c+l c+1

Therefore,
2n—c ko 2 2n?
>d; < - .
c =1 c+1 c+1

The left-hand side of the last inequality is nonnegative, but the other side is negative.
This contradiction implies ko < cn/(c + 1), as required. [ |

3 Algorithmic Results

Algorithmic results concerning determining dyn_(G), with various types of threshold
assignments such as constant thresholds or majority thresholds, were studied in [4,
6,7]. In this section, we first show that to compute the size of D such that (D, 7) is a
ke(G)-Ldynamo of G is a coNP-hard problem on planar graphs. Then we prove that
the same problem has a polynomial-time solution for forests. The formal definition of
the decision problem concerning Ldynamo is the following, where k is any arbitrary
but fixed real number with 0 < k < 2.

Name: LARGEST DYNAMIC MONOPOLY (Ldynamo(k))
Instance: A graph G on say n vertices and a positive integer d.

Question: Is there an assignment of thresholds 7 to the vertices of G with n7 =
| nke(G)| such that dyn (G) > d?

The following theorem shows coNP-hardness of the above problem. Recall that
the Vertex Cover (VC) asks for the smallest number of vertices S in a graph G such
that S covers any edge of G. Denote the smallest cardinality of any vertex cover of G
by B(G). The problem VC is NP-complete for planar graphs [9].

Theorem 3.1  For any fixed k, where 0 < k < 2, Ldynamo(k) is coNP-hard even for
planar graphs.

Proof We make a polynomial time reduction from VC (planar) to our problem. Let
(G, 1) be an instance of VC, where G is planar. Define s = 4|E(G)| x max{1,1/k} + 14
and set p = | (ks —2)/(2 - k)| — |[E(G)|. Construct a graph H from G as follows. To
each vertex v of G attach a star graph K s_; in such a way that v is connected to the
central vertex of the star graph. Consider one of these star graphs and let y be a vertex
of degree one in it. Add a path P of length p — I starting from y (see Figure 1). The
path P intersects the rest of the graph only in y. Call the resulting graph H. Since G
is planar, H is planar too.

We claim that (G, [} is a yes-instance of VC if and only if (H, ! + |p/2] + 1) isa
no-instance of Ldynamo(k). We have |E(H)| = |E(G)| + s + p from the construction

https://doi.org/10.4153/CMB-2015-021-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-021-4

On the Largest Dynamic Monopolies of Graphs with a Given Average Threshold 311

Figure I: The graph H.

of H. Then since p = | (ks —2)/(2 - k)| —|E(G)|, we have
p<(ks=2)/(2-k) - [E(G)|
= 2p+2|E(G)|+2< k(s+p+|E(G)|)
= 2p +2|E(G)| +2 < | k|E(H)|].
Also, from the value of p we have
p2(ks=2)/(2-k) - |E(G)[ -1
=2p+2|E(G)|+2+ (2-k) > k(s+p+|E(G)|)
=2p+2|E(G)|+2+|2-k]| > |k|E(H)||
= 2p +2|E(G)|+3 2 | k|[E(H)|].

Assume first that (G, 1) is a no-instance of VC. Then (G) > I + 1. We construct a
threshold assignment 7 for graph H as follows:

(v) = {degH(v) veG U.P,
0 otherwise.

It is easily seen that T < ke(H) and also dyn_(H) = B(G) + |p/2]. Therefore,
(H, 1+ |p/2] +1) is a yes-instance for Ldynamo(k).

Let (G, I) be ayes-instance of VC. Then (G) < I+1. Assume that (D, 7) isa (ke(H))-
Ldynamo of H. The assumption that s > 4|E(G)| + 14 implies [Dn (H \ G)| < | p/2].
On the other hand, [DN G| < B(G) < I+1. Hence, |D| < I + | p/2] + 1. This shows that
(H, 1+ |p/2] +1) is a no-instance for Ldynamo(k). This completes the proof. [ |

In the rest of this section we obtain a polynomial-time solution for forests (The-
orem 3.8). We will need some prerequisites. We will make use of the concept of a
resistant subgraph, defined in [12] as follows. Given (G, 7), any induced subgraph
K ¢ G is said to be a 1-resistant subgraph in G, if for for any vertex v € K the in-
equality deg, (v) > deg;(v) — 7(v) + 1 holds, where deg (v) is the degree of v in G.
The following proposition in [12] shows the relation between resistant subgraphs and
dynamic monopolies.

Proposition 3.2 ([12]) A set D € G is a t-dynamo of graph G if and only if G \ D
does not contain any resistant subgraph.
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The following lemma provides more information on resistant subgraphs that are
also triangle-free.

Lemma 3.3  Assume that (G, ) is given. Let also H be a triangle-free T-resistant
subgraph in G and e = uv be any arbitrary edge with u,v € H. Let v’ be defined as

follows:
7(w) ifw ¢ H,
2 w) = 0 z:fweH\{u,v'},
deg,(v) ifw=v,
deg.(u) ifw=u.
Then 7' < T.

Proof Since H is triangle-free, then |H| > degy(u) + deg(v). From the definition
of the resistant subgraphs, for any vertex w € H, one has 7(w) > deg. 5 (w) + L
Hence the following inequalities hold:

> 1(w) > ZH(degG\H(w) +1) > |H| + degg. (1) + deg 4 (v)

weH
> degy (u) +degy(v) + degg g (u) + deg g (v)
=deg. (u) + degs (v).
It turns out that 3,,.c 7 (W) < ¥,cg T(w), and hence 7/ < 7. [ ]

By a (zero,degree)-assignment we mean any threshold assignment 7 for the vertices
of a graph G such that for each vertex v € V(G), either 7(v) = 0 or 7(v) = deg.(v).
The following remark is useful and easy to prove. We omit its proof.

Remark 3.4 Assume that (G, 7) is given where 7 is (zero,degree)-assignment. Let
G be the subgraph of G induced on {v € G|7(v) = deg.(v)}. Then every minimum
vertex cover of Gy is a minimum 7-dynamo of G, and vice versa.

The following theorem concerning (zero,degree)-assignments in forests is essential
in obtaining an algorithm for ¢-Ldynamo of forests for a given ¢.

Theorem 3.5 Let F be a forest and let t be a positive constant. There exists a
(zero,degree)-assignment 1’ such that 1/ < t and

Ldyn,(F) = dyn_, (F).

Proof Let (D, 1) be a t-Ldynamo of F. We prove the theorem by induction on |D|.
Assume first that |D| = 1. Then by Proposition 3.2, F has at least one 7-resistant sub-
graph, say F’. Let u and v be two adjacent vertices in F’. Let 7’ be the threshold as-
signment constructed in Lemma 3.3 such that 7'(u) = deg(u) and 7/(v) = deg(v).
Modify 7’ so that 7/(w) = 0 for every vertex w € F \ {u,v}. It is clear that 7’ is
a (zero,degree)-assignment. The edge uv is a 7’-resistant subgraph in F, and hence
dyn_(F) = Ldyn,(F) = 1. This proves the induction assertion in this case.

Now assume that the assertion holds for any forest F with |D| < k. Let F be a forest
with Ldyn,(F) = k and let D be a t-Ldynamo of F with |D| = k. Also let F; be the
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largest 7-resistant subgraph of F. For any v € Fy, set ¢(v) = 7(v) —deg. 5 (v). By the
definition of resistant subgraphs, ¢(v) > 0. Itis clear that dyn (F;) = k. We show that

there exists a (zero,degree)-assignment 7, for F, such that (Dy, 7}) is a ¢-Ldynamo of
F] with ‘D1| = k.

Let T be a connected component of F;. Consider T as a top-down tree, where the
topmost vertex is considered as the root of T. Since T is a ¢-resistant subgraph in Fj,
it implies that D; N T is not the empty set. We argue that D; can be chosen in such
a way that it does not contain any vertex w € T with ¢(w) = 1, except possibly the
root. The reason is that if w € D; n T with ¢(w) = 1, then we replace w by its nearest
ancestor (with respect to the root of T) whose threshold is not 1, and if there is no
such ancestor, then we replace w by the root. Let v € D; n T be the farthest vertex
from the root of T. Let T, be the subtree of T consisting of v and its descendants.
Obviously, T, n D; = {v}.

Now we show that T, is a ¢-resistant subgraph in F,. For each vertex w € T, \ {v},
since ¢(w) > 1and degy ; (w) = 0, then ¢(w) > degy ;. (w) + 1. We also have
¢(v) > degy  (v) + 1 Since ¢(v) = 1, v is the root of T and T, = T and hence
degp . (v) = 0. And if ¢(v) > 1, then degy, . ;. (v) < 1. This proves that T, is a ¢-
resistant subgraph in F;. Let v be an arbitrary neighbor of v in T,. We construct the
threshold assignment 7; for F; as follows:

d(w) ifw¢T,,
Ti(w) =40 ifweT,~{v,v'},
degp (w) ifwe{v,v'}.

By Lemma 3.3, we have 7; < ¢. Since edge vv' is a ;-resistant subgraph in F;, then
dyn, (F) = dyn¢(F1) = k, and so D, is a minimum 7;-dynamo of F;. Set F, = Fy\ T,
Let u be the parent of the vertex v. Construct the threshold assignment 7, for F, as
follows:

() = {Tl(w) ifweF,~{u},

7(w) -1 ifw=u.

It is easily seen that the union of any 7,-dynamo of F, and {v} is a 7;-dynamo of F
and also Dy \ {v} is a 7,-dynamo of F,. Hence, dyn_ (F;) = dyn, (F1) -1=k -1
Let ¢, be any threshold assignment for F, with ¢, = 7,. Now construct the threshold
assignment ¢, for F; as follows:

2 (w) ifweF,\{u},
¢1(w) =1 11 (w) ifweT,,
dr(w)+1 ifw=u.

Because the union of any ¢,-dynamo of F, and {v}, forms a ¢;-dynamo of F; and
also for any ¢;-dynamo P of Fy, the set P n F, is a ¢,-dynamo of F, then P ¢ F,.
This result and dyn_ (F;) = k - 1imply that Ldyn_ (F,) = k — 1. From the induction
hypothesis there exists a (zero,degree)-assignment 75 for F, with T_; < 75 such that
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dyn_, (F,) = k—1. Now we construct the (zero,degree)-assignment 71 for F; as follows:
2

5 (w) ifweF,\ {u},

(w) = 11(w) ifweT,,
h(w)+1 ifw=wuand1)(u)#0,
0 ifw=wuand 75(u) = 0.

It is easily seen that dyn o (F1) = k. We finally obtain the desired (zero,degree)-assign-
ment 7’ for F as follows:
degp(w) ifweF,1{(w) :degF\Fl(w),
T (w) =10 ifweF,1(w)=0, [
0 ifw¢ F.

In the following proposition we show that for any forest there exists a (zero,
degree)-assignment that is zero outside the vertices of a matching.

Proposition 3.6 Let F be a forest and let t a positive constant. Then there exists a
matching M such that for the (zero,degree)-assignment T defined below, we have T < t
and Ldyn,(F) = dyn_(F) = |[M

>

{degF(w) if w is a vertex saturated by M,
(w) = ,
0 otherwise.

Proof By Theorem 3.5, there exists a (zero,degree)-assignment 7’ such that 7/ < ¢
and Ldyn,(F) = dyn(F). Let F, be a subgraph induced on all vertices w, with
7'(w) = deg(w). Let D be a minimum vertex cover of F;. Remark 3.4 implies that D
is a minimum 7’-dynamic monopoly of F. Assume that M is a maximum matching of
Fi. We show that M satisfies the conditions of the theorem. Each edge of M forms a
7-resistant subgraph in F. Hence dyn_(F) > |M|. Using the so-called Konig Theorem
on bipartite graphs, we have |D| = [M|. Consequently, dyn_(F) > |D| = dyn_,(F) =
Ldyn, (F). It is easily seen that 7 < 7/ < t. The proof is complete. [ |

To prove Theorem 3.8, we will need the following proposition, whose proofis given
in the appendix.

Proposition 3.7  Let G be a bipartite graph, where each edge e has a cost c(e) > 0.
Let also d be a positive number. Then there is a polynomial time algorithm that finds a
maximum matching M in G with cost(M) < d, where cost(M) = ¥ ,cpc(e).

Theorem 3.8 Given a forest F and a positive number t, there exists an algorithm that
computes Ldyn, (F) in polynomial-time.

Proof For each edge e = uv of F define cost(e) = degr(u) + degy(v), and for each
S € E(F) define cost(S) = 3. cost(e). Let M be any arbitrary matching and let 7 be
a (zero,degree)-assignment constructed from M as obtained in Proposition 3.6. It is
easily seen that 7 < t if and only if cost(M) < t|F|. Now, if M is a maximum matching
satisfying cost(M) < t|F|, then Proposition 3.6 implies Ldyn,(F) = dyn_(F) = |[M]|.
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By Proposition 3.7, there is a polynomial-time algorithm that finds maximum match-
ing M in F with cost(M) < ¢ for any value c. Then using Proposition 3.6 for given
forest F and constant t, there is a polynomial time algorithm that finds a (zero,degree)-
assignment 7 such that Ldyn,(F) = dyn_(F). From the other side, finding a mini-
mum vertex cover in bipartite graphs is a polynomial-time problem. Therefore, us-
ing Remark 3.4 a minimum 7-dynamic monopoly for F can be found in polynomial-
time. |

For further research, it would be interesting to obtain other families of graphs for
which Ldynamo( k) has polynomial-time solution. Also, we do not yet know whether
Ldynamo(k) € NP U coNP, but our guess is that it is not.

Appendix A

We prove Proposition 3.7 using the minimum cost flow algorithm. The minimum
cost flow problem (MCFP) is as follows (see e.g., [1] for details).

Let G = (V,E) be a directed network with a cost c(i, j) > 0 for any of its edges
(i, ). Also for any edge (i, j) € E there exists a capacity u(i, j) > 0. We associate
with each vertex i € V a number b(i) that indicates its source or sink depending
on whether b(i) > 0 or b(i) < 0. The minimum cost flow problem (MCFP) re-
quires the determination of a flow mapping f:E — R with minimum cost z(f) =
Y (i,jyeec(is j) f (i, j) subject to the following two conditions:

(@) 0< f(i,j) <u(i,j) forall (i, j) € E (capacity restriction);

®) Xijiijyery fUs 1) = Xjiiivery f(jr i) = b(i) for all i € V (demand restriction).
In [1], a polynomial-time algorithm is given such that determines if such a mapping
f exists. And in case of existence, the algorithm outputs f. Furthermore, if all values
u(i,j) and b(i) are integers, then the algorithm obtains an integer-valued mapping
f- In the following theorem, we prove Proposition 3.7.

Theorem A.1 Let G[X, Y] be a bipartite graph with cost(ij) > 0 for each edge ij € G
and let d be a positive number. Then there exists a polynomial-time algorithm that finds
maximum matching M in G with cost(M) < d.

Proof Constructadirected network H from bipartite graph G[ X, Y] as follows. Add
two new vertices s and t as the source and the sink of H, respectively and directed
edges (s,x) for each x € X and (y,t) for each y € Y. Make all other edges directed
from X to Y. For each edge (i, j) set u(i, j) =1and define c(i, j) as follows:

. 0 i=sorj=t,
C(,,J):{ g

cost(ij) ieX,jeY.

For each vertex i € X U Y, set b(i) = 0 and define b(s) = —b(t) = k, where k is an
arbitrary positive integer. We now have an instance of MCFP. Assume that there exists
a minimum cost flow mapping for this instance (obtained by the above-mentioned
algorithm of [1]). Since u(i, j) and b(i) are integers, f is an integer-valued mapping.
Therefore, f(i, j) is either 0 or 1. Let M be the set of edges (i, j) with f(i,j) =1,
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where i € X and j € Y. Clearly M is a matching of size k having cost(M) = z(f),
where z(f) is as defined in MCFP above.

Conversely, let M’ be any arbitrary matching in G with |[M’| = k. We construct a
flow mapping f as follows:
1 ieX,jeY,ije M,
1 i=s,jle M forsomele?,
1

f(i,j) =

j=t 1lie M’ forsomel € X,

0 otherwise.

The conditions of MCFP are satisfied for f. Also, z(f) = cost(M'). We conclude
that to obtain a matching of size k with the minimum cost is equivalent to obtaining
a minimum cost flow mapping for the associated MCFP instance (note that k is a pa-
rameter of this instance). We conclude that in order to find a matching M satisfying
cost(M) < d and with the maximum size, it is enough to run the corresponding algo-
rithm for the above-constructed MCFP instance for each k, where k varies from 1 to
|G|/2. Note that |G|/2 is an upper bound for the size of any matching. This completes
the proof. ]
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