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EXTREMA OF PRINCIPAL CURVATURE AND SYMMETRY

by J. W. BRUCE and F. TARI*

(Received 19th December 1994)

In this paper we show that away from umbilic points certain measures of the local reflectional symmetry of a
surface in Euclidean 3-space are detected by the extrema of the sectional curvatures along lines of curvature.
There are two types of reflectional symmetry, with one detected by the contact between the surface and
spheres, and in this case the result is due to Porteous and is 20 years old. We show that an analogous result
remains true for the second type of symmetry.

1991 AMS Classification Numbers: 58C 53A

1. Introduction

Consider a smooth surface in Euclidean 3-space. At each non-umbilic point p there
are two (orthogonal) principal directions with corresponding principal curvatures, which
are smooth functions in a neighbourhood of p. Away from umbilic points the principal
directions integrate up to yield lines of curvature, and we can consider the restriction of
the principal curvatures to these lines of curvature (two functions for each such line).
What we seek is an interpretation of extrema of these functions. Generally these will
occur at isolated points, and as we vary the lines these points will sweep out curves on
the surface of some geometric significance. When the curvature function is restricted to
its corresponding line of curvature these are the important ridge curves of Porteous ([8,
9]) which arise in his study of surfaces using the family of distance-squared functions. In
this paper we shall show that the union of the extrema of the curvature function when
restricted to the other principal curve is the so-called sub-parabolic line first discussed in
[14] and [2], and also in [7]. Indeed the approach taken in the first two of these works,
that of studying the geometry of the surface using a family of fold mappings (first
introduced in [1]), produces both the ridge and sub-parabolic points on a surface, in a
more geometrically significant way than as the union of the given extrema. However
their interpretation in terms of classical differential geometric invariants is of interest,
and of help when one wishes to determine these loci on a given surface. (Ridge and sub-
parabolic points on a surface are of considerable interest to those in the field of
computer vision, see, [3, 4, 11, 12].)

More significantly we prove another analogue of a result of Porteous, namely that
one can detect more degenerate singularities by considering the contact of the sub-
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parabolic curves with the line of curvature. The basic insight to be deduced from this
work is that these extrema locate (some of) the points on the surface of local
infinitesimal reflectional symmetry.

As a general background for the singularity theory approach to differential geometry
we suggest [13] and [10], and as a text for the (small amount of) classical differential
geometry we shall need [5]. We shall use subscript notation for partial derivatives.

The authors are grateful to Ian Porteous and Professor Thirion for suggesting that
the sub-parabolic curves on a surface can be interpreted in this way; we understand that
the latter has an alternative proof.

2. Ridge and sub-parabolic sets

In what follows we shall suppose that we have a smooth surface X in Euclidean
3-space, and a point p fixed on that surface; we will consider X near p as being
parametrised by some germ i: R2,0->R3,0. We shall suppose that p is a non-umbilic,
consequently there is an orthogonal net of lines of curvature near p, and a pair of well-
defined curvature functions. We next fix a principal direction at p. We can fold the
surface across the plane containing the normal and the given principal direction, as
described in [2], [1]. In other words if we choose co-ordinates in such a way that the
point p is at the origin, the normal is in the z-direction and the given principal direction
is the y-axis, then we restrict the fold mapping f(x, y, z) = (x2, y, z) to the surface. This
yields a map-germ/oi: R2,0-»R3,0 and it is the ,s/-type of this germ that we will be
considering. There are two basic families of such germs which shall interest us. A germ
is said to be of type Bk,k^l (resp. Sk,k^.2) if it is ^/-equivalent to (x,y2,x2y±y2k+l)
(resp. (x,y2,y3±xk+ly)). The subscript k is a measure of the degree of complication of
the singularity. (Here we are using the notation of Mond [6].) The subparabolic points
on the surface are those where the folding map has S^2 singularities, or equivalently the
corresponding point on the focal set is parabolic. The results of Porteous on the other
hand are concerned with the contact of the surface with tangent spheres. Here we select
the centre of curvature corresponding to the given principal direction (say (0,0, a)) and
consider the distance-squared function from (0,0,a), given by d(x,y,z) = x2 + y2+(z — a)2.
The contact is then measured by the composite doi: R2,0-»R,0; the relevant equivalence
relation here is contact or jT-equivalence. Thus the given principal direction has a
curvature function, a line of curvature, a folding map and a distance-squared function
associated with it. The simplest family of singularities here are the Ak,k^\, which are
those JT-equivalent to x2±yk+l. We can now state the first of our two theorems.

Theorem 2.1. (J) (Porteous [9]). The contact between the surface and the correspond-
ing sphere of curvature is of type A^3 (i.e. we have a ridge) if and only if the restriction of
the corresponding curvature function to the line of curvature has an extremum at p. (In
terms of the folding mappings A3 contact occurs if and only if we have had a B g 2

singularity for the corresponding folding.)
(ii) The folding map has an S^2 if an^ on^y if the restriction of the corresponding

curvature function to the other line of curvature through p has an extremum at p.
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Proof. The proof of the required result is, as one might expect, a straightforward
calculation. So let E, F, G and e, f, g be the coefficients of the first and second
fundamental form of a surface X in 3-space. The principal curvatures at any point are
then given as the zeros of the quadratic equation

t2(EG-F2) + t(2Ff-Eg-Ge) + {eg-f2) = 0.

If the parameters on the surface are u and v the left hand side is a function, say P, of the
variables u, v, t. Let t0 be a principal curvature at the non umbilic point (uo,vo), and
suppose for the moment that at the point in question the derivative P, is non-zero if and
only if the point in question is not an umbilic. Supposing this is so we can apply the
implicit function theorem and write t locally as a function T of u and v, with

P(u,v,T(u,v)) = 0.

Suppose now that the u and v directions are principal. Then we seek to interpret the
vanishing of the derivatives Tu and Tv. This is clearly equivalent to the vanishing of Pu,
respectively Pv.

We now seek to relate these conditions to those concerning the folding map. One way
to do this is to write the surface in Monge form, that is as a graph (u,v,h(u,v)) where h
has no linear or constant part. One then seeks to interpret both conditions in terms of
the coefficients in the Taylor expansion of h. We start with those concerning the
extrema.

We shall see that both sets of conditions only involve the quadratic and cubic terms
of h. Since we are at a non-umbilic we write h in the form

a0u
2 + a2v

2 + C{u, v) + O(4)

where C is cubic, and O(4) denotes terms vanishing to order 3. Consequently the u and
v directions are principal, ao¥=a2, and the principal curvatures are 2a0 and 2a2. It is
now a straightforward calculation to show that to order 1 we can write E=\, F = 0,
G = l,e = 2ao + Cuu, f = Cuv, g = 2a2 + Cvv. It follows that at u = v = 0 we have

Setting t = 2a0 we find that Pu = 2(a2-a0)Cuuu, while if t-2a2 this partial derivative is
2(ao — a2)Cuvv. Thus the partial derivative Pu vanishes at (0,0,2a0) (resp. (0,0,2a2)) if and
only if Cuuu (respectively Cuvv) is zero. (Note that the partial derivative P, evaluated at
(0,0,2a2) (resp. (0,0,2a0)) is 2(a2-a0) (resp. 2(ao — a2)) and so does not vanish away
from umbilics.)

We now turn to the folding map. The import of [2] is that at a non-umbilic a surface
has maximum reflectional symmetry across the pair of planes containing the normal and
the principal directions. Writing the surface in the above form (u, v, h(u, v)) this symmetry
is measured by the .af-type of the singularity (u, v)t-^(u2, v, h(u, v)) (for the plane
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containing the indirection) and (M, V)\-*{U, V2, h(u, v)) (for the plane containing the
u-direction). We can detect the relevant types of singularity from the 3-jets of these
maps. In the first case this 3-jet is

(u2, v, aou
2 + a2v

2+ (b0u
3 + bl u

2v + b2uv2 + b3v
3)).

Straightforward changes of co-ordinates in the target reduce this to

(u2, v,b0u
3 + b2uv2).

If the product b0b2 does not vanish one can reduce to the normal form (u2, v, u3 ± uv2)
which is 3-determined and is of type Bv This singularity represents the generic
reflectional local symmetry of a surface. Thus more degenerate symmetry corresponds to
the vanishing of b0 and/or b2. Assuming that both terms do not vanish simultaneously
we find that we have a germ in the S stem if b2 = 0, and of type B^2 if bo = 0. Of course
these are exactly the conditions that Cuvv = 0 and Cuuu = 0. It is to be noted that we have
a B^2 of the folding map if and only if we are at a ridge point of the surface. This is a
straightforward calculation. This establishes the result.

3. Tangency

We now turn our attention to the question of interpreting tangency of the ridge
(respectively sub-parabolic curve) with the lines of curvature. Again the result in the first
case is due to Porteous. Note from [2] the folding map will have an S>3 on the surface
when the focal set has a cusp of Gauss.

Theorem 3.1. (i) (Porteous [9]) / / p is a point of the ridge set, and the ridge curve is
tangent to the corresponding line of curvature (equivalently the curvature along the
corresponding line of curvature has a degenerate extremum), then the singularity of the
contact with the corresponding sphere of curvature is of type A^*-

(ii) If p is a point of the sub-parabolic curve where it is tangent to the corresponding line
of curvature, then the corresponding folding map is of type S^3.

Remark 3.2. (i) Although the ridge points are detected by the family of folding
mappings the A4 points on that curve are not.

(ii) Note that in the second case the tangency is not equivalent to the corresponding
extremum of the curvature function being degenerate.

Proof. We shall outline the proof in both cases: they are the result of fairly messy
calculations. We shall use the same notation as above for our surface, except that now
C will denote the cubic and quartic parts of the height function h. In case (i) (the case
t = 2a0 above) we need to consider the second derivative of the function T along a
principal direction. To obtain this we need to find some further information on the 2-jet
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of the line of curvature in the (M, u)-plane. Using the standard equation for the principal
directions

(£/ - eF)du2 + (Eg- eG)dudv+(Fg -fG)dv2 = 0

it is not hard to show that the 2-jet is of the form (s + As2, Bs2) where B = Cuuv/4(a0 - a2).
Differentiating the function T twice along this curve and evaluating at s = 0 we obtain
TUU + 2ATU + 2BTV (all at (w, v, t) = (0,0,2a0)) and in the case of interest we have Tu = 0. On
the other hand the second derivative Tuu can be deduced from the equation Puu +
2PU,TU + P,Tuu = 0 obtained by differentiating the equation P(u, v, T(u, v)) = 0 twice. Put-
ting these results together we find that the second derivative of T required evaluated at
(u,v)=(0,0) is 4(al-co)(ao-a2)-b

2 = 0, where C=X,?=o&i«3~i«/ + Ef=o<;,«*~V (note that
b0 = 0 from above). On the other hand in the 4-jet of the distance-squared function from
(0,0, l/2a0) we know that the u3 term is zero, and the only terms required to determine
if we have an A^4 are those of v2, u2v and u*. These are easily found to be (1 —a2/a0)v

2,
( — bjao)u

2v, (a2,—co/ao) and we have an A ^4. if and only if their sum is a perfect square.
This yields the same condition as above.

Now for the proof of (ii). Here the tangency condition is equivalent to the second
derivative Tuv vanishing. Using the equation P(u, v, T(u, v)) = 0 it is not difficult to see
that this second order derivative vanishes if and only if P,Puv — PvPu, = 0. Setting t = 2a2

we obtain S(a2 — ao){3(ao — a2)c3 — b1b2 + 3b2b3}. In this case we have (from the results in
the first part of the paper) b2 = 0, and the condition comes down to c3 = 0. If we now
consider the 4-jet of the folding map we obtain

An obvious change of co-ordinates in the target reduces this to

(w2, v, bou
3 + cx u

3v + c3uv3)

which is of type S g 3 if and only if c3 = 0.
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