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Abstract

In efforts to overcome the complexity of the syntax and the lack of formal semantics of

conventional hardware description languages, a number of functional hardware description

languages have been developed. Like conventional hardware description languages, however,

functional hardware description languages eventually convert all source programs into netlists,

which describe wire connections in hardware circuits at the lowest level and conceal all high-

level descriptions written into source programs. We develop a calculus, called lλ (linear

lambda), which may serve as an intermediate functional language just above netlists in the

hierarchy of hardware description languages. In order to support higher-order functions, lλ

uses a linear type system, which enforces the linear use of variables of function type. The

translation of lλ into structural descriptions of hardware circuits is sound and complete

in the sense that it maps expressions only to realizable hardware circuits, and that every

realizable hardware circuit has a corresponding expression in lλ. To illustrate the use of lλ

as a practical intermediate language for hardware description, we design a simple hardware

description language that extends lλ with polymorphism, and use it to implement a fast

Fourier transform circuit and a bitonic sorting network.

1 Introduction

In efforts to overcome the complexity of the syntax and the lack of formal semantics

of conventional hardware description languages (most notably Verilog and VHDL),

a number of approaches based on functional languages have been proposed (Sharp

& Rasmussen 1995; O’Donnell 1995; Bjesse et al. 1998; Matthews et al. 1998;

Li & Leeser 2000; Mycroft & Sharp 2000; Axelsson et al. 2005; Grundy et al.

2006; Ghica 2007). In fact, the idea of using functional languages for hardware

design dates back as early as in the 1980s (Cardelli & Plotkin 1981; Boute 1984;

Johnson 1984; Sheeran 1984; Meshkinpour & Ercegovac 1985), which saw the

birth of currently popular hardware description languages. The merits of functional
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Conference on Functional Programming (Park et al. 2008).
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languages as hardware description languages can be attributed to the fact that basic

building blocks for hardware circuits are equivalent to mathematical functions,

while functional languages lend themselves to creating and composing mathematical

functions.

Like conventional hardware description languages, however, functional hardware

description languages eventually convert all source programs into netlists, the de

facto assembly language for hardware description. Netlists describe wire connections

in hardware circuits at the lowest level and conceal all high-level descriptions

written into source programs. Such a translation of functional hardware description

languages into netlists could be compared to a direct translation of functional

languages into an assembly language rather than the lambda calculus, the core

calculus for functional languages.

Our goal is to develop a syntax-directed translation of a calculus similar to

the lambda calculus into structural descriptions of hardware circuits so that we

can use it as a “high-level assembly language” for functional hardware description

languages.1 We intend to use the calculus as an “assembly” language in the sense

that its definition consists only of a minimal set of primitive constructs each of

which corresponds to a specific method of combining hardware components, e.g.,

linking two separate components or building feedback circuits. In comparison with

netlists, the calculus is still a “high-level” language because it makes no explicit use

of low-level constructs, such as ports and wires, characterizing netlists. Thus, we

wish to use the calculus as an intermediate functional language just above netlists

in the hierarchy of hardware description languages.

The basic idea for the translation is already in use by existing functional hardware

description languages: functions represent hardware circuits taking input streams to

emit output streams while applications link two separate components. The problem is

still interesting, however, because we allow higher-order functions as in conventional

functional languages. (The translation becomes trivial if higher-order functions are

not allowed.) The use of higher-order functions improves the expressive power of

the calculus as an intermediate language for hardware description. For example,

we can express various higher-order combinators within the calculus itself without

recourse to additional metaprogramming constructs or another host language.

To correctly translate higher-order functions, we need to take into consideration

the fact that hardware circuits are physical resources that cannot be shared in

general. Consider a function (written in the syntax of the lambda calculus)

k = λx :1. and x x

where 1 is a base type for bitstreams and and denotes a binary AND gate. Since

a bitstream can be shared by multiple wires, k may use x twice in its body. Now,

consider a higher-order function

g = λf :1→1. f (f 0)

1 Cardelli & Plotkin (1981) call their algebra for hardware description “a high-level chip assembly
language.”
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where 1→1 is a type for functions taking a bitstream to emit another bitstream.

Since f represents a hardware circuit that cannot be shared by multiple hardware

components, g may not use f twice in its body. A workaround is to rewrite g as

g′ = λf1 :1→1. λf2 :1→1. f1 (f2 0)

and expand every application g e into g′ e e by duplicating e.

Unfortunately, it is not always possible to determine how many times we need to

duplicate each expression. As an example, consider another higher-order function

h = λf : (1→1)→1. f (λx :1. x).

Since it is unknown how many times f uses its argument λx :1. x, we cannot expand

f (λx :1. x) in the same way that we expand g e in the previous example. A quick

fix is to annotate (1→1)→1 with an integer n indicating how many times f uses its

argument:

h′ = λf : (1→1)n →1. f (λx :1. x).

A further development of this idea leads to a type system in which variables of

function type are used exactly once, i.e., linearly.

Building upon these observations, we design a calculus lλ (linear lambda), which

borrows its syntax from the standard lambda calculus and uses a linear type system to

enforce the linear use of variables of function type. (We do not develop equational

theories for lλ, for example, based on β-reductions and η-expansions.) The type

system of lλ draws a distinction between sharable types and linear types. A function

with a sharable input type (e.g., 1) may use its argument more than once; a function

with a linear input type (e.g., 1→1) must use its argument exactly once. Hence, there

arise two kinds of function types: one with a sharable input type and the other with

a linear input type. These function types in turn constitute linear types of lλ. The

linear type system of lλ is similar in spirit to the affine type system of (Ghica 2007)

in that both type systems prevent erroneous sharing of hardware circuits.

We develop a syntax-directed translation of lλ into structural descriptions of

hardware circuits. The translation is sound and complete in the following sense:

• The translation is sound in the sense that it maps expressions only to realizable

hardware circuits. A hardware circuit is realizable if it contains no input

terminal (accepting a single bitstream) connected with multiple wires.

• The translation is complete in the sense that every realizable hardware circuit

has a corresponding expression in lλ.

In addition, the type system of lλ is sound and complete with respect to the

translation in the sense that expressions are mapped to hardware circuits if and

only if they are well-typed. These properties of the translation allow lλ to serve as

a practical intermediate language for hardware description. For example, we may

convert source programs in a typical hardware description language into well-typed

expressions in lλ, which are guaranteed to be realizable and are also more amenable

to layout analysis and behavior simulation than equivalent netlist specifications.

To illustrate the use of lλ as a high-level assembly language for representing

hardware circuits, we design a simple hardware description language that extends
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lλ with polymorphism. An expression of a polymorphic type describes a family

of hardware circuits with essentially the same layout of hardware components, and

polymorphism offers a simple form of metaprogramming, which is particularly useful

for writing higher-order combinators. We use the extension of lλ to implement a

fast Fourier transform (FFT) circuit and a bitonic sorting network. The actual code

for the FFT circuit is 60 lines long and expands to 5158 lines of Verilog code by

our translator of lλ; the actual code for the bitonic sorting network is 43 lines long

and expands to 5175 lines of Verilog code.

As Sheeran (2005) notes, “functional programming and hardware design are a

perfect match.” Hence, it is actually no surprise that there is already an extensive

literature on functional hardware description languages. What comes as a surprise,

however, is that there has been little effort to formally interpret the lambda

calculus, the core calculus for all functional languages, directly in terms of structural

descriptions of hardware circuits. The development of lλ has been motivated by a

desire for such a formal interpretation of the lambda calculus. Since we interpret

expressions in lλ only as structural descriptions of hardware circuits and not as

their behavioral specifications, we do not investigate equational theories for lλ in

this work.

This paper is organized as follows. Section 2 presents the abstract syntax and the

type system of lλ and explains basic ideas behind the translation of lλ. Section 3

presents a few examples of mapping expressions to hardware circuits and formulates

the translation of lλ. Section 4 proves the soundness and completeness of the

translation and the type system. Section 5 discusses an alternative translation of lλ

and how to eliminate redundant wires. Section 6 presents an FFT circuit and a bitonic

sorting network implemented in lλ extended with polymorphism. Section 7 discusses

related work and Section 8 concludes. Selected proofs are given in Appendix.

2 Basics of lλ

This section presents the abstract syntax and the type system of lλ. It also formalizes

structural specifications of hardware circuits to be employed in the translation of lλ.

2.1 Abstract syntax and type system

Figure 1 shows the abstract syntax of lλ, which builds on the simply typed lambda

calculus with product types. A type τ is either a sharable type θ or a linear type

κ. (Sharable types and linear types are disjoint.) Sharable types correspond to base

types in general programming languages (e.g., 32-bit integers) or their combinations.

For the sake of simplicity, we use only single-bit type 1 and product types θ1 × θ2,

which suffice for supporting general forms of sharable types. Linear types are another

name for function types in lλ. A function of type θ→τ may use its argument (of

sharable type θ) more than once in its body, but a function of type κ�τ must

use its argument (of linear type κ) exactly once. Note that lλ uses product types of

sharable types only (i.e., no product types of linear types).
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type τ ::= θ sharable type
κ linear type

sharable type θ ::= 1 single-bit
θ × θ sharable product

linear type κ ::= θ →τ sharable input
κ �τ linear input

expression e ::= x sharable variable
f linear variable
λ x: .

.

θ e sharable input function
e e sharable input application
λ̂ f :κ e linear input function
eˆe linear input application
(e, e) pair
proj e of (x, x) in e projection
fix x :θ . e fixed point expression
c constant

sharable typing context � ::= · | �, x : θ

linear typing context Δ ::= · | Δ, f : κ

Fig. 1. Abstract syntax of lλ.

x : θ ∈ �

�; · � x : θ
Var

�; f : κ � f : κ LVar

�, x : θ ;�� e : τ

�;�� λ x:θ . e : θ →τ
→l

�;�1 � e1 : θ →τ �;�2 � e2 : θ

�;�1,�2 � e1 e2 : τ
→E

�;�, f : κ � e : τ

�;�� λ̂ f :κ . e : κ �τ
�l �;�1 � e1 : κ �τ �;�2 � e2 : κ

�;�1,�2� e1 ˆe2 : τ
�E

�;�1 � e1 : θ1 �;�2 � e2 : θ2

�;�1,�2 � (e1, e2) : θ1 × θ2
× l

�;�� e : θ1 × θ2 �, x1 : θ1, x2 : θ2;�′ � e′ : τ

�;�,�′ � proj e of (x1, x2) in e′ : τ
× E

�, x : θ ;�� e : θ

�;�� fix x :θ . e : θ
Fix

Fig. 2. Type system of lλ.

In order to simplify the presentation of the definition of lλ, we choose to

syntactically distinguish between sharable variables x (of sharable type) and linear

variables f (of linear type). Accordingly, we use two kinds of functions and

applications: λx :θ. e and e e for sharable input types and λ̂f :κ. e and e ˆ e for

linear input types. Pairs (e, e) and projections proj e of (x, x) in e are expressions for

product types. Fixed-point expressions fix x :θ. e permit only sharable variables in

their binders, and build feedback circuits and do not synthesize hardware circuits

simulating recursive functions. Constants c denote atomic hardware components.

For example, we may use a constant reg for a single-bit register and another

constant and for an AND gate.

Figure 2 shows the type system of lλ. It uses a typing judgment Γ; Δ � e : τ which

means that under sharable typing context Γ and linear typing context Δ, expression

e has type τ. Given a binding x : θ in Γ, we may use x zero or more times in e, but

given a binding f : κ in Δ, we must use f exactly once in e. Thus, for example, the
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rule Var uses an empty linear typing context, and in the rules →E and �E, the linear

typing context in the conclusion is split into two in the premises. Each constant

assumes a unique type reflecting its behavioral characteristics. For example, reg has

a linear type 1→1, because it emits a bitstream fed as input (after a delay). For and,

we assign either 1→ (1→1) or (1 × 1)→1.

2.2 Structural specifications of hardware circuits

If we are to interpret expressions in lλ as descriptions of hardware circuits, we need a

formal system for specifying hardware circuits at a lower structural level. We depart

from the standard netlist specification (which declares all input terminals, output

terminals, and wires individually) in favor of a more concise system described below.

At the physical level, a hardware circuit consists of hardware components and

connecting wires. A hardware component has one or more terminals to which

external wires can be connected. We assume that every wire is unidirectional and

never alternates the direction of the bitstream it transmits. Hence, a wire always

connects an output terminal o, emitting a bitstream, to an input terminal i, receiving

a bitstream. Schematically, we write an input terminal as ◦ and an output terminal

as •. Then we can draw a wire connecting an output terminal o to an input terminal

i as follows:

Note that a wire only connects an output terminal to an input terminal and does not

have its own terminals. We assume that input and output terminals are syntactically

distinguished, i.e., i = o never holds.

The translation of lλ refines the physical view of hardware circuits by supplanting

wires by connection constraints. A connection constraint o �→ i specifies that the

bitstream emitted from output terminal o be fed into input terminal i. To realize

o �→ i in a hardware circuit, we can either connect o to i via a wire or just superimpose

o on i (which is equivalent to connecting o to i via a wire of zero length).

Now, we can specify the structure of a hardware circuit with a set H of atomic

hardware components and a set C of connection constraints. Examples of atomic

hardware components are a constant (zero) generator written as 0[o], a single-bit

register written as reg[i, o], and an AND gate written as and[i1, i2, o]:

We write |H | and |C| for the set of input and output terminals in H and C ,

respectively. For example, we have |H, reg[i, o]| = |H | ∪ {i, o} and |C, o �→ i| =

|C| ∪ {o, i}.
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We say that a set of connection constraints is realizable if no input terminal

receives bitstreams from multiple output terminals:

Definition 2.1

C is realizable if there is no input terminal i such that o �→ i ∈ C , o′ �→ i ∈ C , and

o 
= o′.

If an expression is translated to a pair of H and C , we have to show that C is

realizable. Otherwise, unpredictable behavior may occur because of input terminals

receiving multiple bitstreams from independent sources.

Proposition 2.2

If both C1 and C2 are realizable, and there is no input terminal i ∈ |C1| ∩ |C2|, then

C1 ∪ C2 is realizable.

Proof

Suppose that C1 ∪ C2 is not realizable: there is an input terminal i such that

o �→ i ∈ C1 ∪ C2, o′ �→ i ∈ C1 ∪ C2, and o 
= o′. Since i 
∈ |C1| ∩ |C2|, we have

either o �→ i ∈ C1, o
′ �→ i ∈ C1 (meaning that C1 is not realizable) or o �→ i ∈ C2,

o′ �→ i ∈ C2 (meaning that C2 is not realizable). Both cases result in a contradiction

because of the assumption that both C1 and C2 are realizable. �

2.3 Connection points

In lλ, we can describe not only actual hardware circuits but also patterns of

connecting several wires. For example, λx :1. x describes a pattern of relaying a

bitstream without actually linking two wires. Another example is λx :1. (x, x) which

describes a pattern of replicating a bitstream into two without actually connecting

an input wire to two output wires. In order to translate such expressions, lλ uses a

special kind of hardware components called connection points.

A connection point consists of an input terminal i and an output terminal o

adjacent to each other and is written as pt[i, o]:

We may think of pt[i, o] as transmitting a bitstream from i to o (not from o to i) via

a wire of zero length. Although it has its own terminals (unlike wires), a connection

point just serves as a special mark for linking separate wires and does not occupy

a physical area when realized as a hardware circuit. Section 3.1 shows examples of

using connection points in the translation of lλ. Section 5.1 discusses an alternative

way of translating lλ without using connection points.

2.4 Output and input interfaces

In order to map expressions to hardware circuits, the translation of lλ needs

to know not only how to describe the structure of hardware circuits, but also

how to interface with them. For example, a hardware circuit generated from an

application e1 e2 includes two separate hardware circuits generated from e1 and e2,
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and composing the two hardware circuits requires us to identify which input and

output terminals need to be connected together. Thus the compositional nature of

the translation leads us to define output interfaces, which consist of input and output

terminals through which external hardware circuits communicate. That is, only those

terminals in the output interface are exposed to external hardware circuits, and we

essentially abstract hardware circuits with their output interfaces.

Example 1. An expression e1 of single-bit type 1 is mapped to a hardware circuit

emitting a bitstream through an output terminal o:

Hence, the output interface for e1 consists only of output terminal o, while all other

terminals are hidden.

Example 2. An expression e2 of product type 1 × 1 is mapped to a hardware

circuit emitting two bitstreams through two output terminals o1 and o2:

Hence, the output interface for e2 consists only of output terminals o1 and o2, while

all other terminals are hidden. We write o1×o2 for the output interface for e2.

Example 3. An expression e3 of function type 1→1 is mapped to a hardware

circuit accepting a bitstream from an input terminal i and emitting a bitstream

through an output terminal o:

Hence, the output interface for e3 consists only of input terminal i and output

terminal o, while all other terminals are hidden. For the output interface for e3, we

write i→o to indicate that a bitstream flows from i to o.

Example 4. An expression e4 of type (1→1)�1 is mapped to a hardware circuit

that first communicates with an external hardware circuit through an output terminal

o and an input terminal i and then emits a bitstream through another output terminal

o′:

The external hardware circuit should be generated from an expression of type 1→1.

For the output interface for e4, we write (o→ i)�o′ to indicate that a bitstream

flows from o to i (not from i to o) and eventually exits at o′.
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Example 5. An expression e5 of type (1→1)� (1→1) is mapped to a hardware

circuit that accepts a bitstream from an input terminal i′, communicates with an

external hardware circuit through an output terminal o and an input terminal i, and

emits a bitstream through an output terminal o′:

The external hardware circuit should be generated from an expression of type 1→1.

For the output interface for e5, we write (o→ i)� (i′ →o′) to indicate that a bitstream

flows from i′ to o′ and from o to i.

Examples 3–5 illustrate that output interfaces for expressions of function type

consist not only of output terminals but also of input terminals. For example,

the output interface i→o for expression e3 includes input terminal i to receive a

bitstream from an external hardware circuit (generated from an expression of type

1); the output interface (o→ i)�o′ for expression e4 uses input terminal i, as well

as output terminal o, to communicate with an external hardware circuit (generated

from an expression of type 1→1). We refer to these input and output terminals that

are to be connected with external hardware circuits as input interfaces.

To exploit an existing hardware circuit, we first have to prepare an input interface

compatible with its output interface. Here are a couple of examples:

Example 6. To exploit a hardware circuit producing a bitstream, we need an input

interface consisting of a single input terminal i:

Example 7. To exploit a hardware circuit accepting a bitstream and emitting

another bitstream, we need an input interface consisting of an output terminal o

and an input terminal i:

We write such an input interface as o→ i (not as i→o) to indicate that a bitstream

flows from o to i.

From Examples 3 and 6, we see that an output interface for type θ→τ includes an

input interface for type θ. From Examples 4 and 7, we see that an output interface

for type κ�τ includes an input interface for type κ.
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o�1
1�

i�1
1�

O1 � θ 1 O2 � θ 2

O1 × O2 � θ 1 × θ 2
× �

I1 � θ 1 I2 � θ 2 �{I1, I2}

I1 × I2 � θ 1 × θ 2
× �

I � θ O� τ �{I, O}

I→O� θ →τ
→�

O� θ I � τ �{O, I}

O→ I � θ →τ
→�

I �κ O� τ �{I, O}

I �O�κ �τ
��

O�κ I � τ �{O, I}

O� I �κ �τ
��

Fig. 3. Rules for assigning types to output and input interfaces.

Generalizing these observations, we inductively define output and input interfaces

as follows:

output interface O ::= o | O × O | I →O | I �O

input interface I ::= i | I × I | O→I | O�I.

In order to clarify the meaning of each form of output and input interfaces, we

introduce two judgments O � τ and I � τ, which assign types to output and input

interfaces. Informally, O � τ means that O is an output interface of a hardware

circuit generated from an expression of type τ, or simply that O is an output

interface of type τ. Similarly, I � τ means that we can connect input interface I with

any output interface of type τ, or simply that I is an input interface of type τ.

Figure 3 shows the rules for the judgments O � τ and I � τ. We write �{S, S ′}
to mean that S and S ′ share no terminals, where S and S ′ range over output and

input interfaces. That is, �{S, S ′} holds if and only if |S | ∩ |S ′| = � holds, where |S |
denotes the set of input and output terminals in S:

|i| = {i}
|I1 × I2| = |I1| ∪ |I2|
|O→I | = |O| ∪ |I |
|O�I | = |O| ∪ |I |

|o| = {o}
|O1 × O2| = |O1| ∪ |O2|

|I →O| = |I | ∪ |O|
|I �O| = |I | ∪ |O|.

Note that unlike the rule ×� , the rule ×� does not require �{O1, O2} because a

single output terminal can be connected to multiple input terminals.

Proposition 2.3

If O � θ, then there is no input terminal i ∈ |O|.
If I � θ, then there is no output terminal o ∈ |I |.

We write O 	
 I for the set of connection constraints for connecting output

interface O and input interface I:

o 	
 i = {o �→ i}
O1×O2 	
 I1×I2 = O1 	
 I1 ∪ O2 	
 I2
I →O 	
 O′ →I ′ = O 	
 I ′ ∪ O′ 	
 I

I �O 	
 O′ �I ′ = O 	
 I ′ ∪ O′ 	
 I.
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O 	
 I implicitly assumes that O and I are syntactically compatible (e.g., O1 × O2 	


O′ → I ′ is invalid). Proposition 2.6 shows that an output interface and an input

interface of the same type can be safely connected if they share no input terminal.

Proposition 2.4

If O � τ and I � τ, then O 	
 I is valid.

Proof

By induction on the structure of τ. �

Proposition 2.5

If O 	
 I is valid, where O � τ and I � τ′, then τ = τ′.

Proof

By induction on the size of O 	
 I . �

Proposition 2.6

If O � τ, I � τ, and there is no input terminal i ∈ |O| ∩ |I |, then O 	
 I is realizable.

The translation of lλ given in the next section maps a given expression to a triple

(H,C,O) consisting of a set H of hardware components, a set C of connection

constraints, and an output interface O. Thus, it uses not only H and C to specify

how to connect hardware components, but also O to specify how to interface with

the generated hardware circuit.

3 Translation of lλ

This section presents the translation of lλ. To develop an intuition for it, we begin

with a few examples of mapping expressions to hardware circuits. Then, we formulate

it with rules for translating types and expressions.

3.1 Examples

The translation uses a judgment e ⇒ (H,C,O) to mean that expression e describes a

hardware circuit specified by triple (H,C,O). An invariant here is that if expression

e has type τ, output interface O has the same type, i.e., O � τ. We assume three

constants zero of type 1, reg of type 1→1, and and of type 1→ (1→1), which

are mapped to constant (zero) generators, single-bit registers, and AND gates,

respectively; for visual clarity, we use traditional set notation to write H and C:

zero ⇒ ({0[o]},�, o)

reg ⇒ ({reg[i, o]},�, i→o)

and ⇒ ({and[i1, i2, o]},�, i1 → (i2 →o)).

Note that the translation uses a declarative style in that no constants specify specific

identifiers for terminals. Hence, for example, different instances of zero generate

different hardware components 0[o] and 0[o′]. The translation, however, ensures that

different instances of the same constant never share identifiers for terminals.

In the examples below, we realize a connection constraint o �→ i as a wire

connecting o to i.
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3.1.1 Sharable input function

Consider an identify function λx :1. x of type 1→1. Since it passes an input bitstream

without change, λx :1. x requires no hardware component other than a single

connection point, say, pt[i, o]. We generate such a hardware circuit consisting of

pt[i, o] in the following way.

When interpreting the binder x : 1 in λx :1. x, we associate pt[i, o] with x so that

an input bitstream is fed into i and an output bitstream is emitted from o. In essence,

the translation needs to specify an input interface and an output interface for the

variable in each binder, which are i and o, respectively, in the case of x. When

interpreting the body of λx :1. x, however, we use only o as the output interface for

x. Then the output interface for λx :1. x becomes i→o because as a function of type

1→1, it receives a bitstream via i to emit another bitstream via o:

λx :1. x ⇒ ({pt[i, o]},�, i→o).

Here, output interface i→o also has type 1→1, i.e., i→o � 1→1.

Note that it is not the instance of x in the body but the binder x : 1 that generates

pt[i, o]. For example, even if the body changes from x to (x, x), we do not generate

an additional connection point. Instead, we only update the output interface from

i→o to i→ (o×o), which is feasible because output terminal o can be shared by

both instances of x:

λx :1. (x, x) ⇒ ({pt[i, o]},�, i→ (o×o)).

Thus, λx :1. (x, x) in effect replicates an input bitstream into two output bitstreams.

Now, let us build an expression exploiting such two output bitstreams. An

application (λx :1. (x, x)) zero associates a new hardware component 0[o′] with

zero and connects output terminal o′ to existing input terminal i:

To bind the two instances of o in output interface o×o to different sharable variables,

we use a projection. For example, the following expression binds the two instances

of o to sharable variables y and z:

proj (λx :1. (x, x)) zero of (y, z) in and y z.

By associating a new hardware component and[i1, i2, o
′′] with and, we obtain the

following mapping:

proj (λx :1. (x, x)) zero of (y, z) in and y z

⇒ ({pt[i, o], 0[o′], and[i1, i2, o
′′]}, {o′ �→ i, o �→ i1, o �→ i2}, o′′).
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Another expression (λx :1. and x x) zero (with no projection in it) produces a

hardware circuit with the same structure:

(λx :1. and x x) zero ⇒ ({pt[i, o], 0[o′], and[i1, i2, o
′′]}, {o′ �→ i, o �→ i1, o �→ i2}, o′′)

If we simplify it to and zero zero, however, we obtain a hardware circuit with a

different structure:2

and zero zero ⇒ ({0[o1], 0[o2], and[i1, i2, o]}, {o1 �→ i1, o2 �→ i2}, o).

3.1.2 Linear input function

Consider another identify function λ̂f :1→1. f of type (1→1)� (1→1). First, we

have to specify an input interface and an output interface for linear variable f.

Recall from the previous example that an output interface of type 1→1 consists of

a pair of input and output terminals. Thus an input interface of type 1→1 consists

of a pair of output and input terminals.

It is important that these output and input terminals for the input interface, say, o

and i, must belong to separate connection points so that we can exploit an external

hardware circuit providing an output interface of type 1→1 in the intended way,

i.e., by transmitting a bitstream via o (as input to the external hardware circuit)

and receiving the resultant bitstream via i (as output from the external hardware

circuit). If o and i happen to belong to the same connection point, any hardware

circuit connected with the input interface degenerates into a closed-loop circuit.

Thus we associate two separate connection points pt[i1, o1] and pt[i2, o2] with f, and

use o1 → i2 for its input interface and i1 →o2 for its output interface. Then the output

interface for λ̂f :1→1. f becomes (o1 → i2)� (i1 →o2):

λ̂f :1→1. f ⇒ ({pt[i1, o1], pt[i2, o2]},�, (o1 → i2)� (i1 →o2)).

If the body changes from f to f zero, we associate a new hardware component

0[o] with zero and connect output terminal o to the input terminal in the output

interface for f, namely i1. The output interface changes to (o1 → i2)�o2 because i1
in the output interface for f is now hidden:

λ̂f :1→1. f zero ⇒ ({pt[i1, o1], pt[i2, o2], 0[o]}, {o �→ i1}, (o1 → i2)�o2)

2 Thus applying a β-reduction to an expression does not necessarily preserve the structure of the
hardware circuit that it describes.
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Let us apply the resultant function to reg. We associate a new hardware

component reg[i′, o′] with reg, and introduce two connection constraints so that the

output interface i′ →o′ for reg matches with the input interface o1 → i2 for f. The

output interface changes to o2, which is now the only terminal exposed to external

hardware components:

(λ̂f :1→1. f zero) ˆ reg

⇒ ({pt[i1, o1], pt[i2, o2], 0[o], reg[i′, o′]}, {o �→ i1, o1 �→ i′, o′ �→ i2}, o2).

3.1.3 Fixed-point expression

A fixed-point expression fix x :θ. e builds a feedback circuit whose output is accessi-

ble to itself via sharable variable x. As an example, let us build a feedback circuit from

fix x :1. and zero (reg x). We associate hardware components and[i1, i2, o], 0[o′],

and reg[i′′, o′′] with and, zero, and reg, respectively. Under the assumption that the

output interface for x is a hypothetical output terminal ox, the body and zero (reg x)

generates a hardware circuit connecting ox to i′′ and providing an output interface o:

and zero (reg x) ⇒ ({and[i1, i2, o], 0[o′], reg[i′′, o′′]}, {o′ �→ i1, o
′′ �→ i2, ox �→ i′′}, o).

Now, there are two ways to complete the feedback circuit, depending on whether

we generate a connection point for x or not. First, we associate an actual connection

point pt[ix, ox] with x and connect o to ix:

fix x :1. and zero (reg x)

⇒ ({and[i1, i2, o], 0[o′], reg[i′′, o′′], pt[ix, ox]}, {o′ �→ i1, o
′′ �→ i2, ox �→ i′′, o �→ ix}, o).

Second, we do not generate such a connection point by identifying output terminal

ox with output interface o for the whole hardware circuit, i.e., by enforcing ox = o:

fix x :1. and zero (reg x)

⇒ ({and[i1, i2, o], 0[o′], reg[i′′, o′′]}, {o′ �→ i1, o
′′ �→ i2, o �→ i′′}, o).
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The two hardware circuits are operationally equivalent because a connection point

does not occupy a physical area.

A problem with the second approach is that a well-typed fixed-point expression

may not have a corresponding hardware circuit and the soundness of the type

system (Theorem 4.7) fails to hold. To be specific, fix x :θ. e has no corresponding

hardware circuit if variable x and body e have common output terminals in their

output interfaces. For example, fix x :1. x, a well-typed fixed-point expression of type

1, produces a hardware circuit consisting only of a single output terminal, which

cannot be represented as a triple (H,C,O). Thus, we are led to use the first approach

in the translation of lλ, which does not need to deal with equations between output

terminals such as ox = o. (In order to use the second approach, we need a more

sophisticated type system that rejects such abnormal fixed-point expressions.)

A fixed-point expression in lλ does not permit a linear variable in its binder. A

fixed-point expression of the form fix f :κ. e is certainly conceivable, but interpreting

it as a description of a hardware circuit necessitates behavioral hardware synthesis,

which, unlike structural hardware description, rewrites an expression by analyzing its

behavior so that it can be mapped directly to a hardware circuit. (For example, when

only a single-adder circuit is available, the translation of an expression adding three

integers needs to insert an additional control circuit and thus involves behavioral

hardware synthesis.) As lλ is concerned only with structural hardware description, we

do not consider fixed-point expressions permitting linear variables in their binders.

3.2 Translation of types

We have seen that a binder x : τ or f : τ generates connection points in accordance

with type τ. We split terminals in these connection points into an input interface

and an output interface for variable x or f. Hence, we need rules for translating

types before developing rules for translating expressions.

We use a judgment τ �� (H, I, O) to mean that a variable of type τ may use I

and O as its input and output interfaces, and that all terminals in I and O belong to

connection points in H . Operationally, we may think of τ �� (H, I, O) as translating

input τ into output (H, I, O) (where identifiers for terminals in H are not uniquely

determined by τ). Thus, given a binder x : τ or f : τ, we first generate H , I , and O

such that τ �� (H, I, O), and then use I and O as input and output interfaces for x

or f.

Figure 4 shows the rules for the judgment τ �� (H, I, O). We continue to write

�{S, S ′} to mean that S and S ′ share no terminals, i.e., |S | ∩ |S ′| = �, where S and S ′

now range over sets of hardware components as well as output and input interfaces.

Note that 1�� is the only rule that actually generates a connection point, which

implies that H in τ �� (H, I, O) has the same number of connection points as the

number of 1’s in τ.

Lemma 3.1

If τ �� (H, I, O), then

(1) |H | = |I | ∪ |O|,
(2) �{I, O},
(3) I � τ and O � τ.
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1�� (pt[i, o], i, o)
1��

θ1 �� (H1, I1, O1) θ2 �� (H2, I2, O2) �{H1, H2}

θ1 × θ2 �� (H1 ∪H2, I1 × I2, O1 × O2)
× ��

θ �� (H, I, O) τ �� (H ′, I′, O′) �{H, H ′}
θ →τ �� (H ∪H ′, O→ I′, I→O′)

→��

κ �� (H, I, O) τ �� (H ′, I′, O′) �{H, H ′}
κ �τ �� (H ∪H ′, O� I′, I �O′)

���

Fig. 4. Rules for translating types.

3.3 Translation of expressions

For translating expressions, we generalize the judgment e ⇒ (H,C,O) to a new

judgment G; D � e ⇒ (H,C,O), which uses sharable output context G (corresponding

to a sharable typing context Γ) and linear output context D (corresponding to a

linear typing context Δ) to record output interfaces for variables in e:

sharable output context G ::= · | G, x :: O

linear output context D ::= · | D, f :: O.

A binding x :: O in G means that O is the output interface for variable x; as in the

type system of lλ, we may use x zero or more times. Similarly, a binding f :: O in D
means that O is the output interface for variable f, and we must use f exactly once.

The judgment G; D � e ⇒ (H,C,O) requires that G and D be well-formed with

respect to certain typing contexts Γ and Δ as follows:

• We write G ∼ Γ to mean that x :: O ∈ G holds if and only if x : θ ∈ Γ and

O � θ hold, i.e., O has the same type as x.

• We write D ∼ Δ to mean that f :: O ∈ D holds if and only if f : κ ∈ Δ holds

with O � κ, i.e., O has the same type as f. In addition, f1 :: O1 ∈ D and

f2 :: O2 ∈ D with f1 
= f2 mean �{O1, O2}.

Note that while output interfaces in D do not share terminals, output interfaces

in G may share terminals. Then variables declared in projections (e.g., x and y in

proj e of (x, y) in e′) can reuse existing output terminals without having to generate

new connection points, as will be explained later.

Figure 5 shows the rules for the judgment G; D � e ⇒ (H,C,O). We assume that

α-conversion has been applied to every expression so that all variables in it are

distinct. As before, we write �{S, S ′} to mean |S | ∩ |S ′| = �. We calculate |G| and

|D| as follows:

|G| =
⋃

{|O| | x :: O ∈ G}
|D| =

⋃
{|O| | f :: O ∈ D}.

For S and S ′ in �{S, S ′}, we allow unions of different kinds of sets written as G + D,

D + H , G + D + H , and etc. For such a union S of sets, we calculate |S | as the

union of sets of terminals calculated from individual sets in S . For example, we have

|G + D + H | = |G| ∪ |D| ∪ |H |.
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x :: Ox ∈ �

�; · � x ⇒ (∅, ∅, Ox)
Var

�; f :: O f � f ⇒ (∅, ∅, O f )
LVar

θ �� (Hx, Ix, Ox) �, x :: Ox;� � e ⇒ (H,C, O) �{Ox,� +�} �{Ix,� +H}

�;� � λ x :θ �e⇒ (Hx ∪H,C, Ix→O)
→I

κ �� (Hf , I f , O f ) �;�, f :: O f � e ⇒ (H,C, O) �{O f ,� +�} �{I f ,� +� +H}

�;� � λ̂ f :κ�e⇒ (Hf ∪H,C, I f �O)
�I

�;�1 � e1 ⇒ (H1,C1, I1→O1) �;�2 � e2 ⇒ (H2,C2, O2) �{�1 +H1,�2 +H2}

�;�1,�2 � e1 e2 ⇒ (H1 ∪H2,C1 ∪C2 ∪O2 �� I1, O1)
→E

�;�1 � e1 ⇒ (H1,C1, I1 �O1) �;�2 � e2 ⇒ (H2,C2, O2) �{�1 +H1,�2 +H2}

�;�1,�2 � e1 , e2 ⇒ (H1 ∪H2,C1 ∪C2 ∪O2 �� I1, O1)
�E

�;�1 � e1 ⇒ (H1,C1, O1) �;�2 � e2 ⇒ (H2,C2, O2) O1 � θ1 O2 � θ2 �{�1 +H1,�2 +H2}

�;�1,�2 � (e1, e2) ⇒ (H1 ∪H2,C1 ∪C2, O1 ×O2)
×I

�;� � e ⇒ (H,C, O1 ×O2) �, x1 :: O1, x2 :: O2;�′ � e′ ⇒ (H ′,C′, O′) �{� +H, D ′ +H ′}
�;�,�′ � proj e of (x1, x2) in e ′ ⇒ (H ∪H ′,C∪C′, O′)

×E

θ �� (Hx,Ix , Ox) �, x :: Ox;� � e ⇒ (H,C, O) �{Ox,� +�} �{Ix,� +H}

�;� � fix x :θ�e ⇒ (Hx ∪H,C∪O �� Ix ,O)
Fix

Fig. 5. Rules for translating expressions.

Each rule in Figure 5 has its counterpart in the type system of lλ (e.g., Var for

Var, LVar for LVar, and so on). Here are a few further remarks:

• By the rules Var and LVar , variables generate no new hardware components

and connection constraints.

• Connection points are generated only by the rules →I , �I , and Fix .

• Connection constraints are generated only by the rules →E , �E , and Fix .

• In the rules →I and Fix , �{Ix,D + H} implies �{Ix,G + D + H} because Ix � θ

holds by Lemma 3.1, |Ix| contains no output terminals by Proposition 2.3, and

|G| contains only output terminals by Proposition 2.3.

• In the rule �I , D, f :: Of ∼ Δ, f : κ holds from D ∼ Δ, Of � κ, and �{Of,D}.
• The premise of the rule ×I requires that both O1 and O2 be output interfaces

for sharable types.

• The rule ×E binds sharable variables x1 and x2 to output interfaces O1 and O2,

which may share output terminals with G. It explains why output interfaces

in a sharable output context may share terminals.

• Because of sharable variables declared in projections, G; D � e ⇒ (H,C,O)

may not satisfy �{G,D}. That is, G and D may not be completely disjoint.

For example, assuming f :: I →O1×O2, a projection proj f e′ of (x1, x2) in e

eventually binds x1 and x2 to O1 and O2, respectively.

In addition to the rules in Figure 5, we need a rule for each constant. A constant

generates a corresponding hardware component and an output interface consistent

with its type. We assign a fresh identifier to each terminal in the hardware

component so that different instances of the same constant result in separate

hardware components. For example, assuming that and has type 1→ (1→1), we
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may use the following rule:

{i1, i2, o} 
⊂ |G| i1 
= i2

G; · � and ⇒ ({and[i1, i2, o]},�, i1 → (i2 →o))
And

Although we may read G; D � e ⇒ (H,C,O) operationally by regarding G, D, and e

as input and (H,C,O) as output, all the rules in Figure 5 are written in a declarative

style. For example, no rule specifies how to generate identifiers for terminals; rather

each rule only specifies that identifiers for terminals be all different.

4 Properties of lλ

This section investigates properties of lλ. We prove the soundness and completeness

of the translation of lλ with respect to realizability:

• Soundness: expressions are mapped only to realizable hardware circuits

(Theorem 4.1).

• Completeness: every realizable hardware circuit has a corresponding expres-

sion (Theorem 4.12).

We also prove the soundness and completeness of the type system of lλ with respect

to the translation:

• Soundness: all well-typed expressions are mapped to hardware circuits (The-

orem 4.7).

• Completeness: only well-typed expressions are mapped to hardware circuits

(Theorem 4.1).

In combination, these properties imply that all realizable hardware circuits have

corresponding well-typed expressions and that all well-typed expressions describe

realizable hardware circuits.

4.1 Soundness of the translation and completeness of the type system

Theorem 4.1

If ·; · � e ⇒ (H,C,O), then ·; · � e : τ and O � τ for some type τ, and C is realizable.

Theorem 4.1 proves both the soundness of the translation with respect to

realizability and the completeness of the type system with respect to the translation

at once. It implies that only well-typed expressions are mapped to hardware circuits,

which are always realizable. Its proof follows from Propositions 4.4 and 4.6.

Lemma 4.2

If G; D � e ⇒ (H,C,O), then

(1) |C| ⊂ |G + D + H |,
(2) |O| ⊂ |G + D + H |.

Proof

By induction on the structure of the proof of G; D � e ⇒ (H,C,O). The proof does

not require G ∼ Γ and D ∼ Δ. �
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Corollary 4.3

If G ∼ Γ, D ∼ Δ, and G; D � e ⇒ (H,C,O), then

(1) i ∈ |C| implies i ∈ |D + H |,
(2) i ∈ |O| implies i ∈ |D + H |.

Proposition 4.4

If G; D � e ⇒ (H,C,O) with G ∼ Γ and D ∼ Δ, then Γ; Δ � e : τ and O � τ.

Proof

See Appendix A. �

Lemma 4.5

If G; D � e ⇒ (H,C,O) with G ∼ Γ and D ∼ Δ, then if i ∈ |O|, then o �→ i 
∈ C .

Proof

See Appendix A. �

Proposition 4.6

If G; D � e ⇒ (H,C,O) with G ∼ Γ and D ∼ Δ, then C is realizable.

Proof

By induction on the structure of the proof of G; D � e ⇒ (H,C,O). The proof

reuses the result from the proof of Proposition 4.4 that all output contexts are well

formed. �

4.2 Soundness of the type system

Theorem 4.7

If ·; · � e : τ, then there exists (H,C,O) such that ·; · � e ⇒ (H,C,O).

Theorem 4.7 proves the soundness of the type system with respect to the

translation: all well-typed expressions are mapped to hardware circuits. Its proof

follows from Proposition 4.9.

Lemma 4.8

If G ∼ Γ, D ∼ Δ, and G; D � e ⇒ (H,C,O), then �{G + D, H}.

Proof

By induction on the structure of the proof of G; D � e ⇒ (H,C,O). �

Proposition 4.9

If Γ; Δ � e : τ, then for G ∼ Γ and D ∼ Δ, there exists (H,C,O) such that

G; D � e ⇒ (H,C,O) and O � τ.

Since the translation uses a declarative style, a strict proof of Proposition 4.9

requires us to rewrite all the rules in Figure 5 in an algorithmic style. Instead of

rewriting the rules, we operationally interpret the judgments τ �� (H, I, O) and

G; D � e ⇒ (H,C,O) to simplify the proof.

For τ �� (H, I, O), we take τ as input and (H, I, O) as output. Since all terminals

are eventually introduced by the rule 1�� (except for those belonging to atomic
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hardware components), we assume that each application of the rule 1�� creates

fresh identifiers i and o. Then τ �� (H, I, O) implies �{I, S} and �{O, S ′} for any S

and S ′. (If not, we just generate different identifiers not found in S and S ′.) Thus

the proof of Proposition 4.9 assumes that the last two premises in each of the rules

→I , �I , and Fix automatically hold.

For G; D � e ⇒ (H,C,O), we take G, D, and e as input and (H,C,O) as output.

Since H shares no terminals with G and D by Lemma 4.8, we further assume that

all terminals in H are assigned fresh identifiers. That is, given G; D � e ⇒ (H,C,O),

we assume that �{H, S} holds for any S . (If not, we just generate different identifiers

not found in S .) Thus the proof of Proposition 4.9 assumes that the last premise in

each of the rules →E , �E , ×I , ×E automatically holds.

Proof of Proposition 4.9

By induction on the structure of the proof of Γ; Δ � e : τ. Details are in

Appendix A. �

4.3 Completeness of the translation

In order for lλ to be an intermediate language for hardware description, its

translation should be not only sound with respect to realizability, but also complete

in the sense that every realizable hardware circuit has a corresponding expression

in lλ. Below, we first explain informally that lλ is indeed expressive enough to

describe every realizable hardware circuit, and then give a formal proof (Theo-

rem 4.12). We assume tuple types θ1 × · · · × θn generalizing product types, tuples

(e1, . . . , en) generalizing pairs, tuple patterns (x1, . . . , xn) generalizing pair patterns

(where n � 1), and allow tuple patterns in fixed-point expressions and projections

(e.g., fix (x1, . . . , xn) :θ. e and proj e of (x1, . . . , xn) in e′).

Consider a hardware circuit A with n input terminals i1, . . . , in and m output

terminals o1, . . . , om. Here, we enumerate all output terminals belonging to A, but

exclude those “hidden” input terminals to which wires are already connected. That

is, we consider only those input terminals exposed to external hardware circuits. We

assume that A is described by an expression

λx1 :1. · · · λxn :1. e

where xp corresponds to input terminal ip (1 � p � n) and e has type 1 × · · · × 1

whose qth element corresponds to output terminal oq (1 � q � m).

We observe that there are two ways to augment A. First, we add a wire

connecting an output terminal oq to an input terminal ip. We describe the resultant

hardware circuit by exploiting a fixed-point expression with dummy variables

y1, . . . , yq−1, yq+1, . . . , ym:

λx1 :1. · · · λxp−1 :1. λxp+1 :1. · · · λxn :1.

fix (y1, . . . , yq−1, xp, yq+1, . . . , ym) :1 × · · · × 1. e
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Second, we combine A with another hardware circuit A′ (without linking them

with wires). Let us assume that A′ is described by

λx′
1 :1. · · · λx′

l :1. e
′

where x′
r corresponds to its rth input terminal (1 � r � l) and e′ produces k output

terminals. Then A combined with A′ is described by the following expression:

λx1 :1. · · · λxn :1. λx′
1 :1. · · · λx′

l :1.

proj e of (y1, . . . , ym) in

proj e′ of (y′
1, . . . , y

′
k) in (y1, . . . , ym, y

′
1, . . . , y

′
k).

Note that in both cases, the resultant hardware circuit is described by a function

declaring the same number of sharable variables as the number of input terminals ex-

posed to external hardware circuits, as is the case for the original hardware circuit A.

Since every hardware circuit is eventually decomposed into atomic hardware

components and connecting wires, it now suffices to show that each atomic hardware

component with n input terminals can be described by a function of the form

λx1 :1. · · · λxn :1. e. In our case, the problem reduces to converting each constant to

such a function, which is trivial (e.g., and to λx1 :1. λx2 :1. and x1 x2).

Theorem 4.12 formally states the completeness of the translation. It uses an

extended notion of realizability that considers a pair of hardware components

H and connection constraints C (Definition 4.10) and the notion of reduction

(Definition 4.11).

Definition 4.10

(H,C) is realizable if H is finite and nonempty, C is realizable, and |C| ⊂ |H |.

Definition 4.11

Suppose that H consists of atomic hardware components with no connection points

and that H ′ is H augmented with a set of connection points. We say that (H ′, C ′)

reduces to (H,C) if the following two conditions hold:

• If o �→ i ∈ C and {o, i} ⊂ |H |,
then {o �→ i1, o1 �→ i2, . . . , on−1 �→ in, on �→ i} ⊂ C ′ (where n � 0)

and {pt[i1, o1], pt[i2, o2], . . . , pt[in−1, on−1], pt[in, on]} ⊂ H ′.

That is, if a bitstream flows from o to i in (H,C), so does it in (H ′, C ′), but via

a sequence of intermediate connection points.

• If {o �→ i1, o1 �→ i2, . . . , on−1 �→ in, on �→ i} ⊂ C ′ (where n � 0),

{pt[i1, o1], pt[i2, o2], . . . , pt[in−1, on−1], pt[in, on]} ⊂ H ′, and {o, i} ⊂ |H |,
then o �→ i ∈ C .
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That is, if a bitstream flows from o to i in (H ′, C ′), so does it in (H,C),

but without visiting intermediate connection points (where both o and i are

assumed to belong to H).

Definition 4.11 implies that if (H ′, C ′) reduces to (H,C), two hardware circuits

specified by (H ′, C ′) and (H,C) are operationally equivalent.

Theorem 4.12

Suppose that (H,C) is realizable and H contains no connection points. Then there

exists an expression e such that ·; · � e ⇒ (H ′, C ′, O′), H ′ is H augmented with a set

of connection points, and (H ′, C ′) reduces to (H,C).

For the sake of proving the completeness of the translation, it is safe to assume

in Theorem 4.12 that H contains no connection points, since connection points are

not actual hardware components. That is, we exploit the fact that every hardware

circuit has a corresponding realizable pair (H,C) such that H contains only atomic

hardware components and no connection points.

Instead of incrementally building e from (H,C), the proof of Theorem 4.12

analyzes (H,C) at once and builds e in a single step, which allows us to dispense

with projections in e and considerably simplifies the proof. This result implies that

for the purpose of describing hardware circuits with no connection points, the first-

order subset of lλ without projections suffices, which in turn implies that linear input

functions and applications can both be regarded as metaprogramming constructs

such that (λ̂f :κ. e) ˆ e′ is rewritten as [e′/f]e, which replaces the only occurrence of

f in e by e′. See Appendix B for the proof of Theorem 4.12.

5 Discussion

This section presents an alternative translation of lλ and explains how to eliminate

redundant wires in hardware circuits generated from expressions.

5.1 Mapping variables to wires

The translation of lλ maps variables to connection points, which are hardware

components with their own input and output terminals. Since all input and output

terminals belong to some hardware components, wires are secondary components,

which have no input and output terminals of their own and serve only to connect

other hardware components.

An alternative translation of lλ dispenses with connection points and maps

variables directly to wires. The idea is to treat wires as independent hardware

components with their own input and output terminals. We can obtain such a

translation by reusing the previous translation of lλ with a different interpretation

of pt[i, o] and o �→ i. Specifically, we use pt[i, o] to represent a wire with input

terminal i and output terminal o and a connection constraint o �→ i to specify that

o and i be placed at the same physical location:
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The new translation is unrealistic, however, because closed expressions with no

variables produce no wires at all. For example, and zero zero is mapped to a

hardware circuit with no wires:

and zero zero ⇒ ({0[o1], 0[o2], and[i1, i2, o]}, {o1 �→ i1, o2 �→ i2}, o)

If we again choose to realize connection constraints as wires, it suffices to interpret

pt[i, o] as a wire of zero length, i.e., as a connection point. Then we obtain the

original translation of lλ given in Section 3.

5.2 Eliminating redundant wires

The translation of lλ ensures that well-typed expressions are always mapped to

realizable hardware circuits, but it sometimes produces redundant wires if all

connection constraints are realized as wires. For example, (λ̂f :1→1. f zero) ˆ reg

in Section 3.1 produces two wires linked via a connection point pt[i1, o1]:

Since the bitstream emitted from output terminal o eventually arrives at input

terminal i′, it is safe to merge the two wires into a single wire directly connecting o

to i′:

The merged wire results from eliminating the left wire (connecting o to i1) and

stretching the right wire (connecting o1 to i′) over to output terminal o. Note that

eliminating the right wire and stretching the left wire does not work in general,

because multiple wires can be connected to output terminal o1, as in the following

example:

If we wish to eliminate such redundant wires, we can treat input terminals of

connection points in the following way. We write o for the input terminal of a

connection point whose output terminal is o. Now every connection point is written

as pt[o, o]:

1 �� (pt[o, o], o, o)
1��

.

We realize o �→ i as a wire connecting o to i as before, but interpret o �→ o′ as

an equation o = o′, in the presence of which every connection constraint o′ �→ i is

automatically replaced by o �→ i, and the connection point pt[o′, o′] is removed. Thus
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o �→ o′ effectively superimposes o′ on o and eliminates otherwise redundant wires.

As an example, (λx :1. and x x) zero in Section 3.1 now produces a hardware circuit

with no redundant wire:

(λx :1. and x x) zero ⇒ ({0[o′], and[i1, i2, o
′′]}, {o′ �→ i1, o

′ �→ i2}, o′′)

It does not, however, suggest that all connection points are unnecessary. For example,

(λ̂f :1→1. f zero) ˆ reg in Section 3.1 still requires a connection point:

(λ̂f :1→1. f zero) ˆ reg ⇒ ({pt[o2, o2], 0[o], reg[i′, o′]}, {o �→ i′, o′ �→ o2}, o2)

If we wish to realize connection points as physical marks so that hardware

circuits with no redundant wires are distinguished from operationally equivalent

hardware circuits with redundant wires, we need an additional construct in lλ that

associates output terminals with variables without creating new connection points.

For example, we could permit single variables as patterns in projections:

Γ; Δ � e : θ Γ, x : θ; Δ′ � e′ : τ

Γ; Δ,Δ′ � proj e of x in e′ : τ
×E′

G; D � e ⇒ (H,C,O) G, x :: O; D′ � e′ ⇒ (H ′, C ′, O′) �{D + H,D′ + H ′}
G; D,D′ � proj e of x in e′ ⇒ (H ∪ H ′, C ∪ C ′, O′)

×E ′

Then, for example, (λx :1. and x x) zero and proj zero of x in and x x produce

operationally equivalent but structurally different hardware circuits:

6 Extension of lλ

As an intermediate language for hardware description, lλ is not intended as a

hardware description language in itself. Nevertheless a simple extension of lλ gives

a hardware description language that is expressive enough to describe nontrivial

hardware circuits in a concise way. This section presents an extension of lλ with

polymorphism and an implementation of an FFT circuit and a bitonic sorting

network.
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6.1 Polymorphism

As in general programming languages, an expression of polymorphic type represents

a family of expressions of monomorphic type. In the case of lλ, an expression of

monomorphic type describes a hardware circuit, which in turn implies that an

expression of polymorphic type describes a family of hardware circuits. These

hardware circuits differ only in the number of wires transmitting data streams and

use essentially the same layout of hardware components.

We introduce a polymorphic type ∀α.σ, where α is a type variable and σ is a

metavariable ranging over polymorphic types. For the sake of simplicity, we restrict

α to range over not all monomorphic types τ but only sharable types θ. (Letting

α range over linear types κ as well poses no technical difficulty, but does not seem

to be particularly useful.) We use Λα. e for type abstractions and e 〈θ〉 for type

applications. In the rule ∀I below, tvar(Γ ∪ Δ) stands for the set of type variables in

Γ and Δ.

sharable type θ ::= · · · | α
polymorphic type σ ::= τ | ∀α.σ

expression e ::= · · · | Λα. e | e 〈θ〉

Γ; Δ � e : σ α 
∈ tvar(Γ ∪ Δ)

Γ; Δ � Λα. e : ∀α.σ ∀I
Γ; Δ � e : ∀α.σ

Γ;Δ � e 〈θ〉 : [θ/α]σ
∀E

Instead of extending the translation of lλ for polymorphic types, we treat both type

abstractions and type applications as metaprogramming constructs for generating

expressions of monomorphic type. To be specific, without directly associating

hardware circuits with type abstractions and type applications, we identify a type

application of the form (Λα. e) 〈θ〉 with [θ/α]e, which substitutes θ for all occurrences

of α in e (where we assume that type variable captures do not arise):

(Λα. e) 〈θ〉 = [θ/α]e

Only when (Λα. e) 〈θ〉 yields an expression of monomorphic type do we use the

translation of lλ to generate a description of a hardware circuit.

As it provides just a simple form of metaprogramming, polymorphism does

not add to the expressive power of lλ. In conjunction with linear types, however,

polymorphic types enable us to write various higher-order combinators within lλ

itself, thereby greatly facilitating the design of hardware circuits in which the same

pattern of combining hardware components is repeated. A few examples of such

higher-order combinators are given below.

6.2 Examples

We implement an FFT circuit and a bitonic sorting network in polymorphic lλ. Our

implementation uses every construct available in lλ except fixed point expressions.

In addition, we use the following types and expressions all of which can be shown

to be syntactic sugar.
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We define a sharable type θ2n inductively on n:

θ2 = θ × θ

θ2n = θ2n−1 × θ2n−1

(n > 1)

We allow a pattern p in a sharable input function λp :θ. e, where p is either a sharable

variable or a pair of patterns:

pattern p ::= x | (p, p)

A linear input function λ̂fn :κ. e uses f exactly n times in e. It has a linear type

κ�n τ, which is defined inductively on n:

κ�1 τ = κ�τ

κ�n τ = κ� (κ�n−1 τ)

A linear input application e ˆ ne′ uses e′ as an argument exactly n times:

e ˆ 1e′ = e ˆ e′

e ˆ ne′ = (e ˆ n−1e′) ˆ e′

Thus e ˆ ne′ is an abbreviation of n consecutive linear input applications, which make

n syntactic copies of e′. As an example, consider two linear input functions double

and double2:

double = λ̂g2 :1→1. λx :1. and (g x) (g x)

double2 = λ̂f2 : (1→1)�2 (1→1). λ̂g4 :1→1. λx :1. and (f ˆ 2g x) (f ˆ 2g x)

The two functions have the following types:

double : (1→1)�2 (1→1)

double2 : ((1→1)�2 (1→1))�2 (1→1)�4 (1→1)

Hence, double2 ˆ 2double type checks and has type (1→1)�4 (1→1). Note that

when writing a higher-order combinator with a linear input type such as double

and double2, we have to manually count the number of uses of its argument.

For example, we observe that double2 uses its argument g not twice but four

times because f ˆ 2g syntactically expands to (f ˆ g) ˆ g. Since lλ is intended as an

intermediate language for hardware description, such a syntactic analysis (along

with type inference) can be delegated to the translator for a higher-level hardware

description language.

e1 ◦ e2 composes e1 of type θ′ →θ′′ and e2 of type θ→θ′ to yield a sharable input

function of type θ→θ′′:

e1 ◦ e2 = λx :θ. e1 (e2 x)

We use ◦ as a right associative operator.

6.2.1 Fast Fourier transform

Figure 6 shows part of the code for an FFT circuit of size 16 which is inspired by the

implementation in (Bjesse et al. 1998). The code consists of a series of declarations

each of which yields a closed expression of lλ. We assume a sharable type c for

https://doi.org/10.1017/S0956796810000249 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000249


A calculus for hardware description 47

twoC : ∀α .(α →α ) �2 (α 2→α 2) = Λα . λ̂ f 2 :α →α .λ (x, y) :α 2. ( f x, f y)
prodC : ∀α .(α 2→α ) �2 (α 4→α 2) = Λα . λ̂ f 2 :α 2→α .λ ((x, y), (z, w)) :α 4. ( f (x, z), f (y, w))
riffleC : ∀α .(α 2→α 2) �2 (α 4→α 4) = Λα . λ̂ f 2 :α 2→α 2.λ ((x, y), (z, w)) :α 4. ( f (x, z), f (y, w))
unriffleC : ∀α .(α 2→α 2) �2 (α 4→α 4) =

Λα . λ̂ f 2 :α 2→α 2.λ ( p, q):α 4. proj f p of (x, z) in proj f q of ( y, w) in ((x, y), (z, w))

riffle1 : c2→c2 = λ p : c2. p
riffle2 : c4→c4 = (riffleC〈c〉) ˆ2riffle1

riffle3 : c8→c8 = (riffleC〈c2〉) ˆ2riffle2

riffle4 : c16→c16 = (riffleC〈c4〉) ˆ2riffle3

unriffle1 : c2→c2 = λ p :c2. p
unriffle2 : c4→c4 = (unriffleC〈c〉) ˆ2unriffle1

unriffle3 : c8→c8 = (unriffleC〈c2〉) ˆ2unriffle2

unriffle4 : c16→c16 = (unriffleC〈c4〉) ˆ2unriffle3

g1 : c2→c2 = λ p :c2. (cplus p, cminus p)

g2 : c4→c4 = twoC〈c2〉ˆ2
1

g3 : c8→c8 = twoC〈c4〉ˆ2g2

g4 : c16→c16 = twoC〈c8〉ˆ2g3

bfly1 : c2→c2 = unriffle1 ◦ g1 ◦ riffle1

bfly2 : c4→c4 = unriffle2 ◦ g2 ◦ riffle2

bfly3 : c8→c8 = unriffle3 ◦ g3 ◦ riffle3

bfly4 : c16→c16 = unriffle4 ◦ g4 ◦ riffle4

prod1 : c2→c = cmult
prod2 : c4→c2 = prodC〈c〉ˆ2prod1

prod3 : c8→c4 = prodC〈c2〉ˆ2prod2

prod4 : c16→c8 = prodC〈c4〉ˆ2prod3

factor1 : c = W 0
2

factor2 : c2 = (W 0
4 ,W 1

4 )
factor3 : c4 = ((W 0

8 ,W 1
8 ), (W 2

8 ,W 3
8 ))

factor4 : c8 = (((W 0
16,W 1

16), (W 2
16,W 3

16)) , ((W 4
16,W 5

16), (W 6
16,W 7

16)))

f1 : c2→c2 = λ (x, y) :c2. bfly1 (x, prod1 (y, factor1))
f2 : c4→c4 = λ (x, y) :c4. bfly2 (x, prod2 (y, factor2))
f3 : c8→c8 = λ (x, y) :c8. bfly3 (x, prod3 (y, factor3))
f4 : c16→c16 = λ (x, y) :c16. bfly4 (x, prod4 (y, factor4))

fft1 : c2→c2 = f 1

fft2 : c4→c4 = f 2 ◦ (twoC〈c2〉 f 1)
fft3 : c8→c8 = f 3 ◦ (twoC〈c4〉 f 2)
fft4 : c16→c16 = f 4 ◦ (twoC〈c8〉 f 3)

Fig. 6. Fast Fourier transform in lλ.

complex numbers and three constants cplus, cminus, and cmult, all of type c2 →c,

as operators on complex numbers. Twiddle factors W
j
i , indexed by i and j, are

constants of type c.

The code in Figure 6 demonstrates how to use higher-order combinators of

polymorphic type (twoC, prodC, riffleC, and unriffleC). For example, twoC takes

a sharable input function f of type α→α and applies f to each element of a pair

(x, y) of type α2. Each use of twoC instantiates α to a sharable type (e.g., c2, c4,
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or c8) and requires a sharable input function for f. Without polymorphic types in

lλ, we would have to expand each instance of twoC into the linear input function

given in its declaration. We can also define ◦ as another higher order combinator of

polymorphic type

∀α.∀α′.∀α′′.(α′ →α′′)� ((α→α′)� (α→α′′))

but here we use it as syntactic sugar assuming that the type system is capable of

expanding e1 ◦ e2 correctly after inferring the types of e1 and e2.

The actual code for the FFT circuit is 60 lines long, which includes declarations

of twiddle factors and additional functions for reordering the output. Our translator

of lλ expands it to 5158 lines of Verilog code (not including blank lines), which

can be thought of as an equivalent netlist specification because it consists mostly of

declarations of wires and assignments between wires. We have tested the generated

Verilog code for correctness on Aldec’s Active-HDL simulator.

6.2.2 Bitonic sorting network

Figure 7 shows part of the code for a bitonic sorting network of size 16. Like the

code for the FFT circuit, it consists of a series of declarations each of which yields

a closed expression of lλ. We assume a sharable type r for real numbers and two

constants rmin and rmax, of type r2 →r, as operators on real numbers. We reuse

the higher-order combinators twoC, riffleC, and unriffleC from Figure 6, whose

type variable α is now instantiated to sharable types for real numbers (r, r2, r4, and

r8). The actual code for the bitonic sorting network is 43 lines long and expands to

5175 lines of Verilog code by our translator.

6.3 Metaprogramming

Although polymorphism provides a basic form of metaprogramming in lλ, a practical

hardware description language based on lλ needs additional metaprogramming

constructs. For example, the code in Figure 6 assumes all twiddle factors W
j
i

as precalculated constants, but a more realistic approach is to calculate these

constants at the metaprogramming level (e.g., with a program written in a general

programming language) and then use a metaprogramming construct to import the

results. A general solution is to design a metaprogramming language that uses lλ

as an object language. Such a metaprogramming language enables us to write a

program that generates the code for an FFT circuit of any given size by exploiting

the regular patterns of composing expressions. For example, we may think of the

code in Figure 6 as the result of running the program with an input size of 24.

7 Related work

There are several hardware description languages embedded into existing functional

languages. Hydra (O’Donnell 1995), Lava (Bjesse et al. 1998), Hawk (Matthews et al.

1998), and Wired (Axelsson et al. 2005) are embedded into Haskell, and HML (Li &

Leeser 2000) is embedded into ML. An example of a functional language designed
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riffle1 : r2→r2 = λ p :r2. p
riffle2 : r4→r4 = ( riffleC 〈r〉) ˆ2riffle1

riffle3 : r8→r8 = ( riffleC 〈r2〉) ˆ2riffle2

riffle4 : r16→r16 = (riffleC〈r4〉) ˆ2riffle3

unriffle1 : r2→r2 = λ p :r2. p
unriffle2 : r4→r4 = ( unriffleC 〈r〉) ˆ2unriffle1

unriffle3 : r8→r8 = ( unriffleC〈r2〉) ˆ2unriffle2

unriffle4 : r16→r16 = ( unriffleC 〈r4〉) ˆ2unriffle3

inc1 : r2→r2 = λ p :r2. (rmin p,rmax p)
inc2 : r4→r4 = (twoC 〈r2〉) ˆ2inc1

inc3 : r8→r8 = (twoC 〈r4〉) ˆ2inc2

inc4 : r16→r16 = (twoC 〈r8〉) ˆ2inc3

dec1 : r2→r2 = λ p :r2. (rmax p,rmin p)
dec2 : r4→r4 = (twoC 〈r2〉) ˆ2dec1

dec3 : r8→r8 = (twoC 〈r4〉) ˆ2dec2

dec4 : r16→r16 = (twoC 〈r8〉) ˆ2dec3

Mg inc1 : r2→r2 = unriffle1 ◦inc1 ◦riffle1

Mg inc2 : r4→r4 = ((twoC 〈r2〉) ˆ2Mg inc1) ◦unriffle2 ◦inc2 ◦riffle2

Mg inc3 : r8→r8 = ((twoC 〈r4〉) ˆ2Mg inc2) ◦unriffle3 ◦inc3 ◦riffle3

Mg inc4 : r16→r16 = ((twoC 〈r8〉) ˆ2Mg inc3) ◦unriffle4 ◦inc4 ◦riffle4

Mg dec1 : r2→r2 = unriffle1 ◦dec1 ◦riffle1

Mg dec2 : r4→r4 = ((twoC〈r2〉) ˆ2Mg dec1) ◦unriffle 2 ◦dec2 ◦riffle2

Mg dec3 : r8→r8 = ((twoC〈r4〉) ˆ2Mg dec2) ◦unriffle 3 ◦dec3 ◦riffle3

Mg dec4 : r16→r16 = ((twoC〈r8〉) ˆ2Mg dec3) ◦unriffle 4 ◦dec4 ◦riffle4

bitonic inc1 : r2→r2 = Mg inc1

bitonic dec1 : r2→r2 = Mg dec1

bitonic inc2 : r4→r4 = λ (x, y) :r4. proj bitonic inc1 x of (x1, x2) in
proj bitonic dec1 y of (y1, y2) in

(Mg inc2 ((x1, x2), (y1, y2)))
bitonic dec2 : r4→r4 = λ (x, y) :r4. proj bitonic dec1 x of (x1, x2) in

proj bitonic inc1 y of (y1, y2) in
(Mg dec2 ((x1, x2), (y1, y2)))

bitonic inc3 : r8→r8 = λ (x, y) :r8. proj bitonic inc2 x of (x1, x2) in
proj bitonic dec2 y of (y1, y2) in

(Mg inc3 ((x1, x2), (y1, y2)))
bitonic dec3 : r8→r8 = λ (x, y) :r8. proj bitonic dec2 x of (x1, x2) in

proj bitonic inc2 y of (y1, y2) in
(Mg dec3 ((x1, x2), (y1, y2)))

bitonic inc4 : r16→r16 = λ (x, y) :r16. proj bitonic inc3 x of (x1, x2) in
proj bitonic dec3 y of (y1, y2) in

(Mg inc4 ((x1, x2), (y1, y2)))
bitonic dec4 : r16→r16 = λ (x, y) :r16. proj bitonic dec3 x of (x1, x2) in

proj bitonic inc3 y of (y1, y2) in
(Mg dec4 ((x1, x2), (y1, y2)))

Fig. 7. Bitonic sorting network in lλ.

specifically for hardware design is reFLect (Grundy et al. 2006). As it is capable of

constructing and decomposing its own expressions, we may think of reFLect as a

hardware description language embedded into itself.

A technical problem with embedding a hardware description language into Haskell

is that feedback circuits may give rise to infinite data structures for representing
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netlists because Haskell is a lazy functional language. As a solution to the problem,

O’Donnell (1993) proposes to add a tag to the data type representing hardware

circuits; Claessen & Sands (1999) propose an extension to Haskell called observable

sharing. Such a problem does not arise in lλ because it uses a syntax-directed

translation and thus never evaluates expressions.

muFP (Sheeran 1984) is a functional hardware description language complete

in itself. A characteristic feature of muFP is a small number of combining forms,

which are higher-order combinators that can be applied to primitive or derived

functions to build new functions. Combining forms contain information not only

about operational behavior of hardware circuits (i.e., what they actually compute)

but also about their layout (i.e., how to realize them physically). They enable us to

write concise descriptions of hardware circuits that also produce compact layouts

when physically realized, which is the key strength of muFP.

In comparison with muFP, lλ has no combining forms and lacks the ability to

specify the physical layout of hardware circuits, as its focus is on how to connect

hardware components without regard to their relative placement. On the other hand,

lλ allows us to use λx :θ. e and λ̂f :κ. e to directly define new functions, including

higher-order combinators. If we are concerned only with operational behavior of

hardware circuits, we can incorporate combining forms into lλ as constants with

appropriate translation rules. In order to express the physical layout of hardware

circuits in lλ, however, we need to extend the judgment for translating expressions,

which is left as future work.

T-Ruby (Sharp & Rasmussen 1995) is a functional hardware description language

similar to lλ in that its syntax is based on the standard lambda calculus. Its type

system features parametric polymorphism and dependent product types, which

enable programmers to write various higher-order combinators in T-Ruby itself.

Like its predecessor Ruby (Jones & Sheeran 1990), however, T-Ruby adopts a

relational approach to describing hardware circuits by modeling a hardware circuit

as a relation between two data streams. Hence, it does not explicitly specify the

direction of data flow in hardware circuits.

Although our work is concerned with structural hardware description, it is worth

mentioning that there are functional languages designed for behavioral hardware

synthesis such as SAFL (Mycroft & Sharp 2000). Ghica (2007) uses Basic SCI

(bSCI) (O’Hearn 2003) as a higher-order functional language for hardware synthesis.

The affine type system of bSCI prevents functions from sharing identifiers with their

arguments, thereby achieving controlled uses of hardware circuits that cannot be

shared. The linear type system of lλ also achieves controlled uses of hardware

circuits, but in the context of hardware description (rather than hardware synthesis)

and with a different motivation.

8 Conclusion

We present a calculus lλ, which may serve as an intermediate functional language just

above netlists in the hierarchy of hardware description languages. A characteristic

feature of lλ is its use of a linear-type system, which enforces the linear use of
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variables of function type and enables us to use higher-order functions. We develop

a translation of lλ into structural descriptions of hardware circuits and illustrate the

feasibility of using lλ as a practical intermediate language for hardware description

by implementing an FFT circuit and a bitonic sorting network.

Although lλ is designed primarily as an intermediate language for hardware

description, developing it into a full functional hardware description language is

certainly feasible. We are considering two directions in which to extend lλ. The first

is to add more metaprogramming constructs, which do not increase the expressive

power of lλ but simplifies programming tasks. In addition to polymorphism discussed

in Section 6.1, higher-order modules appear to be particularly attractive. The

second is to define a new judgment for translating expressions so as to increase

the expressive power of lλ. For example, we could extend the syntax of lλ and

incorporate a dependent-type system to express such physical properties of hard-

ware circuits as layout, area, wiring, and power consumption. Combined together,

these two directions will turn lλ into a practical functional hardware description

language.
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Appendix A. Selected proofs

Below we show proofs of Proposition 4.4, Lemma 4.5, and Proposition 4.9. To

simplify the proofs, we consider only sharable input functions and applications. All

other cases are trivial or analogous.

Proof of Proposition 4.4

By induction on the structure of the proof of G; D � e ⇒ (H,C,O).

Case G; D � λx :θ. e ⇒ (Hx ∪ H,C, Ix →O) with G ∼ Γ and D ∼ Δ:
(1) θ �� (Hx, Ix, Ox)

(2) G, x :: Ox; D � e ⇒ (H,C,O)

(3) �{Ix,D + H}

⎫⎬
⎭ by the rule →I

(4) Ix � θ

(5) Ox � θ

(6) �{Ix, Ox}

⎫⎬
⎭ by Lemma 3.1 with (1)

(7) �{Ix,G + D + H} by Proposition 2.3 with (3) and (4)

(8) G, x :: Ox ∼ Γ, x : θ from G ∼ Γ and (5)

(9) Γ, x : θ; Δ � e : τ

(10) O � τ

}
by IH on (2) with (8)

Γ; Δ � λx :θ. e : θ→τ by the rule →I with (9)

(11) |O| ⊂ |G + Ox + D + H | by Lemma 4.2 with (2)

(12) �{Ix, O} from (6), (7) and (11)

Ix →O � θ→τ by the rule →� with (4), (10) and (12)
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Case G; D1,D2 � e1 e2 ⇒ (H1 ∪ H2, C, O1) with G ∼ Γ, D1 ∼ Δ1, and D2 ∼ Δ2:
(1) G; D1 � e1 ⇒ (H1, C1, I1 →O1)

(2) G; D2 � e2 ⇒ (H2, C2, O2)

(3) C = C1 ∪ C2 ∪ O2 	
 I1

⎫⎬
⎭ by the rule →E

(4) Γ; Δ1 � e1 : τ1

(5) I1 →O1 � τ1

}
by IH on (1) with G ∼ Γ and D1 ∼ Δ1

(6) τ1 = θ→τ′
1

(7) I1 � θ

O1 � τ′
1

⎫⎬
⎭ by the rule →� with (5)

(8) Γ; Δ2 � e2 : τ2

(9) O2 � τ2

}
by IH on (2) with G ∼ Γ and D2 ∼ Δ2

(10) τ2 = θ by Proposition 2.5 with (3), (7) and (9)

Γ; Δ1,Δ2 � e1 e2 : τ′
1 by the rule →E with (4), (6), (8) and (10) �

Proof of Lemma 4.5

By induction on the structure of the proof of G; D � e ⇒ (H,C,O).

Case G; D � λx :θ. e ⇒ (Hx ∪ H,C, Ix →O) with G ∼ Γ and D ∼ Δ:
(1) θ �� (Hx, Ix, Ox)

(2) G, x :: Ox; D � e ⇒ (H,C,O)

(3) �{Ix,D + H}

⎫⎬
⎭ by the rule →I

(4) Ix � θ

(5) Ox � θ

(6) �{Ix, Ox}

⎫⎬
⎭ by Lemma 3.1 with (1)

(7) �{Ix,G + D + H} by Proposition 2.3 with (3) and (4)

i ∈ |Ix →O| assumption

if i ∈ |O|,
(8) G, x :: Ox ∼ Γ, x : θ from G ∼ Γ and (5)

o �→ i 
∈ C by IH on (2) with (8)

if i ∈ |Ix|,
(9) �{Ix,G + Ox + D + H} from (6) and (7)

(10) |C| ⊂ |G + Ox + D + H | by Lemma 4.2 with (2)

(11) �{Ix, C} from (9) and (10)

o �→ i 
∈ C from i ∈ |Ix| and (11)

Case G; D1,D2 � e1 e2 ⇒ (H1 ∪ H2, C, O1) with G ∼ Γ, D1 ∼ Δ1, and D2 ∼ Δ2:
(1) G; D1 � e1 ⇒ (H1, C1, I1 →O1)

(2) G; D2 � e2 ⇒ (H2, C2, O2)

(3) C = C1 ∪ C2 ∪ O2 	
 I1
(4) �{D1 + H1,D2 + H2}

⎫⎪⎪⎬
⎪⎪⎭ by the rule →E

(5) i ∈ |O1|
(6) D1 ∼ Δ1

(7) D2 ∼ Δ2

⎫⎬
⎭ assumption

(8) I1 →O1 � τ by Lemma 4.4 with (1)
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(9) �{I1, O1} by the rule →� with (8)

(10) i ∈ |I1 →O1| from (5)

(11) i 
∈ |I1| from (5) and (9)

(12) i ∈ |D1 + H1| by Corollary 4.3 with (1), (6) and (10)

o �→ i 
∈ C1 by IH on (1) with (10)

if o �→ i ∈ C2,

(13) i ∈ |D2 + H2| by Corollary 4.3 with (2), (7), and i ∈ |C2|
contradiction from (4), (12), and (13)

if o �→ i ∈ O2 	
 I1,

(14) i ∈ |O2| from (11)

(15) i ∈ |D2 + H2| by Corollary 4.3 with (2) and (14)

contradiction from (4), (12), and (15)

o �→ i 
∈ C from o �→ i 
∈ C1, o �→ i 
∈ C2, and o �→ i 
∈ O2 	
 I1 �

Proof of Proposition 4.9

By induction on the structure of the proof of Γ; Δ � e : τ.

Case Γ; Δ � λx :θ. e : θ→τ with G ∼ Γ and D ∼ Δ:

(1) Γ, x : θ; Δ � e : τ by the rule →I

(2) θ �� (Hx, Ix, Ox)

(3) �{Ox,G + D}
(4) �{Ix,D + H}

⎫⎬
⎭ assumption

(5) Ix � θ

(6) Ox � θ

}
by Lemma 3.1 with (2)

(7) G, x :: Ox ∼ Γ, x : θ from G ∼ Γ and (6)

(8) G, x :: Ox; D � e ⇒ (H,C,O)

(9) O � τ

}
by IH on (1) with (7)

G; D � λx :θ. e ⇒ (Hx ∪ H,C, Ix →O) by the rule →I with (2), (3), (4), and (8)

(10) �{Ix, O} by Lemma 4.2 with (4) and (8)

Ix →O � θ→τ by the rule →� with (5), (9), and (10)

Case Γ; Δ1,Δ2 � e1 e2 : τ with G ∼ Γ, D1 ∼ Δ1, D2 ∼ Δ2, and �{D1,D2}:
(1) Γ; Δ1 � e1 : θ→τ

(2) Γ; Δ2 � e2 : θ

}
by the rule →E

(3) G; D1 � e1 ⇒ (H1, C1, O
′
1)

(4) O′
1 � θ→τ

}
by IH on (1) with G ∼ Γ and D1 ∼ Δ1

(5) �{H1,D2} assumption

O′
1 = I1 →O1

(6) I1 � θ

O1 � τ

⎫⎬
⎭ by the rule →� with (4)

(7) G; D2 � e2 ⇒ (H2, C2, O2)

(8) O2 � θ

}
by IH on (2) with G ∼ Γ and D2 ∼ Δ2

(9) �{H2,D1 + H1} assumption
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(10) O2 	
 I1 valid by Proposition 2.4 with (6) and (8)

(11) �{D1 + H1,D2 + H2} from �{D1,D2}, (5) and (9)

G; D1,D2 � e1 e2 ⇒ (H1 ∪ H2, C1 ∪ C2 ∪ O2 	
 I1, O1)

by the rule →E with (3), (7), (10), and (11) �

Appendix B. Proof of the completeness of the translation

We extend lλ with patterns to be used in fixed-point expressions:

pattern p ::= x | (p, p)

expression e ::= · · · | fix p :θ. e

A tuple pattern (p1, p2, . . . , pn) is syntactic sugar for (p1, (p2, (. . . , pn) · · ·)), and a tuple

type θ1 × θ2 × · · · × θn is syntactic sugar for θ1 × (θ2 × (· · · × θn) · · ·)). An output

interface O1 × O2 × · · · × On and an input interface I1 × I2 × · · · × In are similarly

defined as syntactic sugar.

We use a new judgment p; θ �� (H, I, O); G for translating patterns. It means

that pattern p of type θ may use I and O as its input and output interfaces and that

G associates output terminals in O with variables in p.

θ �� (H, I, O)

x; θ �� (H, I, O); x :: O
VarPat ��

p1; θ1 �� (H1, I1, O1); G1 p2; θ2 �� (H2, I2, O2); G2 �{H1, H2}
(p1, p2); θ1 × θ2 �� (H1 ∪ H2, I1×I2, O1×O2); G1,G2

PairPat ��

We revise the rule Fix which is the only rule using the judgment p; θ �� (H, I, O); G
(because patterns are used only in fixed-point expressions):

p; θ �� (Hp, Ip, Op); G′ G,G′; D � e ⇒ (H,C,O) �{Op,G + D} �{Ip,D + H}
G; D � fix p :θ. e ⇒ (Hp ∪ H,C ∪ O 	
 Ip, O)

Fix

Proof of Theorem 4.12

Suppose that H consists of atomic hardware components aq with input terminals

iq1, . . . , iqjq and output terminals oq1, . . . , oqkq where 1 � q � n:

H = {a1[i11, . . . , i1j1 , o11, . . . , o1k1
], . . . , an[in1, . . . , injn , on1, . . . , onkn ]}

We assume that all atomic hardware components have their corresponding constants

c1, . . . , cn:

·; · � c1 ⇒ ({a1[i11, . . . , i1j1 , o11, . . . , o1k1
]},�, i11 → · · · i1j1 → (o11 × · · · × o1k1

))
...

·; · � cn ⇒ ({an[in1, . . . , injn , on1, . . . , onkn ]},�, in1 → · · · injn → (on1 × · · · × onkn )).

Let m be the number of input terminals in H that have no associated connection

constraints in C , i.e., m = |{i | i ∈ |H |, i 
∈ |C|}|. Then we construct a new
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expression

e = λx1 :1. . . .λxm :1. fix ((y11, . . . , y1k1
), . . . , (yn1, . . . , ynkn )) :θ.

((c1 z11 . . . z1j1 ), . . . , (cn zn1 . . . znjn))

θ = (1 × · · · × 1︸ ︷︷ ︸
k1 times

) × · · · × (1 × · · · × 1︸ ︷︷ ︸
kn times

)

where zst (1 � s � n, 1 � t � js) is determined as follows:

• We set zst to yqr if oqr �→ ist ∈ C , where 1 � q � n, 1 � r � kq .

That is, yqr corresponds to output terminal oqr .

• We set zst to xl for some l (1 � l � m) if ist 
∈ |C|.
That is, xl corresponds to a certain input terminal exposed to external hardware

circuits. Since there are exactly m input terminals ist not in |C|, we can assign

a unique xl to zst.

Now we show that e is an expression describing the given hardware circuit. We first

prove ·; · � e ⇒ (H ′′, C ′′, O′′) and then prove that (H ′′, C ′′) reduces to (H,C). In our

proof, we write G(x) to denote O when x :: O ∈ G.

We introduce sets of hardware components, sharable output contexts, and sets of

connection constraints as follows:

H1 = {a1[i11, . . . , i1j1 , o11, . . . , o1k1
]}

...

Hn = {an[in1, . . . , injn , on1, . . . , onkn ]}
Hp = {pt[i′11, o

′
11], . . . , pt[i′1k1

, o′
1k1

], . . . , pt[i′n1, o
′
n1], . . . , pt[i′nkn , o

′
nkn

]}
Hx = {pt[i′1, o

′
1], . . . , pt[i′m, o

′
m]}

H ′ = H ∪ Hp

H ′′ = H ∪ Hp ∪ Hx

G = G′,G′′

G′ = y11 :: o′
11, . . . , y1k1

:: o′
1k1

, . . . , yn1 :: o′
n1, . . . , ynkn :: o′

nkn

G′′ = x1 :: o′
1, . . . , xm :: o′

m

C1 = {G(z11) �→ i11, . . . ,G(z1j1 ) �→ i1j1}
...

Cn = {G(zn1) �→ in1, . . . ,G(znjn ) �→ injn}
C ′ = C1 ∪ · · · ∪ Cn

C ′′ = C ′ ∪ {o11 �→ i′11, . . . , o1k1
�→ i′1k1

, . . . , on1 �→ i′n1, . . . , onkn �→ i′nkn}

• We have H = H1 ∪ · · · ∪ Hn.

• Hp contains connection points pt[i′qr, o
′
qr] (1 � q � n, 1 � r � kq) to be

created from variables yqr in the fixed-point expression. G′ binds variables yqr
to output terminals o′

qr .

• Hx contains connection points pt[i′l , o
′
l] (1 � l � m) to be created from variables

xl . G′′ binds variables xl to output terminals o′
l .

• We assume that all input and output terminals in H ′′ are distinct.

• Every connection constraint o′ �→ i in C ′ connects output terminal o′ of some

connection point to input terminal i of some atomic hardware component.
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• Every connection constraint o �→ i′ in C ′′ − C ′ connects output terminal o of

some atomic hardware component to input terminal i′ of some connection

point.

The proof of ·; · � e ⇒ (H ′′, C ′′, O′′) proceeds as follows.

(1) G; · � c1 ⇒ (H1,�, i11 → · · · i1j1 → (o11 × · · · × o1k1
))

...

G; · � cn ⇒ (Hn,�, in1 → · · · injn → (on1 × · · · × onkn ))

⎫⎪⎬
⎪⎭

by weakening the assumption on each atomic hardware component
(2) G; · � c1 z11 · · · z1j1 ⇒ (H1,�, C1, o11 × · · · × o1k1

)
...

G; · � cn zn1 · · · znjn ⇒ (Hn,�, Cn, on1 × · · · × onkn )

⎫⎪⎬
⎪⎭ by the rule →E with (1)

(3) O′ = (o11 × · · · × o1k1
) × · · · × (on1 × · · · × onkn ) assumption

(4) G; · � ((c1 z11 . . . z1j1 ), . . . , (cn zn1 . . . znjn )) ⇒ (H,C ′, O′)

by the rule ×I with (2) and H = H1 ∪ · · · ∪ Hn

(5) Ip = (i′11 × · · · × i′1k1
) × · · · × (i′n1 × · · · × i′nkn )

Op = (o′
11 × · · · × o′

1k1
) × · · · × (o′

n1 × · · · × o′
nkn

)

}
assumption

(6) ((y11, . . . , y1k1
), . . . , (yn1, . . . , ynkn )); θ �� (Hp, Ip, Op); G′

by the rule PairPat �� with (5)

(7) O′ 	
 Ip = {o11 �→ i′11, . . . , o1k1
�→ i′1k1

, . . . , on1 �→ i′n1, . . . , onkn �→ i′nkn}
from (3) and (5)

(8) G′′; · � fix ((y11, . . . , y1k1
), . . . , (yn1, . . . , ynkn )) :θ.

((c1 z11 . . . z1j1 ), . . . , (cn zn1 . . . znjn ))
⇒ (H ′, C ′′, O′)

by the rule Fix with (4), (6), and (7)

·; · � e ⇒ (H ′′, C ′′, O′′) where O′′ = i′1 → · · · → i′m →O′ by the rule →I with (8)

The proof that (H ′′, C ′′) reduces to (H,C) uses the following property of C ′′:

(9) If o �→ i ∈ C ′′, then either o ∈ |H | and i 
∈ |H | or o 
∈ |H | and i ∈ |H |.

• If o �→ i ∈ C and {i, o} ⊂ |H |,
(10) i = ist for some s and t (1 � s � n, 1 � t � js) from i ∈ |H |
(11) o = oqr for some q and r (1 � q � n, 1 � r � kq) from o ∈ |H |
(12) zst = yqr from the definition of e with oqr �→ ist ∈ C

(13) zst :: o′
qr ∈ G from (12)

o �→ i′qr ∈ C ′′ from oqr �→ i′qr ∈ C ′′ and (11)

o′
qr �→ i ∈ C ′′ from G(zst) �→ ist ∈ C ′′, (10), and (13)

pt[i′qr, o
′
qr] ∈ H ′′ from assumption of H ′′

• If {o �→ i1, o1 �→ i2, . . . , ou−1 �→ iu, ou �→ i} ⊂ C ′′ (where u � 0),

{pt[i1, o1], pt[i2, o2], . . . , pt[iu−1, ou−1], pt[iu, ou]} ⊂ H ′′, and {i, o} ⊂ |H |,
(14) u = 1 from (9)

(15) {o �→ i1, o1 �→ i} ⊂ C ′′ from (14)

(16) i = ist for some s and t (1 � s � n, 1 � t � js) from i ∈ |H |
(17) o = oqr for some q and r (1 � q � n, 1 � r � kq) from o ∈ |H |
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(18) i1 = i′qr from oqr �→ i′qr ∈ C ′′, (15), and (17)

(19) o1 = G(zst) from G(zst) �→ ist ∈ C ′′, (15), and (16)

(20) o1 = o′
qr from pt[i′qr, o

′
qr] ∈ H ′′, (18), and pt[i1, o1] ∈ H ′′

(21) zst :: o′
qr ∈ G from (19) and (20)

(22) zst = yqr from (21)

o �→ i ∈ C from the definition of e with (16), (17), and (22)

�
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