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THE MODULAR COUNTERPARTS OF
CAYLEY'S HYPERDETERMINANTS

DAVID G. GLYNN

Let H be a hypersurface of degree m in PG(n, q), q = ph, p prime.

(1) If m < n + 1, H has 1 (mod p) points.
(2) If m = n + 1, H has 1 (mod p) points <=^ Hv~x has no term

We show some applications, including the generalised Hasse invariant for hypersur-
faces of degree n+1 in PG(n, F), various properties of finite projective spaces, and
in particular a p-modular invariant detp of any (n + l ) r + 2 — (n + 1) x • • • x (n + 1)
array or hypercube A over a field of prime characteristic p. This invariant is multi-
plicative in that detp {AB) = detp (A)detp (B), whenever the product (or convolu-
tion) of the two arrays A and B is defined, and both arrays are not 1-dimensional
vectors. (If A is (n + l ) r + 2 and B is (n + 1)'+2, then AB is (n + l ) r + 3 + 2 . ) The
geometrical meaning of the invariant is that over finite fields of characteristic p
the number of projections of A from r + 1 points in any given r + 1 directions
of the array to a non-zero point in the final direction is 0 (mod p). Equivalently,
the number of projections of A from r points in any given r directions to a non-
singular (n + I)2 matrix is 0 (mod p). Historical aspects of invariant theory and
connections with Cayley's hyperdeterminant Det for characteristic 0 fields are
mentioned.

1. FINITE PROJECTIVE GEOMETRIES AND FUNCTIONS

PG(n,q) is the finite projective geometry of dimension n over the finite field

F = GF(q), where q = ph, p prime. Here we denote the set of all points of PG(n, q)

by [n].

C = C(n, q) is the set of all functions [n] —• F. It is a vector space of dimension

v := qn -\ \-q + l over JF, with the usual addition of functions and multiplication of

functions by a scalar in F. A function / € C can be thought of as a vector (o i , . . . , av)

with f{Pj) = a,j, for some labelling Pj of the points. A function can be called a word,

and the weight of a word is the number of non-zero values that the function takes. With

these well-known assumptions any subspace of functions of C gives a linear code, of

which the most important are probably the geometric codes investigated in, for example,

[1, 10].
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Each point of [n] is represented as usual by homogeneous coordinates (xo,. • •, xn),
xi e F. Any function / e C is represented by a unique polynomial g in the n + 1

n

variables Xi, every term of which is reduced; that is, a general term is t = c [ | i j ' ,
t=0

where c € GF(q) and 0 < a< ^ q - 1 , such that / (x) = g(x) for all x in PG(n, q) with
n

p(0) = 0. Every term of g has total degree 53 a« = e(<7 ~ 1)> where e € Z, 1 ^ e <
»=o

n + 1; e need not be the same for different terms. A term has the form cxjj0 . . . x£n

while the corresponding monomial is XQ° . . . x£n .
The reduction mapping r : Z -» {0, . . . ,g - 1} is such that r(0) = 0, r(n) m n

n
(mod q - 1), and r(e(g - 1)) = q - 1, for all e 6 Z \ {0}. If t = c [ ] a£* is a term

n t=0
with c ^ 0, then the reduced degree of t is deg(t) := 5Zr( a t ) - We use this reduction

«=o
to make certain that we always have valid terms with powers between 0 and q — 1.

Note that we do not allow a constant in F to be a valid term of a homogeneous
function. Thus all valid polynomials g representing functions / of C satisfy the natural
condition <;(0) = 0.

Indeed, every function in C can be written in the form (see [10])

for unique fc\0...An G F. fco...o = 0 and so / has no constant term. Each term of f(x)

must have degree that is divisible by q - 1 and is non-zero. The coefficients k\0...\n of

the terms are uniquely determined by the function.

We say that a polynomial function / in C has a term t if the coefficient in GF(q)

of t in the unique representation of / , as a sum of terms, is non-zero.

Consider a monomial t — xo°° • • • x n
a " , where the exponents a* satisfy 0 ^ aj ^

n
q — 1, (oj € Z). Also, the degree of t should satisfy deg(t) := JZ ai = j(q — 1), for

t=0

some 1 ^ j ^ n + 1. Thus t is a valid monomial of C(n, q). The degree sequence

S(t) of £ is the cycle of integers (so ,s i , . - . J S / J - I ) , where st = deg(tp )/(<?— 1),

and the subscripts fc are considered to be in the cyclic group modulo h. The degree

sequences of valid monomials are characterised by the fact that they satisfy a certain set

of inequalities (due to Hamada), that are very important for various properties of the

geometric codes; see [10]. However, we shall not need these properties in the following.

2. HYPERSURFACES AND FUNCTIONS

Let us recall that a hypersurface (or primal) of degree d of PG(n,q) is de-
fined by a single homogeneous algebraic equation of degree d in the n + 1 variables
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Xo,... ,xn. Clearly, if the equation is H = 0, then the properties of the function

/ : x i-> H(a;)9"1, (x € [n]), are tied in with those of the hypersurface. In fact,

/ takes the value 0 at all points of H, and the value 1 at all other points. If

N(H) := |{x € [n] | H(x) = 0 } | then we have:

LEMMA 2 . 1 .

N(H) = 1 ~ XI /l(x) (mod p) '
x€[n)

where h : x ^ H(x)9~\ (x € [n]).

P R O O F : This follows immediately from the two facts that |[n]| = l+q+- • -+q" = 1

(mod p) , and xq~l = 1 if x £ 0 and x € F . D

The following is a well-known generalisation of the fact that

0, if 0 ^ i < q - 1

— 1, if i = q — 1.

LEMMA 2 . 2 . If g is the algebraic function representing a function f of C, (that

is f : [n] ->• F), then J2 9(x) = (-1)" f c ) where A; is the coefficient of x%~1.. . x ' " 1 in
x6[n]

Now let h be the algebraic function that represents H{x)q~ , where H is a hy-
persurface of PG(n,q). Applying Lemmas 2.1 and 2.2 we obtain:

LEMMA 2 . 3 .

N(H) - 1 - (- l)nfc, (€ GF(p)),

where k is the coefficient of XQ~ .. . x^" 1 in h.

Note that h can be calculated from H by expanding out Hq~1 as a sum of mono-
mials, and then using the reduction mapping of general terms; see Section 1.

Now the reduction mapping takes a term either to itself or to a term of lesser
degree. Thus the only way to get the reduced term t :— XQ~ .. -x^1 from a term of
Hi-1 is if deg ( F " - 1 ) ^ deg (t) = (n + l)(q - 1). Thus only if deg (H) ^ n + 1 . Hence
we have the following simple and useful result:

THEOREM 2 . 4 . A hypersurface H of degree ^ n in PG(n, q) has N(H) = 1

(mod p) points.

P R O O F : This uses Lemma 2.3, and the fact that k — 0 from the preceding degree
argument. D

Now suppose that deg (H) = n + 1. Let us calculate the coefficient of t :—

XQ~1 • • -x%~1 in the reduced function representing Hq~x. Let J := Hp~1. Then
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where q = ph. Thus, to obtain the reduced term t there must be some product

t - t tp fP2 /P' '"1

I — lo-h-^2 • • •lh-\ '

where each U is a term of J. Since deg(ti) = (n+l)(p—1), then deg(tp ) =

(n + l)pl(p — 1), and reduction only reduces this degree, then we see that the only

way to obtain t is if there is actually no reduction in the above equation. That is, tp is

already reduced, for all 0 < i < h. This means that the above equation for t is exact,

and not modulo reduction.

Now consider the power of Xj modulo p on both sides. Then on the left it is

q — 1 = — 1, while on the right it is the power of Xj in t0, since the other ij's have

powers divisible by p. Thus to contains Xj at least to the power p — 1. But deg (t0) =

(n + l)(p - 1), and so t0 = xg" 1 . . . x ^ 1 .

Next, divide both sides of the equation for t by to, and then take p'th roots. Again

we obtain an exact equation (not modulo reduction) and using a similar argument we

see that also <i = x jp 1 . . .a^"1. Indeed, by this sequence of arguments (or using

induction) we see that ti = XQ~ • • -x^"1, for all i with 0 ^ i < h.

The coefficient of t in the reduced function of H?'1 is thus k = C^+P+P2+-+Ph~1,

where c is the coefficient of s := XQ~ 1 . . .X^~ 1 in J := Hp~1. Using Lemma 2.3 we

obtain:

THEOREM 2 . 5 . A hypersurface H of degree n + l in PG(n,q) has

N(H) = 1 - (-i)n
c
l+P+r2+-+Ph-\ (€ GF(p))

points, where c is the coefficient of XQ"1 .. -x^"1 in Hp~1.

Prom Theorems 2.4 and 2.5 this follows immediately:

COROLLARY 2 . 6 . Let H be a hypersurface of degree m in PG(n, q), q — ph,

p prime.

(1) If m < n+ 1, H has 1 (mod p) points.

(2) If m = n + 1, H has 1 (modp) points •<=> Hp~l has no term
xP-1

 XP-I

In the next section we give numerous useful consequences of the above result.

3. EXAMPLES AND APPLICATIONS

EXAMPLE 3.1. Hyperplanes have 1 (mod p) points. Indeed, a hyperplane of PG(n,q)

has a linear equation (of degree 1) and so if n ^ 1 it has 1 (mod p) points. In fact,
the number of points is 1 + q 4- h g""1.

https://doi.org/10.1017/S0004972700031890 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031890


[5] Modular counterparts of Cayley's hyperdeterminants 483

EXAMPLE 3.2. The Discriminant of a Quadratic Form in Two Variables. Put n = 1
and let H be of degree 2 in 2 variables. Then H has 1 (mod p) solutions if and only
if it has 1 solution if and only if the discriminant D is 0. One can indeed check that
the coefficient of x g " 1 ^ " 1 in H*'1 is D^p~l)/2 if p is an odd prime. See [7].

EXAMPLE 3.3. Plane Quadrics have 1 (modp) points. Thus every plane quadric of

PG(2, q) has at least one real point.

From this it follows immediately that every irreducible conic in PG(2,q) has pre-

cisely q + 1 points, since through a real point of such a conic there is precisely one

tangent and all the other q lines are chords.

EXAMPLE 3.4. The Hasse Invariant of Plane Cubic Curves. A cubic curve H in
PG(2,q) has 1 (modp) points if and only if Hp~1 has no term (x0xiX2)p~1 • Clearly
this coefficient is an algebraic invariant under the group PGL(3,q) of homographies
of PG(2, q). It is known in algebraic geometry by the name Hasse invariant, and is
not just an invariant for finite fields, but for all fields of characteristic p ; see [12]. The
invariant there actually is for plane elliptic cubic curves: if it is zero the curves are
called super-singular. A word that is used elsewhere is equianharmonic. For p = 2 see
a detailed analysis of the invariants, syzygies, and related number-theoretic properties
of plane cubic curves in characteristic two in [9].

EXAMPLE 3.5. Quadrics of PG(n,q) have 1 (modp) points if n ^ 2. This follows
since quadrics have degree 2. In fact, one has a formula for all types of quadrics,
reducible or not; see [13].

EXAMPLE 3.6. Intersections of Quadrics in PG(3,q). By taking the product of two
quadrics Q\ = 0 and Q2 — 0 one obtains a (reducible) quartic hypersurface Q1Q2 = 0.
Using the invariant that is the coefficient of xj"1x\~lx\T*x%~1 in (QiQ2)p~1 one can
calculate the size i of the intersection between the two quadrics modulo p . For each
quadric alone has 1 (mod p) points, and so their union has 2 — i (mod p) points. In
particular, when p = 2 this gives a simple criterion about the intersection modulo 2.

EXAMPLE 3.7. Semifield Theory. A semifield of dimension n + 1 over GF(q) gives a
hypersurface H of degree n + 1 with no point in PG(n, q). It is the so-called norm

form. Given a basis of the semifield over GF(q), bo, • • • , bn, one writes the product of
any two basis elements in the semifield as bi * bj = ^2 aijkbk, obtaining a so-called non-

ijk

singular cube A over GF(q). The norm form is then the hypersurface corresponding
to setting the determinant of a general sum of slices of A in one direction equal to zero.
Thus, with the array multiplication of the next section, the form could be defined as
H:det(xA) = 0.

Since H can have no points in x in PG(n, q), H?~x has a certain coefficient of the
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diagonal term to the power p- 1. In fact, this invariant coefficient c = detp(.<4) should

satisfy C I + P + P 2 + - + P ' 1 - 1
 = ( _ i ) n

 m GF(p); see Theorem 2.5. For example, consider

the case 9 = 3, n = 1, h = 1, p = 3 , and the field GF(9) over GF(3). Using a basis

l , o , where a2 = - 1 we have 1 * 1 = 1 , l*a = a*l = a, a* a = -1. One can

construct a 2 x 2 x 2 non-singular cube A with 2-dimensional slices

Aa:=

Thus det3(>l) is the coefficient of (zo^i)2 in det (z0A) + ^l-Ai)2 = {^o + x\)2- T n u s

det3 (.A) = 2 = — 1 (mod 3) as we have stated.

We can show that this detp is an invariant of cubical arrays that is independent
of the 3! = 6 symmetries (permuting the three directions of the cube). In the theory
of semifields these symmetries are called the 'isotopes'. A similar definition could be
applied to algebras over a field of characteristic p. Thus the 'isotopes' of such an algebra
all have the same invariant detp . A generalisation to hypercubes is investigated in the
next section.

4. THE INVARIANT DETP

First let us recall a slight generalisation of matrix multiplication:

DEFINITION 4 . 1 . Let A be an TOO X • • • X mr+i array (r + 2-dimensional over

F), and B an no x • • • x ns+i array (s + 2-dimensional over F), then the product

C := AB is defined if mr+i = n0, and is the mo X • • • x mr x n\ x • • • x ns + i array
((r + s + 2)-dimensional over F), where if A = (flio...tr+1) and B — (bjo...js+1), then

mr+1

C = (cf c o . . .fcr + 5 + 1), where cko...k l := £ afco...fcri blkr+1...kr+3+1.
1=0

Note that it is possible to multiply two higher-dimensional arrays down any com-
mon direction of the same length. For example, an array of dimension r + 2 can be
multiplied by a vector in r + 2 ways. In this section, we often multiply without spec-
ifying the particular direction. In that case, the multiplication must be done only if it
makes sense.

A 'hypercube' A is a higher-dimensional array in which all the directions have
the same length. Thus it generalises a square matrix of dimension 2. We denote the
dimensions of a hypercube by (n -I- l ) r + 2 if it has r + 2 dimensions of length n + 1;
thus it is n + l x - ' - x n + l , r + 2 times, over F. Let V be the vector space Fn+l: we
consider every element of V to be a 1-dimensional array over F. The multiplication of
a hypercube by a sequence of vectors from V is called a 'projection'. Clearly, the order
of multiplication by vectors is irrelevent: it is the directions that are important. Also,
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let us note the important property of multiplication of higher-dimensional arrays: it is

associative if the various multiplications are denned.

Let p be a fixed prime, and as before, let q = ph, and F = GF(q). Let A be an

(n + l ) r + 2 hypercube over any field G of characteristic p. There are r + 2 subscripts

or directions to A, and r ^ — 2.

We shall define detp(v4) in an inductive manner, for r = — 1, and so on.

Firstly for 1-dimensional matrices a (that is, vectors),

d e t p ( a 0 ! . . . , a n ) := ( a 0 . . .On)""1.

Note that detp is not an invariant for vectors, but it is interesting that we can start
the definition from here.

For matrices with r ^ 0 define detp(.A) to be the coefficient of (xo . . .xn)
p~1 in

detp (Ax), where Ax is the product of A with the vector x in any of the r + 2 directions
of A. Naturally we must show that this is well-defined. Let us proceed by looking at
the case r = 0.

THEOREM 4 . 1 . If A is an (n + I ) 2 (square (n + 1) x (n + 1)) matrix, then

detp(A) = det{A)p~\

PROOF: Consider the coefficient of (xo •. . x n ) p ~ 1 in detp(ylx). Let the base field

G be F = GF(q). (detpiAx))1^'^ is the product of n + 1 hyperplanes in PG{n,q)
which is a degenerate hypersurface H of degree n + 1 in PG(n, q).

From Theorem 2.5 H has 1 (mod p) points if and only if detp(A) = 0. Now H

consists of n + 1 dependent hyperplanes if and only if H has 1 (mod p) points, for we
can use a non-singular linear transformation to assume in the independent case that
H : xo .. .xn = 0, and then detp(Ax) = 1: that is, n + 1 independent hyperplanes of
PG(n,q) cover 1 + (—l)n+1 (mod p) points. In the dependent case, we can assume
that the hyperplanes pass through the point (1,0, . . . , 0 ) : that is, that there is no
variable XQ in any of them. Then the product of the hyperplanes cannot contain any
variable xo, and so detp(.Ax) = 0 . In this case the dependent hyperplanes cover 1
(mod p) points. Hence the coefficient of (xo .. .xn)

p~1 in detp(Ax) is zero if and only
if det (A) = 0. Since the degree of detp (A) in the coefficients of A is (n + l)(p — 1) we
have detp (A) = det ( J 4 ) P - 1 , and since this identity is valid for all finite fields GF{j>h)

it is valid for all fields of characteristic p . (A polynomial that is zero for an infinite
number of values is identically zero.) U

Note that the above identity is valid if we put A* instead of A. Thus the direction
that we multiply A by to form Ax is irrelevent. We can show that this is the general
situation as follows.
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We shall consider our invariant of a general (n + l ) r + 2 matrix A over the finite
field F in a certain way. Suppose detp(A) is zero. Then it means that the number
of solutions of det (Axy . . . z ) / 0 is 0 (mod p), where x,y,...,z are points in r

FG(n ,g ) ' s corresponding to r selected directions of A. Note that this projection is to
ordinary (n + 1 ) 2 matrices and so we can replace detp by de t . Also, the number of

r-tuples (x,...,z) is (1 + q 4- 1- qn)r = 1 (mod p), and this is why the number of
solutions above is 0 (mod p). In addition, all. the projections to non-singular matrices
are obtained by points of the PG(n,?) 's , as the projection from any zero vector is a
zero matrix. Counting points xy... z in PG(r(n + 1) — l,q) amounts to the same as
counting r-tuples of points in PG{n, q) up to the multiplication by ± 1 , since (q - 1)* =
± 1 (modp) . A similar comment holds when we project one further as in the next
paragraph.

Next, detp (A) = 0 means that the number of projections Axy... zw, not being a
zero vector of length n + 1, is also 0 (mod p), where x,y,... ,z,w are points in r + 1
PG(n,q)'s corresponding to r + 1 selected directions of A. Given the first r directions
of x,y,...,z there are just two choices for the direction of w. However, these give
the same result (mod p) when we count the number of projections to a zero vector.
This is because if det (Axy .. .z) ^ 0 then every w gives a non-zero projection, and
so the number of these w 's is 1 4- q + • • • + qn = 1 (mod p). On the other hand, if
det (Axy... z) = 0 we get equal numbers of non-zero projections in either direction, and
these numbers are congruent to 0 (mod p), since the number of points in a non-empty
subspace of dimension d of PG(n,q) (assuming Axy.. .z has rank n — d, d ^ 0) is
l + q-\ t-gd = l (mod p).

A projection from r-f-2 directions down to two directions, and then to one direction,
in either of the two ways, can be reversed, but on going up from one direction to two
there are r + 1 possibilities. If Inv (ij) denotes the invariant detp (A) obtained by
projecting down to the i th and j t h directions, and Inv(z) and Inv(j) denotes those
by going further to directions i and j , then we have shown above that Inv(ij) =
Inv (i) — Inv (j). If we want to prove that Inv (ij) = Inv (kl) then Inv (ij) = Inv (i) —

Inv (ik) — Inv (k) = Inv (kl) gives the result. It follows that the definition of detp (A)

is independent of the directions that are chosen.

Now we are in the position to prove the multiplicative property.

THEOREM 4 . 2 . If A is an (n + l ) r + 2 matrix, and B is an (n + 1)*+2 matrix

over G, and if r,s ^ 0, then

detp (AB) = detp (A)detp (B).

P R O O F : Let us use induction on the dimensions of the matrices (r, s). Firstly,

it is true for (r, s) = (0,0), as follows from ordinary 2-dimensional matrices, since
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detp (X) = det (X)1''1. Next, assume it is true for (r, s) for some r, s ^ 0. Let A have

size ( n + l ) r + 2 , and B have size ( n + l ) s + 3 . Then

detp (AB) = coefficient of (x0 . . . xn)
p~l in detp ((AB)x)

= coefficient of (x0 ... xn)
p~l in detp (A(Bx))

— coefficient of (XQ .. .xn)
p~l in detp(A)detp(Bx), (by assumption)

= detp (A), coefficient of (x0 . . . i n ) ' " 1 in detp {Bx)

= detp(A)detp(B).

Note that AB is multiplied by the vector x in any direction of B that is not the one
common to A. Of course, once the induction has been reduced from (r, s) to (r, 0), we
can multiply on the left by x to reduce similarly to the case (0,0) of square matrices. D

5. B R I E F HISTORICAL COMMENTS

When Leibniz died some calculations which amounted to determinants were found
in his papers. These were unpublished, but the date is around 1693. Determinants of
ordinary square matrices were certainly in use in the 18th century and were known by
Euler and especially Vandermonde. However matrix theory as we know it today was
not developed until early in the 19th century. For example, we see no mention of it in
the major work of Gaufi [8].

In 1845 Cayley published in the Cambridge Math. Journal a generalisation of the
n x n matrix determinants to higher-dimensional matrices. As mentioned by Cayley
in note 92 at the end of [5], and in particular in paper [4], the composition of two
quadratic forms in two variables to give another (as defined by Gaufi; see [8]) is related
to 23 matrices and in particular to Cayley's Det invariant.

In fact hyperdeterminants can be constructed for a much larger class of higher
dimensional matrices. This has been explained in a book by Gelfand, Kapranov and
Zelevinsky; see [12, Chapter 14]. Basically their hyperdeterminants work for (Jt0 + 1) x
• • • x (kr+i + 1) matrices which satisfy fcj ^ &o + • • • + &i_i + fc*+i + • • • + kr+\, for all
0 ^ i ^ r +1. The reason for these perhaps surprising constraints upon the dimensions
is the following. In order to construct the invariant there must be in general projections
to a zero vector from any r +1 directions. Considering the Segre product of the points
of the projective spaces of dimensions kj corresponding to these directions we obtain
k{ +1 conditions on the points of the Segre variety of dimension fco H h fci_i + fcj+i +

1- fcr+i. There is no projection to zero in general if the condition is not met. Their
(and Cayley's) hyperdeterminant is zero if and only if there is a collection of r + 2
points, in each of the r + 2 directions, such that taking the projections corresponding
to any r + 1, we obtain the zero vector in the final direction.
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In 1852 Schlafli [14] published an alternative method to obtain hyperdeterminants.
As explained in [12, Section 14.4] usually this method gives a larger polynomial invariant
of which Cayley's Det is a factor. Sometimes, however, it gives precisely Det. This
happens at least in the cases 2 x m x ra, 3 x m x m , and 2 x 2 x 2 x 2 . This is also
related to our recent work on counting points on hypersurfaces over GF{q). See below.

Later on (according to Coolidge [6]) the word hyperdeterminant had taken on
a more general meaning unrelated to higher dimensional matrices, and more closely
related to the term invariant. In fact, by about 1860 Sylvester had disposed of the
former terminology.

Our p-modular hyperdeterminant detp has degree (n + l)(p - 1) in the coefficients
of the (n + 1) x • • • x (n + 1) matrix. For smaller values of the prime p this is much
better than Cayley's. For example, Cayley's hyperdeterminant for 2 x 2 x 2 matrices
has degree 4, the p-modular one has degree 2(p - 1). In this case the two invariants
are in fact just powers of one-another. For 3 x 3 x 3 Cayley's has degree 24: ours has
degree 3 for p = 2, degree 6 for p = 3, degree 12 for p = 5, and so on. The p-modular
hyperdeterminant has a simple method of calculation. Best of all is the fact that it is
preserved by products, something that is impossible for Cayley's hyperdeterminant.

Here is Cayley's determinant for the matrix A := (a^fe), {i,j, k = 0,1):

. . . 2 2 22 22 22

Det [A) = a0ooain + aooiano + aoioaioi "+" aonaioo

Notice that in this case Det (A) is the square of the permanent of A modulo 2,
which is det2(v4)2.

6. ADDITIONAL N O T E S

For 23 matrices we can show that Cayley's hyperdeterminant and detp are essen-

tially the same by proving that

detp (A) = Det (A) ( p - 1 ) / 2 (mod p), (p ^ 3).

This can be done as follows. From [11] Det (.4) is the discriminant of the quadratic

form H :— det (Ax) in two variables x = {XQ,X{). Thus Schlafli's method amounts

to Cayley's in this case. However, we noted in Example 3.2 that the coefficient of

(z o z i ) P ~ 1 in HP'1 is D ^ " 1 ) / 2 if p is an odd prime.

It is also possible to look at the above in a geometrical way. If n — 1, the three

projective spaces of an (n + 1) matrix corresponding to the three directions are all
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lines. Our detp invariant is zero if and only if the number of projections to a non-
singular square matrix from any of the three directions is 0 (mod p) (taking the field
to be GF(q)). It is not hard to see that there are three different possibilities for the
numbers in the three directions in this case: either there are {0,0,0}, {0,0, q}, or
{q, q, q}. In the latter situation of a cube with Det = 0, there is a unique triple of
points, in the three directions, such that taking the projection corresponding to any
two we get the zero vector in the third. This is just the criterion of Cayley. Otherwise,
if the cube has Det ^ 0 the numbers are {q - 1, q - 1, q — 1} or {q + 1, q + 1, q + 1}.
The latter case corresponds to a so-called 'non-singular cube' over F, and then the
cube can be constructed as the set of multiplication constants of a basis of the division
algebra or semifield that is GF(g2) over GF(q); see Example 3.7. Over a quadratic
extension field in both these cases there will be six points, say TQ, r i E [n]o, so, s\ € [n]i,
to,ti S [n]2, where [n]i are the projective spaces in the three directions of A, such that
AroSo = Asoto = Atori = Ar\S\ = As\ti = Arot\ = 0.

The situation for 24 hypercubes is quite interesting in that they are connected
to quartic curves (in general, elliptic) contained in the intersection of two hyperbolic
quadrics in PG(3, F). For suppose A is the hypercube. Let x and y be points in
two fixed directions of A. Multiplying A by x and y gives us the condition that
detp (A) = 0 if and only if the number of pairs of points (x, y) having det (xAy)p~l =
0 ( <=> det (xAy) = 0) is 1 (mod p). Expanding det (xAy) out we can write it in the
form

xBy xCy
xDy xEy

where B, C, D, and E are the various slices of A, all being 2x2 matrices. Considering
the corresponding algebraic variety (xBy, xCy, xDy, xEy) of PG(3, F), where x and
y vary over all points of PG(l, F), we see that in general this is a hyperbolic quadric,
since fixing y and varying x we get one set of lines of a regulus, while fixing x and
varying y we get the other regulus. Another way to see that the points lie automatically
on a quadratic surface is to note first that it is a two-dimensional variety (with x and
y giving the two dimensions). Secondly, in the 10 different quadratic terms of the
type (xBy)2, (xBy)(xCy), and so on, there occur precisely 9 monomials of type XQJ/O >
^o2/oyi i xoXiyoyi, and so on. In general there will be 10 — 9 = 1 non-trivial quadratic
condition on the points (xBy,xCy,xDy,xEy), which will give the hyperbolic quadric.
In addition, the determinant condition above is another hyperbolic quadric upon which
the points should lie. Hence the condition detp(A) = 0 means that the number of
points on the quartic curve, that is the intersection of the pair of hyperbolic quadrics,
is 1 (mod p); see Example 3.6.

For 2r + 2 matrices (r > 2), detp and Det might be conjectured to be related
invariants, as they are for r = 0,1. Thus they could be powers of each other modulo
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p. However, this can't be. Suppose we consider the matrix A with ao...o = ai...i = 1,
and all other elements zero. Then it is not hard to see that Det (A) = 0 for r ^ 2,
whereas detp (.A) — 1. It is left as a problem to construct a matrix A with Det (A) = 1
and detp (A) - 0.

For 3 r + 2 , r ^ 1, and for larger side lengths, however, it should not hard to show
that they are inequivalent, for example, because the Hasse invariant for cubic curves is
not equivalent to the discriminant of the plane cubic curve. There exist non-singular
cubic curves with Hasse invariant zero, and singular cubics with Hasse invariant non-
zero.

There is a direct way to calculate detp as follows. This provides independent
algebraic verification that detp is invariant under the symmetric group of (r + 2)!
symmetries of the hypercube.

THEOREM 6 . 1 . Let A be an (n + l ) r + 2 matrix over a Geld of characteristic p.

Denote the subscripts of A by i — (io,...,ir+i). Thus A = (en), i 6 / , where I is

the set of all possible (n-f l ) r + 2 subscripts. Then detp(A) is the polynomial of degree

where the sum is over 'exponent' functions e : / —• {0 ,1 , . . . ,p — 1}, and where for all

'slices' j — 0 , . . . , r + 1, and k = 0, . . . , n, we have J2 eW = P - 1 • Thus, the
i€l,ij=k

coefficient of the monomial corresponding to e is the non-zero element of GF{p) given

by

ae:=(-l)n+1/Y[e(i)L
i

(Naturally 0! := 1.)

PROOF: We show this by induction on the dimension r. Firstly, for r = — 1 the
formula holds since detp (A), where A is the vector (ao, . . . , a n ) , equals

a0 . . . a n - ( - 1 ) ( p i ) ! . . . ^ _ _ >

since (p — 1)! = —1 (mod p) by Wilson's theorem. The only exponent function satis-

fying the condition that each slice of the vector has weight p — 1 is e(i) := p — 1, i —

0 , . . . , n .

Next, assume that the formula is true for some r ^ — 1. We consider the formula for

an (n + l ) r + 3 hypercube A = (aim), where the first r+2 directions of A are indexed by

i e l , where \I\ = (n+ l)r+ , and the last direction is indexed by m £ N :— {0,... ,n}.
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Then detp(.A) is the coefficient of (XQ .. .xn)
p~l in detp(Ax). Using the formula for

Ax, which is an (n + 1) hypercube, we have

= (-l)n+1 J 2 I I ( E a™*">)eMdetp(Ax)

where the e are exponent functions satisfying the conditions of the theorem. This can
be expanded using the multinomial theorem to give

E (A, ̂  A. ) ft (a^m)
°'"- ' l"

nd Aim ^ 0. Using (A.J(iJ

cancelling e(i)\ we obtain

where £ Aim = e(i), and Aim ^ 0. Using (A.J.(iJA.J - e(i)!/(Ai0!... Ain!) and
m=0

Evaluating the coefficient of (xo . . . x n ) p in this we obtain

H)-+IEE n S>

where for each e, the A :— (Ai0 , . . . , Ain) are in a set of exponents that satisfy

nd J ] Aim = e(i), for all i e / . Also J
m=0 ieI,ij=

*) = P — 1 • Thus the coefficient equals

p — 1, for all m = 0 , . . . , n , and J ] Aim = e(i), for all i e / . Also
m=0

i6/,tj=fc

where the sum is over 'exponent' functions / : / ' := IxN —> { 0 , 1 , . . . , p - l } , and where
for all 'slices' j = 0 , . . . , r + 2, and k = 0 , . . . , n , we have £} f(i') — p-l, where

i' := im and f(i') :— Ajm. This is the theorem in the case of an (r + 3)-dimensional

hypercube A. U
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