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1. Introduction
Let X be a partially ordered linear space, i.e. a real linear space with a

reflexive, transitive relation ^ such that

x ^ y implies x+z ^ y+z for all z e X,

x ^ 0, X ^ 0 implies Xx :> 0.

The positive wedge, i.e. {x: x ^ 0}, will be denoted consistently by P. Clearly,
x ^ y is equivalent to j—x ei>.

A subset A of X is order-convex (in A") if a, b e A and a ^ x ^ b imply
x e A If A is a linear subspace, it is order-convex if and only if a, b e P and
a+b e A implies that a, be A. If Y is a subspace of X and A c. Y, then ;4 is
order-convex in F if a, J e ^ y e T and a ^ y g, b implies that ye A. The
following facts about order-convexity in subspaces are elementary:

(i) if Yis a subspace of X, and A is order-convex in X, then An Y is order-
convex in Y;

(ii) if r is order-convex in X, and A ^ Y is order-convex in Y, then A is
order-convex in X

If Fis not order-convex in X, then some subsets of F(for instance, Y itself) are
order-convex in Y but not in X.

A linear subspace E of X is directed if EnP-EnP = is. Equivalently,
given x, j> e is, there exists z e E such that z ^ x and z ^ ^.

A positive element e is an order-unit if, given x e l , there exists A>0 such
that x ^ Ae. Equivalently, e is an internal point of P.

We shall denote by X' the space of all linear functionals on X. For A £ X,
write

^ + = {/e A": / (a) ^ 0 for all a e A},

A° = {/e A": \f(a) | g 1 for all a e A},

and for 5 £ X', write

5 0 = {xe JT: | /(x) | g 1 for a l l /eB}.
The natural ordering of X' (which will be denoted by the same notation g) is
that associated with the wedge i>+. Clearly, if E is a linear subspace of X,
then E+, E° are both the set of linear functionals that vanish on E.
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If T is a linear topology for X, we shall denote by JV(T) the set of all t-
neighbourhoods of 0, and by (X, T)*, or just X*, the space of all r-continuous
linear functionals. If Y is a linear subspace of X', we shall denote by CT( Y) the
weak topology induced by Y on X and its subspaces. In general, X* need not
be order-convex in X' (see Example (i)); however, this is the case if P gives an
open decomposition of X, i.e. if PnU-PnUe Jfij) for each Ue JV(X).

It is elementary that if a linear subspace E of X is directed, then E° is order-
convex in X'. The converse, however, is not true (see Example (ii)). In the
present paper, a topological notion, " nearly directed ", is introduced which
enables us to characterise not only those subspaces E of X for which E° is
order-convex in X', but also those for which, in the presence of a locally convex
on X, E°nX* is order-convex in X*. A similar result was proved by Ellis (3),
subject to certain superfluous conditions. Our methods are quite different
from those of Ellis (they were, in fact, developed in ignorance of Ellis's paper).
In (3), the term " perfect " is used for a property which, in locally convex spaces,
is equivalent to our " nearly directed ". " Perfect" order-convex subspaces
were first defined by Bonsall (1) in the context of partially ordered linear spaces
with an order-unit. A different, non-topological generalisation of Bonsall's
definition was used by Kist (6). We shall use the word perfect to mean " perfect
in the sense of Kist " ; the relation between this property and " nearly directed "
is considered in § 6.

If xe.P~{0}, then the one-dimensional subspace spanned by x is order-
convex if and only if 0 ^ y ^ x implies that y is a scalar multiple of x. We
shall say that x is an extremal element of P in this case (thus making a distinction
between extreme and extremal). Our result clearly enables us to characterise
extremal elements of P+nX* by their kernels. Another characterisation,
showing in a sense that extremal elements of P+ are " nearly " lattice homo-
morphisms, follows with ease (Theorem 2); Hayes (4) has proved a version of
this result applicable to commutative groups.

I am grateful to Professor Bonsall for drawing my attention to (4) and for
providing Example (ii) (although with a different purpose from that for which
it is used here).

2. Definition and elementary properties
Definition. Let (X, x) be a topological linear space with a partial ordering

^ . A linear subspace E is nearly directed (in X) with respect to T if, given
xe E and Ue^V (T), there exist y eEand uu u2eUsuch that

~(y+u2) ^ x | y+«i.

Clearly, if E is nearly directed with respect to T, then it is nearly directed
with respect to any smaller topology for X.

Lemma 1. E is nearly directed with respect to z if and only if, given xeE
and Uejf(-c), there exist yeE and uuu2eU such that y ^ x + ul and
y ^ u2.
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Proof, (i) Suppose that E is nearly directed and that U e ^K(T) is given.
Take circled V e ^K(T) such that V+ V £ U. There exist y e E and vuv2eV
such that

~(y+v2) ^ x ^ y+vu

or y ^ x—1>! and j> ^ — x—v2. Then y—x ^ — t>i e J7and

y^
as required.

(ii) Suppose that the condition holds and U e J/~(x) is given. Take circled
Vs Jf(x) such that V+ V £ £/. There exist j> e £ and i^, u2 e V such that
>> ^ x+tfi and >> ^ v2. Also, there exist z e £ and wl3 w2eV such that
z ^ —x+wx and z ^ w2. Then

- J - Z + UJ + WJ g x g y + z-v1-w2,
showing that E is nearly directed.

Corollary 1. If E is nearly directed with respect to t, then E is contained in
the x-closure ofP—P.

Proof. Given xeE and [ / e / ( r ) , take VeJV(x) such that V- V s U.
There existy e 2s, wl9 D2 e Vandp, q eP such that x+i^ = ^— p and v2 — y—q.
Then^r+^ t -^ ) = q-p,i.e. x+UmeetsP-P.

Corollary 2. X is nearly directed if and only ifP—P is dense in X.

Proof. Suppose that P-P is dense in X. Take xeX and UeJ/~ (T).
There exist p,qeP and we J7 such that x+u = p—q. Then p ^ 0 and
p ^ X+M, so A'is nearly directed.

Example (ii) below shows that E can be nearly directed (in X) without
containing any non-zero positive elements.

Lemma 2. Suppose that P gives an open decomposition of X with respect to
T. Then a linear subspace E is nearly directed with respect\ to z if and only if,
given xeE and Us ^{x), there exist yeE and ueU such that y+u ^ x

andy + u ^ 0.

Proof. The condition is clearly sufficient. Suppose that E is nearly directed,
and take xe Xand Ue JV{X). There exists Ux e Jf(x) such that Ui + Ui £ U.
Let V = PrtU^—PrsU^. Then there exist yeE and vuv2eV such that
y ^ x+v± and y ^ v2. Now v( = ut—u't for some ut, u\ e PnUi (i = 1, 2).
Let u = Mi+ti2. Then ue 17 and y+u jg x, y+u ^ 0.

We shall say that a set is radial if it is radial at 0 (absorbing). The largest
locally convex topology for X is that in which all convex, radial sets are neigh-
bourhoods of 0. With respect to this topology, all linear functionals are
continuous and all linear subspaces are closed (see (7), p. 69). Also, it is clear
that if P—P = X, then P gives an open decomposition with respect to this
topology. Hence we have:

Corollary. Suppose that P—P = X. Then E is nearly directed with respect
to the largest locally convex topology for X if and only if, given xeE and a convex,
radial set U, there exist yeE and ue U such that y+u ^ x andy+u ^ 0.

E.M.S.—K
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3. The main theorem
Theorem 1. Let X be a partially ordered linear space with a locally convex

topology i, and let E be a linear subspace of X. Then the following statements
are equivalent:

(i) E is nearly directed with respect to r;

(ii) E°nX* is order-convex in X*.

Proof, (i) => (ii). Suppose t h a t / e E°nX*, g e X* and 0 ̂  g ^ / . Take
x e E and e>0 . There exists Ue^ (T) such that | / ( « ) | and | g(u) | :g B for
we U. There exist y e E and uu u2e U such that y ^ x-f-Wj and y S w2.
Then

0(x) ^ g(j~Ui) ^ 9(y-u2)+2E ^ / ( j - M 2 ) + 2 e ^ 3e.

Hence #(*) ^ 0 for x e E, so g e E°.

(ii) => (i). Suppose that E is not nearly directed, and consider the space
XxX. There exist x0 e E and V BJT (T) such that, given uuu2eU, yeE
and p,qeP,

(x0, -xo) + {uuu2) ^ {y-p,y-q)-
Write

H = {(j>-P,y-&- yeEa.ndp,qeP}.

Then if is a wedge and (x0, —x0) is not in the closure of H. Hence there is a
continuous linear functional </> on XxX such that 4>{xQ, — xo)>sup <j>(H).
Since H is a wedge, this implies that <f> <S 0 on H. Let #(*) = <j)(x, 0),
/i(x) = 0(0, x) (x e X). Then g,heX* and <£(*, j>) = g(x) + h{y). For peP,
gi~P) = </>(-/>> 0) ^ 0, sogeP*. Similarly, h eP+. For y e E,

But g(x0) ̂  h(x0), so g and A are not in E°. It follows that E°nX* is not
order-convex in X*.

Corollary 1. E° is order-convex in X' if and only if E is nearly directed with
respect to the largest locally convex topology for X.

Corollary 2. E is nearly directed with respect to a locally convex topology %
if and only if it is nearly directed with respect to the associated weak topology.

Proof. If E is nearly directed with respect to the weak topology, then
E°nX* is order-convex in X*, so if is nearly directed with respect to T.

Corollary 3. An element f of P* nX* is extremal in P+r\X* if and only if
its kernel is nearly directed.

Corollary 4. Suppose that E and P are x-closed. Then E is order-convex if
and only ifE°nX* is nearly directed with respect to o(X).

Proof. Consider the space X* with topology a(X) and positive wedge P+.
The dual space can be identified with X, and the set of positive continuous
linear functionals is P, since P is closed. Also, (E°nX*)0 = E. The result
follows.
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Corollary 5. Suppose that P is closed with respect to the largest locally
convex topology for X, and let E be any linear subspace of X. Then E is order-
convex if and only if E° is nearly directed with respect to a(X).

Example (iv) below shows that corollary 4 can fail if P is not closed.
A local base for the order-bound topology for X is the family of convex,

symmetric sets that absorb all order-intervals. We denote this topology by
T,,. Some properties of this topology (called by Schaefer the " order topology ")
are given in (7), ch. 5. It is easily seen that if P—P = X, then P gives an open
decomposition of X with respect to xb. The T6-continuous linear functional
are those that are bounded on order-intervals. Denote the set of these by Xb.
Clearly, all positive linear functionals are in Xb, so if E°r\Xb is order-convex in
Xb, then E° is order-convex in X'. Hence we have:

Corollary 6. If E is nearly directed with respect to tb, then E is nearly directed
with respect to all locally convex topologies on X.

The order-bound topology coincides with the usual topology in quite a
wide range of spaces (when given their " natural" orders), so Corollary 6 is
of some interest.

4. Extremal positive functionals
Using Corollary 3 to Theorem 1, we can give the following purely algebraic

characterisation of extremal elements of P+ (cf. Hayes (4)). No analogous
result seems to be available for extremal elements of P+nX*, but these are, of
course, extremal in P+ whenever P gives an open decomposition of X.

Theorem 2. Let X be a partially ordered linear space, and suppose that
P—P = X, where P denotes the positive wedge. Suppose that f e P+, and let K
be the kernel off. Then the following statements are equivalent .*

(i) / is an extremal element ofP+;

(ii) given XBK and e>0, there exists ae X such that a ^ x, a ^ 0 and
fifl) rg e;

(hi) for any x,yeX,

inf {/(z): z ^ x and z ^ y] = max (/(*), f(y)).

Proof, (i) => (ii). Take xeK and s>0. Let U = {u e Y: \f(u) | g e}.
This is a convex, radial set. By Corollary 3 to Theorem 1 and the Corollary to
Lemma 2, there exist yeK and ueU such that y+u ^ x and y -f u ^ 0. Now
f(y+u) ^ e, so (ii) holds.

(ii) => (iii). Take x,yeX and e>0. Suppose that f(x—y) = X ^ 0.
Take zeP such that/(z) = 1. Then x-y-XzeK, so, by (ii), there exists
a eP such that a ;> x-y-Xz and/(a) g e. Let b = a+y+Xz. Then b |> x,
b ^ y and f(b) ^
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(iii) => (i). Suppose that 0 g g ^ / and f(x) = 0. Take £>0. There
exist u,veP such that x = u—v. Then/(M) =f(v). By (iii), there exists
a e X such that a ^ u, a ^ t> and/(a) ^ / (u)+e. Then

and, similarly, 0 g g(o—u) ^ e. But x = (a—v) — (ji—u), so | g(x) | g e.
Hence g(;c) = 0. It follows that g is a scalar multiple of/.

(Alternatively, it is quite a simple matter to show that condition (iii) implies
that K is nearly directed with respect to the largest locally convex topology).

In the case when X has an order-unit, Bonsall showed that each perfect
order-convex subspace is contained in a maximal one, which is the kernel of an
extremal element of P+. This theory is of particular interest in that it leads to a
purely algebraic proof of a purely algebraic form of the Krein-Milman theorem.
However, some assumptions are needed to ensure the existence of extremal
elements of a cone; for instance, it is well-known that there are no extremal
positive functionals on Z,x [0, 1 ]. Two positive results not depending on order-
units are:

(i) a locally compact cone is the closed, convex cover of its extremal elements
(see (2));

(ii) if X is a topological Af-space (see (5)), then the extremal elements of P+

separate points of X.

5. Lattices
Let X be a linear lattice. By a lattice homomorphisrn we shall mean a linear

functional/on X such that
f(xvy)=f(x)vf(y)

for x,y s X (the second occurrence of v here refers, of course, to the usual
lattice ordering of R). Writing, as usual, x+ = xvO and x~ = (-x)vO, we
have x = x+— x~. A linear subspace E is.a sublattice if and only if xeE
implies x+ e E. Thus a linear sublattice is directed, and it is elementary that a
directed, order-convex subspace is a sublattice. Example (ii) shows that a
nearly directed, order-convex subspace need not be a sublattice.

It is clear that the kernel of a lattice homomorphism is a sublattice. This
fact, together with Theorems 1 and 2, shows that the following four conditions
for feP+ are equivalent:

(i) / i s an extremal element of P+;

(ii) / i s a lattice homomorphism;

(iii) the kernel of/ is a sublattice;

(iv) the kernel of / is nearly directed with respect to the largest locally
convex topology for X.

The equivalence of the first three of these conditions is well-known. The
equivalence of (iii) and (iv) can be stated in the following way: in the class of
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order-convex maximal subspaces, all nearly directed subspaces are sublattices.
The next theorem shows that this is true in a wider class of subspaces.

Theorem 3. Let X be a linear lattice with a topology. Suppose that the
positive wedge P gives an open decomposition of X. If F <~ P+nX*, and Fo is
nearly directed, then Fo is a sublattice.

Proof. Take xeF0, feF and £>0. There exists UeJf(x) such that
| / ( M ) I ^ e for Me U. By Lemma 2, there exist y eFo and ueU such that
y+u ^ x and y+u ^ 0. Then y+u ^ x+, so / ( x + ) ^ e. It follows that
f(x+) = 0, so that x+ e Fo.

Corollary. Let X be a linear lattice, and denote the positive wedge by P.
If F £ P + and Fo is nearly directed with respect to the largest locally convex
topology for X, then Fo is a sublattice.

If X is a linear lattice, then a sufficient condition for P to give an open
decomposition of X is that x->x+ is continuous at 0. This condition is also
necessary if ^fis locally order-convex (in which case, in fact, x->;c+ is uniformly
continuous on X; see (5)).

6. Comparison with perfect subspaces
Let I b e a partially ordered linear space with an order-unit e. A linear

subspace E of X is said to be perfect (Bonsall, (1)) if, given xeE and 8>0,
there exists y e E such that

—(y+ee) ^ x ^ y+se.

It is easily checked that the definition is independent of the choice of order-
unit.

There is a simple connection between our definition and this one. If e is
an order-unit, then a corresponding " order-unit seminorm " is defined as
follows:

|| x || = inf {A>0: -Xe g x ^ Xe}.

Equivalent seminorms are obtained from different order-units, and the topology
induced by each of them is the order-bound topology. The seminorm is a
norm if and only if the ordering is almost Archimedean. The next theorem is
stated without proof in (3), but we repeat it (with proof) for completeness.

Theorem 4. Let X be a partially ordered linear space with an order-unit, and
let E be a linear subspace of X. Then the following statements are equivalent:

(i) E is nearly directed with respect to the order-bound topology;

(ii) E is perfect.

Proof. It is obvious that (ii) implies (i). To show that (i) implies (ii), let e
be an order-unit, and let || || be the associated seminorm. Suppose that E is
nearly directed with respect to the order-bound topology. Then, given xe E
and e>0, there exist y e E and uu u2 such that || ut || < s (i = 1, 2) and

^ x g y+ut.
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Then ut ^ ee (i = 1, 2), so

— (y+se) ^ x ^ j>+ee,
and E is perfect.

Thus if A'has an order-unit and E is nearly directed with respect to the order-
bound topology, then E is nearly directed with respect to every linear topology
on X (cf. Corollary 6 to Theorem 1).

For spaces without an order-unit, Kist (6) generalised BonsalPs definition
as follows: E is perfect if there exists aeP such that, given xeE and e>0,
there exists ye E such that

— (y-\-ea) ^ x ^ y + ea.

This is equivalent to BonsalPs definition in the case when X has an order-unit,
and it obviously implies that E is nearly directed with respect to any linear
topology. Kist showed that / is an extremal element of P+ if and only if its
kernel is perfect. Thus if T is a topology with respect to which P gives an open
decomposition, and E is an order-convex maximal subspace that is closed and
nearly directed with respect to z, then E is perfect. The next result shows that
this remains true in the absence of order-convexity.

Theorem 5. Let X be a partially ordered linear space with positive wedge P
and topology T, and suppose that P gives a i-open decomposition of X. Suppose
that E is a maximal subspace of X that is closed and nearly directed with respect
to T. Then E is perfect.

P r o o f . E i s t h e k e r n e l o f s o m e f e X*. T a k e a e X s u c h t h a t f { a ) = 1.
G i v e n x e E a n d e > 0 , t h e r e e x i s t y e E a n d u e X s u c h t h a t | / ( « ) | ^ £ a n d

— (y + u) g x ^ y + u.

Write f(u) = k and u-Xa = z. Then zeE, Since P-P = X, there exists
b eP such that —b^a^b. Now we have

z-\-eb) ^ x ^ y + z + eb.

Corollary. IfP—P = X, then a maximal subspace of X is perfect if and only
if it is nearly directed with respect to the largest locally convex topology.

We notice that X itself is perfect if and only if P—P = X, so Corollary 2
to Lemma 1 shows that X can easily be nearly directed with respect to a well-
behaved topology without being perfect. An example of a proper subspace
with this property is given below (Example (iii)).

7. Examples
(i) X* not order-convex in X'. Let X be the space of finite real sequences

with the

Then X' is the space of all real sequences, while X* is the space of all bounded
ones.
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Let P be the set of decreasing, non-negative sequences in X. Then P—P = X,
but P does not give an open decomposition of X with respect to the norm. P+

is easily seen to be the set of all sequences having each of their partial sums
non-negative. This gives a partial ordering of X' with respect to which X* is
not order-convex, since

0 ^ ( 1 , - 1 , 2 , - 2 , 3 , - 3 , . . . )
S (1, 0, 1, 0, 1, 0, ...).

(ii) A perfect, order-convex subspace that is not directed. Let X be the space
of all bounded real sequences with the usual norm and order. Let e be the
sequence having 1 in each place; then e is an order-unit in X. Let en be the
sequence having 1 in place n and 0 elsewhere, and let a be the sequence having
1 in odd places and 0 in even places. Let xn = a—n~1e2n, and let E be the
subspace spanned by the xn. Then EnP = {0}, so E is order-convex and not
directed. Now a general element of E is

x = £ hxt- £ HJXJ,

where each Xh fij>0 and /, / are disjoint, finite sets of integers. Let

<* = £ 4 A* = £ Us-
is I jeJ

Given e>0, take r>(Av/i)e~1, and let

Then
—(y+ee) g x ^ y+ee.

(This subspace has the interesting property that it is order-convex, while
its closure is not, a fact pointed out by Professor Bonsall.)

(iii) A subspace that is nearly directed with respect to one topology but not
another. Let X be the space of finite real sequences, this time with the usual
order. With en as in example (ii), let xn = el — en (n g 2), and let E be the
subspace spanned by the xn.

Let/? be the supremum norm on X. Take e>0, and suppose that a general
element x of E is expressed as in (ii). Take a finite set K of integers disjoint
from / and corresponding numbers vk such that 0<vk<e(ke K), and

£ vft = Av/i.
keK

Let
y= £ vkxk- £ fijXj.

keK jeJ

Then
y = (A-/*)+e1- £ vkek+ £ n}ej.

keK jeJ

Let u = e £ ek. Then p(u) g e, y+u ^ 0 and y+u ^ x. Thus £ is nearly
kcK

directed with respect to p.
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Let || || be the /j-norm on X. Suppose that y eE and ue Xare such that
y+u ^ 0 and y+u jS — x2. We show that || u || ^ %, from which it follows
that E is not nearly directed with respect to || ||. Let

y= Y. £ JJ
lei jeJ

where ahPj>0, and write
« = E «,, J? = I /*,-

i e / JeJ

Now || M || ^ a, since y+u ^ 0. Suppose that || w [| <£. Then a<J . The
first term of y is a—/?, so /?<$. But the second term of y+u is not less than 1,
and this clearly leads to a contradiction.

In particular, of course, this subspace is not perfect.
(iv) E order-convex while E° is not nearly directed. Let X be the space of

finite real sequences, and let P be the set of finite sequences whose last non-zero
term is positive. Then P+ = {0}, so no non-zero subspace of X' is nearly
directed with respect to <r(X). However, X has proper order-convex subspaces,
for instance the one-dimensional subspace spanned by ex.
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