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Weak Sequential Completeness of X(X,Y)
Qingying Bu

Abstract. For Banach spaces X and Y, we show that if X* and Y are weakly sequentially complete and
every weakly compact operator from X to Y is compact, then the space of all compact operators from
X to Y is weakly sequentially complete. The converse is also true if, in addition, either X* or Y has the
bounded compact approximation property.

1 Introduction

For Banach spaces X and Y, let £(X,Y), W(X,Y), and X(X,Y) denote the spaces of
all bounded linear, all weakly compact, and all norm compact operators from X to
Y, respectively. When Lewis [10] discussed the weak sequential completeness of the
injective tensor product of X and Y, he obtained a result about the weak sequential
completeness of K(X,Y) as follows. Assume that X* or Y has the metric approxima-
tion property. Then X(X,Y) is weakly sequentially complete if and only if X* and
Y are weakly sequentially complete and every weakly compact operator from X to
Y is compact. In this paper, we use a result of Kalton [9] to improve Lewis” result
by replacing the assumption of the metric approximation property on X* or Y by
the assumption of the bounded compact approximation property on X* or Y (The-
orem 2.3). Moreover, without the assumption of the metric approximation property
on X* or Y, we show that K(X,Y) is still weakly sequentially complete if X* and Y
are weakly sequentially complete and every weakly compact operator from X to Y is
compact (Theorem 2.2).

The reflexivity of K (X, Y) was discussed by several authors, including Ruckle [ 14],
Holub [8], Kalton [9], Baker [3], and Godefroy and Saphar [6]. In this paper, we
also use a result of Kalton [9] to give a sufficient condition for a subset of X(X,Y)
being conditionally weakly compact (Lemma 2.4), and we show that if both X and
Y are reflexive, then K(X, Y) is reflexive if and only if K (X, Y) is weakly sequentially
complete (Theorem 2.5). We then give several examples of K(X,Y) with the weak
sequential completeness but without reflexivity.

2 Main Results

For a Banach space X, let X* denote its dual space and Bx denote its closed unit ball.
To avoid confusion, we emphasize here that throughout the paper, the weak topology
on X (X,Y) refers to the weak topology of K(X,Y) as a Banach space rather than the
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weak operator topology of K(X,Y) as an operator space. For T € L(X,Y), let T*
denote its adjoint operator and let T[X] denote the range of T. It is known that if
T € W(X,Y), then T**[X**] C Y.

Following Kalton’s paper [9], we define the w’ topology on £(X,Y) by the family
of seminorms T +— |(x**, T*(y*))|, where x** € X** and y* € Y*. Let K =
(Bx++,weak™) x (By«,weak™). Given any T € L(X,Y), by x(T), we denote the
scalar-valued function on K defined by x(T)(x**, y*) = (x**, T*(y*)). It is easy to
see that, under this map, the w’-topology in £(X,Y) corresponds to the topology of
pointwise convergence on K. Also, it follows from [9, Lemma 1] that the restriction
of x to K(X,Y) is an isometry onto a subspace of C(K).

Kalton showed in [9, Corollary 3] that if T,,7 € X(X,Y) is such that
lim,, (x**, T (y*)) = (x**, T*(y*)) for every x** € X** and every y* € Y*, then
lim, T;, = T weakly in X(X,Y). We can now use the techniques of Kalton’s proof to
obtain the following result.

Lemma 2.1 Let {T,}{° be a sequence in K(X,Y) such that {{x**, T} (y*))}{° isa
scalar-valued Cauchy sequence for every x** € X** and every y* € Y*. Then {T,}°
is a weakly Cauchy sequence in K(X,Y).

Proof For eachn € N, let f, = x(T,) in C(K). Since {T,}$° is w’-Cauchy, the
sequence {f,}7° is pointwise Cauchy in C(K), and hence converges pointwise to
some (not necessarily continuous) function f. Also since {T,}7° is w’-Cauchy, it
is w/-bounded. That is, the scalar sequence {(x**, T (y*))}{° is bounded for every
x** € X** and every y* € Y*. It follows from the Uniform Boundedness Principle
that {T,}7° is norm bounded. Therefore, {f,}$° is uniformly bounded. For every
finite regular Borel measure 12 on K, by the Lebesgue Dominated Convergence The-
orem, lim, [, fudp = [ fdu. It folows that { f,}7° is weakly Cauchy in C(K) and
hence, {T,}7° is weakly Cauchy in K(X,Y), since x is an isometry on X(X,Y). H

Lewis [10] showed that under the assumption of the metric approximation prop-
erty on X* or Y, K(X,Y) is weakly sequentially complete if X* and Y are weakly
sequentially complete and W(X,Y) = K(X,Y). We will use [9, Corollary 3] to im-
prove Lewis’ result by removing the assumption of the metric approximation prop-
erty from X* orY.

Theorem 2.2 Let X and Y be Banach spaces such that X* and Y are weakly se-
quentially complete and every weakly compact operator from X to Y is compact. Then
K(X,Y) is weakly sequentially complete.

Proof Take a weakly Cauchy sequence {T,}{° in X(X,Y). For every x** € X** and
every y* € Y*, define a linear functional ¢ on X(X,Y) by ¢(T) = (x™*, T*(y*)) for
every T € K(X,Y). Then ¢ € K(X,Y)* so that the scalar sequence {¢(T,)}° =
{{x**, T (y*)) }{° is Cauchy. Thus {T:*(x**)}° and { T} (y*) } 7° are weakly Cauchy
sequences in Y and X* respectively and hence, weakly convergent sequences in Y and
X* respectively. Define S: X** — Y by S(x**) = weaklim,, T;;* (x**) for every x** €
X** and define R: Y* — X* by R(y*) = weaklim,, T}, (y*) for every y* € Y*. Since
{T,}° is a weakly Cauchy sequence in K(X,Y), it is bounded, and hence || T,|| < ¢
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for all n € N, where c is a positive constant. Thus for every x** € X** and every
y* e Y*,

[{SG™), ™) | = i [(T5 (™), )| < [l - [y ™I sup [ TR < e [l - {1yl
n

which implies that ||S|| < cand hence S € £L(X**,Y). Similarly, R € L(Y*, X*).
Now for every x** € X** and every y* € Y*,

(¢, ROM) = im(x™, T (7)) = (T (), ) = (S™), ),

which implies that R* = S and R is weak™ to weak continuous. Thus R € W(Y*, X*)
and thereis T € L(X,Y) such that T* = R. It follows that T € W(X,Y) = KX(X,Y).
Moreover, for every x** € X** and every y* € Y*,

lim(T (), 7*) = (SG™), ) = (T (™), y*).

By [9, Corollary 3], lim, T;, = T weakly in X(X,Y), and hence, X(X,Y) is weakly
sequentially complete. ]

Recall that a Banach space X is said to have the compact approximation property
(CAP) (see [2]) if for every compact subset K of X and for every ¢ > 0 there is
T € K(X, X) such that || T(x) —x|| < eforallx € K. A Banach space X is said to have
the bounded compact approximation property (BCAP) (see [2]) if there exists A > 1
so that for every compact subset K of X and for every e > 0 there is T € K(X, X)
such that ||T(x) — x|| < e forall x € K and ||T|| < A. Every Banach space with
the bounded approximation property has the BCAP. But the converse is not true (see
[17]).

Lewis [10] characterized the weakly sequential completeness of K(X,Y) under
the assumption of the metric approximation property on X* or Y. We will use
Lemma 2.1 to improve Lewis’ result by replacing the assumption of the metric ap-
proximation property by the assumption of the bounded compact approximation

property.

Theorem 2.3 Let X and Y be Banach spaces such that either X* or Y has the BCAP.
Then K(X,Y) is weakly sequentially complete if and only if X* and Y are weakly se-
quentially complete and every weakly compact operator from X to Y is compact.

Proof Since X* and Y are isometrically isomorphic to subspaces of X(X,Y') respec-
tively, both X* and Y are weakly sequentially complete if K(X,Y) is weakly sequen-
tially complete. By Theorem 2.2, we only need to show that if X* or Y has the BCAP
and if X(X,Y) is weakly sequentially complete then W(X,Y) = K(X,Y).

Case 1: Y has the BCAP. Suppose that there would exist T € W(X,Y) but T ¢
K(X,Y). Then there is a sequence {x,}° in Bx such that {T(x,)}?° has no Cauchy
subsequence in Y. Let F be the closed subspace of Y generated by the weakly compact
subset {T(x) : x € Bx}. By [, p. 43], there exists a norm one projection P of F
onto some closed separable subspace Z of F that contains the closed linear span of
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{T(x4)}{°. Let {2}° be a dense sequence in Z. Since Y has the BCAP, there exist
A > 1and a sequence {T,}$° in X(Y,Y) with || T, || < A such that

1 .
| Tu(zi) — zi|| < e i=1,2,....,n, n=12,....

Then lim, T,,(z;) = z; in Y for eachi € N. Forany z € Z and any i,n € N with
i<n,

| Tu(2) — z|| < ||Tu(2) — Tu(z)|| + || Tu(zi) — zi]| + ||zi — 2|

< HTn(Zi) — ZiH + ()\ + 1) . ||Zi — Z”

This implies that lim, T,(z) = zin Y and hence, lim, T,,(z) = z weakly in Y for all
z€Z.

Note that Po T € W(X, Z). Then (P o T)**[X**] C Z. For every x** € X** and
every y* € Y*, since (P o T)**(x**) € Z,

lim((T, 0 PoT)™ (x™),y") = im(T, (Po )™ (x™)) , y*) = (PoT)™" (™), y"),

which implies that the scalar sequence { ((T;, o P o T)**(x**), y*)}7° is Cauchy. Note
that T, o Po T € K(X,Y). It follows from Lemma 2.1 that {T, o Po T}$° is a
weakly Cauchy sequence in K(X,Y) and hence, a weakly convergent sequence in
K(X,Y). Therefore Po T = weaklim, T, o Po T € K(X,Y). But the sequence
{(PoT)(x,)}° = {T(x,)}7° has no Cauchy subsequence in Y. This contradiction
shows that W(X,Y) = K(X,Y).

Case 2: X* has the BCAP. Note that every compact operator from Y* to X* is the
adjoint operator of a compact operator from X to Y. So K(Y*, X*) is isometrically
isomorphic to K(X,Y) and hence, is also weakly sequentially complete. It follows
from Case 1 that W(Y™*, X*) = K(Y*,X*). Note that a bounded linear operator
is (weakly) compact if and only if its adjoint operator is (weakly) compact. Thus
WX,Y) =K(X,Y). ]

Recall that a subset of a Banach space is relatively weakly compact if and only if
it is relatively weakly sequentially compact, that is, every sequence in it has a weakly
convergent subsequence. Recall that a subset of a Banach space is called conditionally
weakly compact if every sequence in it has a weakly Cauchy subsequence.

Lemma 2.4 Let X andY be Banach spaces. A subset M of K(X,Y) is conditionally

weakly compact if

(i) {T**(x**): T € M} is a relatively weakly compact set in Y for every x** € X**,
and

(i) {T*(y*): T € M} is a conditionally weakly compact set in X* for every y* € Y*.

Proof Take any sequence {T,}7° in M. Since each T, is compact, the range T:* [ X**]
is a separable subspace of Y. Without loss of generality, we may assume that Y is
separable. Thus there is a countable subset D of Y* such that the linear span of D
is dense in Y* with respect to the weak™ topology. By (ii) and by using a diagonal
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method, we may assume that {75 (d*)}7° is a weakly Cauchy sequence in X* for each
d* € D. It follows that

(2.1) lim(x™, Ty (d")) exists, Vx** e X**, Vd* € D.

Take any x** € X**, any y* € Y*, and any € > 0. Since the linear span of D is
dense in Y* with respect to the weak™ topology, it is dense in Y* with respect to the
Mackey topology. (In fact, the weak™ topology and the Mackey topology on Y* have
the same closed subspaces, see [ 16, p. 111, Corollary 6].) Thus by (i) there is z* in the
linear span of D such that

(2.2) KT (x™),y* —z")| <e/3, n=1,2,....

Note that z* is a linear combination of elements of D. By (2.1) there exists N € N
such that for all m, n > N,

(2.3) (™, Tr(2%) — Th(2"))| < /3.
By (2.2) and (2.3) forall m, n > N,
(T, (™) = T, (x™), y*)| <,

which implies that the scalar sequence {(T;*(x**), y*)}5° is Cauchy. It follows from
Lemma 2.1 that {T),}7° is a weakly Cauchy sequence in KX(X,Y). [ |

If both X and Y are reflexive Banach spaces, then Lemma 2.4 shows that every
bounded subset of K(X,Y) is conditionally weakly compact and hence, relatively
weakly compact if KX(X,Y) is weakly sequentially complete. This fact yields the fol-
lowing result.

Theorem 2.5 Ifboth X andY are reflexive Banach spaces then X(X,Y) is reflexive if
and only if it is weakly sequentially complete.

There are several examples of K(X,Y) with weak sequential completeness but
without reflexivity. We list them as follows.

(a) Itis known that weakly compact subsets in ¢; are norm compact. Thus by The-
orem 2.2, if X* is weakly sequentially complete, then so is K(X, ¢;) (see also
[10, Corollary 2.2]).

(b) By [13, p. 206, Theorem A.2], every continuous linear operator from ¢, (2 <
p < 00) to L' (1) is compact. Thus by Theorem 2.2, K(¢,, L' (1)) (2 < p < o0)
is weakly sequentially complete (also see [10, Corollary 2.3]).

(c) Itis known that if a Banach space Y is weakly sequentially complete, then it con-
tains no copy of ¢y, and that a Banach space Y contains no copy of ¢ if and only
if every continuous linear operator from ¢ to Y is compact. Thus by Theorem
2.2,ifY is weakly sequentially complete, then so is K(cg, Y).
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(d) Tt is known that if a Banach space X is a Grothendieck space, then its dual X*
is weakly sequentially complete. (In fact, every dual Banach space is weak™ se-
quentially complete, see [11, p. 230, Corollary 2.6.21].) By [12, Corollary 4.4],
every bounded linear operator from £, to £, factors through ¢, and hence, is
compact if 1 < p < 2. Thus by Theorem 2.2, X({,¢,) (1 < p < 2) is weakly
sequentially complete.

(e) Let T™ be the original Tsirelson space and let T be the dual of T* (see [4]). By [7,
Lemma 13], L({s, T) = K({so, T). Thus by Theorem 2.2, KX({,, T) is weakly
sequentially complete.

From Theorems 2.2 and 2.5 we obtain a result of Kalton in [9, Corollary 2]; that
is, if both X and Y are reflexive and £(X,Y) = K(X,Y), then £(X,Y) is reflexive. It
follows from [6, Corollary 1.6] that if a reflexive Banach space X has the CAP, then
both X and X* have the BCAP. Thus by Theorem 2.3 we obtain a result of Godefroy
and Saphar in [6, Corollary 1.3], that is, if X and Y are reflexive Banach spaces such
that either X or Y has CAP then £(X,Y) is reflexive ifand only if £(X,Y) = K(X,Y).
Moreover, by [5, Theorem 2] we obtain the following corollary, which is a general-
ization of a result of Feder and Saphar in [5, Corollaries 2.1 and 2.2] and a result of
Schatten in [15].

Corollary 2.6 Let X andY be reflexive Banach spaces such that either X orY has CAP.
IfL(X,Y) # K(X,Y) then X(X,Y) is non-conjugate. In particular, if X is a infinitely
dimensional reflexive Banach space with CAP, then K(X, X) is non-conjugate.

As a consequence of Lemma 2.4 it is interesting to mention the following re-
sults about the embedding of ¢; to K(X,Y). Recall that the classical Rosenthal’s
£,-Theorem states that a Banach space X contains no copy of ¢, if and only if every
bounded sequence in X has a weakly Cauchy subsequence, or every bounded subset
of X is conditionally weakly compact. Thus by Lemma 2.4 we obtain the following
corollary.

Corollary 2.7 If X* contains no copy of {1 and if Y is reflexive, then X(X,Y') contains
no copy of 4.

If Y* is separable, then in the proof of Lemma 2.4, D is dense in Y* with respect
to the norm topology. Thus Lemma 2.4(i) can be replaced by the condition that
{T**(x**) : T € M} is a bounded subset in Y for every x** € X**. We obtain
another corollary about embedding of ¢; to X(X,Y) as follows.

Corollary 2.8 If X* contains no copy of ¢, and if Y* is separable, then K(X,Y) con-
tains no copy of 1.
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