
Canad. Math. Bull. Vol. 44 (2), 2001 pp. 223–230

Extending the Archimedean
Positivstellensatz to the Non-Compact Case
M. Marshall

Abstract. A generalization of Schmüdgen’s Positivstellensatz is given which holds for any basic closed
semialgebraic set in Rn (compact or not). The proof is an extension of Wörmann’s proof.

The Positivstellensatz, proved by G. Stengle in [12], is a standard tool in real al-
gebraic geometry; see [2] [5] [7]. In his solution of the K-moment problem in [11],
Schmüdgen proves a surprisingly strong version of the Positivstellensatz in the com-
pact case. Schmüdgen’s result has since been extended and improved in various ways;
see [1] [4] [6] [9] [10]. In the present paper we describe an extension in another di-
rection, to the non-compact case.

Let V be an algebraic set in Rn. The coordinate ring R[V ] of V is the ring of all
polynomial functions f : V → R. R[V ] is generated as an R-algebra by x1, . . . , xn

where xi : V → R denotes the i-th coordinate function. For any finite subset S =
{ f1, . . . , fr} of R[V ], let K = KS be the basic closed semialgebraic set in V defined
by the r inequalities fi ≥ 0, i = 1, . . . , r, i.e.,

K = {a ∈ V | fi(a) ≥ 0, i = 1, . . . , r}

and let T = TS denote the preordering of R[V ] generated by f1, . . . , fr , i.e., the set
of all functions of the form f =

∑
e se f e1

1 · · · f er
r , e = (e1, . . . , er) running through

the set {0, 1}r, where each se is a sum of squares in R[V ]. A basic version of the
Positivstellensatz [7, Lemma 7.5] asserts that, for any f ∈ R[V ],

f > 0 on K iff (1 + s) f = 1 + t for some s, t ∈ T.

For more comprehensive formulations of the Positivstellensatz, see [2] [5] [7].
In [11], Schmüdgen proves, for K compact and f ∈ R[V ], f > 0 on K ⇒ f ∈ T

or, equivalently,

f ≥ 0 on K iff f + ε ∈ T for any rational ε > 0.

We refer to this latter result as the archimedean Positivstellensatz. Schmüdgen’s proof
uses methods from functional analysis. In [13] [14] Wörmann gives an algebraic
proof. As one might expect, both proofs rely heavily on the Positivstellensatz.
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As is well-known, the Positivstellensatz remains true with R replaced by an arbi-
trary real closed field. This is not true for the archimedean Positivstellensatz. On the
other hand, it is possible to extend the archimedean Positivstellensatz so as to include
the case where K is not compact. This is the content of the present paper.

The idea is to replace the constant function 1 by any function p ∈ 1 + T which
grows sufficiently rapidly on K in the sense that there exists integers M, k ≥ 0 such
that M pk ≥ xi ≥ −M pk holds on K, i = 1, . . . , n. Such a function p always exists
(see Note 1.5 below) and, for any such p, we prove (see Corollary 3.1 below) that

{
f ≥ 0 on K ⇐⇒ ∃ an integer m ≥ 0 such that ∀ rational ε > 0,

∃ an integer � ≥ 0 such that p�( f + εpm) ∈ T.

Of course, if K is compact then we can take p = 1 and what we have then is exactly
the archimedean Positivstellensatz. For another (more complicated) variation of this
same result, but with with ‘ f > 0’ replacing ‘ f ≥ 0’, see Corollary 3.2 below. Our
proof follows closely the form of Wörmann’s proof given in [13] [14].

The author wishes to thank C. Andradas and E. Becker, for looking at early ver-
sions of the paper, and for providing useful comments.

1 Extension of a Result of Wörmann

Throughout, A denotes a commutative ring with 1 and Sper (A) denotes the real
spectrum of A, i.e., the set of all orderings of A [2] [5] [7]. A preordering of A is a
subset T of A satisfying

T + T ⊆ T, TT ⊆ T and a2 ∈ T for all a ∈ A.

If T is a preordering in A, SperT(A) denotes the set of orderings of A lying over T.
For simplicity, we always assume Q ⊆ A.

In his proof of the archimedean Positivstellensatz in [13] [14], Wörmann proves
the following result in the case B = R. Our proof is an easy generalization of
Wörmann’s proof.

Theorem 1.1 Suppose B is a subring of A such that A is finitely generated over B, say
A = B[x1, . . . , xn], and T is a preordering of A such that, on SperT(A), each xi is
bounded by an element of B ∩ T. Then, for each a ∈ A there exists b ∈ B ∩ T such that
b ± a ∈ T.

Recall that a preprime of A is a subset T of A such that

T + T ⊆ T, TT ⊆ T, Q+ ⊆ T, and − 1 /∈ T.

Note 1.2 For any preprime T of A, the set

C = {a ∈ A | ∃b ∈ B ∩ T such that b ± a ∈ T}
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is a subring of A. This follows from the identity

b1b2 ± a1a2 =
1

2
(b1 ∓ a1)(b2 − a2) +

1

2
(b1 ± a1)(b2 + a2).

Any preordering is a preprime. If T is a preordering and b − a2 ∈ T, b ∈ B ∩ T, then
b + 1

4 ∈ T and b + 1
4 ± a = (b − a2) + (a ± 1

2 )2 ∈ T. Thus, if a2 ∈ C then a ∈ C .
More generally, if b − (a2

1 + · · · + a2
k) ∈ T for some b ∈ B ∩ T, then b − a2

i ∈ T so
ai ∈ C for i = 1, . . . , k. Also, since b2 − b2 = 0 ∈ T, b2, and consequently b, lies in
C for any b ∈ B, so B ⊆ C .

Proof of Theorem 1.1 Let z = x2
1+· · ·+x2

n. By our assumption, there exists c ∈ B∩T
such that c − z > 0 on SperT(A). By the (abstract) Positivstellensatz, there exists
p, q ∈ T such that (1 + p)(c − z) = 1 + q. Let T ′ = T + (c − z)T. Then c − z ∈ T ′

so, by Note 1.2 (applied to T ′), for every element a ∈ A, there exists d ∈ B such
that d − a ∈ T ′, so (d − a)(1 + p) ∈ T. In particular, there exists d ∈ B such that

(d − p)(1 + p) ∈ T. Adding ( d
2 − p)2, this yields (d + d2

4 ) − p ∈ T. Multiplying this

by c ∈ T and adding (1 + p)(c − z) ∈ T, and pz ∈ T, this yields c(1 + d
2 )2 − z ∈ T.

Since c(1 + d
2 )2 ∈ B ∩ T, we are done, using Note 1.2 again (this time applied to T).

Corollary 1.3 Suppose A is a finitely generated R-algebra, say A = R[x1, . . . , xn], T
is a preordering of A, and p is an element of 1 + T such that M pk ≥ ±xi on SperT(A),
i = 1, . . . , n, for some integers k, M ≥ 0. Then, for each f ∈ A, there exist integers
k, M ≥ 0 such that

M pk ± f ∈ T.

Proof Take B = R[p]. The hypothesis implies that each xi is bounded by an element
of B on SperT(A), so, by Theorem 1.1, there exists g ∈ B such that g ± f ∈ T, say

g =
∑k

j=0 r j p j . Take M to be any integer satisfying M ≥ ∑k
j=0 |r j |. Then, since

p − 1 ∈ T, M pk − g ∈ T so, adding, M pk ± f ∈ T.

Corollary 1.4 Suppose A is the coordinate ring of an algebraic set V ⊆ Rn, T = TS for
some finite subset S of A, and p is an element of 1 + T such that M pk ≥ |xi | holds on
KS, i = 1, . . . , n, for some integers k, M ≥ 0. Then, for each f ∈ A, there exist integers
k, M ≥ 0 such that

M pk ± f ∈ T.

Proof By Tarski’s Transfer Principle (e.g., see [5]), since the inequality M pk ≥ ±xi

holds on the set KS, it holds on the bigger set SperT(A).

Note 1.5

(1) Such an element p always exists, e.g., take

p = 1 +
n∑

i=1

x2
i .
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(2) Depending on the nature of SperT(A), there may be a “better” choice for p. For
example:

• If each xi is ≥ 0 on SperT(A) and
∑

xi − 1 ∈ T, we can take p =
∑

xi .

• If each xi is bounded on SperT(A), we can take p = 1.

(3) The integers k, M such that M pk ± f ∈ T are difficult to estimate. If we know
M pk ± xi ∈ T, i = 1, . . . , n, the identity in Note 1.2 yields NMd pkd ± f ∈ T
where d is the degree of f (viewed as a polynomial in x1, . . . , xn) and N is any
integer ≥ the sum of the absolute values of the coefficients. This estimate also
applies to preprimes.

(4) If the R-algebra A is not finitely generated, Corollary 1.3 may break down in
various ways. In the ring of global real analytic functions on a real analytic man-
ifold, for example, one does not normally expect exp(p) to be bounded by a
polynomial in p. The preordering considered in [8] provides another example:

Example 1.6 Take A to be the polynomial algebra over R in countably many vari-
ables X1, X2, . . . and let T be the preordering in A generated by the elements Xi and
(1 − Xi)(1 + Xi+1), i ≥ 1. Then

1 ≥ Xi ≥ 0

holds on SperT(A), so any p ∈ 1 + T satisfies the hypothesis of Corollary 1.3. On
the other hand, p does not satisfy the conclusion. There is some least integer � ≥ 0
such that p ∈ R[X1, . . . , X�]. Then, for any f ∈ A, if M pk − f 2 ∈ T for some
integers k, M ≥ 0 then f ∈ R[X1, . . . , X�]. The proof is the same as the proof of
[8, Proposition 1]. T = ∪n≥1Tn where Tn denotes the preordering in R[X1, . . . , Xn]
generated by X1, . . . , Xn and (1−Xi)(1+Xi+1), i = 1, . . . , n−1. If f /∈ R[X1, . . . , X�],
then M pk − f 2 ∈ Tn \ Tn−1, n > �. By [8, Lemma 2], the leading coefficient of
M pk − f 2, viewing M pk − f 2 as a polynomial in Xn, is −g2, where g is the leading
coefficient of f , and −g2 ∈ Sn−1, the preordering in R[X1, . . . , Xn−1] generated by
Xi , 1 − Xi , i = 1, . . . , n − 1. Since Sn−1 ∩ −Sn−1 = {0} [8, Lemma 1], this is
impossible.

2 The Kadison-Dubois Theorem

The other ingredient in Wörmann’s proof is the Kadison-Dubois Theorem. For T
a preprime of A, let X(T) denote the set of ring homomorphisms α : A → R such
that α(T) ≥ 0. If A is the coordinate ring of a real algebraic set V , X(T) is naturally
identified with the set

{a ∈ V | f (a) ≥ 0 for all f ∈ T}.
If T = TS, the preordering generated by some finite set S in A, this is just the set KS

considered at the beginning. The part of the Kadison-Dubois Theorem that we work
with is the following:

Theorem 2.1 Suppose T is a preprime of A which is Archimedean, i.e., for each f ∈ A,
there exists an integer M ≥ 0 such that M ± f ∈ T. Then, for any f ∈ A, the following
are equivalent:
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1. α( f ) ≥ 0 for each α ∈ X(T).
2. f + ε ∈ T for each rational ε > 0.

Proof See [3].

We use a certain self-strengthening of Theorem 2.1:

Theorem 2.2 Suppose T is a preprime of A, and p is an element of 1 + T such that,
for each f ∈ A, there exists integers k, M ≥ 0 such that M pk ± f ∈ T. Then, for any
f ∈ A, the following are equivalent:

1. α( f ) ≥ 0 for each α ∈ X(T).
2. For any sufficiently large integer m and for each rational ε > 0, there exists an integer

� ≥ 0 such that p�( f + εpm) ∈ T.

Note: If p = 1 this is just Theorem 2.1.

Proof Consider the localization A[ 1
p ] of A at p and the extension T[ 1

p ] of T to A[ 1
p ],

and let

C =
{

f ∈ A
[ 1

p

] ∣∣∣ there exists an integer N ≥ 0 such that N ± f ∈ T
[ 1

p

]}
.

Thus the preprime T ′ := T[ 1
p ] ∩C in C is Archimedean. Note: 1 ± 1

p ∈ T[ 1
p ] (since

p ∈ 1+T), so 1
p ∈ T ′. Also, for each f ∈ A, f

pk ∈ C for some k ≥ 0, so C[p] = A[ 1
p ].

Also, we have

X(T) � X
(

T
[ 1

p

])
↪→ X(T ′),

the latter map being restriction. The image of X(T[ 1
p ]) in X(T ′) consists of those α

in X(T ′) satisfying α( 1
p ) �= 0 (so α( 1

p ) > 0.) Now fix f ∈ A and pick m so large

that f
pm−1 ∈ C . If (1) holds, then α( f

pm ) ≥ 0 for all α ∈ X(T ′) so, by Theorem 2.1,
f

pm + ε ∈ T ′ for all rational ε > 0 and, clearing fractions, p�( f + εpm) ∈ T for

sufficiently large � ≥ 0. Conversely, if (2) holds, then dividing by pm+�, f
pm + ε ∈ T ′

for all rational ε > 0 so, by Theorem 2.1, α( f
pm ) ≥ 0 for all α ∈ X(T ′). Clearly this

implies α( f ) ≥ 0 for all α ∈ X(T).

Remark 2.3

(1) It is possible to generalize Theorem 2.2, replacing the set {pk | k ≥ 0} by any
multiplicative set in 1 + T.

(2) If the image of X(T) is dense in X(T ′), we can replace m by m − 1 in the above
argument.
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(3) If A = R[x1, . . . , xn], the ring C in the proof can be replaced by a ring which is
finitely generated over R. For example, we can fix k, M ≥ 0 so that M pk ± xi ∈
T, i = 1, . . . , n and take

C = R
[ x1

pk
, . . . ,

xn

pk
,

1

p

]
.

Also, if we decompose f as f =
∑d

j=0 f j(x1, . . . , xn) where f j is homogeneous
of degree j, then

f

pkd
=

n∑
j=0

1

pk(d− j)
f j

( x1

pk
, . . . ,

xn

pk

)
∈ C,

so we can take m = kd + 1.

The following example, pointed out to the author by E. Becker, is closely related
to the proof of the theorem of Pólya given in [13] [14].

Example 2.4 Let A to be the polynomial ring R[X1, . . . , Xn], T the preprime in A
generated by R+, X1, . . . , Xn,

∑
Xi − 1 and take p =

∑
Xi . Then p ∈ 1 + T and

p ± Xi ∈ T, i = 1, . . . , n, so the hypothesis of Theorem 2.2 is satisfied. By the above
remark, we can take

C = R
[ X1

p
, . . . ,

Xn

p
,

1

p

]
.

X(T) is identified with

{
a ∈ Rn | ai ≥ 0,

∑
ai ≥ 1

}
,

X(T ′) is identified with

{
(b, c) ∈ Rn+1 | bi ≥ 0,

∑
bi = 1, 1 ≥ c ≥ 0

}
,

and the image of X(T) in X(T ′) is identified with

{
(b, c) ∈ Rn+1 | bi ≥ 0,

∑
bi = 1, 1 ≥ c > 0

}
.

The image of X(T) is dense in X(T ′). By the above remark, if d = deg( f ), then
f

pd ∈ C , and we can take m = d. Thus we have the following:

Corollary 2.5 Let T be the preprime in the polynomial ring R[X1, . . . , Xn] gener-
ated by R+, X1, . . . , Xn and

∑
Xi − 1, and let p =

∑
Xi. Then a polynomial f ∈

R[X1, . . . , Xn] of degree d is non-negative on the set {a ∈ Rn | ai ≥ 0,
∑

ai ≥ 1} iff
for all rational ε > 0 there exists an integer � ≥ 0 such that p�( f + εpd) ∈ T.
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3 Extension of the Archimedean Positivstellensatz

We return now to the geometric set-up considered at the beginning. i.e., V is an
algebraic set in Rn with coordinate ring R[V ] = R[x1, . . . , xn], S = { f1, . . . , fr} is a
finite subset of R[V ], T = TS, the preordering of R[V ] generated by f1, . . . , fr , and

K = KS = {a ∈ V | fi(a) ≥ 0, i = 1, . . . , r}.

Corollary 3.1 Suppose p ∈ 1 + T is chosen so that there exist integers k, M ≥ 0 such
that M pk ≥ |xi | holds on K, i = 1, . . . , n. Then, for any f ∈ R[V ], the following are
equivalent:

(1) f is non-negative on K.
(2) For any sufficiently large integer m and for all rational ε > 0, there exists an integer

� ≥ 0 such that p�( f + εpm) ∈ T.

Proof By Corollary 1.4, we are in a position to apply Theorem 2.2. Since X(T) is
identified with K, this gives us what we want.

Corollary 3.2 Suppose p ∈ 1 + T is chosen so that there exist integers k, M ≥ 0 such
that M pk ≥ |xi | holds on K, i = 1, . . . , n. Then, for any f ∈ R[V ], the following are
equivalent:

(1) f is strictly positive on K.
(2) There exists k ≥ 0 and a rational ε > 0 such that pk f ≥ ε on K.
(3) There exists k ≥ 0 and a rational ε1 > 0 such that for any sufficiently large

integer m and for all rational ε2 > 0, there exists an integer � ≥ 0 such that
p�(pk f − ε1 + ε2 pm) ∈ T.

Proof (2) ⇒ (1) is clear, and (2) ⇔ (3) is immediate from Corollary 3.1, so it only
remains to check (1) ⇒ (2). By the Positivstellensatz, r f = 1 + s for some r, s ∈ T.
Choose kk L so large that Lpk ≥ r on K. Then Lpk f ≥ r f = 1 + s ≥ 1, so pk f ≥ 1

L
on K.

Of course, there are always plenty of choices for p; see Note 1.5. Also, if K is
compact, one can take p = 1, and what we have then is just the archimedean Posi-
tivstellensatz.

Remark 3.3 Corollary 1.4 carries over, suitably generalized, to an arbitrary real
closed field R. The results in Section 3 cannot be so extended (unless R is archime-
dean) because they depend, in an essential way, on the Kadison-Dubois Theorem.
The Kadison-Dubois Theorem tells only about the meaning of the statement ‘ f ≥ 0’
on X(T). In the non-archimedean situation, X(T) = ∅, so this has nothing much to
do with the basic closed set K.
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