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Abstract

O’Neill (The genuine Sieve of Eratosthenes. J. Funct. Program. 19(1), 2009, 95–106) has

previously considered a functional implementation for the genuine Sieve of Eratosthenes,

based on the well-known heap data structure. Here, we develop it further by adapting this

data structure to this particular application.

1 Introduction

O’Neill (2009) discussed implementing the venerable Sieve of Eratosthenes for finding

prime numbers in the lazy functional programming language Haskell (Peyton Jones,

2003). She began by pointing out that the usual ‘one-liner’

primes = sieve [2..] where sieve (p:xs) = p:sieve [x |x←xs,x ‘mod‘ p > 0]

(as given, for instance in Chapter 12.6 of Hutton’s Haskell textbook, 2007) is not the

actual sieve1 because it eliminates the multiples of already found primes differently

than Eratosthenes had intended, namely by trial division; that is, by trying to divide

each candidate still remaining in the list xs by the primes p found so far to see

whether this candidate is prime or not. Moreover, it is inefficient even as a form of

trial division, since it tries to divide in vain with primes larger than the square root

of the current candidate. She then argued that he had intended instead to construct

the multiples 2 · p, 3 · p, 4 · p, . . . of each prime p explicitly and then cross them out

from the remaining candidates. This explicit approach is more efficient than trial

division in two ways: First, the sieve requires

Θ(n · ln ln n) (1)

operations to find all the primes up to n, whereas trial division requires asymptotically

more. Second, trial division requires laborious division operations, whereas these

explicit multiples can be constructed less tediously via repeated additions. Given

that Eratosthenes developed his sieve in times of calculations by hand, he must have

intended this faster interpretation than trial division.

1 I for one had disseminated this erroneous version in my own lectures. This note can be construed as
an apology with an offering to redeem myself.
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class Multiplex mx where

starting :: Ord k ⇒ mx k

withList :: Ord k ⇒ mx k → [k] → mx k

get1st :: Ord k ⇒ mx k → k

but1st :: Ord k ⇒ mx k → mx k

Listing 1: The type class for storing list of multiples.

O’Neill (2009) then went on to develop a Haskell implementation of this explicit

approach. Her approach can be summarized as follows: Maintain a heap, where

each entry is the list of still unconsumed multiples of a particular prime already

found with the first element as the key. The laziness of Haskell constructs the next

multiple in such a conceptually infinite list only when needed. When the algorithm

needs to consume the next multiple, it can be found by taking the list with the

smallest key from the heap, taking its first element (that is its key) and returning

the rest of this list back to the heap. While this approach does attain the bound

given by Equation (1) if we disregard maintaining the data structure, maintaining

this heap incurs a logarithmic overhead with respect to the number of primes found.

In this note, we develop this approach further by fine tuning the generic heap data

structure with some observations about this particular application (in Section 2) and

then measuring how this improves performance (in Section 3). Since we wish to

compare specifically just the effects of the data structure details while keeping all the

other implementation aspects the same, let us first define a type class for different

implementations of this store for the multiples of already found primes, given as

Listing 1. That is, the type mx can act as such a store, if it offers the following four

operations:

i. creating an empty initial store;

ii. adding a conceptually infinite ascending list of multiples into it (this is where

the laziness of Haskell is employed);

iii. reading the smallest element currently stored in it and

iv. consuming this smallest element from it.

The intended meaning of this type class can be stated more formally by postulating

a fifth operation contents :: (Ord k) => mx k -> [k] for ‘the contents of the

given store as a list’ with the four axioms

i. contents starting = []

ii. contents (m ‘withList‘ xs) = contents m ‘merge‘ xs

where the merge function defined in Listing 3 merges the two ordered lists

given as inputs together into one also ordered list

iii. get1st = head . contents

iv. but1st = tail . contents

characterizing the four operations. Note that this specifies mx to be a bag that

contains as many copies of the same element as have been added. For instance,

225 = 32 · 52 would appear twice, since it is a multiple of both 3 and 5. However,

the algorithm itself would require only a set with just one copy of each multiple.
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primes :: ∀ mx k . (Multiplex mx,Integral k) ⇒ mx k → [k]

primes _ =

2 : found [3,5..] (starting :: mx k)

where found ps@(p:ps’) ms =

p : sift ps’ (ms ‘withList‘ multiplesOf ps)

sift ps@(p:ps’) ms =

case compare p (get1st ms)

of LT → found ps ms

GT → sift ps $ but1st ms

EQ → sift ps’ $ but1st ms

multiplesOf qs@(q:_) =

map (∗q) qs

Listing 2: The list of primes using the type class from Listing 1.

instance Multiplex [] where

starting = []

withList = merge

get1st = head

but1st = tail

merge :: Ord t ⇒ [t] → [t] → [t]

merge [] ys = ys

merge xs [] = xs

merge xs@(x:xs’) ys@(y:ys’)

| x < y =

x : merge xs’ ys

| otherwise =

y : merge xs ys’

Listing 3: Using Haskell’s built-in lists to store the multiples.

The type class in Listing 1 enables us to rewrite the Sieve of Eratosthenes as

suggested by O’Neill (2009) as in Listing 2, where the dummy argument merely

carries the type of store to use; the undefined value of that type suffices. This

dummy argument also turns primes from an infinite list constant into a constant

function so that it is not necessary to retain the already computed primes in memory.

The simplest store uses Haskell’s built-in list type directly, as in Listing 3. It can

be obtained directly from the axioms above by choosing contents to be the identity

function id. This is obviously not a very efficient implementation, because the store

ms will develop as

merge (merge (merge [] [9,15,21,...]︸ ︷︷ ︸
mop(3),

) [25,35,45,...]︸ ︷︷ ︸
mop(5),

) [49,63,77,...]︸ ︷︷ ︸
mop(7), . . .

(2)

where

mop(p) =
[
p2, p2 + 2 · p, p2 + 4 · p, . . .

]

denotes the infinite ascending list of odd multiples of the prime p starting from

its square p2 and inserted by the algorithm. This is a badly skewed tree of these

merge operations, and this skewedness is what slows down finding and consuming
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data PriorityQ k v = Lf

| Br !k v !(PriorityQ k v) !(PriorityQ k v)

deriving (Eq, Ord, Read, Show)

emptyPQ :: PriorityQ k v

emptyPQ = Lf

minKeyPQ :: PriorityQ k v → k

minKeyPQ (Br k v _ _) = k

minKeyPQ _ = error "Empty heap!"

insertPQ :: Ord k ⇒ k → v → PriorityQ k v → PriorityQ k v

insertPQ wk wv (Br vk vv t1 t2)

| wk � vk = Br wk wv (insertPQ vk vv t2) t1

| otherwise = Br vk vv (insertPQ wk wv t2) t1

insertPQ wk wv Lf = Br wk wv Lf Lf

siftdown :: Ord k ⇒
k → v → PriorityQ k v → PriorityQ k v → PriorityQ k v

siftdown wk wv Lf _ = Br wk wv Lf Lf

siftdown wk wv (t @ (Br vk vv _ _)) Lf

| wk � vk = Br wk wv t Lf

| otherwise = Br vk vv (Br wk wv Lf Lf) Lf

siftdown wk wv (t1 @ (Br vk1 vv1 p1 q1)) (t2 @ (Br vk2 vv2 p2 q2))

| wk � vk1 && wk � vk2 = Br wk wv t1 t2

| vk1 � vk2 = Br vk1 vv1 (siftdown wk wv p1 q1) t2

| otherwise = Br vk2 vv2 t1 (siftdown wk wv p2 q2)

Listing 4: A functional binary heap.

the smallest element. It is found by considering the first argument of each merge

operation, and this makes it linear in the number of primes found so far.

This is why O’Neill (2009) chose instead a heap as the store: It keeps the data

structure balanced, and thereby reduces this search for the smallest element from

linear to logarithmic. Subsequently, Smith collected and made the code in her article

available (O’Neill & Smith, 2009). This code uses the functional generic binary heap

shown in Listing 4, which is a Haskell translation of the Standard ML code given

by Paulson (1996) in Chapter 4.16.

With this generic heap as the store, (one copy of) the smallest element is consumed

as follows:

The key for the root node r can be consumed by moving the first

element from the datum for r to become its new, larger key and

restoring the heap property by shifting down this changed node

into its proper place in the heap.

(3)

Listing 5 implements this key consumption rule (3), where the function siftdown

implements the actual shifting. Figure 1 illustrates its operation: The tree on the left

shows the two highest levels of the heap when key 21 is being consumed, marked by

crossing it out. The circled numbers are the keys, with the associated data shown to

their right. The tree on the right shows the result: 27 becomes the new key, and the
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newtype Heap0 k

= Heap0 (PriorityQ k [k])

instance Multiplex Heap0 where

starting =

Heap0 emptyPQ

(Heap0 h) ‘withList‘ (x:xs) =

Heap0 $ insertPQ x xs h

get1st (Heap0 h) =

minKeyPQ h

but1st (Heap0 (Br _ (x:xs) t1 t2)) =

Heap0 $ siftdown x xs t1 t2

Listing 5: Using the traditional heap in Listing 4.

21  27,33,...

25  35,45,... 49  63,77,... 27  33,39,... 49  63,77,...

25  35,45,...becomes

Fig. 1. Deleting the key at the root and shifting its list down in the heap.

corresponding root node has swapped places with the old left child, as indicated by

the dotted arrow.

2 Stealing your children’s keys

The heap is useful whenever we must maintain a collection of data, where each

datum has its own associated key, and this data is processed in the order prescribed

by these keys. However, in this particular application, we can make the following

three observations, where the first two are immediate while the third merits a small

proof:

I. Here, each datum is, in fact, a source of future keys, rather than some generic

value.

That is, in this sense, we have here a stronger connection between a key and

its datum than in the generic heap data structure.

II. Here, we are only interested in consuming these current and future keys in

ascending order. Hence, we are allowed to associate a key with any datum

we wish, and not just the one originally associated with it, as long as we

maintain the heap property.

That is, in this sense, we have here a weaker connection between a key and

its datum than in the generic heap data structure.

III. Suppose that the algorithm has just determined that the current candidate p

is indeed a prime and is therefore adding its list mop(p) into the current

heap. Then, the key p2 of this new list is larger than any key in the current

heap.
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21  27,33,...

...,77,36  94...,77,36  94...,54,53  52

becomes

25  35,45,...

25  27,33,...

Fig. 2. Deleting the key at the root and shifting another into its place.

Proof

Assume to the contrary that the list for some previously found prime q < p

starts with some element q2 + 2 · r · q > p2, where r > 0 is the number of

elements already consumed from this list. This inequality can be rearranged

into r > p−q
2
· p+q

q
where the first fraction equals the number of candidates

tested by the sieve for primality between finding q and reaching p, and the

second fraction is more than 1. This, in turn, contradicts the fact that testing

a candidate for primality consumes at most one element from any list. �

Listing 5 did not take any of these three observations into account while updating

its heap, so let us now fine tune it by doing so.

The first two observations suggest the following rule for consuming a key instead

of the earlier key consumption rule (3):

If the first element in the datum for n, the node whose current key

is being consumed, can become its new key without violating the

heap property, then so be it, by observation I. Otherwise, steal the

smallest key from the (one or two) children of n, and the child who

lost its key is then responsible for finding itself a new key, using

again this rule (4) recursively, by observation II.

(4)

On the one hand, note that the proof given above for observation III continues

to hold for this new key consumption rule (4) as well. On the other hand, note

that the ‘pleasing but minor optimization’, as characterized by O’Neill (2009), of

starting mop(p) with p2 instead of 2 · p now becomes central: While the analogue

for observation III would hold even without this optimization when the old rule (3)

is used, this might no longer be guaranteed when this new rule (4) is used instead.

Figure 2 illustrates the operation of this new rule (4): 27 cannot replace the

consumed key 21, because this would violate the heap property, so 25 gets stolen

from the left child, as indicated by the dotted arrow, which must then find another

key to replace it. If 35 suffices as the replacement for the left child, so be it; otherwise,

the left child will, in turn, steal itself a new replacement key from its own children.

The usefulness of this new rule (4) versus the original rule (3) can be seen by

comparing how the computation proceeds after Figure 1 versus Figure 2: First the

next prime 23 is found and its list mop(23) is added, but this does not alter these two

top levels in either figure. Then, the key 25 gets consumed. In Figure 1, this results

in swapping the root and its left child back to their original positions, whereas in

Figure 2, it suffices to take 27 as the new key from the list, which has stayed in its

original place. This demonstrates that rule (4) can involve less work and fewer node

allocations than rule (3), warranting its further study.
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In general, such savings stem from the fact that key consumption retains the lists

in the same positions within the heap when rule (4) is used – only the keys move

to restore their heap order. This opens another optimization possibility: Ensure that

each list will be in a good position within the heap. By this, we mean that the most

frequently accessed lists should be positioned closest to the root. The list mop(p) is

accessed more frequently than the list mop(p) whenever p < q. Hence, we see that a

good position for the next list to insert is (a) on the one hand as close to the root

as possible, (b) but on the other hand no closer than any of the previously inserted

lists. For instance, the merge expression tree in Equation (2) fails miserably both of

these desirable properties (a) and (b).

Fortunately, observation III and a binary heap together guarantee such a good

positioning: Observation III ensures that when the list mop(p) for the most recently

found prime p is being inserted, its initial key p2 is larger than any key already

in the heap. A binary heap ensures, in turn, that when such a key is inserted, its

new node will be positioned as close to the root as possible (so property (a) is now

satisfied) without having to alter the distances of any existing nodes from the root

(so property (b) is now satisfied as well).

Listing 6 implements this approach. Note how myInsertPQ simplifies and opti-

mizes the insertPQ in Listing 4 through observation III. Indeed, this optimization

would apply also to Listing 5, but there its effects would be minor, since its key

consumption rule (3) would later shuffle the positions of the lists within the heap

anyway.

3 Measurement results

Since the original implementation in Listing 5 already attains the asymptotically

optimal number of arithmetic operations given as Equation (1), and both the

original and our implementation incur the asymptotically same overhead for the

heap operations, we can only hope that our own implementation in Listing 6 with

its fine-tuned heap manages to reduce the constant factors. Hence, we turn to

measuring and comparing their performance with respect to each other.

Our measurements were carried out with compiled and optimized code, to

avoid measuring the perhaps substantial overheads caused by using the typeclass

Multiplex. More precisely, we used the Glasgow Haskell Compiler (GHC) ver-

sion 6.10.3 with the options -O2 -funbox-strict-fields on the Linux Fedora

Core 11 operating system. We used one processor core of a Lenovo ThinkPad model

T60p with a 2.33 GHz Intel Core 2 Duo T7600 processor. Arithmetic was performed

using the built-in type Int so that Equation (1) remains valid.

We measured the user time spent on computing the mth odd prime. The results

are shown as Figure 3, which does indeed show the improvement that we hoped for.

The intermittent staircase-like jumps in the measured timings are probably due to

the effects of garbage collections. They too show an improvement as delays in these

jumps due to fewer allocations required by our method.

One way to summarize the improvement shown in Figure 3 is as follows. Take

Equation (1) as an asymptotic estimate for the work performed by the algorithm,
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Fig. 3. The measurement results.

except for the heap overhead. The mth prime is about m · lnm, so we can replace

the quantity n in it with this estimate to get a function of m, the quantity used in

our tests. The heap overhead can, in turn, be incorporated by multiplying it further

with lnm. This gives us an estimate of the form a · m · (lnm)2 · ln ln(m · lnm) + b for

the running time. Fitting this estimate to our measurements yields

coefficient a coefficient b

2.94105 · 10−8 2.0341 · 10−7 for Listing 5

2.44391 · 10−8 2.03409 · 10−7 for Listing 6.

These two curves are also drawn in Figure 3. Comparing their leading coefficients a

summarizes our improvement as 1− 2.44391
2.94105

≈ 17%.

Note finally that O’Neill (2009) also showed how the sieve can be optimized

further by adding a wheel for the first few primes. For instance, she obtained a

threefold speedup to her heap-based sieve by adding a wheel for the first four

primes 2, 3, 5 and 7. The gist of this optimization is to avoid having to maintain

their multiples in the store, and not in altering the properties of the store itself. In

contrast, our optimization addresses the properties of the store. Hence, these two

optimizations could also coexist in the same code.

4 Conclusion

We have reconsidered O’Neill’s (2009) functional implementation for the genuine

Sieve of Eratosthenes, which was based on using the well-known heap data structure.

Here, we developed her approach further by fine tuning this generic data structure

for this particular application. This led to a performance increase of about 17%

according to our measurements.
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mySiftdown :: Ord k ⇒
[k] → PriorityQ k [k] → PriorityQ k [k] → PriorityQ k [k]

mySiftdown (wk:wv) Lf _ = Br wk wv Lf Lf

mySiftdown (wk:wv) (t @ (Br vk vv _ _)) Lf

| wk � vk = Br wk wv t Lf

| otherwise = Br vk vv (Br wk wv Lf Lf) Lf

mySiftdown w@(wk:wv) (t1 @ (Br vk1 vv1 p1 q1)) (t2 @ (Br vk2 vv2 p2 q2))

| wk � vk1 && wk � vk2 = Br wk wv t1 t2

| vk1 � vk2 = Br vk1 w (mySiftdown vv1 p1 q1) t2

| otherwise = Br vk2 w t1 (mySiftdown vv2 p2 q2)

myInsertPQ :: Ord k ⇒ [k] → PriorityQ k [k] → PriorityQ k [k]

myInsertPQ w (Br vk vv t1 t2) =

Br vk vv (myInsertPQ w t2) t1

myInsertPQ (wk:wv) Lf =

Br wk wv Lf Lf

newtype Heap1 k

= Heap1 (PriorityQ k [k])

instance Multiplex Heap1 where

starting =

Heap1 emptyPQ

(Heap1 h) ‘withList‘ xs =

Heap1 $ myInsertPQ xs h

get1st (Heap1 h) =

minKeyPQ h

but1st (Heap1 (Br _ xs t1 t2)) =

Heap1 $ mySiftdown xs t1 t2

Listing 6: Our alternative for Listing 5.

In closing, we would like to point out two open questions on how this approach

could be improved further:

• First, is there an efficient functional data structure for the set of multiples

instead of the bag used here? Or failing that, is there some data structure

between them which would be able to eliminate at least some of the repeated

elements internally?

• Second, we have developed here a good positioning for the lists of multiples of

already found primes, based on balanced binary trees and the order in which

these lists arrive. Can even better placements be developed instead, based on

some other kinds of trees or the contents of these lists?
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