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Abstract

We study the existence, uniqueness and regularity of solutions to an exterior elliptic free boundary
problem. The solutions model stationary solutions to nonlinear diffusion reaction problems, that is,
they have compact support and satisfy both homogeneous Dirichlet and Neumann-type boundary
conditions on the free boundary 3 {u > 0}. Then we prove convexity and symmetry properties of the
free boundary and of the level sets {u > ¢} of the solutions. We also establish symmetry properties
for the corresponding interior free boundary problem.

1980 Mathematics subject classification (Amer. Math. Soc.): 351 65, 35 1 20, 35 B 50, 26 D 10.

Introduction

Consider the exterior boundary value problem
(1.1) Au=Af(u) inR"\Q,A>0,
(1.2) u=1 onQ, u(x) >0 as|x| - oo,
with @ a bounded domain. Under suitable assumptions on f, one can show that
this problem has solutions with compact support. We shall prove that the
symmetry and convexity properties of £ are “inherited” by the support of any

solutions to (1.1), (1.2). Our study was motivated by a recent paper of Friedman
and Phiilips (1984) on the corresponding interior problem. The relevance of such
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free boundary problems is described for example in Bandle, Sperb and Stakgold
(1984), Diaz and Herrero (1981), Friedman and Phillips (1984) or Frank and
Wendt (1984).

This paper is organized as follows. In Section 1 we discuss existence and
uniqueness of solutions by variational methods and introduce some notation. In
Section 2 we modify the so called Gabriel-Lewis method to prove convexity of all
level sets €,.:= {x € R"|u(x) > ¢} of solutions to (1.1), (1.2). In Section 3 we
discuss the symmetry properties of variational solutions. Finally in Section 4 we
comment on the corresponding interior problem.

1. Existence and regularity

Let £ c R” be a bounded domain with boundary 99 of class C** We want to
state existence, uniqueness and regularity results for the exterior problem (1.1),
(1.2). It will be convenient to refer to one or several of the following assumptions
about f.

(1.3) f(t)=0fort <0, f(t)>0fort>0, f~t*

as1}0(0 <a <1)and f € C}((0,1]).

(1.4) f is monotone, f(t) =0fort <0, f(¢)>0
' for0 <r<1.
(1.5) f e Cc*#((0,1)) for some B € (0,1).
(1.6) [ ()" dt < o0, where F(r) = [ () dr.
0 0

Notice that a mapping f satisfying (1.4)—(1.6) might have a jump discontinuity at
zero and that (1.3) implies (1.6). A standard example of a function f satisfying
(1.3) or (1.4)—(1.6) is f(¢) = (¢*)?, 0 < p < 1. The following results appear to be
more or less well known.

PrOPOSITION 1.1. If f satisfies (1.4), (1.5) and (1.6), then there exists a unique
solution u € C*#(D) N CYMR"\ Q) to the exterior problem (1.1), (1.2). Here
D:= {(x €R"|0 < u(x) <1}, and A € (0,1).

PROPOSITION 1.2. If f satisfies (1.3), then there exists a classical solution
u € C**(R"\ Q), with compact support, to the exterior problem (1.1), (1.2).

Let us give the proof of Proposition 1.1 in some detail and only sketch the
proof of Proposition 1.2.
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PROOF OF PROPOSITION 1.1. Since by the maximum principle # will only
assume values between 0 and 1, we may alter the mapping f outside the unit
interval and introduce a maximal monotone mapping B on R with the properties
B(u) = { f(u)} for u in (0,1], -B(~u) = B(u) on R and R(B) = R. In Diaz and
Herrero (1981) one can find that the modified problem
(1.7) Aue B(u) inR™"\Q,

(1.2) u=1 on8, u(x)->0 as|x|- oo,
has a unique weak solution ¥ € W1?(R"\ ) with compact support, 1 < p < co.
Condition (1.6) is needed to prove the compactness of supp u. In the domain D
the solution u of problem (1.7), (1.2) also satisfies equation (1.1) and is therefore
a solution to (1.1), (1.2). The uniqueness follows from standard monotonicity
arguments because u is a solution to the variational problem
(19) Min S (0)i= [ {5190 + F(o(x)} ax,

ve H'(B) B

pot P 1
where B is a sufficiently large ball containing D, and because J,, is coercive and
convex under assumption (1.4). The C># regularity of u in D\ @ is a conse-
quence of (1.5). Since f is bounded on [0, 1], we may interpret (1.1) as a linear
equation with L*® right-hand side and so obtain W >®-regularity of  in R"\ Q.

The last assertion of Proposition 1.1 follows now from Sobolev’s embedding

theorem.

Before we proceed with the proof of Proposition 1.2, let us define variational
solutions of our problem and make some heuristic remarks.

We call u € H\(R") a variational solution of the exterior problem (1.1), (1.2) if
it solves (1.8). Clearly any variational solution of the exterior problem satisfies
(1.1) in a weak sense and, if (1.3) is assumed, constitutes a classical solution. So
once we prove the existence of a variational solution u, to the exterior problem,
with compact support, the proof of Proposition 1.2 is complete. We are faced with
the difficulty that the function F in (1.8) does not have to be convex. Suppose we
replace F by F, where F is convex and F < F, and suppose that we can show
that there exists a (necessarily unique) variational solution # of this modified
problem. Then we expect & to have larger support than u for the following
reason. The term f, F(v(x))dx can be interpreted as a penalty term for the
support of v, and there is a smaller penalty on the support of v if we replace F
by F. This idea led us to the following

PROOF OF PROPOSITION 1.2. We replace f(t) by f(1):= min_, f(s). Obvi-

ously, f(#) < f(t), and f(z) is a monotone function of class C*(R). Conse-
quently, we may proceed as in the proof of Proposition 1.1. We have to observe
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that f satisfies (1.6), because f satisfies (1.3), and we obtain a solution # €
C>*(R"\ ), with compact support, of the modified problem A& = f(it) in
R"\ &, 2 =1 on Q. From a comparison argument, we may now conclude that
u < @ for any classical solution of (1.1), (1.2). If a classical solution i@ of (1.1),
(1.2) exists, it will have zero boundary values on the boundary of supp it. Hence
we have reduced problem (1.1), (1.2) to a semilinear Dirichlet problem on a
bounded domain which is solvable by standard arguments.

Let us summarize what we know about the exterior problem. There exist
solutions u with compact support. The boundary of the support is called the free
boundary, and we shall denote it by T. Since u is of class C! across the free
boundary, u formally satisfies:

du

on

If T is singular, then the normal derivative of u might not be well defined. For
Holder continuous functions f, the Cl-regularity of T' was established by
Friedman and Phillips (1984), but we allow f to be discontinuous. Aside from
their results, little seems to be known about the shape of the free boundary. In
Kawohl (1983b) the following result was derived by a rearrangement method.

(1.9 u=0 and =0 onT.

PROPOSITION 1.3. Let Q and f satisfy the assumptions of Proposition 1.1 or 1.2.
(a) If Q is starshaped with respect to a point x° € Q, then so also is the support of
u.
(b) If Q is starshaped with respect to each point x in an e-neighborhood of zero,
then the free boundary is Lipschitz continuous.

Notice that the assumptions of (b) are satisfied without loss of generality for
convex domains with nonempty interior, since problem (1.1), (1.2) is translation
invariant. For Lipschitz continuous free boundaries, the normal derivative is
defined almost everywhere, and hence boundary condition (1.9) makes sense and
has to be understood a.e. on T'.

2. Convexity of the free boundary for the exterior problem

THEOREM 2.1. If f satisfies (1.4), (1.5) and (1.6), and if @ C R" is a convex,
bounded domain with nonempty interior, then all the level sets & .:= {x € R*|u(x)
> 0} of the solution u to problem (1.1), (1.2), and in particular the support of u, are
convex.
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PrROOF. This proof is an extension of the so-called Gabriel-Lewis method. A
continuous function u on a convex domain C is known to have convex level sets
{u > c} if and only if an auxiliary function Q possesses the right sign:

(2.1) Q(x,,x,):= u(%(x1 + xz)) ~ min{u(x,),u(x,)} >0 inC X C.

In this case we call u quasiconcave. The strategy of the proof consists in verifying
(2.1). To this end let C:= the open convex hull of D. Once we manage to show
that C = U D, we may then apply arguments from Kawohl (1983a) to conclude
that other level sets of u are convex. If (2.1) is violated, then there exists a pair of
points (y;, y,) € C X C such that

Q attains a global negative minimum at ( y,, ,), and
(2.2) 1 )
u( 300+ ) < min{u(n), u(r)};
and since 4 > 0in C and 4 = 0 on 3C, we already know
ntnyn
2
The next steps in the proof are aimed at showing that y,, y, and (y, + »,)/2 are
all in D (Lemmas 2.4(b) and 2.6(b)). In Kawohl (1983a) one can find a proof of
the following result.

(2.3) y, and , (and ) arein C.

LEMMA 2.3. If suppu and Q are starshaped with respect to x° € Q, then
(x — x%)u(x)<0inD.

Using Proposition 1.3 and the convexity of {2, we obtain

(2.4) (x — x°)Vu(x) <0 in D forany x’ € Q,
and, in particular,
(2.5) |vu(x)|>0 in D.

LEMMA 2.4. (a) u(y,) = u(y,) > 0. B
(b) », € D, y, € Dand (3, + y,)/2 € C\ &.

PRrOOF. (a) Suppose that u(y,)< u(y,). Then in a neighborhood of ( y,, y,) the
quasiconcavity function Q has the C*representation

03, x3) = u( 3 (51 + %)) = u(x),

and the gradients of C with respect to x, and x, have to vanish at (y,, y,), i.e.,

59u( 300+ 2] = vum) = 0.

https://doi.org/10.1017/51446788700033954 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700033954

62 Bernhard Kawohl [6]

But this implies that u(y,) = 0 because of (2.5), and hence Q(y;, y,) = 0 in
contrast to (2.2). Therefore u( y,) has to be equal to u( y,). If they are both zero,
then again Q(y,, y,) = 0, which contradicts (2.2).

(b) We know from Lemma 2.4(a) that y, € D U @ and that y, € D U Q. We
have therefore to exclude the possibilities (1) y, and y, € €, and (i) y, € @ and
y, € D. In case (i) we have (y, + y,)/2 € & by the convexxty of , and we have
Q(y1, »,) = 0. In case (ii) we apply Lemma 2.3 with x® =y, and x =y, and
even get that Q(y, ,) > 0. Finally, (y;, +»,)/2 € Q implies Q(y,, »,) > 0
sinceu < 1onR"

In order to prove that (y;, + y,)/2 € D, we have to compare the gradients of u
at y,, y, and (y; + »,)/2. Recall that, because of Proposition 1.2 and Lemma
2.4(b), the function u is differentiable at those three points.

LEMMA 2.5. Vu(y,) is parallel to and has the same direction as vV u( y,).

PrOOF. If this were not the case, then there would exist a unit vector £ € R”
such that u.(y,) <0 and u.(y,)> 0. This would contradict the fact that Q
attains its minimum at (y,, y,), since one could diminish Q¢ by moving y, in
direction —£ and y, in direction §.

LEMMA 2.6. (a) Vu((y, + y,)/2) does not vanish; moreover, it is parallel to and
has the same direction as v u( y,) (or v u(y,)).

b)Y (»n +3)/2 € D.

PROOF. If h is a unit vector in R" and ¢ a small positive number, then
Q(yy +th,y, + th) — Q(y, ,) = 0. f vu((y, +y,)/2) would now vanish,
then one could diminish @ by choosing 7 = Vu( y,). The remainder of (a) is now
obtained as in the proof of Lemma 2.5. Assertion (b) follows from (a) and from
Lemma 2.4(a).

Let us summarize: up to this point we have ruled out many possible locations
of the extremal triple y,, y, and (y, + y,)/2. The remaining alternative is that
Y1, ¥, and (y; + »,)/2 are all in D. This may be excluded because of the special
structure of equation (1.1). Notice that u is three times differentiable in a
neighborhood of y,, y, and (y, + y,)/2, so that we may in fact use equation
(1.1). This was sketched in Kawohl (1983a), but for the reader’s convenience we
shall present the details here. In the first part of the following lemma we upgrade
the qualitative statements of Lemmas 2.5 and 2.6 to quantitative ones. We
introduce the notation

nt }’2)
2

ai= |vuf L b= |vu(n)| and = [vu(n)].
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LeMMA 2.7.
1 1(1 1
(2) a=1l3+7)
1 Nntn 1 1
(b) S8u( 252 > o hu(n) + S au().

PROOF. Let us define n:= vu(y,)/b and let us fix a unit vector # € R" with
the property
(2.6) h-n#+0.
We want to move from y, to y; + sh/b, and from y, to y, + r(s)h/c, in such a
way that the side constraint u(x;) = u(x,) remains satisfied. Notice that because
of Lemma 2.4 the points y,, y, provide a solution to the constrained minimiza-
tion problem
X; + x,

3 ) — u(>x;) subject to u(x;) = u(x,).

(27)  minimize u(

Since |vu] # 0 in D (see (2.5)), and since u € C3(D), there exists a C2-function
r(s) such that for every small real number s, the relation

(2.8) u(y1 + %h) - u(y2 + ’(cs)h)

holds. This follows from the implicit function theorem. We differentiate (2.8) with
respect to s to obtain

(2.9) %u,,(y1 + %h) _ () u,,(y2 + @h),

and so for s = 0 we have
(2.10) r0)=1.

Another differentiation of (2.9) at s = 0 gives

(2.11) Bliuhh()’l) = éuhh(y2) + "J’S._O)“h()ﬁ)-

Now let us consider the auxiliary function
O(s,h) = Q(y, + sh/b, y, + r(s)h/c).

For every h € R", the function Q attains a negative minimum at s = 0. Therefore
30Q/3s has to vanish, and we have 32Q/3%s > 0. Let us calculate these two
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quantities and observe (2.7). First, we have

(2.12) %g(s,h)= %(% + "(s))u,,(y‘ tr %(5 + M)h)

c 2 b c

1 s
‘E“"(yl + 3")-

For s = 0 this gives the first assertion of Lemma 2.7. Second, we have

@ GR0m=[1; ()

[

1 r(0) ntn
t3 p “h( 5 ) bzuhh(y1)>0

A combination of (2.13), (2.11) and Lemma 2.7(a) now yields

1 oty l 1
(2.14) _3“hh( : 2 2)> YE up(y1) + e 3“hh(Y2)
and summation over n orthogonal unit vectors # will complete the proof of
Lemma 2.7.

Now we are in a position to complete the proof of Theorem 2.1. We recall that
Au = f(u)in D, and Lemma 2.4(a) and 2.7(b) together imply that

Nnty 1 1
2.15 —(( ));(——+—) u .
(2.15) / 5 50 ) /(W)
If we assume for the moment that f is strictly monotone, then inequality (2.15)
together with (2.2) yields

@0 A (222

Notice that because of Lemma 2.7(a) and the positivity of f we have

1 1 1 1 1
and this contradicts the convexity of 1/x3. If the function f is not strictly
monotone on (0,1), we may approximate it by a strictly monotone one
f(u):= f(u) + eu”, where & > 0 is small. Then problem (1.1), (1.2) has an
increasing sequence of quasiconcave approximating solutions u,. It is easy to see
that u, < u and that |f,(u,) — f(¥)]<e in B\Q, where B is a large ball
containing D. Standard a priori estimates as in Nedas (1967) or Ladyzhenskaya
and Ural'tseva (1968) show that u, — u — 0 in W2?(B\ Q) for all p sufficiently
large. This implies the uniform convergence of u, to ¥ on R". Therefore, in (2.18)
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below, we may pass to the limit as ¢ — 0 and thereby complete the proof of
Theorem 2.1.
X+ x,

(2.18) Q.(xy,x,) = u(——i—) — min{u,(x,),u,(x,)} >0 onR" X R".

REMARK 2.1. The inequality in Lemma 2.7(b) will also lead to a contradiction
for solutions of

Bu = by(w)|vul* + by(u),
where b, and b, are monotone nondecreasing, and where b, is positive for
positive u. In order to prove Lemma 2.3 for such an equation, one needs an
additional assumption such as 9b,/du > 2b,. Another generalization of this
approach to degenerate quasilinear elliptic equations is described in Kawohl
(1983c¢). Finally, notice that porous medium-type equations -A(u™) + g(u) =0
can be treated with our method by making the substitution v = u™.

REMARK 2.2. The following results were previously known, and their proofs use
related variants of our method. If ¥ =1 in €, and u =0 on 9Q,, where
2, € c Q,, and where both &, and @, are convex, and if u satisfies

Au=0 inQy\ Q,
or
div(|vul’'vu) =0 in 2\ 9,
or
Au = f(u) inQy\ Q, with f positive and monotone,
then all the level sets of u are convex sets. These results were derived by Gabriel
(1957), Lewis (1977) and Caffarelli and Spruck (1982).

3. Symmetry of the free boundary

We intend to establish symmetry properties of the free boundary for symmetric
domains 2. We call a domain & C R” convex in (direction) x, if, for any fixed
point x’ = (X,,...,X,_;) € R""!, the orthogonal line to the (n — 1)-dimensional
hyperplane { x, = 0} through (x’, 0) intersects 3 at most twice.

THEOREM 3.1. If f satisfies the assumptions of Proposition 1.1 or 1.2, and if
Q C R” satisfies

(3.1)

Q is symmetric with respect to the (n — 1)-dimensional
hyperplane {x = (x,,...,x,) € R"|x, = 0} and convex in x,,,
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and if u is a variational solution of the exterior problem (1.1), (1.2), then all the level
sets Q.= {x € R"|u(x) > c} of usatisfy (3.1), and, in particular, the support of
u is symmetric with respect to {x, = 0}. Furthermore, if Q is a ball with center at
the origin, then so also are all the level sets of u.

PrROOF. The proof is an application of Steiner symmetrization in R"” as
described in Polya and Szegd (1952) and in Kawohl (1984a). If « is a variational
solution of (1.1), (1.2), then J(u) = J(u*), where u* denotes the Steiner-symme-
trization of u with respect to x,. If the variational solution is unique, as it is
under the assumptions of Proposition 1.1, then u has to equal u*, and u is
symmetrically decreasing in x,. Under the assumptions of Proposition 1.2,
however, the variational solutions need not be unique. Nevertheless, it was shown
by Friedman and Phillips (1984) that they are nested:

If u and v are two different variational solutions of (1.1),
(3.2) (1.2), then either u > v in {v > 0} and suppu D suppv, or
v>uin {u > 0} and suppv D suppu.

In the context of symmetrization, property (3.2) is a good substitute for unique-
ness. This was observed in Kawohl (1983b). Let us now suppose that u # u* in
contrast to Theorem 3.1. Then u and u* form two different variational solutions
of (1.1), (1.2), and either suppu D suppu* or suppu* D supp u. Either case
implies that supp u = supp u*, since ¥ and u* are equimeasurable. Hence u = u*,
which proves Theorem 3.1.

REMARK 3.1. Notice that the result of this paragraph does not follow from the
work of Gidas, Ni and Nirenberg (1979).

4. The interior problem

The corresponding interior problem
(4.1) Au=Af(u) mQCR", A>0,
(4.2) u=1 ondQ,
was recently studied by Friedman and Phillips. In this case one is interested in the
so called “dead core” {x € |u(x) = 0}. By a method which is totally unrelated
to ours, they proved that for n = 2 and convex £ the dead core has to be convex.
This result has been extended to arbitrary dimensions in Kawohl (1984b).

Estimates of the size of the dead core may be found in Bandle, Sperb, Stakgold
(1984). The symmetry result Theorem 3.1 has an obvious analogue for solutions
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of the interior problem. To prove this analogous result, one has to show that
(1 -u)=(1—u)*. A weaker symmetry result for solutions of the interior
problem was stated in Friedman and Phillips (1984), Theorem 1.10, where it was
shown that the minimal and maximal solutions of problem (4.1), (4.2) on a ball
do not depend on the angular coordinates. Notice that our result implies that
du/dr > O for variational solutions on balls.
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