
Glasgow Math. J. 49 (2007) 357–366. C© 2007 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089507003710. Printed in the United Kingdom

ON THE GEOMETRY OF THE SPACE OF ORIENTED LINES
OF THE HYPERBOLIC SPACE

MARCOS SALVAI∗

FAMAF – CIEM, Ciudad Universitaria, 5000 Córdoba, Argentina
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Abstract. Let H be the n-dimensional hyperbolic space of constant sectional
curvature −1 and let G be the identity component of the isometry group of H. We find
all the G-invariant pseudo-Riemannian metrics on the spaceGn of oriented geodesics of
H (modulo orientation preserving reparametrizations). We characterize the null, time-
and space-like curves, providing a relationship between the geometries of Gn and H.
Moreover, we show that G3 is Kähler and find an orthogonal almost complex structure
on G7.
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1. Introduction. Let M be a Hadamard manifold (a complete simply connected
Riemannian manifold with nonpositive sectional curvature) of dimension n + 1. An
oriented geodesic c of M is a complete connected totally geodesic oriented submanifold
of M of dimension one. We may think of c as the equivalence class of unit speed
geodesics γ : � → M with image c such that {γ̇ (t)} is a positive basis of Tγ (t)c for all t.
Let G = G(M) denote the space of all oriented geodesics of M. The space of geodesics
of a manifold all of whose geodesics are periodic with the same length is studied with
detail in [1]. The geometry of the space of oriented lines of Euclidean space is studied
in [3, 9, 10].

Let T1M be the unit tangent bundle of M and ξ the spray of M, that is, the vector
field on T1M defined by ξ (v) = d/dt|0γ ′

v(t), where γv is the unique geodesic in M with
initial velocity v. Clearly, G may be identified with the set of oriented leaves of the
foliation of T1M induced by ξ . By [7], if M is Hadamard, this foliation is regular in
the sense of Palais [8]. Hence, G admits a unique differentiable structure of dimension
2n such that the natural projection T1M → G is a submersion.

Fix o ∈ M and let Exp : ToM → M denote the geodesic exponential map. Let
S = {v ∈ ToM | ‖v‖ = 1} ∼= Sn. We identify as usual TvS ∼= v⊥ ⊂ ToM. Hence, TS ∼=
{(v, x) | v ∈ S and 〈v, x〉 = 0}. Let F : TS → G be defined by

F(v, x) = [γ ],

where γ is the unique geodesic in M with initial velocity τ 1
0 v (here τ denotes parallel

transport along the geodesic t → Exp (tx) of M). This is called the minitwistor
construction in [5]. Keilhauer proved in [7] that F is a diffeomorphism.
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2. The geometry of G for the hyperbolic space. Let H = Hn+1 be the hyperbolic
space of constant sectional curvature −1 and dimension n + 1. Consider on �n+2 the
basis {e0, e1, . . . , en+1} and the inner product whose associated norm is given by ‖x‖ =
〈x, x〉 = −x2

0 + x2
1 + · · · + x2

n+1. Then H = {x ∈ �n+2 | ‖x‖ = −1 and x0 > 0} with the
induced metric. Let G be the identity component of the isometry group of H, that is,

G = Oo(1, n + 1) = {g ∈ O(1, n + 1) | (ge0)0 > 0 and det g > 0}.

In the following we denote Gm = G(Hm) (or simply G if no confusion is possible).
The group G acts on G as follows: g[γ ] = [g ◦ γ ]. This action is transitive, since H is
two-point homogeneous, and smooth, since G acts smoothly on T1H.

Let γo be the geodesic in H with γo(0) = e0 and initial velocity e1 ∈ Te0 H. The
isotropy subgroup of G at co := [γo] is

Go = {diag (Tt, A) | t ∈ �, A ∈ SOn} ∼= � × SOn,

where Tt = (cosh t sinh t
sinh t cosh t

)
. Therefore we may identify G with G/Go in the usual way. Let

g be the Lie algebra of G and let

go = {diag(tR, A) | t ∈ �, A ∈ son}

be the Lie algebra of Go (here R = (0 1
1 0

)
). Let B be the bilinear form on g defined by

B(X, Y ) = 1
2 tr (XY ), which is well-known to be a multiple of the Killing form of g,

hence nondegenerate. Besides, the canonical projection π : G → H, π (g) = g(e0), is a
pseudo-Riemannian submersion.

Let g = g0 ⊕ h be the orthogonal decomposition with respect to B. Then

TcoG = h := {xh + yv | x, y ∈ �n},

where for column vectors x, y ∈ �n,

xh =
(

02 (x, 0)t

(x, 0) 0n

)
and yv =

(
02 (0, y)t

(0,−y) 0n

)

(here the exponent t denotes transpose and 0m the m × m zero matrix). We chose this
notation since xh and yv are horizontal and vertical, respectively, tangent vectors in
T(e0,e1)

(
T1H

)
with respect to the canonical projection T1H → H.

THEOREM 1. For each n ≥ 1 there exists a G-invariant pseudo-Riemannian metric g1

on Gn+1 whose associated norm at co is given by

‖xh + yv‖1 = |x|2 − |y|2.

For n = 2, if one identifies �2 = � as usual, there exists a G-invariant metric g0 on G3

whose associated norm at co is given by

‖xh + yv‖0 = 〈ix, y〉.

For n �= 2, any G-invariant pseudo-Riemannian metric on Gn+1 is homothetic to g1. Any
G-invariant pseudo-Riemannian metric on G3 is of the form λg0 + µg1 for some λ,µ ∈ �

not simultaneously zero.
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All the metrics are symmetric and have split signature (n, n). In particular, G does not
admit any G-invariant Riemannian metric and the geodesics in G through co are exactly
the curves s �→ expG(sX)co, for X ∈ h.

Proof. One computes easily that B(X, X) = ‖X‖1 for all X ∈ h. Since B is G-
invariant, g1 defines a G-invariant metric on G.

Let Z = diag (R, 0n), m = {diag (02, A) | A ∈ son} and gλ = {U ∈ g | adZU = λU}.
One verifies that g0 = go and g±1 = {xh ± xv | x ∈ �n}. Moreover, one has the
decompositions

g0 = �Z ⊕ m and h = g1 ⊕ g−1,

which are preserved by the action of m. Hence h is g0-invariant.
Since B is nondegenerate and Go is connected, any other pseudo-Riemannian

metric g on G has the form g(U, V ) = B(TU, V ) for some T : h → h commuting
with adZ and adm. In particular, T preserves g±1. We call T± the restrictions of T
to the corresponding subspaces. Under the identification g±1 ≡ �n, xh ± xv ≡ x, the
action of m ≡ son on �n is the canonical one. If T± ∈ Gl (g±1) ≡ Gl(n, �) commutes
with every A ∈ son, then either T± is a nonzero multiple of the identity or n = 2 and
T± = a±I2 + b±J where J = (0 −1

1 0

)
, for some not simultaneously zero constants a±

and b±. Next we consider the case n = 2 and show that a+ = a− and b− = −b+. For
x �= 0 we denote x± = xh ± xv and compute

B(T(x+), x−) = B((a+x + b+ix)+, x−)

= a+B(x+, x−) + b+B((ix)+, x−)

= 2a+|x|2 + 0.

Since T must be symmetric with respect to B, this expression coincides with
B(x+, T(x−)), which by similar computations equals 2a−|x|2. Hence a+ = a−. Using
again the symmetry of T in the case

B(T(x−), (ix)+) = B(x−, T(ix)+)

one obtains that b− = −b+. Finally, since 2(xh + yv) = (x + y)+ + (x − y)−, one
computes that the metric associated with T is homothetic to g1 if b+ = 0 and to
go if a+ = 0. The case n �= 2 is simpler since it does not involve b±.

Next we show that for any of the metrics above, G is a symmetric space. Let G↑ =
{g ∈ O(1, n + 1) | (ge0)0 > 0} be the isometry group of H and let C = diag (I2,−In) ∈
G↑, which induces an involutive diffeomorphism C̃ ofG by C̃[γ ] = [C ◦ γ ] fixing exactly
co. If n = 2, C ∈ G, hence C̃ is clearly an isometry for any G-invariant metric on G3.
The same happens for n �= 2. Indeed, in this case, up to homotheties, we have seen that
the unique metric on Gm with m �= 3 comes from a multiple of the Killing form of g,
which is invariant by the action of G↑. The statement regarding geodesics follows from
the theory of symmetric spaces, since conjugation by C is an involutive automorphism
of g whose (−1)-eigenspace is g0 and preserves the given metrics. �

REMARKS. a) In contrast with the space of oriented lines of �n, which only for
n = 3, 7 admits pseudo-Riemannian metrics invariant by the induced transitive action
of a connected closed subgroup of the identity component of the isometry group (see
[9]), Gn admits G-invariant metrics for all n.
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b) The metric g0 is the analogue of the metric defined in the Euclidean case in
[11, 4]. We will see below that also in the hyperbolic case it admits a Kähler structure.

c) For any complete simply connected Riemannian manifold M of negative
curvature, the space G (M) of its oriented geodesics has a canonical pseudo-
Riemannian metric, which is in general only continuous, see [6]. If M is the hyperbolic
space, then g1 is the canonical metric on G.

d) If H has dimension two, then G is isometric to the two-dimensional de Sitter
sphere.

We recall some well-known facts about the imaginary border of the hyperbolic
space and the action of G on it. For a geodesic γ in H, γ (∞) is defined to be the unique
z ∈ Sn such that limt→∞ γ (t)/γ (t)0 = e0 + z ∈ �n+2. One defines γ (−∞) analogously.
Sometimes we will identify �n+1 with e⊥

0 and Sn with {e0} × Sn.
The group G acts on Sn by directly (that is, orientation preserving) conformal

diffeomorphisms. More precisely, any g ∈ G induces the directly conformal trans-
formation g̃ of Sn, well-defined by g̃(γ (∞)) = (g ◦ γ )(∞), and any directly conformal
transformation of Sn can be realized in this manner.

PROPOSITION 2. If S is a subgroup of G acting transitively on G, then S = G.

Proof. By the main result of [2], it suffices to show that S acts irreducibly on
�n+2. Suppose that S leaves the nontrivial subspace V invariant. If V is degenerate,
then V contains a null line, say � (e0 + z), with z ∈ �n+1, |z| = 1. Hence S takes the
oriented line [γ ] with γ (∞) = z to another line with the same point at ∞. If V is
nondegenerate, either V or its complement (also S-invariant) intersects H. Let us call
H1 � H the intersection, which is a totally geodesic submanifold of H. Then S takes
any oriented line contained in H1 to a line contained in H1. If H1 is a point p, then
S takes any line through p to a line through p. Therefore the action of S on G is not
transitive. �

REMARK. The hyperbolic case contrasts with the Euclidean one. We found in [9] a
pseudo-Riemannian metric on the space of oriented lines of �7 = Im � which is
invariant by the transitive action of G2 � �7, where G2 is the automorphism group of
the octonions �.

3. Null, space- and time-like curves. In order to give a geometric interpretation
for a curve in G endowed with some of the G-invariant metrics to be null, space- or
time-like, we introduce the following concept, which makes sense for any Hadamard
manifold.

DEFINITION. Let H be a Hadamard manifold. Given a smooth curve c in G defined
on the interval I , a function ϕ : � × I → H is said to be a standard presentation
of c if s �→ αt(s) := ϕ(s, t) is a unit speed geodesic of H satisfying c(t) = [αt] and
〈β̇(t), α̇t(0)〉 = 0 for all t ∈ I , where β(t) = ϕ(0, t).

PROPOSITION 3. Given a smooth curve c : I → G and p a point in the image of some
(any) geodesic in the equivalence class c(to), there exists a standard presentation ϕ of c
such that ϕ(0, to) = p.

Proof. Consider the submersion 	 : T1H → G, 	(v) = [γv]. Let v(t) be a lift of
c(t) to T1H with v(to) ∈ T1

p H, and let ψ : � × I → H be defined by ψ(s, t) = γv(t)(s).
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We look for a function f : I → � such that

ϕ(s, t) = ψ(s + f (t), t)

satisfies the required properties. Clearly αt(s) = ϕ(s, t) has unit speed and

c(t) = 	(v(t)) = 	(γ ′
v(t)(f (t))) = [αt].

One can verify easily that taking as f the solution of the differential equation

f ′(t) = −〈ψt(f (t), t), ψs(f (t), t)〉
‖ψs(f (t), t)‖2

(subscripts denote partial derivatives) with f (to) = 0, then ϕ(0, to) = p and
〈β̇(t), α̇t(0)〉 = 0 for all t ∈ I , where β is as in the definition of the standard
presentation. �

The following proposition characterizes the null, time- and space-like curves of G,
providing a relationship between the geometries of G and H.

PROPOSITION 4. For the metric g1, a smooth curve c in Gn is null (respectively, space-,
time-like) if and only if, for any standard presentation, the rate of variation of the
directions, that is, ‖ D

dt α̇t(0)‖, coincides with (respectively, is smaller, larger than) the rate
of displacement ‖β̇(t)‖ for all t (here D

dt denotes covariant derivative along β).
For the metric g0 on G3, a smooth curve c in G3 is null (respectively, space-, time-like)

if and only if, for any standard presentation,{
β̇(t),

D
dt

α̇t(0), α̇t(0)
}

is linearly dependent (respectively, positively, negatively oriented) for all t.

Proof. Let [γ ] be an oriented geodesic of a Hadamard manifold and let Jγ be the
space of Jacobi fields along γ orthogonal to γ̇ . First we show that Lγ : Jγ → T[γ ]G
given by

Lγ (J) = (d/dt)0[γt], (1)

where γt is a variation of γ by unit speed geodesics associated with the Jacobi field J,
is a well-defined vector space isomorphism. Indeed, let 	 : T1M → G be as above the
canonical projection, which is a smooth submersion, by definition of the differentiable
structure on G. We compute

(d/dt)0[γt] = (d/dt)0	(γ̇t(0)) = d	γ̇ (0)((d/dt)0γ̇t(0)).

Now, let p : T1H → H be the canonical projection and K : Tγ̇ (0)(T1H) → γ̇ (0)⊥ ⊂
Tγ (0)H the connection operator. It is well-known that (dp,K) : Tγ̇ (0)(T1H) →
Tγ (0)H ⊕ γ̇ (0)⊥ is a bijection and

(d/dt)0γ̇t(0) = (dp,K)−1(J(0), J ′(0))

(see for instance [1]). Therefore, Lγ is well-defined.
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Next we show that for any J ∈ Jγ one has

‖Lγ (J)‖1 = ‖J(0)‖2 − ‖J ′(0)‖2, (2)

‖Lγ (J)‖0 = 〈γ̇ (0) × J(0), J ′(0)〉.
We may suppose without loss of generality that c = co and γ = γo. Let c′(0) = xh + yv

with x, y ∈ �n. Then the Jacobi field along γo satisfying Lγo (J) = c′(0) is the one
determined by

J(0) = dπI (xh) and J ′(0) = dπI (yh),

where π : G → H is as before the canonical projection. In fact, clearly, γt(s) =
exp(txh) exp(tyv)γo(s) is a variation of γo by unit speed geodesics. Let us see that
the associated Jacobi field is J. Indeed,

J(0) = d
dt

∣∣∣
0
γt(0) = d

dt

∣∣∣
0

exp(txh)e0 = dπI (xh),

since γo(0) = e0, which is fixed by exp(tyv). If D
dt denotes covariant derivative along

t �→ γt(0) and Z is as in the beginning of the proof of Theorem 1, then

J ′(0) = D
dt

∣∣∣∣
0
γ̇t(0) = D

dt

∣∣∣∣
0

d(exp(txh) exp(tyv))π(I)e1

= D
dt

∣∣∣∣
0

d exp(txh)dπI Ad (exp tyv) Z

= dπI
d
dt

∣∣∣
0

et ad yv Z = dπI [yv, Z] = dπI (yh),

since d exp(txh) realizes the parallel transport and dπI (Z) = e1. Therefore (2) is true
by Theorem 1. Finally, suppose that ϕ is a standard presentation of c and let αt, β be as
above. Let Jt denote the Jacobi field along αt associated with the variation ϕ. Clearly,
ċ (t) = Lαt (Jt), Jt(0) = d

dtϕ (0, t) = β̇ (t) and

J ′
t(0) = D

ds

∣∣∣∣
0

d
dt

ϕ (s, t) = D
dt

d
ds

∣∣∣
0
ϕ (s, t) = D

dt
α̇t(0).

Consequently, the proposition follows from (2). �

4. A geometric invariant of G. We have mentioned in the introduction that G(Hn)
is diffeomorphic to �n, the space of all oriented lines of �n. For n = 3 and n = 7,
we found in [9] pseudo-Riemannian metrics on �n invariant by the induced transitive
action of a connected closed subgroup of SOn � �n (only for those dimensions such
metrics exist).

PROPOSITION 5. For n = 3, 7, no metric on Gn invariant by the identity component of
the isometry group of Hn is isometric to �n endowed with any of the metrics above.

Proof. We compute now a pseudo-Riemannian invariant ofGn involving its periodic
geodesics. For any c ∈ G, let A denote the subset of TcG consisting of the velocities
of periodic geodesics of G though c. We show next that the frontier of A in TcG
is the union of two subspaces of half the dimension of G intersecting only at zero.
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By homogeneity we may suppose that c = co. Since by the proposition below A =
{λxh + xv | x ∈ �n, |λ| < 1}, the frontier of A is g1 ∪ g−1. On the other hand, we have
computed in [10] that the analogue invariant for �n (n = 3, 7) is a subspace of half the
dimension of �n. Hence the proposition follows. �

REMARKS. a) Of course we could have considered more standard invariants, like
the curvature or the isometry group, but we chose this one since the geodesics can be
described so easily.

b) Clearly the difference in the invariants is related to the fact that the two
horospheres through a point associated with opposite directions coincide in the
Euclidean case but are different in the hyperbolic case.

PROPOSITION 6. A geodesic in G with initial velocity xh + yv is periodic if and only if
x = λy for some λ ∈ � with |λ| < 1.

Proof. We may suppose that xh + yv �= 0. We compute that Ad (etZ)(xh + yv) =
xt

v + yt
v, where

xt = (cosh t)x + (sinh t)y and yt = (sinh t)x + (cosh t)y.

Now, there exists s such that 〈xs, ys〉 = 0 (take tanh(2s) = − 2〈x,y〉
|x|2+|y|2 ). Hence

[
xs

h, ys
v

] = 0
and consequently

π exp
(
t
(
xs

h + ys
v

)) = π exp
(
txs

h

)
exp

(
tys

v

) = π exp
(
txs

h

)
,

which is a geodesic in H, in particular it is periodic only if it is constant, or equivalently,
only for xs = 0.

Since Z ∈ g0 and the metric is G-invariant, the geodesics with initial velocities
xt

h + yt
v are simultaneously periodical or not periodical for all t. Now, one verifies that

xs = 0 if and only if x = λy for some λ ∈ � with |λ| < 1 and the proposition follows.
�

5. Additional geometric structures on G. An almost Hermitian structure on a
pseudo-Riemannian manifold (M, g) is a smooth tensor field J of type (1, 1) on M
such that Jp is an orthogonal transformation of (TpM, gp) and satisfies J2

p = − id for
all p ∈ M. If ∇ is the Levi Civita connection of (M, g), then (M, g, J) is said to be
Kähler if ∇J = 0.

A Kähler structure on G(H3). Let G = G3 and let jo be the endomorphism of h ≡
TcoG ≡ � × � given by jo(z, w) = (iz, iw). One checks that jo commutes with the action
of Go, is orthogonal for g0 and g1 and j2

o = − id. Therefore jo defines an orthogonal
almost complex structure on G3 for any G-invariant metric on it.

PROPOSITION 7. The space (G3, J) is Kähler for any pseudo-Riemannian G-invariant
metric on G3.

Proof. We show that for every geodesic γ in G3 and any parallel vector field Y
along γ , the vector field JY along γ is parallel. By homogeneity we may suppose that
γ (0) = co. Suppose that γ (t) = exp(tX)co for some X ∈ h. By a well-known property of
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symmetric spaces, Y = d exp(tX)co Yco . Since J is G-invariant, JY = d exp(tX)co JYco

and thus JY is parallel along γ , as desired. �

An orthogonal almost complex structure on G7. We present another model of Gn+1

endowed with the metric g1 and use it to define an orthogonal almost complex structure
on G7.

In the following we use the notations given before Proposition 2 of concepts
related to the imaginary border of H. We recall that g ∈ G is called a transvection
of H if it preserves a geodesic γ of H and dg realizes the parallel transport along
γ , that is, g(γ (t)) = γ (t + s) for all t and some s and dgγ (t) realizes the parallel
transport between γ (t) and γ (t + s) along γ . For any unit v ∈ Te0 H = e⊥

0 = �n+1

the transvections through e0 ∈ H preserving the geodesic with initial velocity v form
a one parameter subgroup φt such that the corresponding one parameter group φ̃t

of conformal transformations of Sn (which we also call transvections, by abuse of
notation) is the flow of the vector field on Sn defined at q ∈ Sn as the orthogonal
projection of the constant vector field v on �n+1 onto TqSn = q⊥. In particular φ̃t fixes
±v ∈ Sn. For τ = φ̃t we will need specifically the following standard facts:

∗) If u ∈ Sn is orthogonal to v, then v ∈ TuSn and if τ (u) = (cos θ )u + (sin θ )v,
then (dτ )uv is a vector in Tτ (u)Sn spanned by u and v of length cos θ .

∗∗) There exists a positive constant c such that (dτ )±v is a multiple c±1 of the
identity map on T±vSn = v⊥.

Let 
n = {(p, p) | p ∈ Sn} denote the diagonal in Sn × Sn. The map

ψ : Gn+1 → (Sn × Sn)\
n, ψ([γ ]) = (γ (−∞), γ (∞)) (3)

is a well-defined diffeomorphism. We denote by ĝ the induced action of g ∈ G on
(Sn × Sn) \
n, that is ĝ (p, q) = (̃g (p) , g̃ (q)). Given distinct points p, q ∈ Sn, let Tp,q

denote the reflection on �n+1 with respect to the hyperplane orthogonal to p − q.

PROPOSITION 8. If Gn+1 is endowed with the metric g1 and one considers on (Sn ×
Sn)\
n the pseudo-Riemannian metric whose associated norm is

‖(x, y)‖(p,q) = 4〈Tp,qx, y〉/|q − p|2 (4)

for x ∈ p⊥, y ∈ q⊥, then the diffeomorphism ψ of (3) is an isometry.

Proof. Clearly ψ is G-equivariant. Since the metric g1 on Gn+1 is G-invariant, it is
sufficient to show that the metric (4) on (Sn × Sn)\
n is G-invariant as well and that
dψ[γo] is a linear isometry.

Given distinct points p± ∈ Sn, we show first that for any g ∈ G with g̃(e±1) = p±,
dĝ(−e1,e1) is a linear isometry. A straightforward computation shows that the given
metric on (Sn × Sn)\
n is invariant by the action of SOn+1, since for all k in this group,
Tk(p),k(q) ◦ k = k ◦ Tp,q for all p, q ∈ Sn, p �= q. Hence we may suppose without loss of
generality that p± = ±(cos θ )e1 + (sin θ )e2 for some θ ∈ [0, π/2). Now, any directly
conformal transformation g̃ as above may be written as a composition τ 2 ◦ τ 1 ◦ R,
where R is a rotation fixing e1 and τ 1 and τ 2 are transvections fixing (−e1, e1) and
(−e2, e2), respectively.

The assertion (∗∗) above, with v = e1 and τ = τ 1, implies that dτ̂ 1
(−e1,e1) is a

linear isometry. Now we use the assertion (∗) with v = e2 and u = e1 to see that

https://doi.org/10.1017/S0017089507003710 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003710


ORIENTED LINES OF THE HYPERBOLIC SPACE 365

dτ̂ 2
(−e1,e1) : e⊥

1 × e⊥
1 → p⊥

− × p⊥
+ is a linear isometry. Let λ±v + x± ∈ T±uSn = u⊥, with

λ± real numbers and 〈x±, v〉 = 0. One computes

‖(λ−v + x−, λ+v + x+)‖(−u,u) = 4(λ−λ+ + 〈x−, x+〉)|2u|2 (5)

= (λ−λ+ + 〈x−, x+〉).

On the other hand, call dτ 2
±u(v) = v± and dτ 2

±u(x±) = y±. Hence |v±| = cos θ . Since
dτ 2

±u is conformal, y± is orthogonal to v± and has length |x±| cos θ . Also, y± is
orthogonal to u, hence it is left fixed by Tp−,p+ . Therefore one computes

‖(λ−v− + y−, λ+v+ + y+)‖(−u,u) = 4 cos2 θ

|p− − p+|2 (λ−λ+ + 〈x−, x+〉),

which coincides with (5) since |p− − p+| = 2 cos θ . This completes the proof that
dĝ(−e1,e1) is a linear isometry. It remains only to show that dψ[γo] is a linear isometry.

We have that γo(t) = (cosh t, sinh t, 0) ∈ �n+2. Let J be the Jacobi field along γo

orthogonal to γo and satisfying J(0) = x and J ′(0) = y, both in Te0 H orthogonal to
e1 = γ ′(0). We show next that

dψ[γo]Lγo (J) = (x − y, x + y),

where Lγo was defined in (1). By invariance of ψ by rotations it is sufficient to see that

dψ[γo]Lγo (J±) = (±e2, e2), (6)

where J−(0) = 0, J ′
−(0) = e2, J+(0) = e2 and J ′

+(0) = 0. Let now

As =
(

cos s − sin s

sin s cos s

)
and Bs =

⎛⎜⎝ cosh s 0 sinh s

0 1 0

sinh s 0 cosh s

⎞⎟⎠ .

The field J− is associated to the variation of γo corresponding to the one
parameter group of isometries s �→ A−

s = diag (1, As, In−1). One computes A−
s (γo(t)) =

(cosh t)e0 + sinh t((cos s)e1 + (sin s)e2) ∈ H. Hence

(A−
s ◦ γo)(±∞) = lim

t→±∞(tanh t)((cos s)e1 + (sin s)e2)

= ±(cos s)e1 ± (sin s)e2,

whose derivative at s = 0 is ±e2. Therefore (d/ds|0)ψ [A−
s ◦ γo] = (−e2, e2). Using B+

s =
diag (Bs, In−1) instead of A−

s one verifies the remaining identity of (6). Finally, since
T−e1,e1 clearly fixes x, y, the norm (4) of (x − y, x + y) at (−e1, e1) is 4〈x − y, x +
y〉/|2e1|2 = |x|2 − |y|2, which coincides with the norm of Lγo (J) by (2). This shows that
dψ[γo] is a linear isometry. �

Let � denote the normed division algebra of the octonions and let �7 = Im �

endowed with its canonical cross product ×. Let j be the almost complex structure of
S6 defined by jp(x) = p × x if x ∈ TpS6 = p⊥. For q ∈ S6, q �= p, let jp,q be the linear
operator on TqS6 = q⊥ defined by jp,q = Tp,q ◦ jp ◦ Tp,q.
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PROPOSITION 9. For all x ∈ p⊥, y ∈ q⊥,

J(p,q)(x, y) = (jp(x), jp,q(y))

defines an orthogonal almost complex structure on (S6 × S6)\
n with the metric above.

Proof. First we check that J is an almost complex structure. Indeed,

〈jp,q(y), q〉 = 〈jpTp,q(y), Tp,q(q)〉 = 〈p × Tp,q(y), p〉 = 0

and J2 = − id holds as well, since j2
p = − id and T2

p,q = id. Finally, J is orthogonal
since both jp and Tp,q are so. �
REMARKS. a) By Proposition 2 there exists no proper subgroup of G acting transitively
on G leaving J invariant, as it is the case of the analogous almost complex structure
defined in [9] on the space of oriented lines of �7.

b) The structure J is not integrable, since (S6\ {p}) × {p} is an almost complex
submanifold for any p, whose induced almost complex structure is q �→ jq, which is
not integrable.

ACKNOWLEDGEMENTS. I would like to thank Eduardo Hulett for his help
concerning the symmetry of G and Antonio Di Scala for the statement and the idea of
the proof of Proposition 2.

REFERENCES

1. A. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und
ihre Grenzgebiete no. 93 (Springer-Verlag, 1978).

2. A. Di Scala and C. Olmos, The geometry of homogeneous submanifolds of hyperbolic
space, Math. Z. 237 (2001), 199–209.

3. B. Guilfoyle and W. Klingenberg, On the space of oriented affine lines in �3, Archiv
Math: (Basel). 82 (2004), 81–84.

4. B. Guilfoyle and W. Klingenberg, An indefinite Kähler metric on the space of oriented
lines, J. London Math. Soc. (2). 72 (2005), 497–509.

5. N. J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. 83 (1982), 579–602.
6. M. Kanai, Geodesic flows of negatively curved manifolds with smooth stable and

unstable foliations, Ergodic Theory Dyn. Syst. 8 (1988), 215–239.
7. G. Keilhauer, A note on the space of geodesics, Rev. Unión Mat. Argent. 36 (1990),

164–173.
8. R. Palais, A global formulation of the Lie theory of transformation groups, Memoirs

American Math. Soc. No. 22 (1957)
9. M. Salvai, On the geometry of the space of oriented lines in Euclidean space, Manuscr.

Math. 118 (2005), 181–189.
10. M. Salvai, Geodesics in the space of oriented lines in Euclidean space, Proceedings of

Egeo 2005, Rev. Unión Mat. Argent. (2) 47 (2006), 109–114.
11. M. Shepherd, Line congruences as surfaces in the space of lines. Diff. Geom. Appl. 10

(1999), 1–26.

https://doi.org/10.1017/S0017089507003710 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003710

