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ON A PROBLEM RELATED TO THE CONJECTURE OF SENDOV 
ABOUT THE CRITICAL POINTS OF A POLYNOMIAL 

BY 

Q. I. RAHMAN AND Q. M. TARIQ 

ABSTRACT. Let P be a polynomial of degree n having all its zeros 
in the closed unit disk. Given that a is a zero (of P) of multiplicity k 
we seek to determine the radius p(n; k; a) of the smallest disk centred 
at a containing at least k zeros of the derivative P'. In the case k = 1 
the answer has been conjectured to be 1 and is known to be true for 
n ^ 5. We prove that p(n; k\ a) = 2k/(k + 1) for arbitrary k e N 
and n ^ k + 4. 

1. Introduction. We denote by D(z0; R) the open disk {z e C:|Z — z0\ < R} 
and by D(z0; R) its closure. While counting the zeros of a function we will 
always take multiplicity into account. Recently, the second named author 
considered the following problem: 

"Let a e Z>(0; 1) and k e N. Given an arbitrary polynomial P(z) : = 
c(z - a)k li^Zx (z ~ zj) o f degree n (>k) with \Zj\ ^ 1 for j = 1, . . . , 
n — k, determine the radius p(n; k; a) of the smallest (closed) disk centred at a 
containing at least k zeros of the derivative Pn\ 

The case k = 1 of this problem has been investigated by several mathemati­
cians under the title of Sendov's (or Iliev's) conjecture according to which 
"p(«; 1; a) ^ 1" (for references see [6]; also see [1]). The example P(z) : = 
zn — 1 shows that s u p 0 ^ | < j p(n; 1; a) ^ 1. In general, for any k ^ 1 the disk 
D(a; 2k/(k 4- 1) ) may contain only k — \ zeros of P\ namely the (k — l)-fold 
zero at a. For example, if P(z) : = (z + l)(z — 1)* then P' has a (k — 1)-
fold zero at 1 and a simple zero at —( (k — \)/{k 4- 1) ). As another example we 
may consider 

(k + i)2 P(z) : = zz + 2^ 7 - z + 1 (2 - 1) 
')« 

whose derivative has a double zero at — ( (k — l)/(k + 1) ) in addition to a 
(k — l)-fold zero at 1. The following result which was proved in [10] suggests 
that "p(n; k\ a) ^ 2k/(k + 1)" may hold for all k e N and all a e 5(0; 1). 
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THEOREM A. Let \a\ = 1. If P(z) := c(z - of Ii]Z\ 0 ~ zf) is a poly­
nomial of degree n (>k) such that \z\ ê 1 for j = 1, . . . , n — k, then P' has at 
least k zeros in 

j(jL;_L)ciLi). 
v/r + r it + 1/ v * + 1/ 

Four different proofs of Theorem A are known in the case k = 1 ( [3], [8], [4], 
[7] ). In [11] it was shown that p(n; k\ a) ^ 2k/(k + 1) for all a e 5(0:1) and 
all k <= N if k + 1 ̂  n ^ (k + l)2 (and so if k + 1 ̂  « ^ A: + 3). The result 
says in particular that if k = 1 then Z)(a; 1) contains at least one zero of P' for 
n ^ 4. However, more is known in the case k — 1. In fact, it was shown by Meir 

and Sharma [7] that if k = 1 and n = 5 then D(a; ( \a\ + -y/2 ~ M2)/2) con­
tains at least one zero of P', i.e. 

(1) p(5:\:a) ^ ( M + V2 - \a\2)/2 ^ 1. 

The purpose of this paper is to prove the following extension of (1). 

THEOREM 1. Let a e Z>(0; 1) and k an integer =^2. If 

P(z):=c(z - a? UUt (z - zp) 

is a polynomial of degree k + A such that \zv\ ^ 1 for v = 1, . . . , 4, 

then P' has at least k zeros in D(a; i( \a\ + v2 — \a\2) ) if k = 2 and in 

D(a; (V(fc 4- l)2 - \a\2(2k + 1) + \a\k)/(k + \))ifk ^ 3. 

REMARK 1. Theorem 1 in conjunction with (1) implies that p(k + 4; k; a) ^ 
2k/(k 4- 1) for all k <= N. 

2. Auxiliary results. For the proof of our theorem we require two lemmas 
(Lemmas 2 and 3) in addition to Theorem A. Lemma 1 which is a weak version 
of the well-known Cohn rule [2, p. 7] is needed for the proof of Lemma 3. 

LEMMA 1. If |X0| > |AJ, then the polynomial 

A(z) : = A 0 + A1z + . . . + \nz
n 

{of degree ^ n) can have a zero in D(Q; 1) only if the polynomial 

n-\ 
Aj(z) := 2 ( V , - \n\n-vV 

(of degree ^ n — 1) /zos owe a/so. 

Here is a short proof which we do not claim to be new. 
Let Aj(z) ¥= 0 in D(0; 1). Then A cannot have a zero on \z\ = 1. For if 

A(eia) = 0, then 
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A,(^"a) = X0A(eia) - \né
naA(éa) = 0. 

Hence if A*(z) : = znA(\/z ) then for \z\ = 1 we have |A(z) | = |A*(z) | > 0 and 
so \XQA(Z) I > \\nA*(z) |. By Rouché's theorem A has the same number of zeros 
in Z>(0; 1) as the function Ax(z) = A0A(z) — \nA*(z) and so none. Thus A has 
zeros neither on \z\ = 1 nor in Z)(0; 1). 

LEMMA 2. From the given polynomials 

m m 

A(z):= 2 Ç)a^B(z):= 2 Ç)b/ 
/x=0 jw=0 

to us form the third polynomial 

m 

(A*B)(z):= 2 ( > M V M -

7/^// //ze zeros tf/^4 /ze zw a circular region G, z7ze« every zero y of A * 2? /zas z7ze 
/orra y = —aft where a is a suitably chosen point in G and fi is a zero of B. 

Lemma 2 is known as the "composition theorem of Szegô"; for a proof see [9] 
or [5, Chapter IV]. 

LEMMA 3. Let p4(k; z) : = 2 * = 0 C)(l/(k + V)Y- Then for each k e N 
there exists a number Rk > 1 swc/z that p4(k\ z) ^ 0 /o r z e Z)(0; i ^ ) . In fact, 
p4(l; z) ¥> 0 for \z\ < 2 sin TT/5 andpA(2\ z) ^ 0 / w |z| ^ 3/(2y/2). 

PROOF. The statement about /?4(1; z) is well-known; it follows from the 
observation that 

P4\\z) =~{(z + l)5 - 1}. 
5z 

Applying Lemma 1 to A(z) : = 2/?4(2; (3/(2\ /2))z) we see that ^4(2; z) 
cannot vanish in Z>(0; 3/(2\/2) ) if 

A , N 1 /3367 , 1831 ,- , 999 2 , 81 /- 3 \ 
Ai(z) : = —I + V2z + z2 + —V2z3) 

1 32 V 128 40 16 5 ' 
does not vanish in D(0; 1). Again, by Lemma 1, A} cannot vanish in 
5(0; 1) if 

A2(z) : = 68426377 + 78892880y^ + 65244744z2 

does not. But it can be easily checked that A2 does not vanish in D(0:1). Hence 
the same can be said about Aj and/?4(2; (3/(2\/2) )z). Thus ^4(2; z) ¥= 0 for 
\z\ ^ 3/(2 V2). 
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By Lemma 1, p4(k; z) cannot vanish in D(0; 1) if 

1 , 3k 3k 9 k o 
+ z 4- ~z 4- zJ 

k + 4 (fc 4- 1)(& + 3) (A: 4- 2)2 (k 4- l)(fc 4- 3) 

does not. Again, by Lemma 1 it is enough to check that 

2 ^ + 8£ + 3 Ak kjlk2 4- Sk 4- 9) 2 

(Jfc 4- 1)(£ 4- 3)(& + 4) (k 4- 2)2Z (Jfc 4- l)(/c 4- 2)2(£ 4- 3) 

does not vanish in Z)(0; 1). This can be done either directly or by yet another 
application of Lemma 1. 

REMARK 2. We must caution the reader against thinking that pn(k; z) : = 
2 " = 0 C)(l/(£ + ") V ^ 0 in 5(0; 1) for all » e N and all k e N. In fact, 
/?5(1; z) has two zeros on |z| = 1 and for each k i? 2 the polynomial/?5(&; z) has 
zeros both inside the (open) unit disk and outside the (closed) unit disk. 

3. Proof of Theorem 1. Without loss of generality we may assume 0 < a < 1. 
Let P(z) = (z - afq(z). Then P\z) = (z - a)k"l{kq(z) 4- (z - a)q\z) }. 
Now let us suppose that the disk D(a; TJ) where rj > 1 — a contains only k—\ 
zeros of P'. Then 

4 , , ( > ) • x 

A(z):= kq(z + a) + zcfiz + a) = 2 (J) 7
1 ^ 1 

- 0 - v\ C) Z" 
A 

must have all its zeros in the circular region G : = C\Z)(0; 17). Hence if 
B(z) := 2^=0 („)(l/(& + *0 )^" then Lemma 2 in conjunction with Lemma 3 
implies that q(z) := (A * 5)(z — a) has all its zeros in 

f -^pTj if Jfc = 2 
|z - <z| > i 2 y 2 

( T] if ik ^ 3. 

(i) 77*e case k = 2. 

If 77 : = 3(0 4- V2 - a
2) then the circle |z - a\ = (3/(2\/2)>? cuts the 

unit circle \z\ = 1 in the points ( (a - V2 - a2)/2) ± i( (a 4- V2 - a2)/2) ). 

Hence the zeros of 4 lie in the disk Z>( (a - V2 - a2)/2; (A 4- V2 - a2)/2) 

whose boundary passes through the point a. We may now apply Theorem A 

to conclude that P' has at least k zeros in |z — a\ ^ î( (a + V2 — a )/2) = TJ 
which contradicts the assumption that "D(a\ TJ) contains only k — 1 zeros 
of P'". 

(ii) The case k ^ 3. 
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For (1 — a)/2 < b < 1, the circle \z + b\ = a + Z? intersects the unit circle 

|z| = 1 in the points {a2 4- 2aZ> - l)/26 ± i V l - ( (a2 4- 2a6 - l)/26)2 

whose distance from the point a is V( (1 — a2)(a 4- b) )/b which is equal to 

(V(k 4- l)2 - tf2(2fc 4- 1) + afc)/(Jfc 4- 1) if 

Z> = (V(fc + l)2 - tf2(2& + 1) - a/:)/2/c. 

Hence if F has only A: — 1 zeros in 

\z - a\ ^ (V(fc 4- l)2 - fl2(2A 4- 1) 4- ak)/(k 4- 1) 

then from the observation made above about the zeros of q it follows that 

they all lie inside the disk D(- (V(fc 4- l)2 - a2(2k 4- 1) - afc)/2A:; 

(v(k 4- l)2 — «2(2A: 4- 1) 4- ak)/2k) whose boundary passes through 

the point a. Now Theorem A implies that P' has at least k zeros in 

D(a\ (V(A + l)2 - a2(2k 4- 1) + ak)/(k 4- 1)). 

4. Conclusion. Putting together the result proved in [11] and Theorem 1 we 
now know that p(n; k; a) ^ 2k/(k 4- 1) for all a G 5 (0 ; 1) and AH- 1 ^ « ^ 
A 4- 4. 
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