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ON A PROBLEM RELATED TO THE CONJECTURE OF SENDOV
ABOUT THE CRITICAL POINTS OF A POLYNOMIAL

BY
Q.. RAHMAN AND Q. M. TARIQ

ABSTRACT. Let P be a polynomial of degree n having all its zeros
in the closed unit disk. Given that a is a zero (of P) of multiplicity k
we seek to determine the radius p(n; k; a) of the smallest disk centred
at a containing at least k zeros of the derivative P’. In the case k = 1
the answer has been conjectured to be 1 and is known to be true for
n = 5. We prove that p(n; k; a) = 2k/(k + 1) for arbitrary k € N
and n = k + 4.

1. Introduction. We denote by D(z; R) the open disk {z € C:|z — z)| < R}
and by D(zy; R) its closure. While counting the zeros of a function we will
always take multiplicity into account. Recently, the second named author
considered the following problem:

“Let a € D(0; 1) and k € N. Given an arbitrary polynomial P(z) :=
cz — a) Hj;{‘ (z — z;) of degree n (>k) with |z] = 1 forj = 1,...,
n — k, determine the radius p(n; k; a) of the smallest (closed) disk centred at a
containing at least k zeros of the derivative P’”.

The case k = 1 of this problem has been investigated by several mathemati-
cians under the title of Sendov’s (or Iliev’s) conjecture according to which
“p(n; 1; a) = 17 (for references see [6]; also see [1]). The example P(z) :=
z" — 1 shows that supy<, < p(n; 1; @) = 1. In general, for any k = 1 the disk
D(a; 2k/(k + 1)) may contain only kK — 1 zeros of P’, namely the (k — 1)-fold
zero at a. For example, if P(z) := (z + 1)(z — 1)"' then P’ has a (k — 1)-
fold zero at 1 and a simple zero at —( (k — 1)/(k + 1) ). As another example we
may consider

2 _
2 k1Y =2

RN + 1)(2 — 1

P(z) := (z

whose derivative has a double zero at —((k — 1)/(k + 1)) in addition to a
(k — 1)-fold zero at 1. The following result which was proved in [10] suggests
that “p(n; k; a) = 2k/(k + 1)” may hold for all k € N and all a € D(0; 1).
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THEOREM A. Let |a] = 1. If P(z) := c(z — a) H;'z_]k (z = z;) is a poly-
nomial of degree n (>k) such that |z| = 1 forj = 1,...,n — k, then P’ has at

least k zeros in
5( a : k )Cﬁ(a; 2k )
k+1 k+1 kK+1

Four different proofs of Theorem A are known in the case k = 1 ([3], [8], [4],
[71). In [11] it was shown that p(n; k; a) = 2k/(k + 1) for all a € D(0:1) and
allk e Nifk + 1 =n=(k + 1)*(andsoif k + 1 =n = k + 3). The result
says in particular that if k = 1 then D(a; 1) contains at least one zero of P’ for
n = 4. However, more is known in the case k = 1. In fact, it was shown by Meir

and Sharma [7] that if k = 1 and n = 5 then D(a; (la| + \/2 — |a|*)/2) con-
tains at least one zero of P/, i.e.

(1) p(5:1:a) = (la| + V2 — a2 = 1.
The purpose of this paper is to prove the following extension of (1).
THEOREM 1. Let a € D(0; 1) and k an integer =2. If
P@)i=cz—a)fII}_ 1 ¢~ z)

is a polynomial of degree k + 4 such that |z,| = 1 for v = 1,...,4,

then P’ has at least k zeros in D(a; 3(la| + V2 — la)) if k = 2 and in
D(a; (V(k + 12 — |aPQk + 1) + lalk)/(k + 1)) ifk = 3.

REMARK 1. Theorem 1 in conjunction with (1) implies that p(k + 4; k; a) =
2k/(k + 1) for all kK € N.

2. Auxiliary results. For the proof of our theorem we require two lemmas
(Lemmas 2 and 3) in addition to Theorem A. Lemma 1 which is a weak version
of the well-known Cohn rule [2, p. 7] is needed for the proof of Lemma 3.

LeMmMA 1. If [Nyl > I\,|, then the polynomial
Az) =N + Az + ...+ A"
(of degree = n) can have a zero in D(0; 1) only if the polynomial

n—1

A(z) = go AN, — AN, )2

(of degree = n — 1) has one also.

Here is a short proof which we do not claim to be new.
Let Ay(z) # 0 in D(0; 1). Then A cannot have a zero on |z| = 1. For if
A(e®) = 0, then
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Ay(€®) = MA(€®) — A" A(e®) = 0.

Hence if A*(z) := z"A(1/2) then for |z| = 1 we have |A(z) | = |A*(z)| > 0 and
s0 [AgA(z) | > A\, A*(z) |. By Rouché’s theorem A has the same number of zeros
in D(0; 1) as the function A,(z) = AjA(z) — A,A*(z) and so none. Thus A has
zeros neither on |z| = 1 nor in D(0; 1).

LEMMA 2. From the given polynomials
m m
A@) = 2 (Ma Bz) = 2 (b
p=0 n=0
let us form the third polynomial
m
(A * B)z) := 2 (Da,b,2"
n=0

If all the zeros of A lie in a circular region G, then every zero y of A * B has the
form y = —aP where a is a suitably chosen point in G and B is a zero of B.

Lemma 2 is known as the “composition theorem of Szegd™’; for a proof see [9]
or [5, Chapter 1V].

LEMMA 3. Let py(k; z) := 2§=0 &1/ (k + v))Z'. Then for each k € N
there exists a number R, > 1 such that py(k; z) # 0 for z € D(0; R)). In fact,
pi(1; 2) # 0 for |z| < 2 sin 7/5 and py(2; z) # O for |z] = 3/(2V/2).

ProoFr. The statement about p,(1; z) is well-known; it follows from the
observation that

1
P 2) = —{+ 1 —1).
5z
Applying Lemma 1 to A(z) := 2p,(2; (3/(2V/2))z) we see that py(2; z)
cannot vanish in D(0; 3/(2+/2) ) if

1 (3367 1831 999 . 81
Az ;=—(—-+* 5 4 290 4 81 23)
@)=\ g T VE e TS VE

does not vanish in D(0; 1). Again, by Lemma 1, A, cannot vanish in
D(0; 1) if

Ay(z) := 68426377 + 78892880/2z + 652447447

does not. But it can be easily checked that A, does not vanish in D(0:1). Hence
the same can be said about A, and py(2; (3/(2V/2) )z). Thus p,(2; z) # 0 for

lzl = 3/(2V/2).
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By Lemma 1, py(k; z) cannot vanish in D(0; 1) if

1 3k 3k, k 3
+ z + 2t —
k+4 (k+ )k+3)  (k+2 k + Dk + 3)

does not. Again, by Lemma 1 it is enough to check that

2% + 8k + 3 L kQK* + 8k + 9) 2
k + Dk +3)k +4)  (k+27  (k+ )k + 2%k + 3)

does not vanish in D(0; 1). This can be done either directly or by yet another
application of Lemma 1.

REMARK 2. We must caution the reader against thinking that p,(k; z) :=
20 _o O)(1/(k + v))2” # 0in D(0; 1) for all n € N and all k € N. In fact,
ps(1; z) has two zeros on |z| = 1 and for each k = 2 the polynomial ps(k; z) has
zeros both inside the (open) unit disk and outside the (closed) unit disk.

3. Proof of Theorem 1. Without loss of generality we may assume 0 < a < 1.
Let P(z) = (z — a)’q(z). Then P'(z) = (z — a)* {kq(z) + (z — a)g'(2) }.
Now let us suppose that the disk D(a; n) where n > 1 — a contains only k—1
zeros of P’. Then

k + v ¢™(a)

4
A(z) = kq(z + a) + 2z + a) = 2 (& 2"
v=0 ”! (y)
must have all its zeros in the circular region G := é\D_(O; n). Hence if

B(z) := 2:=0 (j)(l/(k + 7))z’ then Lemma 2 in conjunction with Lemma 3
implies that g(z) := (4 * B)(z — a) has all its zeros in

3
——q ifk=2
z —al > 2V/2

n if kK = 3.

(1) The case k = 2.

If § := 3(a + V2 — &%) then the circle |z — a| = (3/(2\/2) )y cuts the
unit circle |z| = 1 in the points ((a — V2 — a?)/2) = i((a + V2 — az)/2) ).
Hence the zeros of ¢ lie in the disk D((a — V2 — az)/2; (a+ V2 — az)/2)
whose boundary passes through the point a. We may now apply Theorem A

to conclude that P’ has at least k zerosin |z — a| = 3((a + V2 — az)/2) =1
which contradicts the assumption that “D(a; 1) contains only k — 1 zeros
of P’”.

(i) The case k = 3.
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For (1 — a)/2 < b < 1, the circle |z + b| = a + b intersects the unit circle
lz2l = 1 in the points (@* + 2ab — 1)/2b = iV1 — ((@® + 2ab — 1)/2b)’
whose distance from the point a is \/( (1 - az)(a + b))/b which is equal to
(V(k + 12 — &2k + 1) + ak)/(k + 1) if

b= (V(k + )2 — a2k + 1) — ak)/2k.

Hence if P’ has only k — 1 zeros in

Iz —al = (Vk + 17 — &2k + 1) + ak)/(k + 1)
then from the observation made above about the zeros of g it follows that
they all lie inside the disk D(—(\/(k + 1) — a2(2k + 1) — ak)/2k;
(\/(k + 1)2 — a2(2k + 1) + ak)/2k) whose boundary passes through

the point a. Now Theorem A implies that P’ has at least k zeros in
D(a; (V(k + 1)} — &k + 1) + ak)/(k + 1)).

4. Conclusion. Putting together the result proved in [11] and Theorem 1 we
now know that p(n; k; a) = 2k/(k + 1)foralla € D(0; 1)andk + 1 = n =
k + 4.
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