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ON DIFFERENTIAL POLYNOMIALS, II

HISASI MORIKAWA

Abstract. In Part II, we shall be concerned with applications of classical
invariant theory, to statistic physics and to theta functions. Main theorem in
Chapter 2 is stated as follows:

For a partition function

1 = 1

satisfying ηι > 0 (I > 1) and a > 0, the 2n-apolar of ξ(s)

has the expansion

1=2

such that βn^ι > 0 (/ > 2). This means, for a given partition function ξ(s) with
nonnegative relative probabilities, we construct a sequence of partition func-
tions v42n(£(s),ξ(s))n>i with the same properties, which may be considered a
sequence of symbolical higher derivative of £(s). The main theorem in Chapter 3
is stated as follows: For given theta functions ψ\ (z) and ψ2(z) of level πi and ri2
respectively, in g variables z = (z\, z2,. .., zg), then r = (n, r 2 , . . . , r^-apolar

is a theta function of level n\ + n2, and
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74 H. MORIKAWA

§2. Apoiars of partition functions

For a partition function ζ(s), we define its entropy S(ζ) and the central
moments Mn(ζ) of S(ζ) as follows,

n

On the other hand, in the invariant theory on formal power series

the generators of semi-invariants are given by the same polynomial se-
quence,

Φn(O = ^ W

i.e.,

So we may define semi-invariants of partition functions. Most interesting
semi-invariants of a partition function ξ(s) are it's apoiars,

)ξ{2n~l)(s)ξ^(s) ( l < n < o o ) ,

l=o V l )

For a partition function ξ(s) = ]Γ)zΞi Ίls~al with a > 0 and 7/ > 0 (I > 1),
the 2n-apolar has the expansion

00

1=0

with non-negative coefficients

l-l 2n /o \
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where

J) = a(ah + 1)

> >(ah + j - l)(α(Z - h))(a(l - h) + 1) (α(Z - Λ) + 2n - j + 1).

MAIN THEOREM. Let ξ(s) = J2ΐ^i Ί\=0S~OL1 be a partition function,
such that ηι > 0 (/ > 1) and a > 0. TTien Λ̂e 2n-apolar A2n(ζ^ζ) has the
expansion,

1=2

h=l

with polynomials in a, C2n,ι,ι («)?•••> C2n,l,n(a) whose coefficients are non-

negative integers. Consequently all the coefficients βϊn.l °f the expansion of

A2π(£?0 a r e non-negative.

This suggests that from a partition functions ζ(s) with non-negative
coefficients we may construct relating partition functions with non-negative
coefficients, A2(£,0> ^ ( C J O J ^ ( ^ O ^

2.1. Outline of invariant theory on formal power series
First of all let us recollect the outline of the invariant theory on formal

power series

(2.1) fjiζj I t) =
ι=o \ v /

where cjχ5 u^, * * , ωr are complex numbers and

are independent variable vectors of infinite length. The details of the theory
are found in [3].

5/(2, C)-action on £• , £• , ξ ,. . . is given by Cayley-Aronholdt oper-
ators,

(2.2)

f}
V = (UJ - 2l)ξf} (0 < I < oo; 1 < j < r),
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with the relations,

([D,A]=H

(2.3) l[H,D]=2D

[[H,A] = -2A

In C[£i, £2, > &•]) degree, weight and index are denned as follows,

(2.4) degξj 0 = 1, weight ήl) = I, index ξf] = ωj - 21

(0 < I < 00; 1 < j < r).

A polynomial φ(ξ) in C[ξ\, £2, , ζr] is called a semi-invariant of index

v, if φ(ξ) satisfies

(2.5) Dφ(ξ)=0, Hφ(ξ) = uφ(ξ).

Semi-invariants form a graded algebra

(2.6) 5

where S^ is the vector space of semi-invariants of index v.

For a complex number v we mean by tv the convergent power series

in the disc {t \ \t — 1| < 1}, which is a branch of the many valued function

t".

The germ of GL{2, C) acts on fj(ξj \ t) (1 < j < r) as follows;

(2.7) /,- μ)ξj\t) =(Ίt + δ)ω>]

VvW /
i.e.,

\ V / / p=0 ς=0 \ ^ / \
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(( 1 β\ \{l) °° (ωά- ΐ\ (/_,)
)Λ> [[ 0 1 j ξ j ) =^Λ q Γj ^

\\ / / q=0 \ ^ /

// a-ι 0 \ m \ , m

II α ] ^ ] = α ^ (0< ^ <oo; 1 < j <r)

A covariant of index v means a formal power series

(2-10) Σ)
ι=o \V

with coefficients C[(ξ) in C[ξχ, £2, , ̂ r] such that

for the germ of SL(2, C).

We denote by C^' the vector space of covariants of index z/, and we call

the direct sum

C = Θ^CM

the graded algebra of covariants.

The next four are the fundamental theorems in the invariant theory.

THEOREM. (Robert's theorem) The mapping exp[£Δ] defined by

(2.12)
1=0 *1

is a graded algebra isomorphism of S onto C such that

(2.13) exp[tΔ]sM = C M .

THEOREM. (Structure theorem on the graded algebra of semi-invari-

ants) Denoting polynomials

(2-14) Mω = £(- ! ) ' (")ξtlψξf (2 < n < oo; 1 < j < r),
1=0 VV
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we obtain a system of generators

ΛO) ΛO) ,(o). A0)Ji) Λo).( i) , . , v
SI 5S2 j jSr > ξj Sfc — Sfc Sj V1 S * < « S Γj,

0n(&) (2 < n < oc; 1 < j < r)

o/ ίΛe α/̂ e&rα ί ^ " 1 , ^ " 1 , . . . ^ ί ^ " 1 ] .

THEOREM. (Semi-simplicity theorem) Assume that

i) u i, α;2,... ,α;r are positive integers, or

ii) Σj=1djωj φ 0,1,2,3,... for all non-negative integral vector

d2, , d r ) ^ ( 0 , 0 , . . . , 0 ) .

Then C[ξi, , ξr] is a semi-simple 5/(2, C)-module with decomposition

(2.15) C Θ (θz, (dim 5^) WM) ,

where W^ is the simple si(2,C)-module with the basis [ei,β2, β3, •

(2.16) ' ' ,

(0</<oo)

THEOREM. (Gram's theorem) Under the same condition on ω\, ω2, ,

CĴ ^ ί/ie following two statements on an ideal I in C[ξi, ̂ 2? ? Cr] α r ^ equiv-

alent,

i) / is an si(2, C)-admissible ideal,

ii) tfiere exists a set of index homogeneous semi-invariants {φχ}\£A such

that I is generated by {Aρφ\ | 0 < I < oc, λ E Λ}.

2.2. Central moments Mn(Z) of entropy

The scale-change invariant derivation

(2.17) ί—,|
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is a nice tool for the study of partition functions.
We choose a generic partition function

(2.18) Z(s) = exp[u(s)]

and define the entropy of Z(s) by

(2.19) S(Z) = — Y + log Z(s) = θu{s) + u(s) = (θ + l)tt(s).
Z(β)

The central n-th moment Mn(Z) is defined by

(2.20) Λί

Let us show the justification of the definitions in Boltzmann's sense.
Let ξ(s) be a partition function given by an integral

= / exp[-sf(x)]dx,

where we assume that d/dx and the integral are freely commutative. Then
we have

exp[-sf(x)} \ exp[-s/(x)] ^

-sJZcTsexv[-sf(x)]dx
ξ(s)

~Sf{x)]dX +logξ(s)

l o g ξ { s ) =
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-( vVr

LEMMA 2.1.

(2.21) (-*)

(2.22) M2(Z) = ί(β + l)u(s) =

(2.23) (-s)n ( £ ) " = (β + 2)(β + 3) (θ + n - 1)M2(Z)

Proof. If we assume (2.19) for n — 1,

n - 1) =

From the definition of M2(Z),

ds \ Z(s)

(2.21) is a direct consequence of (2.19) and (2.20).

Let us express the generating function

where Mχ(Z) = 0.

n=2 Ul
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PROPOSITION 2.1.

(2.25)

(2.26)

Z(s)
exp

M(Z,t) = exp

= exp

st
Z{s)

i=2

Proof. Using Tayler expansion, we have

Z(s)
exp st

Z( 8 )

\h=0

c

= 1 + 3 {-st (st)z

Z ( S )

n!

= exp

= exp

= exp

u(s — st) — u(s) + st—u(s)
as J

L/=o

Σ(

— s—u(s)t
as

= exp

We obtain the differential polynomial expressions Mn(Z) in MΊ{Z} with
respect to the derivation θ.
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THEOREM 2.1.

(2.27) Σ uh

ι! ? Π/7!
Proof. Prom Proposition 2.1 it follows

tn

n = 2

oo

= Π e χp Js

3=2 \lj=2

n=2

C^Πζί
j > 2

n = 2
»' Σ

t_n
n!

M(Z, s) satisfies a partial differential equation, from which we obtain
a recurence relation between (Mn(Z))n>2.

(2.28)

PROPOSITION 2.2.

, ί).
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(2.29) ΘMn(Z) = - s ^ M n (

= Mn+1{Z) - nMn{Z) - nM2(Z)Mn_1(Z) (n > 2).

(2.30) (θ + n)Mn{Z) = Mn+1(Z) - nM2(Z)Mn-1(Z) (n > 2).

Proof. From Proposition 2.1 it follows

M(Z,t) =
Z(s)

exp
Z(s)

z{s)

d

-

I , CM o

t—u(s

+
Z(s(l-t)){ d

Z(s)

— —s—u(s)Z(s(l — t)) exp st—u(s)
as I as J

_|
exp

d

= ί ( - s ) 2 {ί
- t ) ^ ) M(Z,t) - tM2(Z)M(Z,t)

i , n j.n—1

n = 2

n—2

tn+l

~rϊP

Comparing the coefficients of tn of the both sides, we obtain (2.28) and

(2.29).
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2.3. Inhomogeneous semi-invariants of partition functions
For a given system of generic partition functions (ZΊ(s), ^ ( s ) , .

Zr(s)),

(2-31) ί « - » (-S)'Z«(β) = (-*)1 ( 0 Z3{s)

( 0 < Z < oo; 1 < j < r ) ,

so that

(2.32) Δ ((-s) 'zf( S)) = (ωj - l)zf+1\s) (0 < I < oo; 1 < j < r).

H((-s)ιzf)(s))=(ωJ~2l)zf\s)

The images of semi-invariants by the specialization are called semi-

invariants of the system of partition functions (Zi(s), ̂ ( s ) , . . . , Zr (s)). We

denote by the same notations as 2, Λ,

S = ®,,SM

the graded algebra of semi-invariants of (ZΊ(s),Z2(s), • ,Zr(s)).

There are many standard ways to construct semi-invariants from given

semi-invariants. One of most important one is making apolars.

Let φ(s) and φ(s) be semi-invariants of index μ and v, respectively.

Then n-th apolar of φ(s) and φ(s) is defined by

The n-th apolar An(φ, φ)(s) is a semi-invariant of index M — v — 2n, which

is independent on the choice of (ωi,α;2,... ,u; r).

EXAMPLE.

An(Z0,Zk) =
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A2m+1(Zj,Zj) =

2m

1=0

Another standard way of construction is making Hankel determinants,

Hank2q(Zj)

f, {-sfzf\s), {-sfzf\s), ...,{-

? q
? q\s)

EXAMPLE.

Hank2(Z, ) =

=

Hank4(Zj ) =

=

Zj(s)

(s)Zf\s)

{-sfzf\s)Z3

Zj(s)

(-s)ZJ1}(s)

{s?zf\s)

(s)zf\s)
(s?zf\s)
( S )-((- S )zf( S )) 2 ,

{s)zf\s) {-sfZW
(-<Λ2Z^( i\ f-s^Z^ίsϊ
\ ) i \ ) \ / \ /
{-sfzf\s) (s)4ZW(s)

{-sfzf\s){-sfzf\s)Zj{s)

{(-s)2z?\8)yZ3{s) - {-

One more important construction is making Wronskians. Let φ\(Z\
. . . , φn(Z) be semi-invariants of index z/i, z/2,.. , vn, respectively. Wron-
skian of ψι(Z), ψ2{Z),..., φn(Z) is defined by

Wn(φi,...,φn)(Z)
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ψi(Z) φ2(Z) ••• ψn(Z)

which is a semi-invariant of index Σ^=i v ~ n(n ~ 1) Wronskians are inde-
pendent on the choice of α i, u>2,..., ω n .

Since degree, weight and index are defined by

deg({-s)ιZ®(8)) = 1, weight((-S)'zf (β) = I,

index((-s)'Z ( / )(s)) = Wj (0 < I < oo; 1 < j < r),

from the index formula for semi-invariants, we observe

(2.34) SM =

where S[dι,... ,dr] p] is the vector space of semi-invariants separately ho-

mogeneous of degree (di, c?2? ? ^r) a n isobaric of weight p. The decompo-

sition

(2.35) S =

is independent on the choice of a>i, u>2, . . , ωn.

DEFINITION 2.1. An inhomogeneous semi-invariant of homogeneous

degree (c?i,..., dr) and isobaric of weight p is a polynomial y?(..., (—s)ιZ^ι\s)/

Zj(s),...) in (-s)ιzf\s) (0 < Z < oo; 1 < j < r) such that φ{...,

(-s) zZW(s),...) belongs to S[dud2,... ,d r; p].

THEOREM 2.2. ΓΛe algebra of inhomogeneous semi-invariants S is a

polynomial algebra in

central moments of entropies

( 2 < Z < o o ; 1 < J < r),
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i.e.

S = C ΛMι{Z3))2<ι<OQ
\<j<r

This is a direct consequence of the structure theorem on semi-invariants,

because

(i-s)zf\s))1 Z3{sγ-^

2.4. Apolars of realistic partition functions
In the former paragraphes, we have treat only abstract formal aspects

of partition functions and their semi-invariants, however the most essential

points are reality and positivities of coefficients of expansions of partition

functions and certain their semi-invariants.

In the present paragraph we mean by a realistic partion function, a

partition function

(2.36) -al

l=ι

such that 7/ > 0 (I > 1) and a > 0.

In order to calculate the coefficients of >0? w e n e e d Stirling num-

bers Sιr , which are defined by the coefficients in

(2.37)

LIST OF S
(n)

[x]m = x

l-l

= x3 3x2 + 2x
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= χ4 + 6x3 + l l x 2 + 6x

24x

274

735x4 + 1624x3 + 1764x2

274x2

S\ (1 < I <n) a r e calculated by the recurence relation:

(2.38) 5 ^ = 1, S[n) = (n - 1)!, Sz

(n) = S ^ 1 } + (n -

The coefficients of 2n-apolar of ξ(s) = Σ ^ x ryιs~al

are given by

Ϊ2 39Ϊ 3 = V Ύ . f ί - l v Y V

h=l j=0 V -̂  /

The next inequalities are the key for the estimation of β2n,l-

THEOREM 2.3. For real-non-negative x and y

(2.40)

(2.41) (y-x)Σ(-iγΓ'v A ] [ x ] ^ [ y ] ^ + 1 - ^ > 0 (n = 0,1,2,-
j V J )

Proof. For n = 0,1, we have

= (x - y)2 + (x + y) > 0.
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Assuming (2.40) and (2.41) for 2n and 2n + 1, we have

^Λ [ χ ] [ y ]

- J - x -

+ (2n + 1

(2n + 1) E ( - ! ) J ί 2 n ) Nωb] ( 2 n" j ){ϊ/ + 2n - j + x

(2n + l)(x + y + 2n) E
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(y — x)

3

= (y-χ)

j

= (y - x) Σ

= {y-x)
j

- (y - x)

(2n + 2)(y - x) ̂ ί - 1 ) ' f2" + *) N ( i )M ( 2 n + 1~ J )(2/ + 2n

+(2rH-2)(y-x) E ί
j V

1 )

r J [ x ] ^ [ y ] ( J ) > 0.

The main theorem is a direct consequence of the inequalities (2.40) and
(2.41).

THEOREM 2.4. If a > 0 and 7; > 0 (/ > 0), the 2n-apolar A2n(ξ(s),
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of the realistic partition function

1=1

has the expansion

-al

1=2

with non-negative coefficients

l-l 2n

(2.42) frtn^ΣΊi-KΊhΣi )
h=l j=0 \3 /

(I > 2).

Proof From the definition of 2n-apolar and from Theorem 2.3 it follows

A2n(ξ(s),ξ(s))
OO

= Σ ΊhΊkA2n(s-a\s-ak)
h,k=l

oo 2n /r\ \

= Σ Σί 1 ) '
• (-ah -j + l){-ak)(-ak - 1)

•-•(-ak-2n + j + l)s-a(h+k)

oo l-l / 2n / 2 \

\j=o \ J /z=2 h=i

2n

) [ } [ ( ψ 0.
h=l \j=l J

The next three are the concrete calculations of the coefficients of

and

EXAMPLE 2.1. Let £(s) = Σ ^ x jιs~al be a realistic partition function.

Then we have the expansion,

(2.43) «

1=2

l-l

ih=l

-al
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Consequently ^ ( ί o O is also a realistic partition function.

Proof. Watching the list of Stirling numbers, we observe,

oo l-l

[
1=2 h=l

, -αZ

1=2

l-l

Σ
L/ι=i

Π - l

-al

h=\ lh=l

Ί-hΊh

EXAMPLE 2.2. For a realistic ξ(s) = Σ £ i Ίιs~a\ w e have

(2.44) A4(ξ,ξ) = s4 (2ξ^(s)ξ(s) - *

oo Γl— 1

= Σ Σ{a4(l-2h)4 + (6a3l + 8a2)(l-2h)2

1=2 lh=l

+ 3aΨ

Consequently A^ξ^ξ) is also a realistic partition function.

Proof. Watching the list of Stirling numbers, we observe,

oo Π - l

1=2 lh=l

- 4[α(Z
-cd

Σ
1=2

l-l

L/ι=i

6a3h3 + lla2 h2 + 6ah + a4

-Ua2(l-h)2 + 6a(l-h)

- h)4

- 4(a3(l - h)3 + 3a2(l - h) + 2a(l - h))ah

+ 6(α2/*2 + ah)(a2(l - h)2 + a(l - Λ))}7Z-Λ7Λ] ^"α /
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1=2

l-l

L/ι=l

3(Z -h)+ 6h2(l - h)

- h)3 + (I - hf) + 6α 3(/ 3 - Al2h + 4Z/ι2

2 - /ι)2 - 10h(l - h))

l-l

1=2
Σf

Jι=l

+ 8a2(l

OO

ẑ
1=2

+ 3

Σl
Jι=l

o?l2

-2h)2

[*«-

2/i)4 + 6a3l(l

+ 3a2l2 + 6a

ΓΪΊ \4 i //? 37
Z/lj + (DCK /

-2hf

-al

EXAMPLE 2.3. For a realistic ξ(s) = Σ ^ x iis~al, we have

(2.45)
1=2

- 2h)4

- 2h)2

2 - 1

V^ίr>6f/ - 2h)6

/ j \ \ t

Ί = l

+ (45α4/2 + 210α3/ -

+ 15α3/3 + 90α2/2 +

Proof. Watching the list of Stirling numbers, we observe,

1=2 lh=l

- 6[a(l - h

+ 15[α(Z -
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1=2

/ - I

15α5/ι5 + 85α4/ι4 + 225α3/ι3 + 274α2/ι2

LΛ=I

+ 120ah + aβ{l - hf + 15α5(ί - hf + 85α4(Z - hf

+ 225α3(Z - hf + 274α2(Z - hf + 120a(l - h)

- 6 (a5h5 + 10a4h4 + 35a3h3 + 50a2h2 + 24ah) a(l - h)

- β(α5(Z - hf + 10α4(Z - hf + 3ha3{l - hf + 50α2(Z - hf

+ 24α(Z - hfjah + 15(α4/j4 + 6a3h3 + lla2h2

+ 6ah)(a2(l - hf + a(l - h)) + 15(α4(/ - hf + 6α3(/ - hf

+ l l« 2(l - hf + 6a(l - h))(a2h2 + ah)

- 20(a3h3 + 3a2h2 + 2ah)(a3(l - hf

Σ
1=2

/ - I

- 12l5h - 160l3h3 + 2A0l2h4

Lh=l

- I92lh5 + 64/i6) + 15α5(/5 - 8l4h + 2Al3h - 32l2h3 + 16lh4)

+ 5α4(17/4 - 100l3h + 228/2/i2 - 256Z/ι3 + 128/ι4)

+ α3(225/3 - 840l2h + 840ί/i2)

+ α2(274/2 - 736lh + 736/ι2)

= Σ
Γ Z — 1

α6(Z - 2/ι)6 + 15α5/(/ - 2hf + 5α4(8(/ - 2h)4

LΛ=I

,,-al

oo r;-i

1=2 lh=l

+ (A5aΨ + 210α3/ -

+ 15α3/3 + 90α2/2 +

PROPOSITION 2.3. // two realistic partition functions ξ(s) =
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Ίιs-al and i(s) = ΣΐlιΊls~al satisfy A2(ξ,ξ) = A2(H), then ξ(s) = ξ(s).

Proof Putting A2(ξ, ξ) = Σ/Ξ2 βls~a\ w ^ observe

l-l

h=l

m

9 V^/rv2r?rn 4- 1 — ?r)2 -4- (9rn 4- 1 Wl
ΔJ / \ Ut \ Δil IL j ^ J. ΔJ I 1 |^ \ Δil \ b |^ J. J Ut (

/ ^ L \ / \ / J

r=l
m

= 2 X]{α(2m + 1 - 2r) + (2m + l ) α } 7 2 m + i _ r 7 r (m = 0,1, 2,3,...),
r=l

m-1

2 ^ {α2(2m - 2r) 2 + 2 m α } 7 2 m _ r 7 r + 2maΊ

2

rn

r-l
7 7 1 — 1

- 2 Σ {^2(2m - 2r)2 + 2ma}η2m-rΊτ + 2 m α ^ (m = 1, 2, 3,...).
r=l

Since α > 0 and 7/, 7/ > 0 (Z > 1), we conclude 7/ = 7/ (Z > 1).
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§3. Differential polynomials in theta functions

In the present chapter we shall be concerned with differential poly-

nomials in theta functions. On the algebra of differential polynomials in

theta functions, Heisenberg Lie algebra acts so nicely that the subalge-

bra of theta functions coincides with the subalgebra consisting of so called

semi-invariants. This means the invariant theoretic point of view is a helpful

method. By analogy of Hubert operator we are able to calculate concrete

expressions, and again apolars take important parts.

Notations.

Z>o = {non-nagative integer},

z | 0 - {j = (ji, j2, . . , jj) I ji e z > 0 (l < j < g)},

\j\ = 31 + 32 + '"+jg

(jl, . . . , Ji—1, Ji - 1, ji+1, Jg)

|Ί = jllJ2]'"'.jg

z = (zι, Z2, ., zg), u — (ixi, tfc2, 5 Ug)\ systems of complex variables inde-

pendent each other,

r: a complex symmetric g x ^-matrix whose imaginary part is positive

definite,

a
n J \ n I \ n

dz) -\-Ί* -^ • dZlj v^"/v ^Δ ' BZT)

~dZa
• 2πηy/^ϊug +
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3.1. Theta functions and auxiliary theta functions

First of all we shall recollect some basic definitions and results in the

previous article [3].

DEFINITION 3.1. A theta function of level n (n > 1) means an entire

function f(z) = (zi, z2,..., zg) satisfying the difference equations.

(3.1) f(z + b + bτ)

= e x p t - π n v ^ & r ^ + 2z*6}/(Z) ((&, b) G ΊP x Z9).

Denoting of ΘQ the vector space of theta functions of level n, we obtain

the graded algebra of theta functions.

(3.2) 0o =

Theta series

(3.3) (τ\z)

e x p π n V - 1 { [ I + - ) τ t [I + - ) + 2 z ι [ l + -

(ae Z9/nZ9),

form a canonical basis of ΘQ1 , and consequently

(3.4) d i m c ^ n ) = n ^ .

DEFINITION 3.2. An auxiliary theta of level n means a function φ(u, z)

= {uι,u2,...,ug)zι,z2, .. ,Zg) such that

1. φ(u,z) is a polynomial in u = (1̂ 1,̂ 25 ->ug) whose coefficients are

entire functions in z — (zΐ, z2,..., zg),

2. φ(u + b,z + b + bτ) = exp[-πnλ/
:rT{6rί6 + 2ztb}]φ(u, z) ((6, b) e Z9 x

Denoting of β(n) the vector space of auxiliary theta functions of level n, we

obtain the graded algebra of auxiliary theta functions,

(3.5) Θ^Πθo=θ^n) ( n > l ) .
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Auxiliary theta series

a(n)
(T | u, Z) =

V

£$ \ 7

)

(3.6) = (2πn7Zϊ) l j l "Γ (u + ί + - ) j

exp
n n n

(j G Z | o , α G

from a canonical basis of θ^. Denoting by #:• the vector space spanned

by

(3.7) ϋ
(n)

o
(a€Z9/nZ9),

we obtain a fine decomposition of θ,

(3.8) * =

^ o, ^ S ) , (j G Z| o , n >

and consequently

(3.9) dime 0Jn) = n^ (n > 1, j G Z | o ) .

3.2. Action of Heisenberg Lie algebra

We denote the projection operators

(3.10) σ ( n ) . Q > Q{n)

We introduce differential operators, derivations, acting on θ as follows,

ε =

(3.11) v^ r(n) (1 < i < 5),
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then the action on the canonical basis are given by

(3.12)

(n)

3

(n)

(n)

n

.oj

0

qW (r I u, z)

/ \ o(τι)
1 7 " 7 / 7" I — Ύl Ί •!/ (r I u,z)

9 (τ\u,z)

(1 < i < 5, j G Z^ o , α G , n > 1).

The operators ε, D\, D2, -. - <, Dg, A±, A2,..., Ag satisfy the Heisenberg Lie

algebra relations;

(3.13)

Denoting

[ε, A ] = [e, Δi] = [A, A ] = [Δi, Δfc] = 0

ε

0

Dι = D1^Dι

2

2---Dιe A1 = A1*Aι

2

2---Δ{» (/ € Z9
>0),

we have

(3.14)

u,z) = 3-V
u,z)

(T I u, z) =

( j ,

(r I n, z)

Z|o , a E Z9/nZ9, n > 1).

The next lemma is the key for our purpose, which is the analogy of
Hubert operators in the classical invariant theory.

LEMMA 3.1. Projection operators a™ θ —> θj are given concretely
as follows;

n)(3.15) σ f = jEZ9

>Q,n>l).

https://doi.org/10.1017/S0027763000006449 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006449


100 H. MORIKAWA

Proof. It is sufficient to prove

0

(r I u, z) (k = j)

From (3.12) and (3.14) it follows

/ _ (—i)\p\ . Λ
y ^ v , , Δ p + ? Z } p + ? ) (r I u,z)

[Ap+JDp] (_L (n) (r I u,z)

r -I

L J

^ 7 V P
(r I u,z)

(τ I u,z)

αW (r I «, 2) (fc = j)

Since Q—®^^ ΔJ#ch each auxiliary theta y?(iί, z) can be expressed uniquely

φ(u,z)=

with theta functions Φj(z). We denote the linear operators by

(3.16) V(«^) = ̂ W (jeZ|0)

i.e.,

From Lemma 3.1 we observe that
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LEMMA 3.2.

(3.17)

*ί-Σ Σ
(3 6 Z9

>

J

Proof. Since Δ 3 induces a vector space isomorphisms of ΘQ onto

and σj + Δ J Lj, from Lemma 3.1 we conclude

L Σ Σ

LEMMA 3.3.

(3.18) L0Δ^ = 0 (1 < i < g).

Proof. For any theta functions Ψι(z)

hence L 0 Δ'Φj(«) = 0 (/ # 0 € Z | o ) .

LEMMA 3.4. For ί/ieία functions φ\(z) and φ 2,{z),

LQ (Aiψl(z)Akφ2

(3.19)

Proof First we shall show

Aτθ

by induction on | j | . Assuming (*) for j (\j\ < m), then

+ an element in | J Apθ
1<P<9

Hence from Lemma 3.3 we obtain

Lo (Alψl(z)Akφ2(z)) = (-1)^LO (φ1(z)Δ?+kφ2(z)) .
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3.3. Apolars of theta functions

We shall define apolars of theta functions and give the concrete expres-
sion of the linear operators

Lj : θ —> θ0 (j € Z | o ) .

DEFINITION 3.3. For each r in Z>0 the r-th apolar of theta functions

ψι(z) in ΘQ and ψ2(z) in ΘQ is defined by

(3.20) Ar(φi(z),φ2(z))= Σ
0<j<rn'{'n>2

 J'\J/

LEMMA 3.5. For φι(z) in θ^ and ψ2(z) in ΘQ ,

yo.ΔL) Λ.ryψιyZ)^ ψ2\Z)) KZ UQ

Proof. Obviously Ar(φι(z),ψ2(z)) belongs to #(ni+n2). It is sufficient
to show DiAr(φι(z),ψ2(z) — 0 (1 < i < g). By induction on \j\ we can
prove

hence

= Σ

3 n~
fc —jk )
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From

!)iι (i) + Σ(-!)J i (i) (r ~ (ji - 1)) = 0

we observe DiAr(ψι(z),ψ2(z)) = 0 (1 <i < g).

THEOREM 3.1. For theta functions ψ\{z) in ΘQ and ψ2{z) in ΘQ

(3.22) L0{Aj

φi(z)Akφ2(z))

Proof. From (3.19)

it is sufficient to prove

since DPφ^z) = 0 for p 7̂  0 and (3.14) it follows,

(-i)H

v

M

fc 0

n 2

n"nΓ' (-1)1"1 kλ

x '
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Π2

V '
>^2(z)) ,

x +n 2 /

THEOREM 3.2. For ίΛeta functions ψ\{z) in θ^ and ψ2(z) in θ

L j

(3.23)

(j,/ι,fc G Z | 0 ; n i , n 2 > 1).

Proof. From Lemma 3.2 the operator Ljσ^ can be written as follows

hence, using (3.14), we have
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K I

Finally we obtain the next decomposition formula.

THEOREM 3.3.

(3.24) Ah

φι(z)Akφ2(z)

0<j<h+k I \lJ V ~

{Ψί(z) e θt"\Ψ2{z) € «<"»'; ft, k e Z|o).

Specialization î = (u\,..., i^) —> 0 = (0 , . . . , 0) induces a graded alge-
bra isomorphism of θ = θjez

9 @j °nto the graded algebra D{ΘQ) of differ-

ential polynomials in theta functions such that

(3.25) Ajφ(z) > f — J φ(z) (φ(z) G ΘΌ).

Since the apolars Ar(φι(z), φ2{z)) oίψ\{z) in ΘQ ̂  and ̂ 2(2) in ̂ Q ^ belong

to ΘQ , we may write

(3.26) Ar(φi(z),ψ2(z))

The next is the translation of Theorem 3.3 by means of the specialization

Δ J _> {d/dzy {j € Z5> o ) .

https://doi.org/10.1017/S0027763000006449 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006449


106 H. MORIKAWA

THEOREM 3.4.

(3.27) - ))

= j2
0<j<h+k I

3.4. A differential algebra expansion of the field of abelian
functions

We mean by A the abelian veriety defined by the period matrix (/, r),
and mean by VQ the afrine ^-bundle over A defined by the quotient

Vo = C9 x CV~,

where (u, Z) ~ (u + 6, z + b + br) ((6, b) e Z9 x Z9).
We donote by Φo the field of abelian functions on A, i.e., the quotients

ψι{z)/ψ2{z) of theta functions of the same level.

DEFINITION 3.4. FjΦ means the vector space over *o spanned by

(0<k< j),

where ψ\{z) and ψ2(z) run over theta functions of the same level. Then
FQΦ = φ 0 and
(3.28) Φ =

is a filtration of an algebra. We call the elements of Φ auxiliary abelian
functions.

THEOREM 3.5. The algebra Φ of auxiliary abelian functions in a poly-

nomial algebra over ΦQ,

(3.29) Φ = Φ o (τ\z),...,Agΰ

where ϋ [ζ\ (r | z) is the theta series of level one.
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Proof. We shall prove

(*) C Δn? (τ\Z)\

by induction on | r | . Assume (*) for j satisfying \j\ ψ r. Then taking h,k

such t h a t h + k = r, \h + k\ = r, from 3.4 we have

h W

[°.
(r Z)Akϋ

0

o

2

(τ )

= Σ Σ
0<j<j+k=r I

-I.

(τ\Z),ϋ

zf

_ ( _ 1 ) I ^ I
(τ\Z)

2\h\
Zf

mod 1J Fj Φ.

This means

(τ\z)

€ Φ o ( r I « ) , . . . ,

Again from (3.24), for theta functions φι(z), ψ2{z) in ΘQ we have;„ Λ(")

ΔVi(^)
(τ\z)
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z))

(τ\z)

n1

(n

φ2(z) +

Arΰ

mod

( r

Choosing /ι, k such that h + k — r, |/ι|, |fc| < r, we conclude

The next is the translation of Theorem 3.5.

THEOREM 3.6. The polynomial algebra over Φo

(3.30) Φo

(τ\z)

o

o

o

o
(r ,)'

(r z)

coincides with the algebra over ΦQ spanned by

dzj
ΰ(n) (τ\z)

o

o

Z9/nZ9;n>
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Moreover derivations act on generators as follows,

,d

where

(—
dzj

ΰ
V

ϋ

o

o

o

o
(r

(r z ) ,
/

-<&

(τ\z)

(τ\z) χ

A ^

r z

ϋ

= 2-

),# (r\z)

d2

-ΰ
d

n

υ

ΰ

(r

o

o

z

(r

), ϋ
n

o

ZΫ

z))

(T I z).

The derivations d jdz\,..., d/dzg map the field Φo into itself

3.5. Decomposition of differential polynomials

We choose a system of independent variables

and a system of dependent variables

Z(s) = (Z1(s),Z2(s),...,ZN(s))

with positive integral valued weight

weight^ (s) = Uk (n < k < N)

we regard (Z^J (s)) also a system of dependent variables with respect to

ψ = ζ\s) =s = (si,52,...,5p), where Zψ = (d/ds)jZk(s) and weight Zζ\s) = nk

( j G Z | 0 , l<fc<7V).

We introduce a system of derivatives of the polynomial algebra
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as follows,

(3.32)

where

H. MORIKAWA

= Σ

Σ
jezin, i<k<N

d

7(j)

Ω ( n )

means the projection of Ω onto the vector subspace Ω(n) consisting of ele-

ments of weight n in Ω. Then the derivations ε, D\,..., Dg, Δ j , . . . , Δ i , . . . ,

Ag satisfy Heisenberg Lie algebra relations:

(3.33)

\iφk).

DEFINITION 3.5. An element φ in Ω^n^ is called a semi-invariant of

weight n, if Diφ = 0 (1 < i < g). Semi-invariants of weight n form a vector

space ΩQ and the graded algebra

is called the graded algebra of semi-invariants in Ω.

LEMMA 3.6.

(3.34) DzA
p = PiεAp-^+ApDι (p 6 Z | o ),

DpAiφ / Λ A , _O.. l:_rr,o , . ^ (
(3.35)

\pj

Proof. Assuming (3.34) for pi, we have

DiAp+ei = DiApAi = (piβAp~ei -

= pieAp + Ape + Δ p + e ' A = (p< + l )eΔ p •
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THEOREM 3.7. We denote

(3.36) Lj = T VΣ

then

(3.37) DiLi = 0

(3.38) L 7 Δ
f c I Ω o = I * Ω° J ~

I 0 (j*k)

(3.39)

Proof. From the relation

' 1 (m = 0)

0 ( m ^ O ) ,

it follows

-̂—̂  \ i r

From (3.35), for each φ in ΩQ , we have

P
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This means L, Δfc | Ωo = i<W Since εσ^ = ησ^n\ from (3.34) we have

= Σ Σ •-'-•• • • > + ^ Δ ^ - ^ Φ - + P +

(
^nlP^Ί(p c < )y!

)n p \ j \ )

Now we obtain the decomposition formula.

THEOREM 3.8. Li is a vector space isomorphism o/Δ ̂ Ωo onto ΩQ, and

AJ Li is the projection of Ω, onto Δ ̂ ΩQ in the decomposition:

(3.40) Ω =

Theorem 3.8 states that each differential polynomial φ is uniquely writ-

ten

with semi-invariant
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