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The continental plates of Earth are known to drift over a geophysical time scale, and their
interactions have led to some of the most spectacular geoformations of our planet while
also causing natural disasters such as earthquakes and volcanic activity. Understanding
the dynamics of interacting continental plates is thus significant. In this work, we present
a fluid mechanical investigation of the plate motion, interaction and dynamics. Through
numerical experiments, we examine the coupling between a convective fluid and plates
floating on top of it. With physical modelling, we show the coupling is both mechanical
and thermal, leading to the thermal blanket effect: the floating plate is not only transported
by the fluid flow beneath, it also prevents the heat from leaving the fluid, leading to a
convective flow that further affects the plate motion. By adding several plates to such a
coupled fluid–structure interaction, we also investigate how floating plates interact with
each other, and show that under proper conditions, small plates can converge into a
supercontinent.
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1. Introduction

Fluid–structure interactions appear at many different scales on our planet, and perhaps
the largest one is the continental plate tectonics (Plummer, McGeary & Carlson 2001).
It is believed that this tectonic motion results from the thermal convection in Earth’s
mantle (Kious & Tilling 1996), where the mantle materials behave like a fluid (Turcotte &
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Schubert 2002) that is heated from the core and cooled at the surface of Earth. Under
gravity, this configuration of heating and cooling leads to thermal convection, whose
circulation provides forcing to the continental plates through shearing. This is considered
to be the simplest picture of plate tectonics; however, many details of the plate dynamics,
like the periodic formation of supercontinents and the associated geological Wilson cycle
(Burke 2011), require further investigation.

Laboratory experiments have proven to be an effective way of understanding the
fluid–structure interaction behind the plate tectonics, with many successful studies
that couple the thermally convective fluid to solid structures (Elder 1967; Howard,
Malkus & Whitehead 1970; Whitehead 1972). Aimed at recovering the plate dynamics
and understanding the associated fluid–structure interactions, a series of laboratory
experiments was later conducted by Zhang & Libchaber (2000) and Zhong & Zhang (2005,
2007a,b). Shown in figure 1(a), this experiment employs water as the working fluid, and
a heater beneath provides heating while the ventilation at the water–air interface provides
cooling, resulting in Rayleigh–Bénard convection (Ahlers, Grossmann & Lohse 2009).
A floating plate of size d is carefully placed on top of this convective domain of total
length D. This moving plate with centre location xp has only fluid force acting on it, unless
it hits the wall on the left or the right. Large-scale circulations (Araujo, Grossmann &
Lohse 2005; Brown & Ahlers 2007; Moore & Huang 2023) are observed to form in the
convective fluid, as shown in figures 1(a) and 1(c). Depending on the location xp, the plate
can be either transported by the circulating fluid, or situated on top of a converging or
diverging centre of the surface flow (this is the case shown in figure 1a). Interestingly,
different plate motions are observed depending on its size: when the ratio between plate
size d and tank width D is smaller than a critical number near 0.58, the plate oscillates
between the two sidewalls as shown in figure 1(b); When this ratio is above the critical
value, the plate is trapped at the centre of tank, as shown in figures 1(b) and 1(c).

Zhong, Zhang, and others investigated this transition of behaviours, and they discovered
that the so-called thermal blanket effect is responsible here (Zhang & Libchaber 2000;
Zhong & Zhang 2005, 2007a,b; Huang et al. 2018; Mao, Zhong & Zhang 2019; Mao
2021; Lowenstein 2024). In this theory, the floating plate serves as an insulator (like a
blanket) on top of the convective fluid, hence the fluid beneath becomes warmer due to the
lack of ventilation. The warm fluid then rises, creating a diverging surface flow as shown
in figure 1(a) that can transport the plate. The coupling between the fluid and the floating
plate therefore goes two ways: the plate modifies the flow temperature and leads to thermal
convection; the formed convective flows transport the floating plate. Their interplay leads
to non-trivial dynamics of the plate shown in figure 1(b), and the physically inspired
Zhong–Zhang model (Zhong & Zhang 2005, 2007a,b) successfully captures the transition
of dynamics. Recently, more careful investigations on the Zhong–Zhang model have lead
to new advancements in the stochastic (Huang et al. 2018) and dynamical (Lowenstein
2024) modelling of fluid–structure interactions.

While the laboratory experiments are conducted in a domain of fluid with finite size,
numerical simulations can be conducted in a domain that resembles the mantle of Earth.
The numerical work of Gurnis (1988) provides one of the first time-dependent simulations
of continental drift, where the fluid domain is two-dimensional and periodic. After this,
many more numerical works have investigated the details of continental drift (Zhong
& Gurnis 1993; Lowman & Jarvis 1993, 1995, 1999; Lowman & Gable 1999; Zhong
et al. 2000; Lowman, King & Gable 2001), engaging higher resolutions, more detailed
modelling of fluid–structure interactions, and three-dimensional simulations of the interior
of Earth. In recent years, the mobility of the continental plate has become a focus of
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Figure 1. Rayleigh–Bénard convection coupled to a free-floating plate leads to different dynamics of plate
motion. (a) Schematics of the interaction between Rayleigh–Bénard convection and the floating plate. The
fluid is heated from below and has an open free surface; the floating plate on this free surface is transported by
the fluid force exerted from below. (b) Different states of plate motion. A small plate with d/D = 0.2 oscillates
between two sidewalls of the convection cell, while a big plate with d/D = 0.7 is trapped in the middle of
the convection cell. Here, L = (D − d)/2 is the bound of plate centre xp. (c) Flow visualization reveals two
counter-rotating large-scale circulations when the plate is located at the centre of the convection cell. Image
credit: Zhong & Zhang (2007b) and Huang et al. (2018).

numerical study, where persistent motion is observed for larger plates, while small plates
tend to move sporadically (Gurnis 1988; Whitehead & Behn 2015; Mao et al. 2019; Mao
2021). In these works, the thermal blanket effect is once again recognized as an important
factor causing the diverse plate dynamics.

This work is a continuation of an earlier investigation, Huang (2024), where the thermal
and mechanical coupling between one floating plate and convective fluid is modelled
through a simple stochastic model. This model shows that the covering ratio Cr, defined as
the ratio of the plate area to the total surface area, is a direct measure of the thermal blanket
effect. A critical covering ratio Cr∗ is identified to distinguish the dynamics of the plate:
for a small plate with Cr � Cr∗, the plate is passive to the flow field and exhibits little
motion; for a plate with Cr � Cr∗, the strong thermal blanket effect leads to persistent
plate translation. For plates with Cr ≈ Cr∗, more complicated transitioning dynamics is
observed.

In this work, we first introduce an efficient two-dimensional spectral solver that
can accurately capture the motions and interactions of multiple floating plates on top
of Rayleigh–Bénard convection. In a periodic domain shown in figure 2, this solver
can handle the Navier–Stokes flows presented in laboratory experiments, with simple
modifications available for the geophysical Stokes flows in the mantle. Moreover, multiple
floating plates can be simulated as fast as a single-plate problem, as the floating plates are
simply treated as an area with different boundary conditions. A specially tailored spectral
solver handles the resulting inhomogeneous Robin conditions for both the temperature
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Figure 2. Schematics of the floating plate problem. The fluid domain Ω is heated from the bottom surface
∂Ω0, and has an open surface on top (∂Ω1). Floating plates P1,P1,P2, . . . cover part of this open surface, and
shield the heat from leaving the fluid.

and the stream function, allowing for efficient time stepping and spectral accuracy. This
enables us to systematically introduce one, two and many floating plates, and to show how
the thermal blanket effect dictates their interactions with the convective flow beneath and
each other. The covering ratio Cr is once again identified as a key factor affecting the plate
dynamics and the stable formation of supercontinents.

This paper is arranged as follows. In § 2, we will mathematically formulate the
Rayleigh–Bénard convection and its coupling to the plate motion. In § 3, a numerical
scheme and its implementation for solving this free-boundary problem will be introduced.
In § 4, numerical simulations of single, double and multiple plate dynamics will be
included and discussed. Finally, we will discuss extensions and future works in § 5.

2. Mathematical formulation

2.1. Flow and temperature equations
We consider a dimensionless set of equations by rescaling the length scale by the cell
height H, the time scale by the diffusion time H2/κ (where κ is thermal diffusivity), and
temperature by the temperature difference�T between the heater and the free surface. The
x direction of the fluid domain is periodic with period Γ = D/H (where D is the domain
width), so the overall computational domain is x ∈ (0, Γ ), y ∈ (0, 1), as shown in figure 2.
With the Boussinesq approximation, the resulting partial differential equations (PDEs) for
flow speed u = (u, v), pressure p and temperature θ ∈ [0, 1] are

Du
Dt

= −∇p + Pr ∇2u + Ra Pr θ, (2.1)

∇ · u = 0, (2.2)

Dθ
Dt

= ∇2θ. (2.3)

Two dimensionless numbers appear during this non-dimensionalization: the Rayleigh
number Ra = αg�T H3/νκ , and the Prandtl number Pr = ν/κ , with ν, α and g denoting
kinematic viscosity, thermal expansion coefficient of the fluid, and the acceleration due
to gravity. We have further assumed that the physical properties of the fluid depend on
temperature weakly, so Ra and Pr do not depend on θ .
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As our simulation is two-dimensional, it is convenient to write the Navier–Stokes
equation in a vorticity and stream function format (Peyret 2002):

Dω
Dt

= Pr ∇2ω + Pr Ra
∂θ

∂x
, (2.4)

−∇2ψ = ω, u = ∇⊥ψ, (2.5a,b)

Dθ
Dt

= ∇2θ. (2.6)

Instead of solving directly for u and p, the z-component of vorticity ω = k · ∇ × u and
the stream function defined by u = ∇⊥ψ = (ψy,−ψx) are solved first.

2.2. Boundary conditions
While (2.4)–(2.6) are standard for modelling Rayleigh–Bénard convection, the boundary
conditions become complicated when floating plates are present. Shown in figure 2, the
fluid domain Ω is bounded between the bottom heating wall y = 0 (∂Ω0) and the top
free surface y = 1 (∂Ω1). The segments of top surface covered by the floating plates are
labelled as P1,P2, . . . , whose centres are x(1)p , x(2)p , . . . .

The boundary conditions for the bottom heating wall are set straightforwardly as
constant temperature and no-slip:

θ = 1, u = v = 0 at y = 0. (2.7)

For the vorticity–stream function format,

θ = 1, ψ = ψy = 0 at y = 0. (2.8)

The top condition consists of two types of regions: for the free surface (not covered by
Pi), the temperature is low and the flow is shear-free; for the region covered by the plate
Pi, the heat flux is zero and the flow shares the same velocity as the plate. The zero-flux
condition originates from the ‘thermal blanket’ effect caused by the low heat conduction
of solids. The boundary conditions at y = 1 can be summarized as

θ = 0, uy = v = 0 for y = 1 and x /∈
⋃

Pi, (2.9)

θy = 0, u = u(i)p , v = 0 for y = 1 and x ∈ Pi. (2.10)

Here, u(i)p = ẋ(i)p is the velocity of ith plate Pi. For convenience, we can also write the
top boundary conditions in a more compact way:⎧⎪⎨

⎪⎩
(1 − a)θ + aθy = 0,
au + (1 − a)uy = g at y = 1,
v = 0.

(2.11)

For the vorticity–stream function format,⎧⎪⎨
⎪⎩
(1 − a)θ + aθy = 0,
aψy + (1 − a)ψyy = g at y = 1,
ψ = 0.

(2.12)
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Here, a(x) = ∑
i 1x∈Pi , g(x) = ∑

i u(i)p 1x∈Pi , and 1x∈Pi is the characteristic function such
that

1x∈Pi =
{

1 if x ∈ Pi,

0 otherwise.
(2.13)

On plate Pi, two types of forces drive its motion: the fluid force f (i) due to the shear from
convective flows, and the interacting force f (i)l or f (i)r when the left or right neighbouring
plate (Pi−1 or Pi+1) makes contact with plate Pi.

For the fluid force, we simply integrate the fluid shear stress:

f (i) = −Pr
∫

Pi

uy(x, 1, t) dx = −Pr
∫ Γ

0
uy(x, 1, t)1x∈Pi dx. (2.14)

The interaction forces f (i)l and f (i)r are modelled as a short-range interaction force to
ensure a fully elastic collision between plates. The numerical implementations will be
included in § 3.3.

Finally, we add all the forces together and evolve the plate location as

ẋ(i)p = u(i)p , (2.15)

u̇(i)p = a(i)p = m−1
[

f (i)l + f (i)r − Pr
∫ Γ

0
uy(x, 1, t)1x∈Pi dx

]
. (2.16)

Here, a(i)p is the acceleration of Pi, and m is the dimensionless mass of plate.

3. Numerical methods

3.1. Time stepping
We discretize time with the second order Adams–Bashforth backward differentiation
method. At time step tn = n�T , (2.4)–(2.6) become

∇2ωn − σ1ωn = fn, (3.1)

∇2θn − σ2θn = hn, (3.2)

−∇2ψn = ωn, (3.3)

where

σ1 = 3
2 Pr�t

, σ2 = 3
2�t

, (3.4a,b)

fn = Pr−1 [
2(u · ∇ω)n−1 − (u · ∇ω)n−2

]
− (2 Pr�t)−1 (4ωn−1 − ωn−2)− Ra

(
∂θ

∂x

)
n
,

(3.5)

hn = [
2(u · ∇θ)n−1 − (u · ∇θ)n−2

] − (2�t)−1 (4θn−1 − θn−2) . (3.6)

Equations (3.1)–(3.3) are Helmholtz equations that can be solved by standard numerical
methods (Peyret 2002), and this implicit–explicit operator splitting scheme has been used
in many numerical studies of thermal convection (Huang & Zhang 2022; Huang 2024).
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However, modifications have to be made to accommodate the inhomogeneous Robin
boundary conditions (2.12). We detail this modified Helmholtz solver in Appendices A–C,
and a flow chart of the numerical procedure can be found in Appendix D.

In (3.5) and (3.6), nonlinear terms such as u · ∇θ and u · ∇ω are computed
pseudo-spectrally, with a simple and efficient anti-aliasing filter (Hou & Li 2007). With
given initial and boundary data, (3.2) can be solved first to obtain θn, which is inserted in
fn so (3.1) can be solved next. Finally, (3.3) is solved with the known ωn. The spatial and
temporal resolution of our study is also detailed in Appendix D.

After solving for the flow and temperature fields, the acceleration a(i)p,n of plate Pi
can be computed via (2.16), and (2.15) and (2.16) are integrated with a second-order
Adams–Bashforth method:

x(i)p,n+1 = x(i)p,n + �t
2

[
3u(i)p,n − u(i)p,n−1

]
, (3.7)

u(i)p,n+1 = u(i)p,n + �t
2

[
3a(i)p,n − a(i)p,n−1

]
. (3.8)

3.2. Smooth boundary conditions
In principle, the introduced fluid and heat solver is able to manage the inhomogeneous
Robin boundary condition (2.11) at y = 1. However, this boundary condition is not
smooth, therefore limiting the accuracy of a numerical method with finite resolution. To
overcome this, we aim to construct a smooth characteristic function 1̂x∈Pi so it is compactly
supported and sufficiently smooth.

We first construct a smooth step function in one dimension, whose derivative φl,m(r) is
in the family of Wendland functions that are shaped like a Gaussian (Chernih, Sloan &
Womersley 2014):

φl,m(r) =
⎧⎨
⎩

1
Γ (m) 2m−1

∫ 1

r
s(1 − s)l(s2 − r2)m−1 ds for 0 � r � 1,

0 for r > 1.
(3.9)

The integer m controls the smoothness of the Wendland function, and l = 	m + n/2
 +
1 for spatial dimension n. It can be shown that φl,m ∈ C2m(R+), and it is compactly
supported. Next, we take m = 1, l = 2 and construct a smooth step function Wε(x) that
transitions from 0 to 1 on [−ε, ε]:

Wε(x) =

∫ x

−∞
φ2,1(|s|/ε) ds∫ ∞

−∞
φ2,1(|s|/ε) ds

. (3.10)

This function is plotted in figure 3(a) with various ε, and it is easy to verify that Wε(x) = 0
when x < −ε, and Wε(x) = 1 when x > ε. As the transition length 2ε becomes smaller,
Wε becomes sharper, approximating a step function. Moreover, Wε ∈ C3(R) when ε > 0
due to our choice of m = 1, achieving our goal of constructing a smooth step function.
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Figure 3. Smooth step and indicator functions. (a) Smooth step function Wε that has transition interval [−ε, ε].
Four values of ε = 0.01, 0.1, 0.2, 0.4 are plotted. (b) Smooth indicator function â for locating the region of solid
plates. The parameters plotted are x(1)p = 1, x(2)p = 3, d = 1 and ε = 0.05.

We can further evaluate Wε(x) as

Wε(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < −ε,
−3

4

( x
ε

)5 + 5
2

( x
ε

)4
sgn(x)− 5

2

( x
ε

)3 + 5
4

x
ε

+ 1
2

if x ∈ [−ε, ε],

1 if x > ε.

(3.11)

We next construct a smooth characteristic function 1̂x∈P for a plate P centred at xp with
length d:

1̂x∈Pi = Wε

(
x −

(
xp − d

2

))
Wε

((
xp + d

2

)
− x

)
. (3.12)

In our numerical examples, we take ε = 0.05d to ensure smoothness. Finally, we can
write the Robin boundary conditions in the form

⎧⎪⎨
⎪⎩
(1 − â)θ + âθy = 0,
âu + (1 − â)uy = ĝ at y = 1,
v = 0,

(3.13)

where

â(x) =
∑

i

1̂x∈Pi, ĝ(x) =
∑

i

u(i)p 1̂x∈Pi . (3.14a,b)

Noticing that Wε(0) = 0.5, it can be verified easily that â(x) ∈ [0, 1] as long as |x(i)p −
x( j)

p | � d for i /= j. The function â(x) for two plates centred at x(1)p = 1, x(2)p = 3 with plate
length d = 1 is shown in figure 3(b).

3.3. Dynamics of the moving plate
There are two types of forcing on each plate. One is the fluid force due to shear stress, and
the other is the interaction force when two plates make contact.
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Covering convection with thermal blankets

For the fluid force, we simply integrate the shear stress by replacing the characteristic
function with its smooth version:

f (i) = −Pr
∫ Γ

0
uy(x, 1, t) 1̂x∈Pi dx = −Pr Γ 〈uy 1̂x∈Pi〉. (3.15)

As we are using an equally spaced periodic grid in x, the integration can be replaced
with a numerical average of all grid values of the integrand, so

∫ Γ
0 f (x) dx ≈ Γ 〈 f 〉 =

(Γ/L)
∑L

k=1 fk, which is spectrally accurate (Trefethen 2000).
When solid plates make contact, a contact force between them keeps the plates

separated. Inspired by the experiments of Zhong & Zhang (2005, 2007a,b), we set
the collision between neighbouring plates to be fully elastic, which means that their
total momentum and kinetic energy are preserved after each collision. Numerically, we
approximate the contact force by a function that is both short-ranged and smooth, so the
force is zero when the plates are far away, but increases rapidly as they get close.

For plate number i, there are two forces for contact from the left neighbour and from the
right neighbour:

f (i)l = fmax Wδ

(
d − |x(i)p − x(i−1)

p |
)
, (3.16)

f (i)r = −fmax Wδ

(
d − |x(i+1)

p − x(i)p |
)
. (3.17)

Here, the parameter δ models an ‘interaction length’, and fmax is the maximum interacting
force between two plates. With the typical simulation parameters and no fluid forcing, we
have verified that this choice of interacting force indeed conserves total momentum and
results in a coefficient of restitution e > 0.99. At each simulation, δ and fmax are chosen
according to the spatial and temporal resolution, so the ordinary differential equation
(ODE) and PDE solvers can sufficiently resolve the plate motion and the associated
boundary conditions.

4. Results

4.1. One-plate dynamics
In this subsection, we review the dynamics of a single plate motion. To simplify our study,
the Rayleigh number is fixed at Ra = 106, the Prandtl number is Pr = 7.9, and the aspect
ratio is Γ = 4. These parameters are similar to those in a previous numerical study (Huang
2024). For the plate, we set the mass as m = 4d, so plates with various lengths d have the
same density. For the numerical solver, there are 512 Fourier modes in the x direction,
and 129 Chebyshev nodes in the y direction, and the time step size is �t = 10−6. These
parameters yield accurate, stable and resolved numerical solutions.

To measure the size of the plate, we define the covering ratio Cr = d/Γ . Depending on
the size of the plate, or Cr, the dynamics of the plate motion can be very different. Figure 4
and supplementary movie 1 (available at https://doi.org/10.1017/jfm.2024.1231) show the
dynamics of a small plate with Cr = 0.1, and its motion is a continuous random walk
shown in figure 4(c). However in figure 5 and supplementary movie 2, a larger plate with
Cr = 0.6 shows completely different dynamics: it translates unidirectionally as shown in
figure 5(c).

In Huang (2024), the two dynamics are analysed in detail, and we summarize the key
interplay between the plate and the fluid below.
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Figure 4. Motion of a small plate (Cr = 0.1) is random and bidirectional. (a) A snapshot of flow and
temperature fields beneath a plate. The small plate is trapped at a cool converging centre. (b) Vertically averaged
temperature θ̄ and vertical velocity v̄ at the same moment as in (a). The shaded region indicates the location of
the plate. At the converging centre, the averaged temperature is low and the flow moves downwards. (c,d) The
displacement xp and velocity up of the plate show behaviour of a random walk with jumps.
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Figure 5. Motion of a large plate (Cr = 0.6) is unidirectional. (a,b) Flow and temperature fields beneath the
plate. (c,d) The displacement xp and velocity up of the moving plate, which shows unidirectional motion with
non-zero mean velocity.

In figure 4, the small plate tends to be attracted by the converging centre of the
fluid – the location where the fluid sinks. This converging centre can be seen clearly in
figures 4(a) and 4(b), located at the minimum of both the vertically averaged temperature
θ̄ (x, t) = ∫ 1

0 θ(x, y, t) dy and the averaged vertical flow speed v̄(x, t) = ∫ 1
0 v(x, y, t) dy.

This means that the plate velocity up = ẋp in figure 4(d) matches the translational velocity
of the flow converging centre, which has a zero mean but is subject to noise due to random
fluid forcing. In this case, the plate motion is passive and completely driven by the flow
structure, and the converging centre of the surface flow serves as a stable equilibrium
location for the plate.
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Covering convection with thermal blankets
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Figure 6. Plate displacement and velocity for different covering ratios Cr. (a) Sample trajectories of the plate
location, where small plates are more affected by noise, and large plates have more persistent unidirectional
motion. (b) Total travel of the plate reveals its speed; a maximum speed of travel can be seen at approximately
Cr = 0.6. (c) Average travel speed has a maximum at Cr = 0.56, and unidirectional motions start to appear for
plates larger than Cr = 0.33.

For a larger plate with Cr = 0.6, figure 5 and supplementary movie 2 show that the
plate motion becomes unidirectional. Increasing plate size clearly changes the flow and
temperature distribution in the fluid, as the bulk fluid temperature in figures 5(a,b) is
visibly higher than that in figures 4(a,b). This is a clear sign of the thermal blanket effect,
as the bigger plate shields the heat from escaping, and the effective cooling area at y = 1
is smaller. In this case, the plate is no longer passive, but creates a thermal blanket that
warms the fluid beneath it. Unlike the situation of small plates, a large plate sitting on top
of a converging centre cannot be stable in the long term, as eventually the temperature
beneath the plate will become high enough to turn this converging centre into a divergent
one. Shown in figure 5(b), the average temperature θ̄ is indeed higher below the plate, and
the plate sits between the converging and diverging centres. This causes the unidirectional
motion of the plate, and as the plate keeps affecting the temperature distribution beneath
it, the temperature and flow fields move with the plate as shown in supplementary movie 2.
The plate displacement xp and velocity up are shown in figures 5(c) and 5(d), where up has
a non-zero mean and is subject to random forcing from the fluid.

The motions of plates with various Cr are shown in figure 6. The displacement
in figure 6(a) clearly shows that the small plate has a random motion whose net
displacement grows slowly in time. As Cr increases, the plate starts to have more persistent
unidirectional motions; however, the random fluid forcing can easily reverse the travel
direction of the plate, leading to reversals of direction in figure 6(a). Further increasing
Cr, the unidirectional motion becomes more persistent; however, the velocity (slope of xp)
decreases. Defining the total travel of a plate as dp(t) = ∫ t

0 |up(t′)| dt′, figure 6(b) shows
a peak of the plate travelling speed at approximately Cr = 0.6. To further verify this, we
define the average plate speed as vp = limt→∞ dp(t)/t in figure 6(c), and a maximum
indeed appears at Cr = 0.6.

As the thermal blanket effect strengthens, there is an apparent transition of the plate
dynamics. Figure 7 shows the time series (lower images) and histogram (upper images)
of up at various Cr. For small Cr, the histogram of plate velocity resembles a Gaussian
distribution, whose zero mean suggests that the net plate displacement would be small.
Increasing Cr beyond 0.3, the plate dynamics starts to transition as figure 7(c) shows
that the variance of up increases. At Cr = 0.4375 (figure 7d), the two translational states
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Figure 7. Time series (lower images) and histogram (upper images) of the plate velocity up at various Cr. The
plate velocity is normalized by its average travel speed vp, so up ≈ ±vp suggests a unidirectional translation.
(a–e) Covering ratios 0.0625, 0.3125, 0.375, 0.4375, 0.875, respectively. The plate motion has a transition from
the passive state in (a,b) to the translating state in (d,e), and the translation is also more persistent for large Cr
in (e).

with up = ±vp emerge, where up switches between the two directions due to the noise of
fluid forcing. At even higher Cr (figure 7e), the unidirectional motion is persistent and the
reversal becomes rare. The observation here matches the stochastic theory developed in
Huang (2024), which consists of a simple model that recovers the mechanical and thermal
interplay between the plate and the fluid. This stochastic model predicts that there is only
a passive state (no net plate motion) for Cr < Cr∗, where the critical covering ratio is
Cr∗ = 1/3 for Γ = 4, and the translational states can exist only for plates with Cr > Cr∗,
indeed matching figure 7.

Finally, we investigate how the bulk properties of the flow respond to the moving plate.
In figure 8, we show the Nusselt number Nu = −[Γ (t2 − t1)]−1 ∫ t2

t1
dt

∫ Γ
0 θy(x, 0, t) dx

and the Reynolds number Re = (t2 − t1)−1 ∫ t2
t1
(max(x,y) |u(x, y, t)|) dt, where t2 − t1 is the

interval for long-time average. The two groups of measurements are for a plate that is free
to move by the flow (free), and for a plate that is fixed at a certain location (immobile).
By setting the plate free, the Nusselt number changes slightly in figure 8(a), while the
Reynolds number decreases significantly in figure 8(b). We also note that at the critical
Cr∗, the flow speed reaches a maximum for the immobile plate shown in figure 8(b).
Moreover, the Nusselt number approaches its maximum at approximately Cr = 0.6, where
the plate translates the fastest, as shown in figure 6(c). While we do not have a clear theory
to explain the observations in figure 8, we believe that the free plate motion certainly
modifies the flow and thermal structure of Rayleigh–Bénard convection. For example,
the fluid shearing drives the plate motion, thus part of the fluid kinetic energy must be
converted to the plate kinetic energy. This may explain why a significant decrease of Re is
shown in figure 8(b).

4.2. Two-plate interactions
Adding multiple plates to the convective surface brings interactions between plates and
leads to more diverse dynamics. In our numerical simulation, adding a second plate can
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Figure 8. Nusselt and Reynolds numbers for the convecting flow. (a) The Nusselt number is a measure of the
vertical heat passing through the flow. (b) The Reynolds number as a measure of flow speed. The free data are
for the plate moving freely with the flow, and the immobile data are for the plate that is fixed.

be achieved easily through the indicator function method outlined in §§ 2 and 3. In the
following numerical experiments, we set Ra = 106, Pr = 7.9, Γ = 4, m = 4d, as we did
for the single-plate case. We additionally set the maximum interaction force fmax = 106 and
an interaction range δ = ε that matches the size of the smoothing region of the indicator
function in § 3.2. These two parameters define the force of interaction between the two
plates through (3.16) and (3.17), and such interaction conserves both the kinetic energy
and momentum of the plates.

The dynamics of a pair of small plates (figure 9) and a pair of large plates (figure 10) are
quite different. In figure 9 and supplementary movie 3, two small plates with individual
covering ratios Crp = 0.1 are released on the convective surface. The two plates tend to
stay together, generating a ‘supercontinent’ as shown in figure 9(a). Further analysing the
flow temperature and surface flow rate in figure 9(b), we see they are in fact attracted by
a converging centre of the surface flow, and the surface flow pushes them into each other.
The trajectories x(1)p and x(2)p of the plates are shown in figure 9(c), and the normalized
plate distance d12 = [x(2)p − x(1)p ]/Γ is plotted in figure 9(d). We see clearly that the two
plates prefer to stay in contact, as the normalized distance stays near Crp or 1 − Crp in
figure 9(d).

The combined covering ratio of these two plates is Cr = 2 Crp = 0.2, which is less
than the critical covering ratio Cr∗ = 1/3 that we identified earlier. Therefore, the thermal
blanket effect generated by this supercontinent is not strong enough to heat up the fluid
beneath, and the surface flow stays converging and pushing the two plates together. Thus
a supercontinent with combined Cr < Cr∗ is stable in its formation and exhibits a passive
motion.

Figure 10 and supplementary movie 4 show the dynamics of two plates with
Cr = 2 Crp = 0.6. In this case, the fluid beneath the supercontinent is warmed up due
to the thermal blanket effect, and generates an upwelling flow. The resulting diverging
surface flow separates the two plates, leading to an unstable supercontinent formation.
Figures 10(c) and 10(d) show the plate trajectories and the normalized plate distance, and
the two plates are seen to stay separated in figure 10(d) as their normalized distance is
between Crp and 1 − Crp, and the contact state is only transient.

In figure 10, although the covering ratio for each plate satisfies Crp < Cr∗, their
combined ratio is Cr = 2 Crp > Cr∗. The supercontinent, once formed, will become
unstable as the warm fluid beneath creates a diverging surface flow that pulls the two
plates apart.
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Figure 9. Dynamics of two small plates (Crp = 0.1 each) forming a supercontinent of Cr = 0.2. (a) Flow and
temperature distribution beneath the supercontinent. The surface flow is converging, and the formation of the
supercontinent is stable. (b) Vertically averaged temperature θ̄ and vertical velocity v̄ at the same moment as in
(a), with the region of the two plates shaded. (c) The displacement of plates x(1)p and x(2)p . (d) The normalized
plate distance d12 = [x(2)p − x(1)p ]/Γ indicates that the two plates tend to stay in contact. The white region
(plates separated) and grey region (plates in contact) are separated by Crp and 1 − Crp.
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Figure 10. Two large plates (Crp = 0.3 each) cannot form a stable supercontinent of Cr = 2 Crp = 0.6.
(a) The warm upwelling fluid creates a diverging surface flow beneath the plates. This diverging surface flow
pulls the two plates apart, rendering the supercontinent formation unstable. (b) Vertically averaged temperature
and vertical velocity of the fluid beneath the plates shown in (a). (c) Plate displacements x(1)p and x(2)p . (d) The
normalized plate distance d12 stays in the white region where the two plates are separated.

Figure 11 shows how the plate dynamics depends on the combined Cr. In figure 11(a),
we define a normalized contact time τ = tc/T , where tc is the amount of time that the
two plates are in contact, and T is the total simulation time. A sharp decrease of τ is seen
near Cr∗ = 1/3, beyond which a persistent formation of supercontinent is unlikely. This
is consistent with our analysis earlier, as a supercontinent with Cr > Cr∗ would induce
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Figure 11. Contact and motion of the plates depend on the covering ratio. (a) The normalized contact time τ
decreases sharply when Cr increases above Cr∗ = 1/3. (b) The plate centre of mass velocity vcom increases
when Cr > Cr∗, indicating that the plates are no longer passive to the flow.
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Figure 12. Dynamics of eight plates (Crp = 0.057, Cr = 8 Crp = 0.457) floating on top of the convecting
fluid. (a) A snapshot of eight plates and the convective fluid beneath, where the centre locations of the plates
are (x(1)p , x(2)p , . . . , x(8)p ). (b) Trajectories of (x(1)p , x(2)p , . . . , x(8)p ); plates can be seen forming supercontinents
over time. (c) Zoomed-in view of the trajectories in (b) in the time window t ∈ (3.5, 3.6).

warm upwelling flows that disintegrate the supercontinent. The centre of mass velocity of
plates also picks up when Cr > Cr∗ (figure 11b), suggesting that the two large plates are
no longer passive but instead translate as we have seen in figure 6(c).

We now see the role of Cr∗ in the formation of supercontinents: it is possible to have a
stable supercontinent only if its Cr is less than Cr∗.

4.3. Multiple plates
Further increasing the number of plates, the formation of supercontinents exhibits complex
and intriguing dynamics. In figure 12 and supplementary movie 5, eight plates with
Crp = 0.057 (total Cr = 0.457) are released on top of the convective fluid, where Ra =
106, Pr = 7.9, Γ = 4, m = 4d. The plate maximum interaction force fmax = 106 and
interaction range δ = ε are the same as before.

Figure 12(a) shows a moment when the eight plates form two supercontinents, with each
supercontinent covering 4 Crp = 0.23 of the free surface. Each supercontinent thus has a
covering ratio less than Cr∗ = 1/3, and is thereby stable by our earlier argument. Indeed,
the stable formation of a supercontinent of four plates can be seen on the plate trajectory
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Figure 13. Statistics of the formation number I(t) that is the maximum number of plates in a supercontinent
at time t. (a) Schematic of I = 4. (b) Time series of I(t) shows the possibility of forming supercontinents with
various sizes. (c) Zoomed-in view of I(t) in (b) for t ∈ (3.5, 3.6). (d) Histogram of I(t) indicates that I = 4 is
the most common supercontinent formation, while small and large supercontinents are unlikely to form. The
histogram is plotted against the size of supercontinent Cr = I Crp, and the formation number I is labelled on
top of each bin.

(x(1)p , x(2)p , . . . , x(8)p ) shown in figure 12(b), whose zoomed-in view for t ∈ (3.5, 3.6) is
shown in figure 12(c). Of course, the formation of a supercontinent with a different number
of plates is possible, and our theory predicts that they are stable if the number of plates is
I < Cr∗/Crp ≈ 6.

To further analyse the formation of supercontinents, we define the formation number I(t)
as the number of plates forming the largest supercontinent at any given time t. A schematic
of such a formation number is shown in figure 13(a), where five continents are formed and
the largest supercontinent has I = 4. The formation number can be tracked over time, and
figure 13(b) shows the formation number of the simulation presented in figure 12, with
the zoomed-in view of I(t) in the window of figure 12(c) shown in figure 13(c). We note
that the formation number can actually take on all integer values between 1 and 8, although
many of the formation numbers are transient (such as I = 1 and I = 8). The most common
and persistent formation number that we can see visually in figure 13(c) is I = 4, and this
is confirmed in the histogram of I(t) shown in figure 13(d).

In figure 13(d), each bin corresponds to the total number of appearances of
supercontinents with size I (shown on top of each bin), and the horizontal axis shows
the corresponding covering ratio. We indeed see that I = 4 plates is the most frequent
size of a supercontinent. For small supercontinents, they tend to merge and form a larger
but stable supercontinent. For a large supercontinent, the random fluid forcing can trigger
a disintegration and break it into many smaller ones. Especially for I � 6, our theory
predicts that such formations are not stable, hence supercontinents with I � 6 are rarely
formed and (once formed) are unstable.

The results shown in figures 12 and 13 are common for simulations with different
numbers (Np) and sizes (Crp) of plates. And we identify I Crp < Cr∗ as a clue for
predicting the supercontinental size I.
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Figure 14. Single-plate dynamics for large aspect ratio convection, where Γ = 10, Ra = 107 and Pr = 7.9.
(a) Typical convective flow field for a plate with covering ratio 0.2. (b) Trajectories of the plate location xp,
where small plates move passively but large plates translate unidirectionally. (c) Total travel of the plate dp
shows the same trend as in (b). (d) Average travel speed vp has a sharp increase near Cr∗ = 0.18, which
is the critical covering ratio for Γ = 10. Additional simulations of small and large plates can be found in
supplementary movies 6 and 7.

4.4. Convection with increased Ra and Γ
In this subsection, we show examples with Rayleigh number Ra = 107, Prandtl number
Pr = 7.9, and domain aspect ratio Γ = 10. Although these parameters deviate from
previous laboratory and numerical investigations, they are actually closer to the conditions
of mantle convection (Whitehead & Behn 2015).

We first investigate the single-plate dynamics in figure 14, where the typical flow
and temperature fields are shown in figure 14(a). Much like the observations made in
figures 4–6, figures 14(b) and 14(c) show that small plates have little motion and are passive
to the flow structure, while large plates translate unidirectionally. Typical simulations
for a small plate with Cr = 0.125 and a large plate with Cr = 0.417 are included as
supplementary movies 6 and 7.

In figure 14(d), the plate velocity vp is significantly higher than in figure 6(c), where
Ra = 106. This is consistent with the model introduced in Huang (2024), which suggests
that the equilibrium plate velocity is proportional to the surface flow rate. From the classic
scaling Re ∼ Ra0.5 of Rayleigh–Bénard convection (Huang & Zhang 2022), we infer that
the flow rate for Ra = 107 should be

√
10 times bigger than that of Ra = 106. The plate

velocity in figure 14(d) is indeed approximately 3–5 times higher than the velocity shown
in figure 6(c), which is consistent with our estimation. Therefore, the Ra value of the
convecting fluid directly affects the plate speed, and we note that higher Ra also introduces
finer flow structures shown in figure 14(a) that can potentially modify the strength and
distribution of the stochastic fluid forcing.

Another difference between figures 14(d) and 6(c) is the critical covering ratio Cr∗
differentiating the passive and translating states of the plate. In figure 14(d), a significant
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Figure 15. Multiple plate dynamics for large aspect ratio convection. There are 16 plates with individual
covering ratio Crp = 0.0234. The convection parameters are Γ = 10, Ra = 107 and Pr = 7.9. (a) Typical
convective flow field below the 16 moving plates; small groups of supercontinents can be seen. (b) Formation
number I(t) indicating the size of the largest supercontinent at time t. (c) Histogram of the formation number I,
showing that I = 6 is the most probable formation of supercontinents, and that the formation of supercontinents
with covering ratio above critical is rare. Supplementary movie 8 is associated with this simulation.

increase in vp appears at approximately Cr∗ = 0.18, which is smaller than Cr∗ = 0.33 in
figure 6(c), where Γ = 4. In Huang (2024), the critical covering ratio Cr∗ is shown to
depend on the aspect ratio as Cr∗(Γ ) ∼ Γ −2/3. So Cr∗(10) = Cr∗(4) (10/4)−2/3 = 0.18,
consistent with the data shown in figure 14(d). Therefore the critical covering ratio
Cr∗ decreases with increasing Γ , while the associated plate length d∗ = Γ Cr∗ ∼ Γ 1/3

increases weakly with Γ .
We finally look at the formation of supercontinents at high Ra and Γ . Figure 15(a)

shows a typical moment of supercontinent formation, where continents formed by 6, 3, 2
and 5 plates can been seen. In figure 15, each plate has a covering ratio Crp = 0.0234, and
supplementary movie 8 shows this simulation.

In figure 15(a), we can see that the largest supercontinent formation still sits on a
converging centre of surface flow, thus making such a formation stable. As we have done
in the previous subsection, we define the formation number I as the size of the largest
supercontinent at a given time, so I = 6 for the moment shown in figure 15(a). The
time series of this formation number is shown in figure 15(b), where a formation size
of approximately 5–6 plates is common, but both the large and small formations are rare.
The histogram of I(t) in figure 15(c) also shows that the most probable supercontinent
formation has I = 6, whose total covering ratio Cr = I Crp = 0.14 is smaller than the
critical covering ratio Cr∗ = 0.18 that we identified earlier. In fact, figure 15(c) shows that
the formation of I = 7 is not rare either, and this is consistent with our estimation that the
largest stable supercontinent can have a size up to Cr∗/Crp = 7.7.

In the discussions above, we see once again that the condition I Crp < Cr∗ can serve as
an indicator of stable supercontinent formation.
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Covering convection with thermal blankets

5. Discussion

Through our numerical investigations, we clearly see the covering ratio as the main
factor affecting the thermal blanket effect, which determines the plate dynamics. This is
especially apparent during the formation of supercontinents – the continent covering ratio
cannot exceed Cr∗, as the strong thermal blanket effect will induce a diverging surface
flow that pulls the formed supercontinent apart.

As our current study is inspired by laboratory experiments, we certainly look forward
to future experimental investigations of the interaction between multiple plates. Besides
the geometry presented in figures 1 and 2, the broader investigation of fluid–structure
interactions in thermal convection also includes adding fixed obstacles to the convective
domain (Bao et al. 2015; Li, Chen & Xi 2024), modifying the convective boundary
conditions (Zhang et al. 2020; Huang & Zhang 2022), and allowing for moving boundaries
that are driven by the fluid forcing (Mercier et al. 2014; Wang & Zhang 2023) or phase
change (Huang, Shelley & Stein 2021; Huang & Moore 2022; Weady et al. 2022). Many of
these works are certainly geophysically inspired, addressing long-standing mysteries such
as the super rotation of Earth’s inner core (Wang & Zhang 2023; Yang & Song 2023).

In order to simulate the geophysical plate tectonics more closely, there are several
future directions to improve our model. The first is to investigate the plate tectonics in a
three-dimensional geometry, including the mantle-like spherical shell and the rectangular
cuboidal fluid domain that is periodic in two horizontal directions. Although our current
numerical scheme is two-dimensional, it can be extended easily to a higher dimension:
for the spherical shell geometry, we can adopt a Fourier–Chebyshev–Chebyshev method
that solves the heat and flow equations in spherical coordinates; for the periodic cuboidal
domain, another periodic horizontal direction can be accommodated by the Fourier
method. We are currently working on the three-dimensional study of plate tectonics, and
we note that pioneer works including Lowman & Gable (1999), Mao et al. (2019) and
Mao (2021) have investigated the fluid–structure interactions and plate interactions in these
settings. They also used the geophysical parameters of the mantle, most notably Prandtl
number approximately 1023 (Meyers et al. 1987). One modification to accommodate this
high Prandtl number is to take an asymptotic limit Pr → ∞, so the Navier–Stokes equation
(2.1) becomes a time-independent Stokes equation (Mao 2021). This Stokes equation can
be handled easily by the numerical method in § 3; however, we choose to keep the fluid
inertia so our results can be validated by future laboratory experiments, where the working
fluid (water) has Pr = 1–10.

In our study, we have also set the bottom boundary condition to be no-slip, which is
consistent with the experiments. However, this is different from past geophysical models
of the mantle, where the bottom boundary is typically assumed to be stress-free at the
liquid–liquid interface between the mantle and the outer core of Earth. In the future, we
plan to adopt the stress-free bottom condition as it is more consistent with the geophysical
settings. Descending deeper into Earth, the outer core meets the solid inner core that is
known to rotate. Together with the recent discovery that this rotation is not unidirectional
(Yang & Song 2023), a fluid–structure interaction problem thus arises: Does the outer-core
convection provide enough shear stress to rotate the inner core? This possibility has
inspired some recent experimental developments (Wang & Zhang 2023), and we wish
to further engage with this fluid–structure interaction problem in the future.

The interaction between continental plates is also more complicated in geophysical plate
tectonics, as the converging continental plates deform the contact region and form the
tallest mountains of Earth. It is still an ongoing quest to understand the consequences of
converging and diverging continents, with many recent works focusing on the deforming
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contact region and addressing its influence on the mantle flow beneath (Rozel et al. 2017;
Whitehead 2023). Inspired by the geophysics, one modification to our current model could
be changing the way in which neighbouring plates interact. This can be achieved through
changing the coefficient of restitution to 0 during each collision, which better captures the
collision between continental plates during a long time scale. Adding an attractive force
between plates can also reveal interesting dynamics, as the diverging surface flow has to be
strong enough to pull the plates apart. Thus a larger formation of translating supercontinent
may stay stable in this case, and the contact state of plates would also become more
persistent. Looking forward, more sophisticated models are required to capture different
plate interactions and resulting plate dynamics, and they may reveal new insights into the
physics and dynamics of the formation of supercontinents.

To conclude, we consider a toy model to predict the size of the largest continental plate.
The aspect ratio of Earth’s mantle is approximately ΓE = 10, so the critical covering ratio
there is Cr∗

E ≈ 0.18, as we have estimated in § 4.4. This gives an estimated dimension of
the largest stable continental plate of Earth, L ≈ 2πRECr∗

E, where RE = 6400 km is the
radius of Earth. So the plate area is L2 ≈ 6 × 107 km2, slightly underestimating the largest
continental plate, the North American Plate, whose area is 7.59 × 107 km2.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1231.
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Appendix A. Helmholtz solver for Dirichlet problems

We outline the numerical solver for the following Helmholtz problem:

∇2u − σu = h(x, y), (A1)

u(x, 0) = g0(x), (A2)

u(x, 1) = g1(x). (A3)

As the domain is periodic in x ∈ (0, Γ ], we can discretize x as L equally spaced nodes
so xl = l�x, where �x = Γ/L, and l = 1, 2, . . . , L. We further require L to be odd. We
can now approximate the solution u(x, y) as a truncated Fourier series in x:

u(xl, y) =
(L−1)/2∑

k=−(L−1)/2

ûk( y) exp(2πikl/L), (A4)

where i is the imaginary unit. The Fourier coefficients ûk then satisfy the ODE

d2ûk

dy2 − σkûk = ĥk( y), (A5)

ûk(0) = ĝ0,k, (A6)

ûk(1) = ĝ1,k, (A7)
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where

σk = 4π2k2

Γ 2 + σ, (A8)

ĥk( y) = 1
L

L∑
l=1

h(xl, y) exp(−2πikl/L), (A9)

ĝ0,k = 1
L

L∑
l=1

g0(xl) exp(−2πikl/L), (A10)

ĝ1,k = 1
L

L∑
l=1

g1(xl) exp(−2πikl/L). (A11)

The computation of (A9)–(A11) can be done efficiently with the help of the fast Fourier
transformation algorithm.

Now all that is left is a set of ODEs (A5)–(A7), which can be solved with methods
such as finite differences. We instead use the Chebyshev method, and discretize y ∈ [0, 1]
to M + 1 Chebyshev nodes, so ym = [1 + cos(mπ/M)]/2 with m = 0, 1, 2, . . . ,M. An
advantage of using the Chebyshev method is that the unevenly distributed Chebyshev
nodes have a higher resolution near the boundaries y = 0 and y = 1, therefore resolving
the boundary layer structures. The differentiation operator d/dy can be approximated by a
discrete operator D (Trefethen 2000; Peyret 2002) whose elements are

Dj,k = 2
cj

ck

(−1)j+k

cos( jπ/M)− cos(kπ/M)
, 0 � j, k � M, j /= k, (A12)

Dj,j = − cos( jπ/M)
1 − cos2( jπ/M)

, 1 � j � M − 1, (A13)

D0,0 = −DM,M = 2M2 + 1
3

. (A14)

Here, c0 = cM = 2, and cj = 1 for 1 � j � M − 1.
The discrete operation on the left-hand side of (A5) can therefore be written as

A = D2 − σkI, (A15)

where I is an M + 1 by M + 1 identity matrix.
Noticing that the Chebyshev nodes are y = [1, y1, y2, . . . , yM−1, 0]T, we can write the

discrete solution to (A5)–(A7) at these locations as a column vector

U = [ĝ1,k, ûk( y1), ûk( y2), . . . , ûk( yM−1), ĝ0,k]T = [ĝ1,k, Ũ, ĝ0,k]T. (A16)

The interior solution Ũ therefore satisfies

ÃŨ = H̃, (A17)
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where the (M − 1)× (M − 1) matrix Ã is the interior of A (by removing its first and last
rows and columns), and

H̃ =

⎡
⎢⎢⎢⎣

ĥk( y1)− ĝ1,kA1,1 − ĝ0,kA1,M
ĥk( y2)− ĝ1,kA2,1 − ĝ0,kA2,M

...

ĥk( yM−1)− ĝ1,kAM−1,1 − ĝ0,kAM−1,M

⎤
⎥⎥⎥⎦ . (A18)

Equation (A17) is invertible, and the operator Ã does not change during time stepping,
while the boundary information g and forcing h are contained in H̃ . This allows us
to compute the LU decomposition of Ã at the beginning so ÃŨ = H̃ can be inverted
efficiently through backward and forward substitutions during time stepping. With Ũ and
U solved, the Fourier coefficients ûk can then be inserted into (A4), and the solution u(x, y)
is therefore obtained.

Appendix B. Helmholtz solver for Robin boundary conditions

Next, we consider the Helmholtz solver for equations such as (3.2), where inhomogeneous
Robin boundary conditions such as (2.11) are applied. In a general form, consider

∇2u − σu = h, (B1)

a0(x) u(x, 0)+ b0(x) uy(x, 0) = g0(x), (B2)

a1(x) u(x, 1)+ b1(x) uy(x, 1) = g1(x). (B3)

The idea for solving these equations is to use the influence matrix method (Peyret 2002):
a PDE with inhomogeneous Robin boundary conditions can be converted into a series
of PDEs with homogeneous Dirichlet boundary conditions, which can be solved by the
method detailed in Appendix A.

We first separate the solution into several subproblems, so

u(x, y) = ũ(x, y)+
2L∑

l=1

ξl ūl(x, y), (B4)

where ξl are unknown coefficients to be determined later, and

∇2ũ − σ ũ = h, (B5)

ũ(x, 0) = ũ(x, 1) = 0, (B6)

∇2ūl − σ ūl = 0, (B7)

ūl|ηm = δlm for all ηm ∈ ∂Ω. (B8)

Here, ηm represents the mth node on the boundary, so there are 2L of them, and δlm is the
Kronecker delta function. Now, the boundary conditions (B2) and (B3) indicate[

ai(x)

( 2L∑
l=1

ξlūl

)
+ bi(x)

(
∂ ũ
∂y

+
2L∑

l=1

ξl
∂ ūl

∂y

)
− gi(x)

]∣∣∣∣∣
ηm

= 0 for ηm ∈ ∂Ωi. (B9)

Here, i ∈ {0, 1} indicates the bottom or top boundary. As (B9) holds on all the boundary
nodes ηm, it provides 2L equations for 2L unknowns ξl, and such a linear system is
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invertible. With all ξl solved, the solution of (B1)–(B3) can be recovered as u = ũ +∑2L
l=1 ξlūl.
In fact, ξm is exactly the Dirichlet data for u at boundary node ηm, therefore the solution

of (B1)–(B3) is the same as the solution of

∇2u − σu = h, (B10)

u|ηm = ξm for ηm ∈ ∂Ω. (B11)

This method can directly solve the heat equation (3.2) with boundary conditions in (2.8)
and (2.12), by assigning a0 = 1, b0 = 0, g0 = 1 at the bottom, and a1 = 1 − a, b1 = a,
g1 = 0 at the top. Usually, the solutions of (B7) and (B8) are obtained and saved at the
beginning. At each time step, (B5) and (B6) are solved, and the location of moving plates
will determine ai(x), bi(x) and gi(x), so (B9) can be inverted to provide ξm, which can be
used as boundary data in (B10) and (B11), and the solution θn can therefore be determined.

Appendix C. Flow solver with Robin boundary conditions

At each time step, the following flow problem must be solved:

∇2ω − σω = f , (C1)

−∇2ψ = ω, (C2)

ψ = ψy = 0 at y = 0, (C3)

ψ = 0, aψy + (1 − a)ψyy = g at y = 1. (C4)

Here, we have dropped all the subscripts. We can also solve these equations with the
influence matrix method. Now we want to convert the Neumann boundary condition in
(C3) and Robin boundary condition in (C4) to a Dirichlet boundary condition for vorticity
ω. We decompose ω and ψ as

ω(x, y) = ω̃(x, y)+
2L∑

l=1

ξl ω̄l(x, y), (C5)

ψ(x, y) = ψ̃(x, y)+
2L∑

l=1

ξl ψ̄l(x, y). (C6)

The associated subproblems are

∇2ω̃ − σ ω̃ = f , −∇2ψ̃ = ω̃, (C7a,b)

ω̃(x, 0) = ω̃(x, 1) = ψ̃(x, 0) = ψ̃(x, 1) = 0, (C8)

∇2ω̄l − σ ω̄l = 0, −∇2ψ̄l = ω̄l, (C9)

ψ̄l(x, 1) = 0, ω̄l|ηm = δlm for all ηm ∈ ∂Ω. (C10)

The Neumann boundary condition in (C3) and the Robin boundary condition in (C4)
can now be enforced as(

∂ψ̃

∂y
+

2L∑
l=1

ξl
∂ψ̄l

∂y

)∣∣∣∣∣
ηm

= 0 for ηm ∈ ∂Ω0, (C11)
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a

(
∂ψ̃

∂y
+

2L∑
l=1

ξl
∂ψ̄l

∂y

)
+ (1 − a)

(
∂2ψ̃

∂y2 +
2L∑

l=1

ξl
∂2ψ̄l

∂y2

)
− g

]∣∣∣∣∣
ηm

= 0 for ηm ∈ ∂Ω1.

(C12)

Equations (C11) and (C12) are again 2L equations for 2L unknowns ξl, and the linear
system is invertible. Equations (C5) and (C6) can then be summed, and the solutions are
obtained. In fact, ξl is exactly the boundary data for ω at boundary node ηl, so we can
instead solve

∇2ω − σω = f , (C13)

−∇2ψ = ω, (C14)

ψ |ηm = 0, ω|ηm = ξm for ηm ∈ ∂Ω. (C15)

Appendix D. Summary of numerical methods

There are two stages during our numerical simulation, and below we list some of the key
steps during each stage.

Pre-processing stage steps.

(i) The inverse Ã−1 (or the LU decomposition of Ã) in (A17) is prepared for operators
in (3.1)–(3.3), by taking σ = 0, σ1, σ2 in (A15).

(ii) Subproblems (B7)–(B8) and (C9)–(C10) are solved, and the solutions θ̄l, ω̄l and ψ̄l
for l = 1, 2, . . . , 2L are saved.

Steps at the nth step of the time stepping stage.

(i) The fluid and interaction forces on each plate are computed according to
(3.15)–(3.17).

(ii) The location and velocity of each plate are evolved by (3.7) and (3.8), and the
indicator function â is prepared by (3.14a,b).

(iii) The forcing term hn in (3.2) is prepared according to (3.6), and θ̃l is solved from (B5)
and (B6).

(iv) Equation (B9) is inverted so the Dirichlet boundary data for θn are known; (B10) and
(B11) are then solved for θn.

(v) The temperature θn is used to prepare fn according to (3.5), so ω̃l, ψ̃l can be solved
from (C7a,b) and (C8).

(vi) Equations (C11) and (C12) are inverted so the Dirichlet data for ωn are known; (C14)
and (C15) are finally solved to provide ωn and ψn.

For simulations with Γ = 4, we use L = 256 Fourier nodes and M + 1 = 65 Chebyshev
nodes. For simulations with higher aspect ratio Γ = 10, L = 512 Fourier nodes and M +
1 = 65 Chebyshev nodes are used instead. During time stepping, we typically set �t =
τ0 = 5 × 10−4 Ra−1/2 considering that the flow speed is |u| ∼ √

Ra.
These parameters are tested to yield spatially and temporally resolved results. In table 1,

time-averaged values of Nu, Re and vp (plate speed) are measured at the dynamical
equilibrium state of convection with Ra = 107, Pr = 7.9 and Γ = 10, where a floating
plate with Cr = 1/2 is free to move on top. The convergence of these values shows that

1003 A29-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1231


Covering convection with thermal blankets

L M �t Nu Re vp

256 40 2τ0 13.4 492 963
256 40 τ0 13.3 492 964
256 40 0.5τ0 13.4 493 965
512 64 2τ0 12.7 489 928

∗ 512 64 τ0 12.8 491 925
512 64 0.5τ0 12.8 493 920

1024 128 2τ0 12.8 493 918
1024 128 τ0 12.8 490 915
1024 128 0.5τ0 12.8 490 915

Table 1. Time-averaged dynamical quantities at different spatial and temporal resolutions for plate tectonics
with Ra = 107, Pr = 7.9, Γ = 10 and Cr = 1/2. Here, L is the number of Fourier modes, M + 1 is the number
of Chebyshev nodes, and �t is the time step size. The asterisked parameters are used in the direct numerical
simulations of figures 14 and 15, where �t = τ0 = 5 × 10−4 Ra−1/2.

our choice of spatial and temporal resolution is sufficient to resolve the dynamics of the
flow and the plate.
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