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Selecting and averaging relaxed clock models in Bayesian tip dating
of Mesozoic birds
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Abstract.—Relaxed clock models are fundamental in Bayesian clock dating, but a single distribution char-
acterizing the clock variation is typically selected.Hence, I developed a new reversible-jumpMarkov chain
Monte Carlo (rjMCMC) algorithm for drawing posterior samples between the independent lognormal
(ILN) and independent gamma rates (IGR) clock models. The ability of the rjMCMC algorithm to infer
the true model was verified through simulations. I then applied the algorithm to the Mesozoic bird
data previously analyzed under the white noise (WN) clock model. In comparison, averaging over the
ILN and IGR models provided more reliable estimates of the divergence times and evolutionary rates.
The ILN model showed slightly better fit than the IGR model and much better fit than the autocorrelated
lognormal (ALN) clock model. When the data were partitioned, different partitions showed heteroge-
neous model fit for ILN and IGR clocks. The implementation provides a general framework for selecting
and averaging relaxed clock models in Bayesian dating analyses.
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Introduction

Since the proposal of a molecular evolution-
ary clock by Zuckerkandl and Pauling (1965),
the clock assumption has provided a funda-
mental component to dating evolutionary
events. The early hypothesis of a strict molecu-
lar clock, in which the evolutionary rate is con-
stant over time and across taxa (Zuckerkandl
and Pauling 1965), was soon proven to only
hold for closely related taxa. To account for
the violation of the molecular clock, several
relaxed clock models were proposed (Kishino
and Hasegawa 1990; Huelsenbeck et al. 2000;
Yoder and Yang 2000; Kishino et al. 2001;
Thorne and Kishino 2002; Drummond et al.
2006; Lepage et al. 2007; Rannala and Yang
2007), and have been widely used in phyloge-
netics for estimating divergence times and evo-
lutionary rates (Heath and Moore 2014; Ho
and Duchêne 2014; dos Reis et al. 2016; Ho
2021). In paleobiology, the analogical term for

“molecular clock” is “morphological clock”
(Lee et al. 2014; Lee 2016; Warnock and Wright
2021), wherein the model describes the pattern
of morphological character changes instead of
nucleotide or amino acid substitutions, but
the mathematical assumptions are essentially
unchanged.
Relaxed clock models can be loosely divided

into two families. In one family, the evolution-
ary rate is assumed to be independent among
the branches in the tree, and these rates are
commonly drawn from independent log-
normal (ILN) or independent gamma (IGR)
distributions (or exponential distribution,
which is a special case of gamma distribution
when the shape α = 1) (Drummond et al.
2006). Slightly different from the IGR model,
the white noise (WN) model (Lepage et al.
2007) assumes the variances of the gamma dis-
tributions are not identical but proportional to
the branch lengths. In the other family, the
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evolutionary rate is autocorrelated, that is, the
rate of a descendant branch is drawn from a dis-
tribution, with the mean depending on the rate
of the ancestor’s branch. In the autocorrelated
lognormal (ALN) clock model (Kishino et al.
2001; Thorne and Kishino 2002), the rates are
lognormally distributed, with the variances
proportional to the branch lengths.
Typically, the distribution characterizing the

overall shape of the clock variation is prese-
lected, for example, as a lognormal or gamma
distribution, which is considered flexible
enough to capture the variation. Testing the
fit of clock models to the data is usually per-
formed separately (Li and Drummond 2012;
Baele et al. 2013).
In Bayesian statistics, model selection and

model averaging are common techniques for
such a purpose. The former estimates the mar-
ginal likelihood of eachmodel and uses them to
calculate Bayes factors that can ultimately be
used to decide which model best fits the data
(Kass and Raftery 1995). The latter employs
the reversible-jump Markov chain Monte
Carlo (rjMCMC) algorithm to move among
the alternativemodels and estimates the poster-
ior probability of each model (Green 1995).
Model probabilities are directly provided by
the rjMCMC but can also be estimated through
the marginal likelihoods. Note that the ratio of
posteriormodel probabilities (P(M1|D)/P(M2|
D),M formodel andD for data) equals the prior
odds (P(M1)/P(M2)) multiplied by the ratio of
marginal likelihoods (i.e., the Bayes factor, P
(D|M1)/P(D|M2)). With no prior preference
favoring one model over the other (P(M1) = P
(M2)), the probability of M1 is P(M1|D) = P
(D|M1)/[P(D|M1) + P(D|M2)] and P(M2|D)
= 1− P(M1|D).
In theory, the marginal-likelihood and

rjMCMC approaches should produce identical
model probabilities. In practice, however, the
performance of different estimators may vary.
Studies have shown that the harmonic mean
estimator has very poor performance and is
often biased, while more advanced techniques
such as path sampling (PS) and stepping-stone
sampling (SS) greatly improve the performance
of marginal-likelihood estimation (Lartillot
and Philippe 2006; Xie et al. 2011; Baele et al.
2012, 2013). Despite being computationally

demanding, PS and SS are being widely used
in Bayesian model selection. On the other
hand, rjMCMCusually takesmuch less compu-
tational cost to obtain similar or better accuracy
in terms of estimating model probabilities and
has the advantage of comparing more than
two models simultaneously and averaging the
uncertainties among them (Baele et al. 2013).
The rjMCMC algorithm does require careful
design to achieve good mixing, and it is chal-
lenging to move among very distinct models.
Here I focus on the uncorrelated relaxed

clockmodels and develop a new rjMCMC algo-
rithm for drawing posterior samples between
the ILN and IGR models. Previous studies
have attempted averaging over the independ-
ent exponential rates and ILN models using a
different approach, that is, by mapping the
quantiles of the two distributions (Li and
Drummond 2012). Such mapping involves
recalculating the data likelihood,which is likely
computationally expensive. I propose a direct
match of the branch rates, which is computa-
tionally fast while still maintaining good
mixing.
I verify the ability of the new rjMCMC algo-

rithm to infer the true model through simula-
tions. The algorithm is then applied to the
morphological data of Mesozoic birds (Zhang
and Wang 2019) to average over the relaxed
clock models while estimating the divergence
times and evolutionary rates. A previous
study (Zhang and Wang 2019) suffered from
poor convergence and mixing under the WN
model when the data were partitioned. Also,
the age estimates were not very consistent
between the unpartitioned and partitioned
analyses, and the credibility intervals of the
evolutionary rates appeared too wide. I will
show that these aspects are improved by mix-
ing the ILN and IGR clock models.

Methods

The rjMCMC Algorithm.—The evolutionary
rate at branch i, ci, is a product of the mean
(base) rate, c, and the relative rate, ri. The ILN
and IGR models differ in the probability distri-
bution of ri. In the ILN model, ri follows a log-
normal distribution with a mean of 1.0 and
variance of σL; whereas in the IGR model, ri
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follows a gamma distribution with a mean of
1.0 and variance of σG. The similarity of the
two models provides a simple mapping of the
parameters, that is, direct matching of the
branch rates and linear mapping of the var-
iances, σL =wσG, for jumping between the two
models.
The key component of the rjMCMC algo-

rithm is calculating the acceptance probability
when moving from one model to the other.
This probability contains three multiplied
parts: the posterior ratio, the generating-
variable density ratio, and the Jacobian deter-
minant for transforming variables (Green
1995). The posterior ratio is the product of the
prior ratio and the likelihood ratio. Because
the move does not change the tree, including
branch lengths, the likelihood ratio is 1.0. The
prior ratio involves the gamma rate densities
multiplied across all branches over the log-
normal rate densities moving from IGR to
ILN, and the reciprocal when moving back-
ward. The generating-variable density ratio is
also 1.0, as the rates are directly mapped, thus
no random variable is generated. Finally, the
Jacobian determinant is w moving from IGR to
ILN and is 1/w moving backward, where w is
the ratio of the ILN and IGR clock variances.
Unlike conventional MCMC proposals in

which the best efficiency is typically achieved
when the acceptance rate is about 30% (Yang
and Rodriguez 2013), for cross-model rjMCMC
proposals, in principle, one should make the
acceptance rate as high as possible (by adjust-
ing w in this case) to maximize the proposal’s
efficiency (Yang 2014). But the acceptance rate
by its nature cannot reach an arbitrarily high
value, for example, it cannot be higher than
20% if one model has posterior probability
0.9, as the chain has to stay in that model 90%
of the time. In the current implementation,
adjusting w in the proposal is the only option
to increase efficiency. One could preselect sev-
eral values of w (typically ranging from 1 to 4)
for independent runs and use the results with
the highest acceptance ratio. This helps to con-
firm convergence and consistency among runs
but requires more computation. Here I intro-
duce an auto-tuning feature to dynamically
adjust w during the rjMCMC to avoid the trial
and error for picking the appropriate value.

The starting value ofw is set to 2.0, which can
be changed by the user. When the rjMCMC
proposal has been attempted for a certain num-
ber of generations (called a batch, default to
1000), the auto-tuner adjusts w by comparing
the acceptance rates of this batch and the previ-
ous batch, aiming to achieve higher acceptance
rate in the next batch. The adjustment amount
is δ =min(0.1, 1/

��
n

√
), where n is the current

batch number. Thus, w increases or decreases
by the amount of 0.1 in each of the first 100
batches, then changes more and more grad-
ually in the following batches. When the
acceptance rates are both zero after two adja-
cent batches, w is reset to its initial value to
continue, such that the tuning mechanism can
avoid getting stuck.
The rjMCMC algorithm was implemented in

MrBayes software (Ronquist et al. 2012b) (see
“Software Implementation” for more details).

Simulation Study.—To verify the implemen-
tation and performance of the rjMCMC algo-
rithm, I simulated evolutionary rate variation
along tree branches and ran MrBayes to infer
the posterior probability of the clock models
under each condition.
Specifically, I first generated 100 trees under

the birth–death model with speciation rate
λ = 3.0, extinction rate μ = 1.0, time of the most
recent common ancestor tmrca = 1.0, and com-
plete sampling of the lineages, using the Tree-
Sim package in R (Stadler 2011). These trees
have numbers of tips ranging from 6 to 75.
The branch lengths were measured by the
expected number of substitutions per site (char-
acter) under the base rate of the clock. Given
each tree, the relative branch rates (ri values)
were all drawn from a lognormal distribution
with a mean of 1.0 and variance of σL = 0.1,
0.5, 1.0, 2.0, respectively; or from a gamma
distribution with a mean of 1.0 and variance
of σG = 0.1, 0.5, 1.0, 2.0, respectively. Note when
σG = 1.0, the gamma distribution is actually an
exponential distribution. I also tested a simple
model mismatch, that is, the relative rates were
drawn from a normal distribution (truncated at
0) with a mean of 1.0 and variance of σN= 1.0.
Eventually, each tree was associated with nine
sets of branch rates (100 × 9 combinations in
total). The probability densities of these distribu-
tions are shown in Figure 1.
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I initially fixed the tree topology, branch
lengths, and relative rates to the simulated
values, so that MrBayes only estimated the
probabilities of the clock models and the vari-
ance parameter in each model. No data were
used at this point (sampling from the prior).
The aim was to verify the correctness of the
rjMCMC implementation and to avoid introdu-
cing uncertainties from irrelevant sources. For
each run, the ILN and IGR models were
assigned equal prior probabilities (0.5). The
base evolutionary rate (c) was assigned a

diffuse prior of Exp(1.0) and the prior for the
clock variance (σL or σG) was also Exp(1.0).
The tuning parameter w was adjusted through
auto-tuning. A single MCMC per replicate was
executed for 1 million iterations and sampled
every 100 iterations; this setting was deter-
mined from preliminary runs. The first 25% of
the samples were discarded as burn-in. Con-
vergence was checked across the 100 replicates
by examining the traces of parameters and the
effective sample sizes (ESS) all higher than
200 (same for the MCMC runs below).

FIGURE 1. Probability densities of gamma and lognormal distributions undermean 1.0 and variance 0.1 (A), 0.5 (B), 1.0 (C),
and 2.0 (D), and probability density ofN(1, 1) distribution (truncated at 0) (C). Note that the Gamma(1, 1) distribution (α =
1) is Exp(1) distribution (C).
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Additionally, I simulated discrete morpho-
logical matrices under theMarkov k-states vari-
able (Mkv) model (Lewis 2001), that is, keeping
only the variable characters in the matrices, on
each of the 100 trees with each of the nine sets of
rates generated earlier. There were 100, 300,
and 500 characters, respectively, for each set-
ting (100 × 9 × 3 data sets generated). Each
data matrix contained from binary to up to
five-state characters with proportions of 0.4,
0.3, 0.2 and 0.1, respectively. This round of
simulations was intended to verify the ability
of the program to estimate the clock model
probabilities along with other parameters
(including tree topology) directly from themor-
phological data. In the inference, I used also the
Mkv model consistent with the model used to
simulate the data. The prior for the tree was
uniform (Ronquist et al. 2012a) and that for
the root age was gamma with a mean of 1.0
and a standard deviation of 0.1. The tip ages
were fixed to their true ages, and these were
treated as part of the data in the tip-dating ana-
lyses. The other prior settings were the same as
before. The length of the MCMC was extended
to 50 million iterations to ensure converge and
sufficient ESS.
Apart from the clock models, the evolution-

ary rates estimated from data are usually of
interest. Hence, I calculated the mean squared
error to assess the accuracy with which the evo-
lutionary rates are estimated. It is defined as

MSE = 1
n

∑n

i=1

(r̂i − ri)2,

where ri is the true rate in the simulation, r̂i is
the estimated value in the inference, and n is
the number of branches (rates) in the tree. To
match the simulated and estimated rates, the
tree topology in the inference was fixed to the
one used to simulate the data. In addition to
using the rjMCMC to average the ILN and
IGR models, I tested using the WN model in
the inference that does not match either of the
models used to simulate the data.

Mesozoic Birds.—The morphological data of
Mesozoic birds (68 species and 280 characters;
Zhang and Wang 2019) were used to investi-
gate the performance of the rjMCMC algorithm
under the tip-dating framework. The fossilized

birth–death (FBD) model (Stadler 2010; Gav-
ryushkina et al. 2014; Heath et al. 2014; Zhang
et al. 2016) was used for the tree prior. To
account for nonuniform fossil sampling, the
sampling rate (ψ) was allowed to vary along
time in a piecewise manner with four intervals
divided at 145, 100, and 66 Ma. The speciation
rate (λ) and extinction rate (μ) were assumed
to be constant in the model. The prior for the
base evolutionary rate (c) was Gamma(2, 100)
with a mean of 0.02 (about 2 changes per char-
acter per 100Myr) and a standard deviation of
0.014, which is weakly informative based on
the inference results reported by Zhang and
Wang (2019). The ILN and IGR clock models
were given equal prior probabilities, and the
variance parameter (σL or σG) was assigned
Exp(0.5) prior. Two independent runs were
executed for 70 million iterations each and
sampled every 2000 iterations. The first 25%
of the samples were discarded as burn-in, and
the remaining samples from the two runs
were combined after checking consistency
between runs. The efficiency of the rjMCMC
algorithm was tested under w = 1, 2, 3, and 4,
respectively, to compare with auto-tuning w.
The rjMCMC algorithm has two relaxed

clock models implemented: the ILN and the
IGR. Nevertheless, I also ran an additional ana-
lysis under the ALNmodel to assess the fitness
of this model if comparedwith the analyses run
under the two uncorrelated-rates models
implemented in the new algorithm. For this
model-selection analysis, I computed the mar-
ginal likelihoods under these three models
using the SS approach (Xie et al. 2011), which
I would later use to find out the best-fitting
model. The priors for the base evolutionary
rate and the variance parameter were the
same in these models (i.e., Gamma(2, 100) for
c and Exp(0.5) for σ). For each clock model, a
total of 50 steps were usedwith 40million itera-
tions (20,000 samples) within each step. The
first step was discarded as initial burn-in. Add-
itionally, the beginning of each step (10 million
iterations, 5000 samples) was discarded as
burn-in. The sampling was from posterior to
prior with the power drawing from a beta(0.4,
1) distribution in the default implementation.
I further applied the rjMCMC algorithm to

the characters divided into six anatomical
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partitions, as in the previous study, which are
skull (53 characters), axial skeleton (36 charac-
ters), pectoral girdle and sternum (48 charac-
ters), forelimb (65 characters), pelvic girdle (23
characters), and hindlimb (55 characters)
(Zhang and Wang 2019). In this case, the pro-
gram was able to infer the probabilities of the
relaxed clock models (ILN vs. IGR) for each
partition together with the evolutionary rate
variations across partitions. The prior and
MCMC settingswere the same as in the unparti-
tioned analysis, except that the chain length was
set to 120 million iterations and the first 40%
samples were discarded as burn-in. In the previ-
ous study (Zhang and Wang 2019), the MCMC
was unable to converge using the WN relaxed
clock and standard FBD models (e.g., low ESS
values and segregated estimates of several key
parameters), as a trade-off, fossil ancestors had
to be disallowed. In comparison, the inference
using the ILN and IGR mixed clock models for
the partitioned data were executed under the
standard FBD model with fossil ancestors.

Results

Simulation Study.—As the number of charac-
ters goes from small (l = 100) through medium
(l = 300) to large (l = 500), the data should
carry more and more information to inform
the evolutionary rate variation and the true
model generating the rates. Having the tree
and rates fixed in the inference can be viewed
as a limiting condition with an infinite number
of characters and a very informative prior for
the times; thus, the times and rates can be esti-
mated without error. The results indeed agree
with this. Under the same clock variance, the
probability of the true model increases along
with the number of characters (Fig. 2, except
for normal distribution). Note that the model
used in the inference is not misspecified, that
is, the models in the rjMCMC include the true
model generating the data.
When the branch rates were generated from a

normal distribution, neither ILN nor IGR
matched the generating model, but the IGR
model dominated the posterior. In the limiting
condition when the rates were fixed to the
simulated values, the probability of ILN
approached zero (Fig. 2D). It appears that the

N(1, 1) distribution can be better fit by a
gamma distribution with variance slightly
smaller than 1.0 than any lognormal distribu-
tion that has a sharp peak and long tail.
Given the same amount of data (characters),

the ability to infer the true clockmodel depends
on the clock variance. When the variance of the
branch rates is small (0.1), the shape of the two
distributions is quite similar (Fig. 1A), thus the
ILN and IGR models fit the data (rates) almost
equally well. As a result, the posterior probabil-
ity of the true model is close to 0.5 (Fig. 2). As
the variance increases, the shapes of the two
distributions becomes sharply different
(Fig. 1B–D), making it easier for the rjMCMC
to distinguish the two models (Fig. 2). Interest-
ingly, the lognormal rate variation is slightly
more easily distinguished when the variance
is small (σ = 0.1 or 0.5), but the opposite is
true when the variance is large (σ = 2.0).
The evolutionary rates are estimated more

accurately when the variance is small (0.1),
while the MSEs become one order of magni-
tude larger when the variance is large (2.0)
(Table 1). The estimates are slightly improved
by adding more characters, but the effect can
be overridden by increased clock variance, for
example, the median MSE is larger using 500
characters for variance of 1.0 than using 100
characters for variance of 0.5 (Table 1). When
the rates were generated from the normal distri-
bution, the rjMCMC algorithm does not
include the true model, but the values of MSE
are comparable to those when the rates were
generated from gamma or lognormal distribu-
tions with variance of 1.0. This type of model
mismatch on the rate estimates is less dramatic
than using the WN model for inference
(Table 1). The WNmodel has nonidentical var-
iances for the branch rates and thus resulted in
worse accuracy when the rates were generated
from independent and identical distributions.

Mesozoic Birds.—The time-scaled phylogeny
and evolutionary rates inferred are largely con-
sistent with the previous results (Fig. 3, cf.
Zhang and Wang 2019: fig. 1). But in detail,
averaging over the ILN and IGRmodels refines
both the divergence time and evolutionary rate
estimates. As shown in Figure 4, the ages of five
key nodes in early stem birds are quite consist-
ent between the unpartitioned and partitioned
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analyses, but previous ones had differences of
at least 5Myr. The variances of the branch
rates are also reduced, resulting in narrower
credibility intervals for drastic rates than those
under the WN model. For example, the 95%
highest posterior density (HPD) intervals are
(0.08, 7.9) and (0.96, 9.8) at branches subtending
Ornithothoraces and Enantiornithes under the
mixed model, but are (0.0, 32.5) and (1.49,
30.8) under the WN model. The latter intervals
aremuchwider given the same amount of data,

indicating the WN model favors larger vari-
ance (or more heterogeneous rates).
The rjMCMC algorithm consistently esti-

mated the posterior probability of the ILN
model as PILN = 0.6 (and PIGR = 0.4). Judging
by the acceptance rate of the move, the best effi-
ciency was achieved when w was at 2.0 or 3.0
(Table 2). This is obvious when looking at the
estimates of σL and σG, which are 2.5 (1.1, 4.4)
and 0.9 (0.6, 1.3), respectively (mean and 95%
HPD interval). The lognormal distribution is

FIGURE 2. Model probabilities estimated by the reversible-jump Markov chain Monte Carlo (rjMCMC) algorithm. Nine
sets of rates were simulated under distributions in Fig. 1 given each tree, and for each tree with rates, data matrices with
100 characters (A), 300 characters (B), and 500 characters (C) were simulated for inference. The model probabilities were
also inferred when the trees and rates were fixed to the simulated values (no data) (D). When the rate-generating distribu-
tion was gamma, the posterior probabilities of the independent gamma rates (IGR) model are shown; when the generating
distributions were lognormal and normal, the posterior probabilities of the independent lognormal (ILN) model are
shown. The circle is the median, and the error bar denotes the 5th and 95th percentiles summarized across the 100 replicates
(trees).
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more skewed than the gamma distribution
under the estimated variances, meaning that
it can better capture some extreme rates. Smal-
ler and larger values of w (0.5 and 5) were also
tried but resulted in much poorer convergence
and mixing; thus, the results were discarded.
With auto-tuning enabled, the values of w fluc-
tuated mostly between 2.0 and 3.0 during the
run, and the efficiency was similar to when w
was fixed to 2.0 or 3.0 (Table 2).
The rjMCMC algorithm does not include an

autocorrelated relaxed clock model (e.g., the
ALN model). In fact, it is quite challenging to
do that (see “Discussion”). On the other hand,
it is straightforward to compare these models
using marginal likelihoods or Bayes factors.
The SS ran about 20 times slower than the
rjMCMC (70 million vs. 2 billion iterations).
The marginal likelihoods (natural logarithms)
were −4788.1 and −4788.9 in two runs under
the ILN model and −4789.2 and −4789.9
under the IGR model. Given equal prior prob-
abilities for the two models, the posterior prob-
ability of the ILN model, PILN =MILN/(MILN +
MIGR), ranges from 0.57 to 0.86. The SS had
slightly worse convergence under the ALN
model, resulting in marginal likelihoods of
−4882.3 and −4884.8 in two runs. It has been

shown that convergence is much more difficult
to reach under the ALN model due to the lack
of power to detect the autocorrelation (Ho
et al. 2015). Nevertheless, the natural logarithm
of the Bayes factor (difference of logarithmic
marginal likelihoods) is much larger than 10
for IGR against ALN, indicating IGR fits the
data much better than ALN (Kass and Raftery
1995). The independent-rates models (ILN or
IGR) allow drastic rate variation among adja-
cent branches, whereas the ALN model has a
smoothing effect and thus has less tolerance
for drastic changes at adjacent branches. A
study of Hymenoptera (Ronquist et al. 2012a),
for example, also detected that the independent
rates (WN) fit the data better than the autocor-
related rates (ALN) for the same reason.
When the characters were partitioned

according to six anatomical regions, the relative
rates at five focal branches among these regions
were consistent with previous estimates in gen-
eral, with slightly narrower credibility intervals
(Fig. 5, cf. Zhang and Wang 2019: fig. 2). More-
over, the rjMCMC algorithm also estimated the
posterior probabilities of the clock models for
each partition (Table 3). The third partition,
which contains pectoral girdle and sternum
characters, has the highest probability for the

TABLE 1. Median (5th, 95th percentiles) of the mean squared errors (MSE) of relative rates across the 100 replicates (trees).
For each tree, there were nine sets of rates (σG for gamma variance, σL for lognormal variance, and σN for normal variance)
and three character lengths (l = 100, 300, and 500) simulated (100 × 9 × 3 datasets). Each datasetwas then analyzed using the
mixed independent lognormal (ILN) and independent gamma rates (IGR) clock models and the white noise (WN) clock
model.

Variance l = 100 l = 300 l = 500

Mixed ILN and IGR clocks
σG = 0.1 0.08 (0.06, 0.12) 0.07 (0.05, 0.10) 0.06 (0.04, 0.09)
σG = 0.5 0.36 (0.21, 0.52) 0.32 (0.17, 0.47) 0.29 (0.16, 0.44)
σG = 1.0 0.57 (0.33, 0.96) 0.51 (0.29, 0.89) 0.47 (0.24, 0.80)
σG = 2.0 0.99 (0.46, 1.87) 0.90 (0.44, 1.58) 0.85 (0.41, 1.52)
σL = 0.1 0.08 (0.06, 0.12) 0.07 (0.05, 0.11) 0.06 (0.04, 0.09)
σL = 0.5 0.32 (0.19, 0.53) 0.27 (0.15, 0.50) 0.24 (0.14, 0.45)
σL = 1.0 0.54 (0.26, 1.55) 0.45 (0.21, 0.99) 0.42 (0.18, 0.94)
σL = 2.0 0.92 (0.38, 2.81) 0.71 (0.33, 2.00) 0.68 (0.28, 1.95)
σN = 1.0 0.58 (0.41, 0.84) 0.52 (0.38, 0.79) 0.50 (0.34, 0.72)

WN clock
σG = 0.1 0.12 (0.07, 0.18) 0.09 (0.06, 0.15) 0.08 (0.04, 0.13)
σG = 0.5 0.47 (0.30, 0.76) 0.42 (0.26, 0.69) 0.40 (0.23, 0.64)
σG = 1.0 0.84 (0.48, 1.77) 0.79 (0.41, 1.39) 0.75 (0.38, 1.31)
σG = 2.0 1.46 (0.62, 3.08) 1.21 (0.56, 2.63) 1.15 (0.53, 2.32)
σL = 0.1 0.11 (0.07, 0.19) 0.09 (0.06, 0.16) 0.08 (0.04, 0.13)
σL = 0.5 0.41 (0.25, 0.70) 0.35 (0.19, 0.68) 0.32 (0.17, 0.65)
σL = 1.0 0.77 (0.38, 1.65) 0.70 (0.33, 1.25) 0.66 (0.30, 1.16)
σL = 2.0 1.22 (0.51, 2.72) 1.14 (0.45, 2.23) 1.10 (0.41, 2.11)
σN = 1.0 0.79 (0.47, 1.71) 0.71 (0.39, 1.36) 0.65 (0.38, 1.29)
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ILN model (0.98), while the sixth partition,
which contains hind-limb characters, has the
highest probability for the IGR model (0.83).
This illustrates the importance of model aver-
aging, because different character regions
have distinct patterns of evolutionary rate vari-
ation due to varying natural selection and can

thus be better fit by different distributions.
The high evolutionary rates during early
avian evolution largely correspond to extensive
morphological modifications refining flight
capability. As discussed in Zhang and Wang
(2019; see also Yu et al. 2021), the high rate for
axial skeleton reflects extensive morphological

FIGURE 3. Dated phylogeny of Mesozoic birds. The topology shown is the majority-rule consensus tree summarized from
the posterior trees. The node ages in the tree are the posterior medians, and the error bars at the nodes denote the 95% high-
est posterior density (HPD) intervals. The shade of each node circle represents the posterior probability of the correspond-
ing clade. The color of the branch represents the mean relative evolutionary rate at that branch. The fossil sampling rate, ψ,
varies along time in a piecewise constant manner, with four intervals divided at 145, 100, and 66 Ma. The solid line is the
posterior mean, and the shade denotes the 95% HPD interval.
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changes in the vertebral column, especially the
forming of pygostyle, while the high rates for
pectoral girdle and sternum correspond to the
unique morphological changes related to flight
apparatus and the deviation of flight styles
transitioning from Pygostylia to Enantior-
nithes. There appears to be no dominant select-
ive pressure in the skull and pelvis during early
avian evolution.

Discussion

In this study, I developed a rjMCMC algo-
rithm to average over the ILN and IGR clock

models. The simulation study revealed the abil-
ity of the algorithm to infer the true model,
while the estimates of divergence times and
evolutionary rates in the Bayesian tip dating
of Mesozoic birds were both improved by aver-
aging over these two clock models.
The mixed ILN and IGR clocks also

improved the MCMC sampling, as the parti-
tioned analysis converged efficiently under
the standard FBD model allowing fossil ances-
tors but failed under theWNmodel. In theWN
model, the rate distribution is also gamma, but
the variance of the branch rate is proportional
to the branch length. Thus, a change of the
time influences the rate and vice versa, but
the MCMC proposals are not optimized for
these correlated parameters. In the IGR or
ILN model, the variance parameter is inde-
pendent of the branch length, making the
MCMC more efficient to update the times and
rates. Thus, the overall convergence andmixing
are improved.
Nevertheless, there is clearly some room for

improvement in the rjMCMC algorithm, as it
only achieved acceptance rate of about 3%
(Table 2). Take the results of PILN = 0.6 and

FIGURE 4. A, Five focal node ages (mean and 95% highest posterior density [HPD] interval) of early stem birds estimated
under the white noise (WN) model for the unpartitioned data (WN, 1P), WNmodel for the partitioned data (WN, 6P*; the
star denotes disallowing fossil ancestors in the fossilized birth-death [FBD] model), mixed independent lognormal (ILN)
and independent gamma rates (IGR)models for the unpartitioned data (ILN&IGR, 1P), andmixed ILN and IGRmodels for
the partitioned data (ILN&IGR, 6P). B, Relative evolutionary rates (mean and 95%HPD interval) at the five focal branches
under the WN model for the unpartitioned data (WN, 1P) and mixed ILN and IGR models for the unpartitioned data
(ILN&IGR, 1P).

TABLE 2. Posterior probability of the independent
lognormal (ILN) clock model and acceptance rate of the
reversible-jump Markov chain Monte Carlo (rjMCMC)
proposal under each of the four fixed values ofw and when
w is auto-tuned.

PILN w Acceptance rate

0.57 1.0 0.1%
0.58 2.0 3.1%
0.60 3.0 2.7%
0.60 4.0 0.9%
0.58 Auto 3.0%

AVERAGING RELAXED CLOCK MODELS 349

https://doi.org/10.1017/pab.2021.42 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2021.42


PIGR = 0.4, for example. One could imagine that
if the chain moves to ILN with certainty and
moves to IGR with probability PIGR/PILN,
such a move would be the most efficient with
an acceptance rate of PILN × PIGR/PILN + PIGR-

× 1 = 2 × 0.4 = 0.8. Note this is a theoretical
upper limit, which is hard to reach in practice.
Recall that the evolutionary rates are directly
mapped between models, so the term that
changed during rjMCMC is the joint probabil-
ity distribution of the rates, which is the multi-
plication of either lognormal or gamma
densities across branches. Apparently, match-
ing these two multidimensional distributions
would require a very accurate (and different)

value of w in each iteration to avoid the move
being rejected too often. The auto-tuning fea-
ture developed here has not accomplished
this goal, and a smarter one is needed. Li and
Drummond (2012). Took another direction by
mapping the quantiles of two distributions,
such that the probability distribution of the
evolutionary rates is unchanged in the cross-
model move, but the data likelihoods are differ-
ent as the evolutionary rates themselves are
changed. Because the likelihood would domin-
ate the posterior, this strategy would probably
result in a poorer acceptance rate. Also, the like-
lihood computation is usually much heavier
than the prior calculation. Regardless, further
studies are necessary to make more thorough
evaluations and comparisons. A better algo-
rithm to achieve good acceptance rate and effi-
ciency might lie in between these two
strategies, where the likelihood and evolution-
ary rate distribution need to be co-updated,
which is left for further research.
A desirable feature of the rjMCMC algorithm

appears to be including an autocorrelated
relaxed clock model such as the ALN model.
However, it is quite challenging to design effi-
cient moves between the autocorrelated and

FIGURE 5. Relative evolutionary rates (mean and 95% highest posterior density [HPD] interval) for the six anatomical par-
titions at the five focal branches averaging over the independent lognormal (ILN) and independent gamma rates (IGR)
models (ILN&IGR, 6P).

TABLE 3. Posterior probability of the independent
lognormal (ILN) clock model for each of the six partitions
and the variance parameters estimated (mean and 95%
highest posterior density [HPD] interval).

Partition PILN σL σG

Skull 0.69 6.0 (1.5, 11.4) 2.2 (1.0, 3.5)
Axial skeleton 0.51 4.6 (1.4, 8.6) 2.0 (1.0, 3.1)
Pectoral girdle and
sternum

0.98 2.2 (0.8, 4.0) 1.0 (0.5, 1.6)

Forelimb 0.54 2.5 (0.9, 4.5) 1.1 (0.6, 1.7)
Pelvic girdle 0.49 3.4 (0.2, 7.5) 1.7 (0.5, 3.0)
Hind limb 0.17 2.7 (1.0, 4.8) 1.2 (0.7, 1.8)
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uncorrelated clock models. The ALN model
has rates of ri1 and ri2 at both ends of branch i,
and ri2 follows a lognormal distribution with
mean ri1 and variance σAti, where ti is the
time duration of branch i. One could map the
branch rate ri in the ILN model to ri′ = (ri1 +
ri2)/2 in the ALN model, but this mapping
sometimes reaches negative value of ri1 or ri2,
resulting in such moves being rejected. For the
variance, one could use σA =wσL, where w
can be chosen close to the mean of ti values.
Nevertheless, such an initial attempt tended
to get stuck in different clock models. Further
efforts are needed to achieve reasonable mixing
while giving more consideration to the devi-
ation of the autocorrelated and independent
distributions. Alternatively, a mixed relaxed
clock model has been introduced to balance
the autocorrelated and uncorrelated models
(Lartillot et al. 2016), which is a sensible
approach in the context of model averaging.
This study draws attention to the importance

of comparing alternative relaxed clock models
in dating analyses, something frequently over-
looked in empirical studies. It is a good practice
to test the fit of different clock models, as the
pattern of evolutionary rate variation is likely
data dependent. Carefully selecting relaxed
clock models could also improve parameter
estimates and MCMC performance, as shown
in this study. Although the rjMCMC algorithm
introduced here is applied to the morpho-
logical data of Mesozoic birds, it is generally
applicable in any node dating or total-evidence
dating approaches for which a relaxed clock
model is suitable. Thus, it provides a general
framework for selecting and averaging relaxed
clockmodels. Future researchwill have to show
how the algorithm performs on molecular
sequences or a combination of both morpho-
logical and molecular data.

Software Implementation

The rjMCMC algorithm has been imple-
mented in the latest development branch of
MrBayes (Ronquist et al. 2012b) available
from GitHub (https://github.com/NBISwe-
den/MrBayes) and will be included in the
upcoming release version 3.2.8. The relevant
commands of using this algorithm are listed

here (with comments in square brackets). Com-
plete commands are given in the Supplementary
Material.

prset clockvarpr =mixed; [specify the mixed
ILN and IGR clocks]

prset clockratepr = gamma(2, 100); [for the base
evolutionary rate]

prset mixedvarpr = exp(0.5); [for the clock
variance]

propset rj_clocks$ratio = 2.0; [initial value of w,
or fixed if autotune = no]

mcmcp autotune = yes tunefreq = 5000; [auto-
tuning (default) and batch length]

[Note:

1. Auto-tune is a global control, i.e., setting it to
“no” disables auto-tuning for all proposals.

2. The relaxed clock model indicators (m_RCl)
are recorded in .p files with 0 for IGR and 1
for ILN. The ‘sump’ command summarizes
these values and prints the posterior prob-
ability of ILN (mean of m_RCl).

3. The “clockvarpr = igr” command in v. 3.2.7
and older is replaced by “clockvarpr =wn”
in v. 3.2.8 to specify the WN model, while
“clockvarpr = igr” and “clockvarpr = iln” in
v. 3.2.8 specify the IGR and ILN models.]
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