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Abstract. We test the stability of a magnetic equilibrium configuration using numerical sim-
ulations and semi-analytical tools. The tested configuration is, as described by Duez & Mathis
(2010), the lowest energy state for a given helicity in a stellar radiation zone. We show using 3D
magneto-hydrodynamic (MHD) simulations that the present configuration is stable with respect
to all submitted perturbations, that would lead to the development of kink-type instabilities in
the case of purely poloidal or toroidal fields, both well known to be unstable. We also discuss,
using semi-analytic work, the stabilizing influence of one component on the other and show that
the found configuration actually lies in the stability domain predicted by a linear analysis of
resonant modes.
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1. Introduction
The large-scale, ordered nature of magnetic fields detected at the surface of some Ap,

O and B type stars and the scaling of their strengths (according to the flux conservation
scenario) favour a fossil hypothesis, whose origin is not yet elucidated. To have survived
since the stellar formation, a field must be stable on a dynamic (Alfvén) timescale. It was
suggested by Prendergast (1956) that a stellar magnetic field in stable axisymmetric equi-
librium must contain both poloidal (meridional) and toroidal (azimuthal) components,
since both are unstable on their own (Tayler 1973; Wright 1973). This was confirmed
recently by numerical simulations (Braithwaite & Spruit 2004; Braithwaite & Nordlund
2006) showing that an arbitrary initial field evolves on an Alfvén timescale into a sta-
ble configuration; axisymmetric mixed poloidal-toroidal fields were found. On the other
hand, magnetic equilibria models displaying similar properties have been re-examined
analytically by Duez & Mathis (2010). We here address the question of their stability
usng both numerical and semi-analytical tools as recently reported in Duez et al. (2010).

2. The model
We deal with non force-free magnetic configurations (i.e. with a non-zero Lorentz

force) in equilibrium inside a conductive fluid in absence of convection. Several reasons
inclined us to focus on non force-free equilibria. First, Reisenegger (2009) reminds us
that no configuration can be force-free everywhere. Although there do exist “force-free”
configurations, they must be confined by some region or boundary layer with non-zero or
singular Lorentz force. Second, non force-free equilibria have been identified in plasma
physics as the result of relaxation (self-organization process involving magnetic reconnec-
tions in resistive MHD), e.g. by Montgomery & Phillips (1988). Third, as shown by Duez
& Mathis (2010), this family of equilibria is a generalization of Taylor states (force-free
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relaxed equilibria; see Taylor 1974) in a stellar context, where the stratification of the
medium plays a crucial role. Finally, we know (Chandrasekhar 1958) that in the ideal
MHD limit the mass encompassed in magnetic flux surfaces is conserved in the axisym-
metric case. We hence assume here that it is roughly conserved during the non-ideal
relaxation phase, which leads automatically to non-force-free states (Woltjer 1959).
The equilibrium obtained is described in detail in Duez & Mathis (2010) as the low-
est energy configuration conserving the invariants of the problem (during the relaxation
phase) which are the magnetic helicity (preventing the rapid energy decay) and the mass
enclosed in magnetic poloidal flux surfaces (to account for the non force-free property)
which is due to the stable stratification.

3. Stability numerical analysis
We use the Stagger code (Nordlund & Galsgaard 1995). We model the star as a self-

gravitating ball of ideal gas (γ = 5/3) with radial density and pressure profiles initially
obeying the polytropic relation P ∝ ρ1+(1/n) , with index n = 3, therefore stably stratified.
More details on the numerical model setup can be found in Braithwaite & Nordlund
2006. The configuration is then submitted to white perturbations (1% in density). The
dynamical evolution of the mixed configuration is compared to its purely poloidal and
its purely toroidal components, whose behaviour are well known to be unstable due to
kink-type instabilities. The magnetic and velocity amplitudes are plotted on Fig. 1. As

Figure 1. Time evolution of the (log) amplitudes in azimuthal modes m = 0 to 4 averaged over
the stellar volume of the magnetic field (top row) and the velocity field (bottom row) in the
simulations with the purely poloidal field (left), purely toroidal field (middle) and the mixed
field (right). Initially, all the magnetic energy is in the m = 0 mode.

we can see, in contrast to these unstable configurations, the mixed poloidal-toroidal one
does not exhibit any sign of instability, even for high azimuthal wavenumbers (up to
about 40). The magnetic and velocity amplitudes are plotted on the right of fig. 1, where
we see an absence of growing modes. The kinetic energy present results simply from the
initial perturbation and the oscillations and waves it sets up.
To better examine the potentially unstable regions, we use Tayler’s stability criteria

(Tayler, 1973) for purely toroidal fields and estimate the stabilisation from the poloidal
component, following Braithwaite (2009). In fig. 2 we plot Tayler’s criteria for modes
m = 0 and m = 1 – the m = 0 mode is unstable almost everywhere and the m = 1 mode
is unstable in a large cone around the poles; however the poloidal field stabilises these
modes in most of the meridional plane except near the equatorial plane where it merely
stabilises all wavelengths small enough to fit into the available space. We can examine
closely the behaviour of the field in the vicinity of the magnetic axis, where it can be
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Figure 2. Half of the meridional plane, showing the regions unstable against the m = 0 and 1
Tayler modes in the absence of the poloidal component.

approximated as the addition of an axial and a toroidal field (cylindrical geometry).
Bonanno (2008a) outlined that in this case magnetic configurations can be subject to
non-axisymmetric resonant instability. They determined the dependency of the Tayler
instability maximum growth rate as a function of the azimuthal wave-number m and
of the ratio ε of the axial field to the toroidal one. In our case, close to the center the
flux function exhibits a behaviour in Ψ ∝ r2 , so the azimuthal field is proportional to
s = r sin θ corresponding to the Bonanno et al.’s parameter α = 1. As underlined by
the authors, in that case the maximum growth rate changes remarkably slowly with
m for all modes with m � 2 and the instability is weakly non-anisotropic. If we take
as a value for s1 the radius of the neutral line or the one where the azimuthal field is
strongest, we obtain respectively ε = 0.64 or ε = 0.79. According to their study (see
Bonanno, 2008a; fig. 7), we fulfill the stability criterion for the modes m = 0, 1 and 2.
Our results are therefore in agreement with their linear analysis. In the simulations we
run, the mixed configuration has a poloidal energy fraction Ep/E = 0.052. The magnetic-
to-thermal energy ratio E/U ≈ 1/400, which should mean that for stability we require
Ep/E � 0.04 (Braithwaite, 2009). We see then that this value of E/U is near the upper
limit for stability – in other words, we are near the boundary of validity of the weak-field
approximation, reinforcing the result.
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