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Abstract

A method based on the method of images is described for the solution of the linear
equation modelling diffusion and elimination of substrate in a fluid flowing through
a chemical reactor of finite length, when the influx of substrate is prescribed at the
point of entry and Danckwerts' zero-gradient condition is imposed at the point
of exit. The problem is shown to be transformable to an equivalent problem in
heat conduction. Associated with the images appearing in the method of solution
is a sequence of functions which form a vector space carrying a representation
of the Lie group SO(2,1) generated by three third-order differential operators.
The functions are eigenfunctions of one of these operators, with integer-spaced
eigenvalues, and they satisfy a third-order recurrence relation which simplifies
their successive determination, and hence the determination of the Green's func-
tion for the problem, to any desired degree of approximation. Consequently, the
method has considerable computational advantages over commonly used meth-
ods based on the use of Laplace and related transforms. Associated with these
functions is a sequence of polynomials satisfying the same third-order differential
equation and recurrence relation. The polynomials are shown to bear a simple re-
lationship to Laguerre polynomials and to satisfy the ordinary diffusion equation,
for which SO(2,1) is therefore revealed as an invariance group. These diffusion
polynomials are distinct from the well-known heat polynomials, but a relationship
between them is derived. A generalised set of diffusion polynomials, based on the
associated Laguerre polynomials, is also described, having similar properties.

1. Introduction

The method of images was developed originally by Maxwell and Thompson to
obtain solutions of Laplace's equation for problems in electrostatics with bound-
ary conditions prescribed on any set of plane or spherical surfaces. It had a
simple extension, not only to static problems in heat conduction, diffusion and
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viscosity where the solution of Laplace's equation with equivalent boundary con-
ditions is also required, but also to the corresponding time-dependent problems,
where solutions of the heat equation are required. The power of this method
was very well illustrated by Sommerfeld [19] in his well known treatise.

The method of images also has a variety of applications [13] to problems
involving diffusion in moving fluids, and the generalisation is very easy when
there is no flux through the boundaries on which the boundary conditions are
specified. However, where such flux does exist, the method is not applicable
in its usual form. In consequence, in most of the rather extensive literature on
fluid reactors (see e.g., Wen and Fan [23]; Parulekar and Ramakrishna [16]) and
diffusion in biological systems (Perl and Chinard [17]; Roberts and Rowland [18]),
there is a reliance on methods involving Laplace and related transforms, where
the solutions obtained do not provide much insight into the process of diffusion
in that context and, since they involve functions of at least two variables, are
not very convenient from the computational point of view.

The use of the method of images makes it possible to exhibit the solution of
a partial differential equation, satisfying appropriate boundary conditions, as a
sum of contributions from sources localised either on the boundary of the region
of interest or outside the region. Usually the sources on the boundary are phys-
ical sources, and the contribution of these sources to the solution is just what
would be expected in the absence of the boundary. The contributions of the im-
age sources outside the boundary satisfy the differential equation independently,
and the positions and strengths of these sources are chosen so that the com-
plete solution satisfies the boundary conditions. The method has the obvious
advantage that the contribution of each source to the solution is quite simple
and easily visualised, and the way in which the entire solution is built up from
these simple components is made apparent. In the applications to diffusion, it is
also usually evident that the contributions from distant sources will be negligible
within the time span of interest, or even within the time needed to approach a
steady state. In fact, as we shall demonstrate below, it often happens that, for
computational purposes, the sum of contributions from image sources outside
the boundary may be approximated very closely by one or two terms.

In this paper, we shall present a modification of the method of images which
is directly applicable to problems of diffusion in moving fluids where there is a
flux through the boundary, and is, we believe, of interest for a number of reasons.
From the practical point of view, it retains the advantages which we have just
described as characteristic of the method of images, and throws new light on the
effect of the boundary conditions on the solutions obtained. But, in addition,
the explicit solutions obtained are of considerable mathematical interest because
of their relationship to a Lie algebra of third-order difference operators. We
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are thus extending the repertoire of uses of special functions in relation to the
differential equations of mathematical physics.

There is a close analogy between diffusion and heat conduction, and it might
be expected that there should be some relation between this work and vari-
ous studies of the heat equation based on group-theoretical considerations (see
Bluman and Cole, [5]) dating from that of Sophus Lie himself. Although, as
we show in an Appendix (Section 6), the problem that we consider here can in
fact be transformed to an equivalent problem in heat conduction (or ordinary
diffusion), we could find no such relation. This is mainly because in these ear-
lier works, only differential operators of first or second order seem to have been
considered, so that the possibility of representing group generators in terms of
third-order operators did not arise there. As appropriate, we shall point out
connnections between this apparently new representation and well known oth-
ers, but we shall also draw attention to some interesting special features of the
diffusion functions and polynomials, both of which form representation spaces of
the group in question.

We begin with a description of one of the more important applications, which
is to a well known and somewhat controversial problem in the modelling of
chemical reactors, or their biological equivalents. A fluid containing a substrate
in solution passes through a semi-permeable wall or membrane into a reactor,
where the substrate is removed by chemical reaction with another substance
which is either insoluble or otherwise unable to penetrate the wall. The fluid
finally passes through another semi-permeable boundary out of the reactor. The
problem is to determine the concentration c of the substrate as a function of
position and time, and in particular the outflux of substrate from the reactor,
given the influx into it, that is, input-output relations.

The geometry of the reactor is usually cylindrical, and we shall assume a
uniform cross-section, so that the velocity v of the fluid is independent of the
longitudinal coordinate x. If D is the eddy coefficient of diffusion within the
reactor, the flux j(x, t) of substrate with concentration c(x, t) is

j = vc- Ddc/dx. (1.1)

This equation is unaffected by averaging over the cross-section, and the equation
of continuity may then also be written in the one-dimensional form

dc/dt + dj/dx = -pc, (1.2)

where p is the reaction rate constant. (We consider only first-order reaction
kinetics.) Thus the concentration satisfies

dc/dt + (d/dx)[vc - Ddc/dx] = -pc. (1.3)

A similar equation holds for the solution outside the reactor, where, however,
p = 0, and the eddy coefficient of diffusion is often very much smaller, owing
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to the absence of the reacting material. But, provided that D is everywhere
finite, there should be little disagreement about the boundary conditions to
be applied: both c and j must be continuous through the reactor boundary.
There was a problem to be settled when D was assumed to vanish outside the
reactor, reminiscent of the problem of appropriate boundary conditions for an
inviscid fluid, since there also the order of the differential equation is reduced
in the limit considered. The generally accepted boundary conditions in this
instance are those given by Danckwerts [7], and confirmed by the more detailed
analyses of Wehner and Wilhelm [22] and van Cauwenberghe [6]. The flux j
is necessarily continuous at all boundaries; also the concentration is continuous
across the exit face of the reactor and its derivative dc/dx then has to vanish
at the internal surface of that face. However, when D vanishes outside the
reactor, there has to be a discontinuity in the concentration at the point of entry.
Since other authors [22], [6] have adequately considered this limit, we shall not
comment on this rather surprising asymmetry, but draw attention to the more
surprising experimental results of Deckwer and Mahlmann [8], [9], tending to
show that localised Danckwerts' boundary conditions are satisfied even at an
internal boundary between two reactor segments, in each of which the eddy
coefficient of diffusion is quite large. In particular, there is a discontinuity of
concentration across such a boundary and the concentration has a vanishing
derivative at the point of exit from each reactor segment. We hope to show how
the method of images illuminates these and similar experimental findings, which
have led to much debate in the literature (Wicke [24], Sundaresan, Amundson
and Aris [20]).

2. Relation between source and image for a fluid in motion

We consider a fluid reactor characterised by the constants v, D and p appear-
ing in (1.3), and with entry and exit boundaries at x = 0 and x = L respectively.
We shall seek a solution of (1.3) satisfying Danckwerts' condition dc/dx = 0 at
x = L, which we accept as appropriate when v > 0, and having a prescribed flux
y(0, i) at x = 0. This will be done by formulating such a solution as an integral
which takes account of the boundary conditions. The most general solution can
be regarded as a sum of this solution and a complementary 'anti-Danckwerts'
solution satisfying dc/dx = 0 at x = 0, and with a specified flux j(L, i) at x = L.

The desired solution can be written in the form

c(x,t)= f G(x,t-t')j(O,t')dt', (2.1)
J-oo

where G(x,t) is a Green's function, satisfying (1.3) for t > 0 and 0 < x < L. It
is convenient to define G(x, t) = 0 for t < 0, and the upper limit of integration
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can then be replaced by infinity, if so desired. Furthermore, we usually suppose
that j(0, t) = 0 for t < 0 (and that the reactor is initially free of substrate:
c(x,0) = 0) so that the lower limit can be replaced by 0. If this solution (2.1) is
to satisfy, for arbitrary j{O,t), the condition dc/dx = 0 at x = L for t > 0, then

G'{L,t)=0 forOO, (2.2)

where G' = dG/dx. Furthermore, (2.1) implies that G(x,t) describes the con-
centration resulting from a singular source of flux localised at t = 0 on the
boundary, j(O,t) = 6(t), so that if

jG(x,t) = vG{x,t)-DG'(x,t) (2.3)

is the flux associated with G, we must have

lim jG(x,t) = 6(t). (2.4)

We shall refer to such a singular source of flux at i = 0 as a primary source for
the Green's function, and construct a solution in the form of a series

). (2-5)
fc=0

where Go(x,t) is a solution for the primary source in a semi-infinite reactor
(occupying x > 0), satisfying (2.4) but not (2.2). The remaining terms in (2.5)
are solutions for a set of image sources located at the points

2/fc = iL[l-(-l) f c(2fc + l)] (2.6)

(k = 1,2,...), so that, for odd k, yk+i is the image of yk by reflection in the
plane through x = 0, and for even k it is the image of yk by reflection in the
plane through x = L. The sources, though localised, are not point sources in the
usual sense, and the relation between a source and its image is by no means as
simple as in other applications of the method of images.

To determine that relation between source and image, we write

Gk{x, t) = a(x, t)fk{x -yk + vt, t), k even,

Gk(x,t) = a{x,t)fk{yk-x + vt,t), k odd, (2.7)

a{x,t) = exp[-pt + \v{x - vt)/D]/\/{4irDt),

noting that, for any fc, Gk(x,t) is a solution of (1.3) provided that fk{x,t) is of
the form

fk(x, t) = -(2D/v){d/dx)[exv(±vx/D)gk{x, t)\, (2.8)

where gk{x,t)/\/i satisfies the diffusion equation without convection or elimina-
tion terms, that is, (1.3) with v = p = 0. The expression (2.8) has been chosen
because, as we shall proceed to show, the gk{x,t) thus defined satisfy a variety
of relations much simpler than the fk{x,t). For simplicity, we shall write fk or
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fk(x) for fk(x,t) and gk or gk(x) for gk(x, t) in the following. Note that these
functions must be defined for all x > 0.

It can be seen from (2.5) that the boundary conditions (2.2) and (2.4) will
both be satisfied by G(x, t) provided that, for t > 0,

Gk(L,t) + G'k+1(L,t)=0, A; even,

jk(O,t) + jk+i(O,t) = O, k odd,

and provided also that

x\im+jo(x,t) = 6(t). (2.10)

Here the primes again denote differentiation with respect to x, and

jk(x,t) = vGk(x,t)-DG'k{x,t), k = 0,1,2,-•• (2.11)
is the flux associated with Gk- Conditions (2.9) require that

\{v/D){fk +fk+i) + f'k-fk+i=O (2.12)

for all k, for all t > 0 and for all x > 0. After the substitution of (2.8), and
assuming that fk(x) and gk(x) vanish sufficiently quickly as x —> oo, this equation
can be integrated twice with the results

9k+i 00 = 9k(*) + (v/D)gk(x), (2.13)

and then

gk+i(x) = gk(x) - (v/D) [°° gk(y) dy. (2.14)
J

This leaves go or equivalently Go to be determined. As shown in the Appendix
(Section 6), Go is given by (6.17) and hence, from (2.7) and (2.8),

«7o(z) = E{x) = (v/D) r exp(-j / 2 /4^) dy, (2.15)
Jx

also expressible in terms of the error function erfc(^). Together, (2.14) and
(2.15) define a series of functions of considerable mathematical interest, as we
shall demonstrate in the next section. For the present, we note that

9l(x) = (l+vx/D)E(x) - (2vH/D)e(x),

e(x) = exp(-x2/4Dt), (2.16)

and, in general,
9k(x) = Vk{x)E{x) - 2vtqk(x)e(x), (2.17)

where pk (x) and qk (x) are polynomials of degree k and k — 1 respectively, with
parametric dependence on t.

It also follows from (6.17) that

jo(x, t) = (x/t) exp[-pt -(x- vt)2/4Dt]/^/(4wDt), (2.18)
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which satisfies, for any sufficiently smooth F(t) and any positive e, no matter
how small,

lim / jo{x,t)F{t)dt = F{O). (2.19)

This can be seen quite easily after expanding F in powers of t and, for the leading
term, changing the variable of integration from t to u = x/y/(4Dt). Thus (2.10)
holds as required.

Owing to the increasing distance of successive images from the interval 0 <
x < L where the solution is to be determined, and the very rapid rate of decrease
of both e{x) and E(x) with increasing positive x, it is now evident that, as stated
in the Introduction, only the terms Go{x, t) and Gi(x,t) of the series (2.5) will
normally contribute significantly to the value of G(x,t). The main exception is
for very short reactors, where it may be necessary to calculate quite a number
of terms of the series; however, our subsequent analysis will provide a recurrence
relation for the ffk(i), and incidentally for the pjt(x) and qk(x) as well, so that this
is not a computational difficulty. Another apparent exception to the possibility of
replacing the series (2.5) with its first few terms is for large values of t; however,
in this instance G(x, t) as a whole becomes quite small and its contribution to
c(x,t) in (2.1) is likely to be negligible.

An example of the application of the formula (2.1) is shown in Figure 1, which
illustrates the progress of a delta-function source of flux originating at i = 0 on
the left of the Figure, at time t = 0, through a series of reactor segments of
the type studied by Deckwer and Mahlmann [8], [9] in the experiments we have
already referred to, except that for simplicity, we have ignored the effects of
elimination and set p = 0 everywhere. Our illustration includes some narrow
boundary layers of semi-permeable material which, we suppose, enclose or sep-
arate reactor material at different densities.

In these boundary layers, the effective coefficient of diffusion is certainly very
much smaller than in the reactor segments, where turbulent mixing is responsible
for Peclet numbers (defined in any region with length A and coefficient of diffusion
D as Xv/D, where v is the convective velocity, the same for all regions) equal to
13.1, 7.4 and 0.55 in the left, central and right segments respectively. The Peclet
numbers in the boundary layers were not measured in the experiments quoted,
but the predicted concentration curves are not sensitive to the precise values
assigned there, provided that the thickness of the layers is small. Indeed, the
curves obtained for any reasonable values are almost the same as those obtained
when infinite Peclet numbers (vanishing diffusion coefficients) are adopted for the
boundary layers. A typical curve of the latter type is shown in Figure 1. The
presence of such boundary layers means therefore that Danckwerts' boundary
conditions are an excellent approximation for each reactor segment, and there
will in practice be an apparent discontinuity in the concentration across each
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0-4 0-6

Fractional Distance

FIGURE 1. Substrate distribution at time t = OAL/v corresponding

to a delta-function primary source of flux at time t = 0, showing

apparent discontinuities at internal reactor boundaries. The Peclet

numbers in the three reactor segments from left to right are 13.1, 7.4

and 0.55, while all four boundary layers have Peclet number oo. In

all regions p = 0.

boundary layer, and an almost vanishing derivative at the exit from each reactor
segment. In making these calculations, the delta-function source was used only
for the left segment of the reactor; the source for each subsequent segment was
obtained by computing and storing the flux, as a function of time, at the end of
the preceding segment. The curve corresponding to Figure 1 for a steady state
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(dc/dt = 0) is even more easily calculated, shows similar characteristics, and
approximates very closely to a curve published by Deckwer and Mahlmann [8,
Figure 5] and shown to be consistent with experiment. We intend to publish
a more detailed account of boundary layers elsewhere [4]; our object here in
this matter is only to provide a simple and comprehensible justification for the
common practice of using Danckwert's boundary conditions in circumstances
where the eddy coefficient of diffusion is not negligible inside or outside the
reactor.

3. Properties of the diffusion functions

In this section we shall outline the essential properties of the functions gk(x)
defined by (2.14) and (2.15), and the associated polynomials pjt(x) and <?fc(x)
appearing in (2.17), which we shall call diffusion polynomials. They are distinct
from the well-known heat polynomials (see Widder [25]), although, as we shall
show, the Pk{x) satisfy an equation similar to the heat equation. We shall also
show incidentally that gjt(x), pjt(x) and qk(x) all satisfy a third order recurrence
relation which greatly assists their computation. To simplify the notation, we
choose units of length and time such that

v = D = \. (3.1)

Arbitrary units may be restored in subsequent formulae by replacing x and t
with the dimensionless variables vx/D and 2v2t/D.

We first note that the differential recurrence relation (2.13) is satisfied by the
Laguerre polynomials Lk{—x), which can be defined by means of LQ(X) = 1 and
the recurrence relation

xLfc(x) = (2k + l)Lfc(x) - (k + l)Lk+i{x) - kLk-i(x) (3.2)

(see Abramowitz and Stegun [1]), or by Rodrigues formula

Lfc(x) = ex(d/dx)k(xke-x)/k\, (3.3)

from which (2.13) is easily derived. But they are not at all unique in this respect,
and definite integrals involving Lk{y-x) will also satisfy (2.13). Since Lfc(0) = 1,
it is easily verified in particular that the integral formula

gk(x) = [°° exp(-ij/2/<)ifc(y - *) dy (3.4)
J

will also satisfy (2.13) in the units adopted. Moreover, as the right side of (3.4)
vanishes when x -> oo, it will satisfy (2.14). Finally, since (3.4) reduces to (2.15)
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when A; = 0, the gk{x) defined by (3.4) are the same as those defined by (2.14)
and (2.15).

By differentiation and integration by parts we infer from (3.4) that

tg'k{x) + xgk(x) = - f exp{-±y2/t)(y - x)Lk{y - x)dy. (3.5)
Jx

Then, by using the recurrence relation (3.2) of the Laguerre polynomials, we
have

tg'k(x) + xgk(x) = (k + l)<7fc+i(z) - (2k + l)gk{x) + kgk-i{x). (3.6)

With the help of (2.13), the derivatives may be eliminated between this equation
and a similar equation with A; replaced by fc+1, yielding the third order difference
equation

(A; + 2)gk+2 = (x+ 3k+ 4)gk+i - (x-t+ 3k+ 2)gk + kgk-i. (3.7)

With go and g\ given by (2.15) and (2.16), this relation gives an easy method of
computation of as many of the gk (x) as required. It can also be used to determine
the diffusion polynomials Pk{x) and qk{x) appearing in (2.17), since both series
must obviously satisfy the same recurrence relation. In this instance, the initial
terms are given by

po(x) = l, pi(x) = x + l,
qo(x) = 0, qi(x) = l. {A '

Since the recurrence relation (3.7) is of the third order, it has a third linearly
independent solution, which is, however, related to the others since the equation
is invariant under the successive transformations k —* — (k + 2), gk —* gi-k (so
that, e.g., g-k —> gk-i), t —> -t and x -+ t - x.

We next show that the functions gk(x) defined in (3.4) not only satisfy a
differential equation of the third order, but that contiguous functions like gk and
gk+i can be expressed in terms of one another by differential equations of the
third order. For this purpose we differentiate (3.6) with respect to x and simplify
the result with the help of (2.13), obtaining

tg'k + xg'k = k(gk - gk-i) (3.9)

as an intermediate result; then the repetition of this process gives the differential
equation of the third order in question:

Agk = [(d/dx) + l][t (d/dx) + x] dgk/dx = kgk, (3.10)

which also defines the linear differential operator A. As a differential equation,
this belongs to a class solvable by Laplace transforms and which was, in fact,
treated by Laplace (see Vandenberg and Deakin, [21]). The solution obtained in
this way can be used to recover (3.4). From another point of view, (3.10) may be
regarded as a generalisation of the confluent hypergeometric equation, though
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it, and its solution, are not among the generalisations which are in common
use ([12], Ch. 4). But the equation has various properties in common with
equations of hypergeometric type, including those which we have already noted:
polynomial solutions, and the existence of recurrence relations (albeit of the
third order) and differential recurrence relations. Among the latter are two of
special importance. The first is obtained from (3.10) by replacing k with k + 1
and using (2.13):

Bgk = [(d/dx) + l][t(d/dx) + x][(d/dx) + \\gk = (k + l)gk+1. (3.11)

The other is obtained by differentiating (3.10) with respect to x, using (2.13) to
express the right side in terms of gic-i, and multiplying by ex before integrating:

B'gk = (d/dx)[t(d/dx) + x] dgk/dx = kgk^. (3.12)

This last result depends on the appropriate choice of the constant of integration.
We shall find a use for these relations in the group-theoretical considerations of
the next section.

The diffusion polynomials pk{x) appearing as coefficients of E(x) in (2.17)
must satisfy not only the same recurrence relation as the gk(x) but also the
differential recurrence relation (2.13); it follows that, like gk{x), pk{x) satisfies
the differential equation Apk(x) = kpk(x), with A given by (3.10). These remarks
do not, however, extend to the polynomials qk(x).

Because of the close relation between the diffusion equation and the heat
equation, it might be expected that there should be a relation between the
diffusion polynomials and the heat polynomials which (see [25]) may be defined
by

vk{x) = exp[±t{d/dx)2]xk/k\, (3.13)

where the exponential is to be replaced by its expansion in series. In fact the
Pfc(z), like the vk(x), satisfy the diffusion equation without flow:

CPk = dpk/dt - \d2
Pkldx2 = 0; (3.14)

this is easily proved by noticing that p0 and pi, as shown by (3.8), satisfy the
equation, and that the differential operator C commutes with the operator B in
(3.11), which connects the contiguous polynomials pk and pk+i- But, instead of
(3.13), the pjt(x) are given by

Pfc(x) = exY>[\t{d/dxf}Lk{-x). (3.15)

This again is easily proved by noticing that it is satisfied for k — 0 and k = 1,
and that the third order recurrence relation like (3.7) satisfied by the pk{x)
follows from the second order recurrence relation (3.2) satisfied by the Laguerre
polynomials. It follows from (3.15) that pk(x) is the solution of (3.14) for t > 0,
corresponding to an initial value Lk{-x), in the interval -oo < x < oo. Finally,
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from (3.3), (3.13) and (3.15), we see that the relation between the diffusion
polynomials and the heat polynomials can be expressed in the form

Pk(x) = e-x(d/dx)k[exvk(x)}. (3.16)

In spite of the presence of the exponential factors, both sets of polynomials satisfy
the diffusion equation without flow (v = 0), because the differential operators
exp[^t(d/dx)2] and e~x(d/dx)kex commute.

4. Groups defined on images

The differential operators A, B and B' introduced in (3.10), (3.11) and (3.12)
define a representation of the pseudo-orthogonal group 50(2,1). That this is so
follows from the commutation relations

[A,B]=B,

[A,B') = -B\ (4.1)

which show that A' = A + | , B and B' constitute a basis in a representation of
the Lie algebra of SO{2,1). The Casimir invariant is B'B - {A')2 - A', which
reduces here to the multiple \ of the identity. Representations are carried by
linear spaces with basis functions 4>o,<t>i, 02, • • • satisfying

A(j>k = k(j)k, B<j>k k(j>k-i,
(4.2)

and we have seen that the diffusion functions gk{x) and the diffusion polynomials
pk(x) are examples of functions forming such sequences. From the spectrum of
eigenvalues k + | of A' and the value of the Casimir invariant, we deduce that
it is the unitary representation £>+(-l/2) of SO{2,1) that is involved here,
in the notation of Barut and Fronsdal [3]. There are many other examples of
such sequences of functions satisfying differential equations of the second order,
and denning representations of SO{2,1) (see [15], [14], [11] and [2]). These
include the Laguerre polynomials. But it is quite unusual to have two distinct
sequences associated with the same differential equation, because, with analogous
second order differential operators A, B and B' satisfying (4.1), the equations
A<}>o = 0 and B'<po = 0 can have only one solution. Similarly, although there is a
third sequence of functions hk satisfying both the recurrence relation (3.7) and
the differential equation (3.10), it is not perfect in that (3.11) is not satisfied.
However, that sequence may be of interest in providing solutions to the diffusion
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equation, and for comparison with (2.17) we give it:

hk(x)=pk(x)F(x) + tqk(x)F'(x),
(4 31

F{x)= / /
Jo Jo

We now recall the relation between the sequence of diffusion functions gk

and the sequence of images introduced in modelling the fluid reactor. There
the functions go represented the primary source, on the boundary of the reactor,
and the sequence was constructed in such a way that gk+i represented the image
of the source represented by gk. From this standpoint, we see that the ladder
operators B and B' appearing in (4.1) have the effect of moving between any
source and its image. In the enveloping algebra of the Lie algebra of SO(2,1),
there are linear operators of the type Bm and B'm which effect transfers between
arbitrary pairs of images. Furthermore, representatives of actual elements of the
group SO(2,1) can be constructed, as

e{a, b, b') = exp\i{aA + bB + b'B1)) (4.4)

(where a is real, and b and b' are complex conjugates). Thus we may regard the
group as denned on the sequence of images of the fluid reactor. The importance
of this group from the point of view of the theory of diffusion stems from the
fact that it leaves invariant the partial differential operator C of the diffusion
equation as denned in (3.14):

[C,A} = [C,B] = [C,B'\ = 0. (4.5)

As a result, from the fact that the first terms of the sequences gk(x), hk(x)
and Pfc(x), divided by y/t, t and 1 respectively, satisfy the diffusion equation, it
follows that every term of those sequences will do the same.

In applications to specific problems like that considered in Section 2, the
positions as well as the strengths of the images are important. Each image is
related to its source by a reflection in the plane x — 0 or x — L. If we denote
these reflections by RQ and RL, then for any function <p(x)

Ro<j>(x) = <f>(-x),

RL<t>(x) = 4>{2L - x).

We define
g*k(x) = exp(±x)gk{x) (4.7)

and, with B [= B{x)\ as in (3.11),

B*{x) = exp(iz)J3exp(-iz)

= \{d/dx) + \\[t{d/dx) + x - \t\[{d/dx) + I],

so that
B'{-x) = -[(d/dx) - \]{t{dldx) + x + \t][{dldx) - §]. (4.8)

https://doi.org/10.1017/S033427000000607X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000607X


114 A. J. Bracken et al. [14]

Then we may write, using (3.11),

+t)=B*(x- yk+1 + t)Rog*k{yk -x + t)/{k + 1)

k odd,

9k+i(Vk+i -x + t) = B*(yk+1 -x + t)RLg*k{x -yk + t)/{k + 1)

k even, (4.9)

with the yk defined as in (2.6). Defining the operator T recursively by

t) - | B.{yk+i _ x + t)RLTkg.{x + t) k e v e Q (4-10)

we can express the entire Green's function defined in (2.5), (2.7) and (2.8) in the
compact form

G(x, t) = -2a(x, t)(d/dx)[eM~T) exp(§(z + t))go{x + t, t)], (4.11)

noting that (3.1) still holds here.
The group-theoretical significance of many properties of the special functions

of the hypergeometric (including confluent hypergeometric) type is well docu-
mented (see Miller [15]; Green and Triffet [14]; Dieudonn£ [11]; Askey, Koorn-
winder and Schemp [2]). The considerations of this and the previous section
point to the fact that many of these properties are shared by some functions
satisfying differential equations of the third order, but that the latter have some
interesting properties of their own.

So far in this paper we have chosen to consider the simplest type of linear
reactor. However, our analysis is easily extended to a semi-permeable rectangu-
lar tank containing reacting material, placed obliquely to the direction of flow.
Assuming that the velocity is uniform within the tank, it can be resolved into
uniform components vx and vy parallel to the sides of the tank, and the diffu-
sion pattern within the tank can be modelled by treating the fluxes in the two
orthogonal directions independently. To take account of Danckwerts' boundary
conditions, the primary sources on the boundary will be supplemented by a dou-
bly infinite set of images extending over a plane containing the reactor. It is
clear that the group defined on this set of images will be SO(2,1) x SO(2,1),
locally isomorphic to SO(2,2). If the tank is not rectangular but polygonal,
the system of images and the group defined on those images will be even more
complex. It is possible to extend these considerations also to the corresponding
three-dimensional problems.

In the next section we shall present another type of generalisation of the
diffusion functions and their associated polynomials.
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5. A generalisation

Because of the connection between the diffusion polynomials and the Laguerre
polynomials, there is a further generalisation, involving a parameter a, which
could also be of interest in problems of diffusion, and which will allow us to
define other representations of the groups defined on the system of images. As
the relevant generalisation of the functions gk, we introduce

-iy2'/t)L<£(y - x)dy, (5.1)

where the L%(x) are associated Laguerre polynomials which for integral values
of a are related to the Laguerre polynomials by

Lftx) = (-d/dx)aLk+a(x). (5.2)

They obviously satisfy the same differential recurrence relation (2.13) as the
Ljt(x), and a similar recurrence relation

{k + 1)LJ+1 = (x + 2fc + a + \)L% - (k + a)L%_v (5.3)

In consequence, the g% (x) satisfy the third-order recurrence relation

(* + l)0fc+a = (* + 3A; + a + 4)g£+1 - (x + 3* + 2a + 2 - t)fi

+ {k + a)gf!_11 (5.4)

and the third-order differential equation

Aag% = [[(d/dx) + l][t(d/dx) + x] + a] dgt/dx = kg%. (5.5)

By a generalisation of the methods adopted in Section 3, we can show also that
if

Ba = [{d/dx)[t(d/dx) + x] + a}(d/dx), (5.6)

and
B'a = [[(d/dx) + l}[t(d/dx) + x} + a][(d/dx) + 1], (5.7)

then

, (5.8)

so that Ba and B'a are the ladder operators in this extension. The operators
Ba, B'a and A'a = Aa + | a + \ are 50(2,1) generators, satisfying relations like
(4.1), and the Casimir invariant is in this instance the multiple (1 — c*2)/4 of the
identity. The representation of SO(2,1) involved depends on the value of a.

There are also polynomials p£(x) which satisfy the same differential equa-
tion and differential recurrence relations as g£(x); these could be defined by an
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equation like (2.17), but at this point we shall clarify the relation between the
diffusion polynomials and the associated Laguerre polynomials by writing

p%(x) = exp[±t(d/dx)2}La
k(-x). (5.9)

It is obvious from this formula that the generalised diffusion polynomials also
satisfy the diffusion equation.

We now notice the operator identity

exp[±t{d/dx)2]xexp[-±t(d/dx)2] = t(d/dx) + x, (5.10)

which enables us to transform the recurrence relation (5.3) into a differential
recurrence relation

(k + 2)p%+1 = \t{d/dx) + x + 2k + a + l]p£ - (fc + a)p%_v (5.11)

It is also clear from (5.9) that the p%{x) satisfy the same relation

(dldx){p%+l-p$)=pa
k (5.12)

as £fc(—x), so by elimination of the derivatives between (5.11) and (5.12) we
have the third-order recurrence relation

(ft + 2)p£+2 = (x + 3k + a + 4)p£+1 - (x + 3k + 2a + 2 - t)p%

+ (* + <*)P?-i- (5-13)
By differentiating this recurrence relation and using (5.12), we verify that pk(x)
satisfies the same differential equation (5.5) as g%{x), and that the third-order
differential recurrence relations (5.8) are also satisfied when g% is replaced with

Pt-
The relation (5.9) between the generalised diffusion polynomials and the as-

sociated Laguerre polynomials, which is in fact a similarity transformation, also
gives insight into their connection with group theory. As remarked in the last sec-
tion, the group theoretical significance of many properties of the special functions
of hypergeometric and confluent hypergeometric type is well known, and the fact
that the generalised diffusion polynomials are so related to polynomial solutions
of the latter ensures that they inherit these properties. But their relation to the
generalised diffusion functions g% (x) is a special feature of the third-order equa-
tion which they satisfy, and may be an indication of the existence of still wider
applications of group theory to the special functions of applied mathematics and
mathematical physics.

6. Appendix: An equivalent problem in heat conduction

The problem considered in Section 2 is to find c(x, t) for 0 < x < L and t > 0,
satisfying (1.3), the initial condition

c(x, 0) = 0 for 0 < x < L, (6.1)
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and the boundary conditions

c'(L,t) = O, forOO, (6.2)

vc{0, t) - Dc'{0, t) = j(0, t), for t > 0. (6.3)

If we set
u{x, t) = exp[(p + v2/4D)t - vx/2D]c{x, t), (6.4)

the problem becomes: find u(x, t) for 0 < x < L and t > 0 satisfying

du{x, t)/dt = Du"(x, t) for 0 < x < L, t > 0, (6.5)

u(z,0) = 0 f o r O < z < L , (6.6)

-Du'(L, t) - \vu{L, t) = 0 for t > 0, (6.7)

-Du'{0, t) + ±TO(0, t) = J{t) for t > 0, (6.8)

where
J(t) = exp[(P + v2/W)t}j{0, t). (6.9)

Then u can be interpreted as the temperature in a region with thermal diffusivity
D, with a given influx of heat J(t) at x = 0, and "outer heat conduction" [19]
at both ends, taking account of radiation losses etc.

It is a standard result [10] that the solution of this equivalent problem can be
written in the general form

u{x,t)= f G*(x,O,t-t')J{t')dt', (6.10)
./o

where G*(x,y,t) [= G*{y,x,t)} is, for x,y € [0,L] and t > 0, a Green's function
for the problem, satisfying (6.5) and (6.7) for each y, (6.8) with J(t) = 0 for
each y, and

lhn+G*(x,y,t) = 6(x-y) for x,y € (0,L). (6.11)

We could not find the determination of this Green's function in the literature,
but the corresponding problem for a semi-infinite region was solved a long time
ago by Sommerfeld [19, p. 67]. There one seeks a function GQ(X, y, t) for x, y > 0,
t > 0, satisfying (6.5) and (6.11) for x,y > 0, the boundary condition

±vGo{x,y,t)-DdGZ(x,y,t)/dx = 0 for x = 0 and y,t > 0, (6.12)

and also G()(x,y,t) —> 0 as i —• oo for t > 0. Then denning u(x, t) for x > 0,
t > 0 by (6.10) with GQ replacing G*, one obtains a solution of (6.5) and (6.6) on
the semi-infinite region, and of (6.8), satisfying u(x, t) —• 0 as x —» oo. Inverting
(6.4), one then has a solution c(x,t) of (1.3) and (6.1) for x,t > 0, satisfying
(6.3), in the form

c(x,«) = / G0(x, t - t')j(O, t') dt', (6.13)
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where

G0(x, t) = exp[vx/D -{p + v2/4D)i\G*Q{x,0, *)• (6.14)

But this function Go is precisely the first term in the series (2.5), since it evidently
corresponds to the concentration arising from an influx j(0, t) = 6(t) when the
length L of the region goes to infinity; and at any finite positive value of x, the
contributions of all images Gl5 (?2> • • • must go to zero in that limit.

According to Sommerfeld

G*0(x, y, t) = {AirDt)-1'2 fexp[-(x - yf/Wt] + exp[-(x + y)2/4Dt]

/

-y 1

exp[vr)/2D -(x- r))2/4Dt]dr]\ ,
-1 (6.15)

so that

G*0(x,0,t) = (7r
~{v/2D) I exp[(t72£>)(z + vt - y) - {y - vt)2/4Dt] dy\ ,

Jx+vt J
(6-

and hence

)2G0(x,t) = (nDt)~1/2 exp{-pt) exp[-(z - vt)2/4Dt]

f°° 1
~{v/2D)exp(vx/D) exp(-y2/4Dt)dy\ . (6.17)

Jx+vt J
Our construction of G from Go using images, as in (2.5), (2.7) and (2.8), can

be seen to provide also a solution of the problem of heat conduction posed by
(6.5)-(6.8): the function G*(x,0, i) is evidently given in terms of images by

G*(z, 0, t) = exp[(v2/4D + p)t - vx/2D]G(x, i)
oo

= exp[(w2/4D + p)t - vx/2D] £ Gk{x, t), (6.18)
fc=0

and the required solution is then given by (6.10).
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