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ESSENTIAL COMPLETIOMS OF DISTRIBUTIVE LATTICES

GERHARD GIERZ AND ALBERT R, STRALKA

The salient feature of the essential completion process is
that for most common distributive lattices it will yield a
completely distributive lattice. In this note it is shown
that for those distributive lattices which have at least one
completely distributive essential extension the essential
completion is minimal among the completions by infinitely
distributive lattices. Thus in its setting the essential
completion of a distributive lattice behaves in much the
same way as the one-point compactification of a locally

compact topological space does in its setting.

The purpose of this paper is to study a completion process for
distributive lattices suggested by the procedure used by B.Banascheswki
and G. Bruns in [2] to construct injective hulls for distributive
lattices. As will be seen it is not inappropriate to call this completion
the essential completion.

To construct the injective hull, or, what is the same thing, the
maximal essential extension of a distributive lattice [, Banaschewski
and Bruns first imbed L into an arbitrary Boolean algebra B', next take

B  to be the Boolean subalgebra of B' generated by L, and finally take
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B(L) to be the Dedekind - MacNeille completion of B. It turns out that
B(L) is uniquely determined by L and the canonical imbedding of L
into B(L) 1is essential in the sense that non-trivial congruence
relations on B(L) have non-trivial restrictions to (the image of) L.
Since complete Boolean algebras do not allow proper essential extensions,
it follows that B(L) is the maximal essential extension of L. It is
not B(L) itself that directly concerns us but p(L) the smallest
complete sublattice of B(L) containing L. Since p(L) is an
essential extension of L we call it the essential completion of L.

A distributive lattice which has at least one completely
distributive essential extension is said to be essentially completely
distributive. This property is closely related to separation properties
of the Zariski topology. It turns out that the essential completion of
a distributive lattice is completely distributive precisely in those
cases in which the Zariski topoloty is Hausdorff (see [1] and [6]).
Most common distributive lattices have this property (cf [6] ).

Our main result is that the essential completion functions in its

setting behaves in much the same way as the one-point compactification
does in the context of locally compact Hausdorff spaces. Specifically,
we prove: Let L an essentially completely distributive lattice. Then
there is a compietely distributive lattice p(L) and a topologically and
algebraically dense imbedding Z : L - p(L) such that whenever

f: L M is a dense lattice imbedding of L into an infinitely
distributive lattice M then there is a unique complete lattice
homomorphism g : M -+ p(L) such that g o f = ©. MNoreover, the lattice
p(L) is uniquely determined by these properties.

For chains the essential completion and the Dedekind-MacNeille
completion coincide. However as we saw above the essential completion
remains in the cateqgory of distributive lattices while it is well-known
that the Dedekind-MacNeille completion does not always do so. These
completions also differ in that the Dedekind-MacNeille completion provides
a lattice which is only complete whereas the essential completion, at
least in most common cases, provides a completely distributive completion.

We conclude the paper by characterizing p(L) in terms of ideals
and filters thereby providing a somewhat clearer picture of this difficult

object.
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1. Preliminaries

For the basic facts and terminology on lattices and topological
lattices we refer to [3] and [4].
Recall that the Zariski topology on a distributive lattice has as a

subbase for its closed sets all sets of the form

{xeL:anx=b}

{x el :avax2b}

faAnzxzZ2b]
[avax2b]

where a and b range over the elements of L (see [6]). Wwhen we refer

to a topological property on a distributive lattice and indicate no
specific topology, then we are referring to the Zariski topology.

A distributive lattice L 1is meet-continuous if for any subset
Ac L and any element b ¢ L[ the following equality holds:

b A (sup A) = sup{b Ana : ace AL
Join-continuity is defined dually. A distributive lattice which is both
meet-continuous and join-continuous is said to be infinitely distributive.

The sublattice L of the complete lattice M is algebraically
dense in M if M 1is the smallest complete sublattice of M containing
L.

Our work depends upon the realization of B(L) which we developed
in [5] enabling us to keep discussion restricted to congruence lattices.
For a distributive lattice L let ©O(L) be its congruence lattice with
A the identity congruence or diagonal, and V the congruence which
collapses the whole lattice L to a single point. The congruence lattice
of L is a meet-continuous lattice. We can identify B(L) with the
subset of all pseudocomplements in ©(L) endowed with the inherited order
from ©O(L) but not necessarily the inherited operations. We define the

imbedding % : L » B(L) by i(x) = 8,= {(a,b) €L *Liav x=bv x}.
The pseudocomplement of 6, is given by 6; =6 = {(a,b) € L X L :
£ Aas=gx b} 6% is the complement of 6, in B(L).

Within B(L) we take p(L), the essential completion of L, to be
the smallest complete sublattice containing <Z(L). It was shown in [5]
and [4] that 71 is an essential imbedding into both p(L) and B(L). 1If
L is an essentially completely distributive lattice, then p(L) is
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completely distributive (see [1] and [6]). Moreover, in this case if
both L and p(L) are equipped with that topology, then % is a
topological imbedding.

2. The Main Result

THEOREM 2.1. Let L be a distributive lattice and assume that L

18 an essentially completely distributive lattice. Then there is a
completely distributive lattice o(L) and a (topological and algebraical)
dense tmbedding < : L + p(L) such that whenever f : L + M 4is a lattice
imbedding into an infinitely distributive lattice M such that f(L) 1is
algebraically dense in M, then there is a unique complete lattice
homomorphism g : M -+ p(L) satisfying g ° f = 1. Moreover, the lattice
p(L) 1is uniquely determined by these properties.

Remark. since the imbedding of L into p(L} is topological and
since p(L) is a compact distributive lattice, the lattice p(L) may be
viewed as the minimal compactification of L in the Zariski topology.

The proof of (2.1) will be done in a series of propositions and
lemmas.

Throughout this section we shall assume that L is a distributive
lattice which is essentially completely distributive, that is, which is

Hausdorff in the Zariski topology.
PROPOSITION 2.2. If A and B are subsets of L, then
inf 2(A) = sup 1(B) <if and only <f & = n{exney : xeA,yeB}.
Proof. we have <inf i(4) £ sup 1(B) if and only if

i(4) n (sup i(B))* = A. Thus, the claim follows from

(sup 1(B))' = infli(y)t : y ¢ B}

inf{ez :y e B}

infie¥ : y e B}
PROPOSITION 2.3. If 4 and B are subsets of L[ and if
inf f(A) 2 sup f(B), then inf 1(A) £ sup i(B).

Proof. Assume the inequality <inf 2(4) 2 sup 2(B) is not true.

Then applying Proposition (2.2) we can find a pair of distinct elements
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(a,b) € L2 which belongs to 6, for all =z e A and to 67 for all

Y € B. Hence we have
avx=bvx if x ¢ A,
any=bay if y € B.
Now let I = inf f(A) and let » = suwp f(B). Since f is a lattice
imbedding, f(a) and f(b) are distinct. Moreover, since M is
infinitely distributive,
fla) v 1=Ff(b) Vvl
fla) A r = f(b) A r.
Since by assumption I £ r, the second of these two equations implies that
fla) A1l =Ff(a) nral
=f(b) nr Al
= f(b) A L.
Thus both f(a) and f(b) are relative complements of 1. 1In a
distributive lattice relative complements are unique, so we may conclude
that f(a) = f(b), contradicting the injectivity of f. O
For a distributive lattice T, Spec T will denote the set of all
prime elements of I and Cospec I will be the set of coprime elements
(cf [4]). We write x <<y to denote that x is way below Yy, that is
if V is an upward directed set with suwp V 2 y, then there is v e V
such that « £ v. The statement that X 1is way above Y is denoted by
x >> y and is defined dually. Note that x <<y and y >> x are not
equivalent.
If T 1is a completely distributive lattice, then from [7] we know:
(*) If pe Spec T, then the set {g : g > p,q e Spec T} is down
directed and has infimum p.
(**) (Interpolation Property) Whenever p,q € Spec T are primes
such that ¢ >> p, then there is a prime element r € Spec T
such that g >> r >> p,
(***) Every element of T 1is an infimum of prime elements and a
supremum of coprime elements (that is Spec T order generates
T and Cospec T order generates P , the opposite.of T).
Now suppose that M is an infinitely distributive lattice and
f:L +M is a dense lattice imbedding. Instead of defining the mapping
g : M->p(L) directly, we will construct the upper and lower adjoint
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of g. We begin by defining a map from Spec p(L) to M by
$g:Spec p(L)-M
p>inflsup{fl(x):i(z) < p,x € L} :q >> p,q € Spec p(L}}.

Then ¢, preserves directed infima: Indeed, let A < p(L) be a

downward directed set of primes and assume that p = inf A. We have to
show that
$o(p) = inf ¢y(4).

Clearly, since ¢, is monotone, we have bolp) = inf ¢0 (A). 1In order to
verify the other inequality, we will prove

(C) For every q € Spec p(L) with gq >> p there is an element
r e A such that swp{f(x) : i(x) £ gz e L} 2 ¢y (7).

Indeed, pick r e€ A such that g > r 2 p, which is possible
because of the interpolation property for >>. Then we have

sup{fiz):i(x) 2 g,z € L} 2 inflsup{f(z):i(x}) 5 q',x € L}:

q' >> r,q' € Spec p(L)}

¢0(1ﬂ).

Now from (C) we conclude that
¢o(p) inflsup{f(z):i(x) £ q,x € L}:q >> p,q € Spec p(L)}
infl¢g(r) : r e A}

N

il

inf ¢O(A).

In the next step, we define a map
¢ : p(L) ~ M
u »infleg(p) : u = p,p € Spec p(L)}.

Obviously, ¢ is monotone. To see that ¢ preserves finite infima, let
u and U be two arbitrary elements of p(L). Then the monotonicity of ¢
implies that ¢(u A v) = ¢(u) A ¢(v). Conversely, let p be a prime
element above the infimum of % and v. Then p is actually above
either u or v, yielding {¢o(p):u AV Z2psp e Spee p(L)} = {9o(p)

u 2 p,p € Spec p(L)} v {¢,(p) : v $p,p € Spec p(L)}. Thus,

dlu Av) 2 o(uw A d(v).
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Our next claim is that ¢ preserves down directed infima. Let A4
be a down directed subset of p(L). The inequality ¢(inf A)S inf ¢(4)
is again obvious. Conversely, let p,q € Specp(L) such that A 2 p
and q >> p. By the interpolation property we may pick a prime element
p' such that ¢q >> p’ >>p. since A is down directed and has an
infimum less than or equal to p, there is an element a € A such that
a 2 p'. We obtain

inf (4) 2 ¢(a)
< 4y(p")
¢0(q).

A

Since q >> p was arbitrary, since ¢p Dreserves infima of down directed
sets of primes and since {q e Spec p(L) : q > p} is down directed with
infimum p, we conclude that

inf $(4) s ¢4(p).

Finally, since p was an arbitrary prime element such that <Znf 4 < p,
we have
inf ¢(4) s ¢(inf A)

from the definition of ¢ .

We conclude

PROPOSITION 2.4. The mapping ¢ : o(L) - M preserves arbitrary
infima. a

Dually, we define maps wo : Cospec p(L) ~ M

e » sup{inf{f(x):d £ i{(x),x € L}:c << d,d e Cospec p(L)}

and
v p(L) » M
u > sup{¢°(a):c 2 u,c € Cospec p(L)}.
PROPOSITION 2.5. The mapping ¢ : o(L) +~ M preserves arbitrary
suprema. ]

We will now show that the mappings ¢ and ¢ are the upper and
lower adjoint of the mapping g : M + p(L).

PROPQOSITION 2.6. For a,b € p(L), y(a) 2 ¢(b) if and only <if
a = b.

Proof. First, let us assume that a 5 b. We have to show: If ¢

is a coprime and if p is a prime such that ¢ £ a £b = p, then
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by () 2 ¢,(p). This is the same as showing that if d ¢ Cospec p(L),
d<<e¢fa and if q € Spec p(L), q >>p 2 b then
inf {f(z):d 2 2(x),xz € L} = sup{f(y):i(y) £ q,y € L}

Note that the set {2 € p(L) : d << 2 and g > 2z} 1is a neighbourhood
of the elements a,b e p(L) (this is an consequence of (I.2.5, p. 59),
(I1.1.10, p. 104), (I1.1.6, p. 144), (VII1.2.8, p. 318) and (VII.2.9, p.
318) of [4]). since (L) is dense in p(L), this set contains an
element of the form <(x'), &' € L. Hence there is an element &' € [

such that d 2 i(x’) £ q. This yields

inflf(z):d < ifx),z € L} S flz')
swlf(y):1ly) 2q,y € L},

In

as desired.
Now assume that we are given two elements a,b € p(L) such that
a £b. Since primes and coprimes both order generate the lattice p(L)
(see (***)), we can find primes p,q and coprimes e,d such that
d << e £ aq,
q »p2b,
d £q.
If we can show that the inequality
inf{f(x):d < i(x),x € L} S swp{f(y):i(y) £ q,y € L}
cannot hold we would be certain that wo(c) £ ¢0(p) and hence
v(a) £ ¢(b). Thus, let us assume that the above inequality is true. Then
Proposition (2.3) would yield
d 2 infli(x):d £ i(z),x € L}
2 suplil(y):i(y) 2 q,y € L}
2 q
contradicting the choice of d and q. O
PROPOSITION 2.7. For every x € I, we have ¥(i(x)) = flx)Z ¢(i(x)).

Proof. For every x € L we have
$(i(x)) = infl¢y(p):i(x) < p,p € Spec p(L)}.

Hence, in order to verify f(x) X ¢(i(x)) we must show that f(x) = ¢,(p)
whenever <(x) Z p,p € Spec p(L). By the definition of ¢, this is

equivalent to

https://doi.org/10.1017/50004972700002471 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700002471

Distributive Lattices 369

flx) £ sup {f(y):i(y) £ q,y e L}
whenever q >> p,q € Spee L. But if q >> p, then i(xz) < p £ q, hence
flx) ¢ {f(y):i(y) £ q,y € L} and therefore the above inequality holds
trivially.
Similarly, o(i(x)) £ f(z) for every «x € L. ]
Let 90 be the lower adjoint of ¢, and g, the upp2r adjoint of

Y. Then (2.7) implies
PROPOSITION 2.8. gof(x) = i(x) 2 g, flz). a

PROPOSITION 2.9. The lower adjoint g, of ¢ agrees with the
upper adjoint g, of . Espectally, if we define g =g, =g,, then g

is a complete lattice homomorphism, and g o f = 1.
Proof. For any u € M we have lpgl(u) < u 2 ¢go(uw) and so

g(u) < go(u) by (2.6). Moreover, the set {u € Migy(u) = g,(wl is a
complete sublattice of M since g, preserves suprema and g, Ppreserves
infima. But for z € L, g,f(x) 2 i(x) = g,(x) by (2.8), so this set

contains the image of f and hence is the whole of M. This proves

9o = 9,- The equality g o f = 7 now follows from (2.8). d

This last proposition finishes the major part of the proof of (2.1).
Note that the uniqueness of g follows from the fact that f(L) is
algebraically dense in M. The fact that p(L) is uniquely determined
by all these properties follows from general category theory. 0

It is now appropriate to list some consequences of Theorem (2.1)
and the fact that in our discussion we needed the map f : L » M to be a
lattice homomorphism only in the proof of Proposition (2.3). Note that
(2.3) is trivial in the case that [ itself is completely distributive

and hence agrees with p(L):

COROLLARY 2.10. Let L be a completely distributive lattice densely
imbedded (as a partially ordered set) into a infinitely distributive M.
Then L <s a retract of M wunder a complete lattice homomorphism. |

COROLLARY 2.11. Let M be a compact distributive lattice. If M
contains a dense essentially completely distributive subtattice, then
M admits non-trivial continuous lattice homomorphisms into the wnit
interval. 0
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COROLLARY 2.12. Let M be a compact distributive lattice. If M
contains an order isomorphic copy of a completely distributive lattice
which is dense in M, then M admits non-trivial continuous lattice
homomorphism into the unit interval. 0

It turns out that completely distributive lattices and essentially
completely distributive lattices are also characterized by all those
properties listed in the corollaries:

THEOREM 2.13. If L <s a lattice such that for every infinitely
distributive lattice M and every dense imbedding 1 : L + M there is
a complete lattice homomorphism [ : M+ L such that f o1 = idL, then

L is completely distributive.

The proof of this theorem follows from the fact that every
distributive lattice admits a dense imbedding into a completely
distributive lattice and that every quotient of a completely distributive
lattice under a complete lattice homomorphism is again completely
distributive. a

We will now show that (2.1) is best possible in the sense that we
cannot weaken the assumption that [ be essentially completely
distrivutive: Assume that we are given a lattice L together with a
dense embedding e : L »> L', where L' is an infinitely distributive
lattice such that for every other dense imbedding f : L = M into a
infinitely distributive lattice there is a complete lattice homomorphism
g : M~>L'" satisfying g o f =e. Since f is a dense imbedding, the
mapping g must be uniquely determined. Let p(L) be the “"closure"
of L in the maximal essential extension B(L) of L (that is p(L) is
again the smallest complete sublattice of B(L) containing the image of
2(L)). Then L is densely imbedded in p(L), and, although p(L) need
not be completely distributive, it will still be infinitely distributive.
(Recall that every complete Boolean algebra and hence every complete
sublattice of a complete Boolean algebra is infinitely distributive). It
follows that there is a complete lattice homomorphism g : p(L) ~ L' .
This mapping g has to be surjective; it is also injective since the
composition with the essential imbedding % : L » p(L) yields the
imbedding e. This arqument shows that p(L) is the only possible choice
for proving a result like Theorem (2.1). A similar argument to the one

used in the proof of Theorem (2.13) yields
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THEOREM 2.14. Let L be a distributive lattice and suppose that
L admits a dense imbedding e :'L + L' into an infinitely distributive
lattice L' such that whenever f : L >+ M 18 a second such dense
imbedding into an infinitely distributive lattice M, then there is a
(uniquely determined) complete lattice homomorphism g : M + L' such
that g o f = e. Then, W to a canonical isomorphism, L' =p(L) and
e = 1. Moreover, in this case p(L) 1is completely distributive and
therefore L 1is essentially completely distributive.

3. A Characterization of p(L) by Means of Closed Filters and Ideals.

In this section we give a description of p(L) based upon the
Zariski topology of L. Recall that the imbedding of L into p(L) is
a topological imbedding for the Zariski topology. This fact will play a
prominent role in our discussion.

The next result follows from Propositions (4.2), (4.3), and [6,4.4].

PROPOSITION 3.1. Let L[ be a distributive lattice and let I <L
be an ideal of L. Then the following statements are equivalent:
(1) I <is closed.
(2) If D cI <s a directed subset and if D converges to an
element x € L 4in the Zariski topology, then x € I.
(3) If D <I is a directed subset such that sup D exists in
L and such that a A sup D = sup deD(d A a) for every

a eL, then sup D € I.
(4) If x e L has the property that x A a = sup(Int(z A a))
for every a ¢ L, then =z € I. 0
From now on, we will identify L with the sublattice i(L) of
p(L).

PROPOSITION 3.2. If I and J are two different closed ideals of
L, then I and J have different suprema in p(L).

Proof. Assume that sup I = sup J. Take j to be an arbitrary
element of J. Then supp(L)I is an upper bound of J in p(L). Since

p(L) is infinitely distributive, we conclude that J = SUP, (1) (Int gl

Moreover, since the Zariski topology on p(L) is the interval topology,
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the directed set I n+J converges to J in the Zariski topology on
p(L). The imbedding of L into p(L) 1is topological, therefore
I n+vJj also converges to J 1in the Zariski topology of L. Hence, by
property (2) of Proposition (3.1), J belongs to I. This yields
J < I. By symmetry, I =J. 0

Let A be a subset of a complete lattice. We define

at = {sup D : D is a wp-directed subset of Al,

A = {sup F: F 4is a down-directed subset of A}.
Further, if L 1is an arbitrary distributive lattice, we let
Ic(L) {I ¢cL : I is a closed ideal of L},

Fc(L) {FcL:F is a closed filter of L}.

when ordered by inclusion, Ic(L) and Fc(L) are complete lattices.

The infimum in these lattices agrees with set theoretical intersection.
However, it is not in general true that the supremum of two closed ideals

taken in the lattice IC(L) is the same as the supremum of those two

ideals taken in the lattice of all ideals (see the following example).
Therefore, it is not obvious that the lattice of all closed ideals

(filters) is again distributive (see Theorem (3.4)).

EXAMPLE 3.3. Let L be the open wnit square enriched by appending
the point (1.1). Then the Zariski topology on L <is the topology
induced by the Euclidean topology of the plane. Let

I={(x,y)eL:y5%},
J={(x,y)eL::cS%}

Then the supremum of I and J in the ideal lattice of L contains
all the elements of L except the point (1l.1) and hence is not closed.

In the following result, L will again be identified with a subset
of p(L). Hence LT must be evaluated in the lattice p(L) and not in
L. Even when [ is a complete lattice, L' does not have to agree with
L. Note that the meet-continuity of p(L) implies that LT is a
sublattice of p(L). Therefore, [7 will always be a distributive lattice.
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THEOREM 3.4. The Ilattice L* <is isomorphic with 1,(L); an
isomorphism between [ c(L) and L[t 1is given by the mapping

I+ su I.
Its inverse is the mapping

x> {yel:y <axl.

Thus, IC(L) 18 a distributive lattice.

Proof. By Proposition (3.2), the mapping I < swp I is injective.
If x ¢ L*, then & is a directed supremum (and hence the supremum of
an ideal) of elements of L. Thus, X has to be the supremum of the
closed ideal {y € L : y Sx} =+x n L. Since there is no more than one
closed ideal with supremum x, the mapping x+»{yel:y 2x} is the
inverse of I +sup I. ]

When L is a complete meet-continuous lattice, an ideal of L is
closed if and only if it is a lower set of a point. 1In this case L and

Ic(L) will be isomorphic and therefore Ic(L) will be meet-continuous
too. This last property remains true in general:

PROPOSITION 3.7. If L[ <is any distrivutive lattice, then IC(L)
18 meet-continuous.

Proof. This follows easily from the fact that Ic(L) is isomorphic

with L' and that L¥ is closed under finite infima and arbi trary
suprema in the complete Boolean algebra B(L). 0

NMow let us examine the join—continuity of Ic(L). Unfortunately,

the imbedding I * sup I does not preserve arbitrary infima and in

general, IC(L) need not be join-continuous. (Consult the open unit
square for examples: If L is the open unit square, then IC(L) =Lt =

{(x,y) € & :0 < z,y £ 1} and this lattice is not join-continuous.)
However, what happens if L is a complete join-continuous lattice to

begin with? Is it then true that Ic(L) is meet-continuous and join-

continuous? If the answer to this quention were positive, then p(L)
- -+
would always be of the form p(L) =L ~ =L '. We will leave the general

case as an open problem and only discuss a special case:
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If L 1is essentially completely distributive, then Pp(L) is
completely distributive. Since L is order dense in p(L), we conclude

-+

. . . + -
from the infinite distributive law that L =L =p(L). We may

reformulate this in the following way:

THEOREM 3.7. If L <s an essentially completely distributive
lattice, then p(L) is isomorphic with the dual of the lattice

Fo1.(L). The canonical imbedding of L into this lattice is given by

i:Lﬂcc([I)
x »{I e 1,(L) : xel}. O

This.last theorem easily yields the result that when L is the

open unit square, p(L) is the closed unit square.
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