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Abstract. A noetherian ring R satisfies the descending chain condition on two-
sided ideals (“‘is bi-artinian”) if and only if, for each prime P € spec(R), R/P has a
unique minimal ideal (necessarily idempotent and left-right essential in R/P). The
analogous statement for merely right noetherian rings is false, although our proof
does not use the full noetherian condition on both sides, requiring only that two-
sided ideals be finitely generated on both sides and that R/Q be right Goldie for each
Q € spec(R). Examples exist, for each n €N and in all characteristics, of bi-artinian
noetherian domains D, with composition series of length 2” and with a unique
maximal ideal of height n. Noetherian rings which satisfy the related E-restricted bi-
d.c.c. do not, in general, satisfy the second layer condition (on either side), but do
satisfy the Jacobson conjecture.

1991 Mathematics Subject Classification. 16P, 16N.

1. Introduction. A ring R (always associative with unity) is said to be bi-artinian
if it satisfies the d.c.c. on (two-sided) ideals. For both commutative noetherian rings
and so-called bi-noetherian polynormal (BPN) rings it is known that a ring in the
specified class is bi-artinian if and only if every prime ideal is maximal (see [1, p. 90]
and [19, p. 93] respectively). At the opposite extreme lie the endomorphism rings of
large-enough dimensional vector spaces, which are always bi-artinian but need not
be bi-noetherian [5, Ch. 8].

This note obtains necessary and sufficient conditions (Section 4) for a (left-right)
noetherian ring to be bi-artinian, namely that R is bi-artinian if and only if, for every
P e spec(R), R/P has a simple idempotent ideal. Following [20] we say that (in any
ring) a prime with that property is quasi-primitive. It is known [19, p. 97] that, in
commutative or BPN rings, quasi-primitive ideals are necessarily maximal, so this
result extends or parallels the known results for those two cases. On the other hand,
the analogous statement for right noetherian rings is false (Example 3.8).

In fact, our results apply to a larger class of rings than the noetherian: we
require only that two-sided ideals of a ring R be finitely generated on each side and
that R/Q be right Goldie for each Q € spec(R). In the noetherian case, our main
result is an easy (though, as far as we know, an unremarked) consequence of an old
result of Jategaonkar: see Remark 7.5(A).

Other results of the paper concern direct sum decompositions (Section 5) and
noetherian rings which satisfy the restricted bi-d.c.c. (Section 6), including (Remark
6.4(B) and Example 6.5) a class of noetherian rings which, in general, fail the second
layer condition on both sides but which satisfy a strong form of the Jacobson Con-
jecture (Corollary 6.3). Sections 2 and 3 contain technicalities, and Section 7 covers
examples and applications, including (Examples 7.2(E) and 7.2(F)), for any integer
n € N and any characteristic, a prime noetherian ring W, (that can be chosen to be a
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domain) which has a bimodule composition series of length 2” and a unique max-
imal ideal of height n.

As noted, almost all our results use the full noetherian condition on neither side;
indeed right but not left noetherian rings meeting the required conditions are readily
constructed (Remark 4.3(D)). We also note that, for some noetherian rings R which
are not bi-artinian, there is a (right) denominator set D C R such that Q = RD~! is
a bi-artinian ring, and then, for a broad range of bimodules Mg, the related
bimodule s(M ®r Q), has a bimodule composition series. We believe this “locali-
sation” technique may be fairly widely applicable in the study of noetherian bi-
modules, particularly when ““traditional’ localisation, in which it is expected of a
local ring S that S/J(S) should be artinian, is unavailable: see Remark 7.4(B) and
[21].

Thanks are due to Dr. A. W. Chatters and to Professors K. A. Brown and J. C.
Robson for encouraging my interest in noetherian rings.

2. Notation and terminology. All undefined terminology and notation are
standard, and in particular follow [6], but the following points are worth noting. The
symbols <, < and <, respectively denote inclusion, strict inclusion and (bi-)essential
inclusion of (bi)modules or one- or two-sided ideals. The term ideal (unqualified)
always means a two-sided ideal, the ideal lattice of R is denoted by I(R), and the
sub-lattice of bi-essential ideals by E(R). The prefix bi- denotes reference to a system
of bimodules or of ideals, e.g. bi-essential means essential as a sub-bimodule. When
a one-sided property holds on both sides we drop references to sides, e.g. a bimodule
is noetherian if it is left-right noetherian. Following [23] a bimodule is right (lef?)
semi-noetherian if every sub-bimodule is right (left) finitely generated. The rank of a
(bi-)module M or sMpr is its uniform dimension as (bi-)module, and is denoted by
rank(Mp) or rank(sMg).

The heart of a ring or non-zero bimodule is the intersection of all its non-zero
ideals or sub-bimodules, and is denoted by the function H(—). In a quasi-primitive
ring R, H = H(R) is the unique minimal non-zero ideal of R and is idempotent. The
set of quasi-primitive ideals of a ring S is denoted by quas(S), and the intersection of
its elements is the anti-simple radical of S, denoted by A(S) (see [17, pp. 74 ff.]). The
sets of minimal prime and of maximal ideals of .S are denoted by min(S) and max(S)
respectively. Evidently max(S) € quas(S), so A(S) S B(S) () M, the Brown—

M € max(S)
McCoy radical of S. The prime and the Jacobson radicals of S are denoted by P(S)
and J(S) respectively. The bi-socle of a ring or bimodule is the intersection of all its
bi-essential sub-objects, i.e. the sum of all its simple sub-objects (see [4, p. 3] or [6, p.
59)).

We use without explicit mention six standard facts.

(1) If M = My is a left semi-noetherian right faithful bimodule then Rz embeds
in a finite direct sum of copies of Mg, so that if (for example) rank(Mg) < oo then
rank(Rg) < oo.

(2) If 0 £ I € I(R) and R is prime then / <, gR and I <, Ry.

(3) If I € I(R) and R is bi-noetherian then there are finitely many primes mini-

mal over I, say Py, ..., P, and if N= Py N...N P, then there exist n € N and (not
necessarily distinct) Oy, ..., 0, € {P,..., P,} such that N" < 0,0,...0, <I<N
(with each P; occurring at least once among Q1, ..., 0,).
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WHIfL=Lg<, M=Mrand me M then {r e R: mr € L} <, Rp.

(5) If R is semiprime and rank(gRg) =n < oo then card(min(R)) =n, and
I € E(R) if and only if / £ P for all P € min(R).

(6) If R is semiprime and [ € I(R), and if J € I(R) is maximal with respect to
INJ =0, then J is unique, and ann( g/) = ann(/g) = J.

3. Technical Lemmas. The following is closely related to [6, Lemma 7.3].

LEMMA 3.1. Let M = sMy be left semi-noetherian, such that:

(a) ifNZ SNR < SMR and NR <e L= LR < MR, then I(R) = ann((SL/N)R) <e

RR,'
(b) if K= sKgr < sMg and Kr <. MR, then there exists I(R) > J <, Rg such that

MJ < K.

Proof. (after [6, 7]). (a) Let SL = Sx| + ...+ Sx,,; each x; is a finite left S-linear
combination of elements of L, and we can therefore assume each x; € L. For each i
there exists E; <, Rg such that x;E < N; let E=NE; <, Rg. Then (SL)(RE) =
SLE=SxE+ ...+ Sx,E <N and I(R) > RE <, ann((SL/N)g) <. Rg. Part (b)
follows by similar arguments. O

We recall the well known fact that a maximal annihilator of a non-zero sub(-bi)-
module is a prime ideal. If 0 £ §Mg let B-spec(Mg) be the set of maximal annihila-
tors of non-zero sub-bimodules of the bimodules s(M/N); for bimodules N such
that ¢Ng < sMg, and note that if R is bi-noetherian then B-spec(My) # .

LEMMA 3.2. (a) Let M = sMy be semi-noetherian; if T is bi-noetherian then
rank((M/N)y) < oo for every N = sNt < sMr if and only if rank((T/P)y) < oo for
every P € B-spec(M7).

(b) A left semi-noetherian semiprime ring W is right non-singular.

(c) A semi-noetherian ring R is fully right Goldie if and only if rank((R/I)g) < o0
for every I € I(R).

Proof. (a) In the circumstances of (a), suppose that rank((M/N);) < oo for
every N = sNp < sMr7. If P € B-spec(MR) then (T/P), embeds in a finite direct sum
of copies of (some non-zero sub-bimodule of) (M/N)y, so rank((7/P)r) < o0o.

In the opposite direction, if our claim is false then by noetherian induction we
can assume that K = ¢Ky < ¢M7 is maximal with respect to that failure. If
Q € B-spec((M/N)y) let K < L = gLy < ¢Mp be such that Q = ann((L/K);), and
then let W be the right Goldie ring of quotients of (7/Q). By Lemma 3.1 (L/K) 7o is
torsionfree, and hence (L/K)79 — (L/K) ®1/0 W)1) is injective. Also (L/K)7,o
is finitely generated, and hence so is (L/K) ®z770 W)y . Since W is artinian semi-sim-
ple, so is ((L/K)®7r0 W)y, from which, by standard arguments,
rank([(L/K) ® W]y) = rank((L/K)7,o) = rank((L/K)r) < oo.

Now by Zorn’s Lemma let K < C = Cy < M7 be maximal with respect to
CNL=K; then (C+L)/L);=(C/(CNL);=(C/K)r so (C/K); embeds in
(M/L)y, and by the maximality of K, rank((M/L);) < oo, so rank((C/K)s) < oo.
But (C/K)® (L/K))r <. (M/K) by the maximality of C, so rank((M/K)r) =
rank([(C/K) & (L/K)]7) = rank((C/K)y) + rank((L/K)y) < oo; contradiction.
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(b) Suppose that W is left semi-noetherian semiprime and that Z is its right
singular ideal. As in the proof of Lemma 3.1, ann(Zy) <. Wy; if 0# Z then
J=Znann(Zy) # 0. But J> = 0 and W is semiprime, so we must have J = Z = 0.

(c) One direction is covered by (b). In the other, if P € spec(R) then R/P is right
non-singular, by (b), and, by a result of Gabriel [6, Theorem 4.28, p. 82] plus [6,
Chapter 5], R/P is right Goldie (using rank((R/P)g) < 00). O

Lemma 3.2 will allow us to assume (see Lemma 3.4) that, for the bimodules
sMr in which we shall be interested, rank((M/N)g) < oo for every N = sNg < sMg.
We shall refer to bimodules with that property as being fully of finite right rank.

Suppose that R is a bi-uniform ring, and let x € M = M. Then x is said to be
an I(R)-torsion element if xI = 0 for some 0 # I € I(R). The set of I(R)-torsion ele-
ments forms a submodule Y*(M), which is a sub-bimodule if M is a bimodule. A
module M is I(R)-torsionfree if Y*(M) =0, and if 0 # My is I(R)-torsionfree then R
is clearly prime. This terminology follows [20]: other terms for the same concept are
prime module and fully faithful module (see [6, p. 31] or [11, p. 107]). A non-zero
I(R)-torsionfree module is, a fortiori, faithful.

The dual concept to a module being I(R)-torsionfree is it being I(R)-anti-torsion
[20]. A module M = M is said to be I(R)-anti-torsion if M = M1 for all0 # I € I(R).
If 0 #£ M is I(R)-anti-torsion then R is necessarily prime, and (see [20]) any module
My over a prime ring R has a unique maximal submodule Z*(M) which is I(R)-anti-
torsion. For example any faithful simple (right) module over a (right primitive) ring
R is (right) I(R)-anti-torsion and I(R)-torsionfree, while the metacyclic Z-module
Z%, p > 0 a rational prime, is simultaneously I(Z)-torsion and I(Z)-anti-torsion.

Let R be a prime ring: it was noted in [20] that the duality between the concepts
I(R)-anti-torsion and I(R)-torsion-free lies in the fact that 0 £ M = My is I(R)-anti-
torsion if and only if every non-zero factor module is faithful, and 0 % My is I(R)-
torsionfree if and only if every non-zero submodule is faithful. The following lem-
mas show that, in certain circumstances, the two concepts are also equivalent.

LEMMA 3.3. Let M = Mgz or M = sMyg, where R is a prime ring. Then the fol-
lowing conditions on M are equivalent:

(1) every sub(-bi)module L < M is I(R)-anti-torsion;

(2) every factor (bi)module M/L where L < M is I(R)-torsionfree;

(3) every (bi)module L/K is I(R)-torsionfree, where K < L < M,

(4) every (bi)module L/K is I(R)-anti-torsion, where K < L < M.

Proof. Straightforward. ]

LEMMA 3.4. Let 0 # M = sMg be semi-noetherian, fully of finite right rank, and
right I(R)-anti-torsion.

(1) Suppose that, for each 0 A N < sMy there exists 0 # L = sLgr < sNg such
that Ly is I(R)-anti-torsion. Then My is I(R)-torsionfree and sM g has bi-essential bi-
socle BS(M) which is I(R)-anti-torsion.

(2) Suppose further that every N = gNg < sMg is right 1(R)-anti-torsion; then
sMg has a composition series.

Proof. If the conditions of (1) are satisfied, suppose 0 # K = sKp < sMp is I(R)-
torsion; without loss of generality we may suppose that Ky is also I(R)-anti-torsion,
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and that K = Sp; +...+ Sp,. If 0 £ A4; € I(R) are such that p;4; = 0 for each i, let
0#£A=nNA; € I(R) : then KA = 0, contradicting the anti-torsion property. Hence
M is I(R)-torsionfree.

Now use induction on rank(Mpg). If rank(Mz) =1 and 0 # E = gEr < M then
Er <, Mg, so (M/E)g is unfaithful (Lemma 3.1). But every non-zero homomorphic
image of an anti-torsion module is faithful [20, p. 618], so £ = M, i.e. M is a simple
bimodule. For the inductive step, suppose that the conditions of (1) are satisfied but
that its conclusion is false, and that 1 < s = rank(Mp) is the least integer for which
that failure occurs. Let 0 < N = gNgp < sMy be such that s(M/N); is simple. If
N = 0 the conclusions at (1) are clear, so we must have 0 # N. But, by Lemmas 3.1
and 3.3, N must be right inessential in M since (M/N)y is faithful. If N is not bi-
essential in M then there exists a simple sub-bimodule L < M such that
sMgr = sNgr @ sLg, and it is then easy to check that both N and L satisfy the
hypotheses of (1) and that rank(Ng) < s, so that BS(M) = BS(V) @ L, and BS(M) is
then easily seen to be both I(R)-anti-torsion and bi-essential in M, contradicting the
assumption about s.

So we may suppose that sNg <, sMg; since each bi-uniform sub-bimodule of N
contains a non-zero I(R)-anti-torsion sub-bimodule, and rank(sMg) < oo, there
exists 0 # V = gVg <. sNg such that Vg is I(R)-anti-torsion and rank(sVRg) < oo.
But rank(Vg) < rank(Ny) < s, so by the minimality of s, BS(V) <. V&, and BS(V)
is I(R)-anti-torsion. By transitivity (twice) BS(V) = BS(M) <, sMy; contradiction.
Hence no such s € N exists, i.e. the conclusions of (1) are true.

Now suppose that the conditions of (2) are also satisfied. If every
L =sLg < Mg is I(R)-anti-torsion then (Lemma 3.3) L/K satisfies (1) whenever
0 < K=g5Kp < L=gLg<gsMpg,and it follows easily that the bimodule socle series
0 =BS¢(M) < BSi(M) < BS2(M) < ... <BS,(M) < ... terminates at BS (M) = M
for some s € N. Each bimodule semi-simple factor BS,;(M)/BS,(M) is bi-noether-
ian hence also bi-artinian, whence so also is M. Alternatively, note that whenever
0<sKr<sLgp<M then (L/K)y is faithful, so that rank(Kg) < rank(Lg) by
Lemma 3.1. It follows that any strictly descending chain of sub-bimodules of M
must be finite. O

REMARKS 3.5. (A) All the conditions of Lemmas 3.3 and 3.4(1) and 3.4(2) are
trivially satisfied when R is a simple ring.

(B) If R is a quasi-primitive non-simple noetherian ring then Ry satisfies con-
dition (1) of Lemma 3.4 but not condition (2). Stafford’s example [16] of a quasi-
primitive noetherian ring which is not bi-artinian shows that condition (1) alone
does not guarantee the existence of a bimodule composition series.

(C) The alternative proof of Lemma 3.4(2) shows that length(sMg) <
rank(Mp).

(D) Let K be a commutative field with a non-zero derivation 8, and n € N: put
M = gMk by defining Mg = K@ viK® ... v, K, yvo = voy and xv; = v;x + vj_1(x9)
for 0 <j<nand x,y € K: then Mk is a serial bi-module with composition length
n+ 1, while kM and My are semi-simple K-modules (also of length n + 1), and xMg
satisfies all the conditions of Lemma 3.4(1) and 3.4(2).

LEMMA 3.6. Let M = sM g be semi-noetherian and fully of finite right rank, with

R quasi-primitive with heart H, and suppose that My is 1(R)-torsionfree. Then
BS(MH) = BS(M) <, sMg.
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Proof. Observe first that, since My is I(R)-torsionfree, 0 # LH < M H for any
0£AL< Mg, so MH<,Mg. If 0#1€I(R) then (MH)I = M(HI)= MH, i.e.
(MH), is I(R)-anti-torsion. By Lemma 3.4(1) it suffices to show that, if
0 < K= gKgr < §Mg then there exists 0 < gJg < Kz such that Ji is I(R)-anti-tor-
sion; set J = KH. O

LEmMMA 3.7. Let M = sM g be semi-noetherian and fully of finite right rank, and R
be bi-noetherian, If B-spec(MR) C quas(R) then sMpg is bi-artinian.

Proof. Set My =0, let P be a maximal right annihilator for M, and suppose
0 < N=gNr Canny(P), so P =ann(Ng) by maximality. By Lemma 3.1 Ng/p is
I(R/P)-torsionfree. If P<Iel(R) and I/P=H=H(R/P) then 0# M, =
BS(s(NH)g,p) <e¢ s(NH)g/p by Lemma 3.6, and clearly has finite bimodule length.
Either M| = M or, iterating, we can construct a sequence of sub-bimodules
0=My < M, < ... such that each factor M; /M; has finite bimodule length.
Since M is bi-noetherian, the sequence terminates, and M itself has finite bimodule
length. O

ExaMPLE 3.8. The assumption that M is left semi-noetherian cannot be dropped
from Lemma 3.7. Let S be a simple noetherian ring which is not artinian, and let K
K S
(Y
not left semi-noetherian and quas(R) = spec(R) but R is not bi-artinian.

be the centre of S; set R = and M = grRg. Then R is right noetherian but

LEmMMA 3.9. If R is a bi-artinian ring then spec(R) = quas(R).

Proof. We may assume that R is prime, and by the bi-d.c.c. has a simple ideal H.
Since R is prime, H is idempotent and bi-essential. O

4. Main Theorem.

THEOREM 4.1. A semi-noetherian fully right Goldie ring is bi-artinian if and only if
every prime ideal is quasi-primitive.

Proof. Lemmas 3.1, 3.7 and 3.9. O

COROLLARY 4.2. Let R be a semi-noetherian fully right Goldie ring; then R is bi-
artinian if and only if R/P(R) is bi-artinian. O

REMARKS 4.3. (A) It was already known [21, p. 217] that, if M = ¢Mp is left-
right noetherian and R is simple then M has a bimodule composition series, and that
a noctherian ring R in which spec(R) = max(R) is bi-artinian. A formally narrower
result which easily yields this latter conclusion can be found at [3, top of p. 9].

(B) From Example 3.8 it is clear that a ring R must satisfy some sort of two-
sided finiteness condition in order for the equality spec(R) = quas(R) to imply that
R is bi-artinian (the reverse implication being automatic: Lemma 3.9). It is well
known that, if K is a field and S is the direct product of countably infinitely many
copies of K, then spec(S) = quas(S) = max(S) but S is neither bi-noetherian or
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bi-artinian. Thus the condition that every principal (two-sided) ideal is left and right
finitely generated is not sufficient to ensure that, if spec(S) = quas(S), then S must
be bi-artinian. It would be interesting to know whether the condition that S is left-
right semi-noctherian is sufficient.

(C) Theorem 4.1 does not extend to right noetherian rings: see Example 3.8.

(D) It is straightforward to construct non-trivial examples of left semi-noether-
ian right noetherian rings which are not left noetherian, to which the test in Theo-
rem 4.1 can then be applied. For example, if 4,(—) denotes the first Weyl algebra
(with the usual generators), if S is a simple ring of characteristic 0, and if S is right
but not left noetherian, then S is certainly left semi-noetherian, and the ring R =
S@ XA,(S) € 4,(S) can be shown (see [23]) to be left seminoetherian right no-
etherian but not left noetherian, and to have a bimodule composition series of length
2: see also Section 7.

5. Direct sum decompositions. The proof of the following result uses entirely
standard techniques, and is omitted.

THEOREM 5.1. Let R be a ring which is both bi-noetherian and bi-artinian, and let
p > 0 be a rational prime. Then:

(1) the set T, = {r € R:3n e N, rp" = 0} is an ideal of R;

(2) there exists m =m(p) € N such that (T,)p" =0 and R=Rp™")® T, (as
rings);

(3) R is a finite direct sum of indecomposable bi-noetherian bi-artinian rings each
of which is either a Q-algebra or an algebra over Z/q°Z for some rational prime q > 0
and some s € N.

6. The restricted bi-d.c.c. A ring R is said to satisfy the restricted bi-d.c.c. if R/I
is bi-artinian for every 0 # I € I(R), but R itself is not bi-artinian. It is well known
that, if R is either noetherian commutative or BPN [19, p. 94] then R satisfies the
restricted bi-d.c.c. if and only if R is prime non-bi-artinian and spec(R)\{0} = max(R).
The following is the natural analogue of those results in the present context.

THEOREM 6.1. Let R be a semi-noetherian fully right Goldie ring. Then R satisfies
the restricted bi-d.c.c if and only if R is prime non-bi-artinian and spec(R)\{0} =
quas(R).

Proof. Suppose R is prime non-bi-artinian and quas(R) = spec(R)\{0}. Let
0 # I € I(R); then spec(R/I) = quas(R/I), so R/I is bi-artinian by Theorem 4.1.

Conversely, suppose R is not bi-artinian but R/[ is bi-artinian for each
0 # I € I(R). By Corollary 4.2, P = P(R) =0, i.e. R is semiprime. If R is not prime
then card(min(R)) = n > 1 and if Q € min(R) then 0 # Q, so that R/Q is bi-artinian.
Hence spec(R/Q) = quas(R/Q), and since Q € min(R) is arbitrary, spec(R) =
quas(R), so that R is bi-artinian; contradiction. O

We say that a ring R satisfies the E-restricted bi-d.c.c. if R is not bi-artinian but

R/E is bi-artinian for all E € E(R). For such rings there is a (less complete) “bi-
essential”’ analogue of Theorem 6.1.
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THEOREM 6.2. Let R be a semi-noetherian fully right Goldie ring: of the following
conditions, (1) implies (2A) while (2A) and (2B) are equivalent:

(1) R satisfies the E-restricted bi-d.c.c.;

(2A) R/P(R) satisfies the E-restricted bi-d.c.c.,

(2B) spec(R) # quas(R) but spec(R)\min(R) C quas(R).
When condition (2A) (or (1)) is satisfied, min(R)\quas(R) # .

Proof. Suppose (1) is satisfied, and let V' € I(R) be such that P = P(R) < V and
rR(V/P)g <. r(R/P)g. Now P is nilpotent, so X = ann(Pg) is left essential [6, p. 62],
hence bi-essential, so R/X is bi-artninian and spec(R/X) = quas(R/X). It follows by
Lemma 3.7 that g Py is bi-artinian. If P € E(R) then R/P is bi-artinian, so R is too
(Corollary 4.2): contradiction. Let B = BS(P); then B <, gPy since P is bi-artinian,
so there exists 0 £ A € I(R) such that AN B =0 and 4 @ B € E(R); it is clear that
ANP=0,s0 A embeds in R/P under the natural map. Let C € I(R) be such that
P<C and C/P is a complement for (44 P)/P in R/P. Then C(A4+ P)+
(P+A)C<P, so CA+AC<ANP=0. Hence (C/P)(A+ P)=0, and since
A + P € E(R) it follows successively that R/(A4 + P) is bi-artinian and that C/P is bi-
artinian (whence C is bi-artinian too). Let D € I(R) be such that P < D and
D/P =BS(C/P); then A+ P < A+ D € E(R) so R/(A + D) is bi-artinian.

Suppose a € A and Va = 0; then V(a+ P) < P, but it is standard (since R/P is
semiprime) that anng,p((V/P)g/p) = P/P; hence a€ P. But ANP =0 so a=0.
Standard arguments then show that V4 <, gAg so (replacing A by VA in the pre-
vious argument) R/(VA+ D) is bi-artinian. But P <V and D/P < V/P, so
VA + D <V, and therefore R/V is bi-artinian, i.e. (2A) is satisfied.

Suppose (2A) is satisfied. We may assume that R is semiprime and that
quas(R) C spec(R); suppose that Q € spec(R) is non-minimal. By standard fact (5) in
Section 2, Q € E(R), so R/Q is bi-artinian, and hence Q € quas(R). Suppose (2B) is
satisfied, that R is semiprime, and that / € E(R). If R/I is not bi-artinian then there
exists J € E(R) maximal with respect to the properties / <J and R/J is not bi-
artinian, and clearly J# R. But then R/J satisfies the restricted bi-d.c.c., so
J € spec(R). But I < J and I € E(R) so J is non-minimal; contradiction. Thus (2B)
implies (2A). The final assertion is clear. O

Suppose that R is left semi-noetherian and 0 # I € I(R), with n € N minimal
with respect to the existence of xy, ..., x, € I such that / = Rx; + ...+ Rx,, and by
Zorn’s Lemma let M = gM < gl be maximal with respect to Rx; +...+ Rx,_| <
rRM < grI; then r(I/M) is simple so ann(z(//M)) is left primitive. It follows easily
that, if Q € quas(R), then Q is left primitive, and hence that J(R) < A(R). This
means that noetherian rings which satisfy the E-restricted bi-d.c.c. have other
pleasing properties.

COROLLARY 6.3. Let R be a semi-noetherian fully right Goldie ring which satisfies
the E-restricted bi-d.c.c, and let J = J(R) < A = A(R). Suppose that either (1) R is

semiprime, or (2) R is fully left Goldie; then (\J' = (A" =0.
neN neN

o0
Proof. Let A= () A": we know from an earlier remark that J < 4. Let
n=1
B =BS(rRr) = () Eandletce R\B. There exists K(c) € E(R) such that ¢ ¢ K(c).
E€E(R)
Since R/K(c) has a bi-module composition series, spec(R/K(c)) = quas(R/K(c)) by
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Theorem 4.1, so there exist Qy, ..., Qs € quas(R) such that 0;0,...0; < K(c¢) <
Q1 N...NQ hence A4* < K(c). It follows that 4" < B. If B =0 there is nothing
further to prove; if B # 0 let B’ € I(R) be simple, so that B’ < B.

In case (1), since R is semiprime B’ is idempotent, the complement Q' of B’ is
quasi-primitive, and Q' = ann(B}%) = ann(zB’). It follows that Q = ann(Bg) =
ann(gzB) is a finite intersection of elements of quas(R), and that 4’ < QN B =0.

In case (2), if B € E(R) then R/B has a bimodule composition series, and hence
so does R; contradiction. So we may suppose that there exists 0 # C € I(R) such that
B @& C € E(R), and then by hypothesis R/(B @ C) is bi-artinian; let X be any term of
its bimodule composition series. Copying the proofs of [7, Lemma 5.2] or [8, Lemma
5.2.16] r.ann(X) € quas(R), so A’ < B® C for some ¢t € N. By the same arguments
again, BA=0<Cso A’ < A" < C,and hence 4’ < BN C =0. ]

REMARKS 6.4. (A) The ring of 2 x 2 upper triangular matrices over Z is a
counter-example to the equivalence of (2B) and (1) in Theorem 6.2.

(B) If R is a noetherian ring which satisfies the second layer condition (see [6, p.
183] or [11, p. 188] or [3, p. 4] for details) then quas(R) = max(R) (see [6, Ex. 12E]).

In that case Jategaonkar showed (see [6. Theorem 12.8]) that (| B(R)" = 0, a strong
neN
version of the Jacobson Conjecture. It is trivial that, in a bi-artinian noetherian ring,

the Jacobson and anti-simple radicals coincide with the prime radical, which is nil-
potent, but Corollary 6.3 systematically provides non-bi-artinian rings S that do not
satisfy the right of left second layer conditions but which do satisfy the Jacobson
Conjecture, in the strong version: () A(S)" = 0.

neN

EXAMPLE 6.5. A noctherian ring .S which does not satisfy the second layer con-
dition but does satisfy the (strong form of the) Jacobson Conjecture. Let R be a bi-
artinian noetherian ring such that max(R) C quas(R), and put S = R[X]/B(R)XR[X];
it is not difficult to check (see Remark 7.1(A)) that S is noetherian and satisfies the
E-restricted bi-d.c.c. but does not satisfy the right or left second layer conditions.
We note that S is semiprime if and only if R is semiprime.

7. Remarks and examples.

REMARKS 7.1. (A) If R is any bi-artinian ring, it is easy to see (by looking at
minimal intersections) that any subset (J # X C spec(R) whose eclements are
incomparable must be finite. If R is also bi-noetherian, it follows (by induction on
bi-module length) that spec(R) is finite, and hence that the set of semiprime ideals of
R is also finite.

(B) If S is the local commutative noetherian K-algebra K[X,Y: X? = XY =
Y2 = 0], and K is an infinite field, then S is (bi-)artinian, but I(S) is infinite.

(C) See Example 7.2(D) for a bi-artinian noetherian domain with infinitely
many ideals.

(D) There is an example, due to Stafford [16], of a non-bi-artinian quasi-
primitive noetherian ring R with heart H: the bimodule gHg is left-right faithful
and noetherian over the noetherian ring R, yet R itself is not bi-artinian, so
that quas(R) C spec(R). Thus there is no converse to Lemma 3.7: see also Remark
3.5(B).
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(E) It is standard that a quasi-primitive ideal is right primitive if and only if it is
left primitive if and only if it is semi-primitive. If R is semi-noetherian on (say) the
left then every quasi-primitive ideal is left (and also therefore right) primitive.

(F) Let H be Sasiada’s example of a simple idempotent “‘ring not necessarily
with unity”” with Jacobson radical J(H) = H, see [17, p. 151]. Then H is an algebra
over a field K, and in the bi-artinian ring R = K @ H the ideal 0 is quasi-primitive
but not semi-primitive.

(G) The examples to follow show that non-commutative bi-artinian noetherian
rings can be very unlike commutative (bi-)artinian or non-commutative artinian rings.

EXAMPLES 7.2. Idealisers and related rings. The first three examples below are
well-known, while, as far as we know, the ones following are to some extent new.
The techniques needed to establish their properties, however, all stem from [14], and
are detailed (in a broader context) in [23].

(A) Let K be a field of characteristic 0, and S = A4;(K) with the usual generators:
then R = K+ XS'is a noetherian bi-artinian domain of bimodule length 2 (using [14,
Theorem 7.4]).

(B) With K, S as at (A), let R=K+ KX+ XS, P = KX + X2S e spec(R) and
H = X?S € I(R): then R is a noetherian bi-artinian domain of bimodule length 3
(using [14, Theorem 7.4]), and H = P*> < P.

(C) Let F be any field (even finite); the idealiser technique used by Robson in
[15] yields a bi-artinian noetherian domain of bimodule length 2 with centre F.

(D) Let S=4;(C) and R=R+ XC+ X>S C T =C + XC + X2S: again using
[14, Theorem 7.4], R is a bi-artininan noetherian domain of bimodule length 4, and
rTg 1s generated by {1, i} and has bimodule length 5. Note that I(R) is infinite while
I(T) is finite, (compare Remark 7.1(B)).

(E) Let K be a field of characteristic 0, and 7= A,(K) with the usual generators,
and put X = X1 X;...X),: the idealiser S,, of XT is a bi-artinian noetherian domain
of bimodule length 2" = card(spec(S,)), every P € spec(S,) is completely prime,
every I € 1(S,) is semiprime idempotent, max(S,) = {M} where M is a height-n
prime, and 2" < card(/(S,)) < 2%'. The first few values of card(I(S,)) are 3 (n = 1), 6
(n =2) and 20 (n = 3), but we do not know a general formula.

(F) Let K be a field, and suppose either that char(K)=0 of that
char(K) = p > 0 and that K is transcendental over Z/pZ. There are a K-algebra
U = U,(K), a multiplicative analogue of 4,(K) on 2n generators, and ® € U,(K)
(defined similarly to X at (E)) such that the idealiser V,(K) of ®U has the same
properties as those listed at (E) for S,,.

(G) Suppose D is a left semi-noetherian right noetherian bi-artinian ring, and is
either a Q-algebra or a Z/pZ-algebra with a central subfield K that is transcendental
over Z/pZ. The rings S,(D) or V,(D) defined (in the corresponding cases) exactly as
in (E) or (F) respectively are also left semi-noetherian right noetherian bi-artinian
rings, and are domains, prime rings or semiprime rings respectively if and only if D
has the corresponding property.

(H) Let K be a field of characteristic 0, T = 4,(K) and n € N. It can be shown
that (T/X"T); = (Tr)", and it is well-known [11, p. 14] that End(77) = K and that
S/X'"T = End((T/X"T)), where S is the idealiser of X”T: hence S/X"T = M,(K),
the full n x n matrix algebra over K. Thus if R= K+ X"T C S it follows (again
using [14, Theorem 7.4]) that R and S are both noetherian bi-artinian domains of bi-
module length 2. It is easy to check that R/X"T embeds in S/X"T as (left) scalar
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multiplication: if D’ is any ring such that K C D’ € M,(K) then, via the identifica-
tions just mentioned, the full inverse image D of D’ in S is a noetherian bi-artinian
domain. In particular, the n x n upper triangular matrices over K are the epimorphic
image of such a domain.

ExAMPLES 7.3. Standard classes of rings.

(A) If R is a noetherian Asano order (including a Dedekind prime ring) then R
is bi-artinian if and only if R is simple: see [11, pp. 139-140].

(B) Let S be a hereditary noetherian prime (HNP) ring: then S is bi-artinian if
and only if S is quasi-primitive if and only if S has a unique minimal non-zero
idempotent ideal if and only if S is obtained by iterated idealising at isomaximal (see
[11, p. 152]) right ideals finitely many times, starting from a simple HNP ring 7.
Conversely, a prime noetherian bi-artinian ring is a HNP ring if and only if it is
obtained by such iterated idealising from a simple HNP ring 7 (use [11, Prop. 5.6.10
and Theorem 5.6.11] together with Theorem 4.1 above).

(C) A noctherian right fully bounded ring is bi-artinian if and only if it is artinian,
since a prime right noetherian right bounded ring can have no proper simple ideal.

ExaMPLES 7.4. Ring extensions. In examples (B) and (C) by a finite sub-
normalising extension we mean a ring extension R C S in which there are elements
ui,...,u, € S such that S= Ru; +... Ru, and Ru; +...+ Ruyj=u R+ ...+ u;R
for 1 <j < n: see [18].

(A) If R is a noetherian bi-artinian ring and R C S is a finite ring extension, i.e.
&S and Sy are both finitely generated, then zSg is noetherian bi-artinian (Lemma
3.7), so Sy is a noetherian bi-artinian ring. The reverse implication is false [2].

(B) If R is left semi-noetherian right noetherian bi-artinian, and R C S is a finite
subnormalising extension then gSy is left semi-noetherian right noetherian bi-arti-
nian (adapting [19, Proposition 4.1] and using Lemma 3.7). Hence S is a left semi-
noetherian right noetherian bi-artinian ring.

(C) If R C Sis a finite subnormalising extension and gSg is noetherian bi-arti-
nian then gzRp is noetherian bi-artinian (using [18, Theorem 5.2]). One non-trivial
instance of a finite subnormalising extension is at Example 7.2(D).

(D) Suppose that R is a prime noetherian bi-artinian ring, and that Q = Q4(R) is
the symmetric ring of quotients of R, as defined in [12] and [13, Chapter 3]. It is
standard that R € Q € W, where W is the left-right artinian quotient ring of R, and
from [20, Theorem 3.1(b)] H € I(Q), so that HQ + QH < R. If te HN Cg(0) then
tQ+ 0t € R, rQ = r(Q1) and (1Q)z = Qg so that gQpr is a noetherian (and hence
bi-artinian) bimodule, and finally Q is a noetherian bi-artinian prime ring. It can be
shown that Q = Q,(Q), i.e. that Q is symmetrically closed in the terminology of [12]
and [13, Chapter 3], and hence is a maximal order. A non-trivial instance in which
R C Q4(R) is at Example 7.2(D).

(E) If R is left semi-noetherian right noetherian bi-artinian and S = R[X; «] for
some automorphism « of R then S is left semi-noetherian right noetherian, but never
bi-artinian. Its ring of quotients 7= R[X, X~'; «] is also left semi-noetherian right
noetherian, and is bi-artinian provided that « satisfies a complicated criterion in [24].
If there is a central subfield K of T such that K = Ko and the restriction of «|g has
infinite order, and if the lattice {I € I(R) : I = Iu} is bi-artinian then T is a left semi-
noetherian right noetherian bi-artinian ring (via an easy extension of [9, Lemma 1]).
The results in this area generalize [10], which gave a criterion for 7 to be simple.
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(F) Let D be a division ring (skew field) of characteristic 0, and for n, r € N let
A,(D) and A,,,(D) be the nth and (n 4 r)th Weyl algebras over D, with the obvious
embedding A4,(D) — A,(D). Set A =] A,(D) and R = A[f], ¢ a central inde-

neN
terminate. It is straightforward to show that R is a fully Goldie domain in which

every ideal is generated by a central element (so that R is semi-noetherian), but that
R is neither right nor left noetherian.

REMARKS 7.5. (A) For a noetherian ring R, the implication: if
spec(R) = quas(R) then R is bi-artinian’, is an easy consequence of [7, Proposition
1.2], which asserts that every non-zero noetherian bimodule contains a special type
of bimodule called a cell, together with [7, Lemma 5.2], which asserts that, for a
noetherian cell C = ¢Cg, H(C) # 0 if Cg is faithful and R is quasi-primitive. Jate-
gaonkar also remarks (re-discussing the same material: [8, p. 134]) that “not much is
known” about (prime) noetherian rings with non-zero heart.

(B) Suppose B = By is left semi-noetherian right noetherian, that R is right
noetherian, and that Q = RD~! is bi-artinian for some right denominator set D C R.
Then B' = s(B®r Q) is left semi-noetherian right noetherian bi-artinian, and its
bimodule composition series can be used (for example as in [21]) to obtain infor-
mation about B. In the study of noetherian bimodules, this can provide an alter-
native technique to traditional localisation (in the sense of constructing a ring of
fractions S of R in which S/J(S) is artinian), when that technique is unavailable.

(C) The examples above show that, unless a field F is algebraic over Z/pZ (“‘F is
absolutely algebraic). there exists for any n € N a bi-artinian noetherian domain
with centre F and of length 2”. We have so far failed to find a similar construction in
the case that F is absolutely algebraic.
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