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ON THE CUBIC THETA FUNCTION
AKINORI YOSHIMOTO

Introduction

The generalized theta function of a totally imaginary field including
n-th roots of unity, which was defined by T. Kubota [2], was introduced
in his investigation of the reciprosity law of the n-th power residue. If
n = 2, it reduces to the classical theta function. In the case n = 3 for
the Eisenstein field, the Fourier coefficients of the cubic theta function,
which were explicitly expressed by S.J. Patterson, are essentially cubic
Gauss sums [3]. Furthermore in the case n =4 for the Gaussian field
those of the biquadratic theta functions, which have been investigated by
T. Suzuki [4], haven’t been obtained completely yet.

The main purpose of the present paper is to construct the cubic theta
function based on Weil’s idea [5]. In this procedure Davenport-Hasse’s
formula is used, which implies the multiplicative property of the Gauss
sums and corresponds to Gauss’s multiplicative formula of Gamma func-
tions that is also used in this process. This fact may be of some im-
portance in the study of the Gauss sums with respect to the character
of a general n-th power residue. Our method is far simpler than that of
[3], although the automorphic property of the cubic theta function is
proved for a slightly smaller discontinuous group than in the latter.

This paper consists of five sections. Since some of the ideas and the
technique used in this paper are based on those of T. Kubota [2], S.J.
Patterson [3], T. Suzuki [4] and A. Weil [5], overlapping arguments will
be described roughly.

§1. I'(N)

We denote by @ and C the field of the rational numbers and the
field of the complex numbers respectively. Let Z be the ring of the ra-
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tional integers, 1 =+ —3, O = Z(w) (0 = exp (27i/3)) and e(2) = exp (2xi
(z 4+ 2)) for ze C. We define the upper half space H = C X R%, where R*
is a multiplicative group of positive numbers. If we regard w (e H) as

[5 _;] (zeC,ve RY) and put 2 = [g g] (zeC), then SL(2,C) acts on

H by
(1.1) o(w) = (Gw + b)ew + &)—1<a - [‘c’ 3]) .

Defining that the operation on H of the diagonal matrix [(z) (z)]’ (ze 0),

is trivial, we obtain the operation on H of GL(2, C).
Furthermore if we put

[ 8= 14 9] moam)

for any N e O, then I'(N) acts on H discontinuously and has a fundamental
domain with the finite volume with respect to the invariant measure
vdxdydv, where z = x +iyeC, ve R%.

We put through the paper

(1.2) I'(N) = {[g 3] e SL(2, 0)

1.3) N=3 or 3r,

where r is a prime number of degree 1 such that r =1 (9). We define

for o (:[g 3] er(N))

o 1= (<) (=0,
1

(C:0)7

where (£> is the cubic residue symbol in Q{w). Then X is a character
als

of I'(N).

Let & be a cusp of I'(IN) i.e. £ € Qw) of £k = co = 1/0. We write ¢ =
alt (e, 7) =1). If (¢, 2) = 1, then we may assume that « =1 (3). Also,
if (@, 2) = 1, then we may assume that 7 = 1 (3). From the assumptions
we easily have

LEemMmA 1. Two cusps £ = «f7, £ = o'[I" are equivalent to each other
under I'(N) if and only if @« = o’ (N), 7 =7’ (N).
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We put for any cusp « = «fr of I'(IV)
I' ={oe'(N)|ox = «}.

We note that I', = ¢,/ .07 putting £ = ¢,(c0) for o.( e SL(2, O)).

A cusp « is called essential if the restriction to I, of X is trivial.
We can confirm that the essential cusps of I'(N) depend only on the
equivalence of I'(3). We readily check that the set of the essential cusps
of I'(8) is {0,1, —1, oo}. We further classify those of I'(N) (INV = 3r) in
the following four cases after T. Suzuki. For x = afr
(1) A-type ie. «a =0 (N),
(2) B-type ie. « =0 (3), (a,7) = 1.
(8) C-type ie. a=1(@3), a=0(r),
(4) D-type ie. «a =1(3), (a,7) = 1.

§2. Eisenstein series

For any 2 X 2 matrix M we consider ¢-fold tensor product M, we

put

M¥ = M! (- = complex conjugate, * = transposition),
and for g = [g‘ fl] e SL(2, C) define
2.1) jlg, w) = @Ew + d) det Gw + d)~~.

We also take M, to be the constant 1. If x is an essential cusp of I'(V),
then for we H, Re (s) > 2, we define

2.2) E(w,e,'(N),s) = >, Xg)jia:’g, wlo;'gw)),

gETN\(N)

where v(w) = v for w = (z,v). From (2.2) we obtain for ¢ ¢ I'(N)

(2.3) Eo(w), £, [(N), s) = 1()j (o, w)Ew, &, [(N), 5) .
We put
(2.4) K, {a) = L(;zﬁ + 1)+w[§ —;]:‘e(“az)dxdy.

If p is another essential cusp and g represents a coset in I \I'(IV)/[,,

then we write ¢;'go, = [c(* ) d(;)]' For e 27*0, we further define

@5)  yifs m T(N), ) = V(N) 57 )@)e(——’%%)(?(\g/)»*[c(g)l‘“‘é,

ger s/, c(g)
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where ’ indicates that the coset with ¢(g) = 0 is omitted and V(IV) means
the volume of the fundamental domain of I'(lN). Then by a standard
argument Efw, x, ['(IV), s) has a Fourier expansion

(2'6) Eé(ap(w)y IC) F(N)’ 3) = 5:pItvs + G:L‘——‘SO vz—s 8,¢ ﬂv)
XA, g, I'(N), e(p2)

where 4,, is the Kronecker’s symbol.
By a general theory of the Eisenstein series E,(w, x, I'(IN), s) can be
analytically continued to the whole plane and has a functional equation

@7  Ew,x I'(N),s) = P E{w, p, I'(N), 2 — s)M{s)¥i(s, I'(N), £),

where M(s) = K, (0), (s, '(IN), &) = (s, 0, ['(N), £), P(IN) is the set of
all essential cusps of I'(N). Therefore by (2.6) and (2.7) we obtain

(2.8) K, (po)i(s, n, I'(N), )
= Z v* _?KZ—S,—-e(#U),lI’;(‘?‘ - S, U, F(N)9 Z)Ml(s)\b:p(s’ F(N)i e) ’

PEP(N)

where V; (s, , I'(N), £) = rz.(s, g1, I'(N), £).

§ 3. The functional equations

Put = (ih ) i2)9 j - (jl: - "jl)’ (ik) ]k - 1, 2, 1 g k g:é),
y £
mi].) = Tl—:Il mirsfr .

Then m{? form the entries of M, which is the ¢-fold tensor product of
2 X 2 Matrix M = (m,,), and are written as M,,. For £e Z we define

Vel Sy s T(N), 0) = Yi(s, 1, T'(N), O (¢ >0),
(31) = w:p(sx s F(N), - g)zz (z < 0)1) »
= ‘P:p(s’ Hs F(N)a 0) (Z = O) .

We shall first consider the case N = 3. Calculation in the same way
as in [3] gives

(3.2) Vool(8, I'(3), £) = V(B)'(1 + (=1))(3*%° — 1)"'¢(3s — 3, £)
X ¢(8s — 2, 0)7,

(33) "["Ol(s’ F(3)’ Z) = 1lf0,_1(5, F(3)7 ﬂ) = V(3)_l("1)£C(3s - 3, g)C(gs - 2, g).1

DI=(,--, 1,1, 22= 2,004,202, 1,2).
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(34) ‘I"Ow(s, F(3)a ﬂ) = V(3)—1(___1)£C(3s - 3> Z)C('BS - 2’ g)—l v )

where £(s, &) = 3 (E)aﬂcg—“. By (2.7), (3.2), (3.3), (3.4) and the results

¢=1(3) |cl
of (3) we have the following theorem.

TueoreM 1. (Patterson). Let £ be an even integer, A(s, £) = 371~
(1 _ 33—3xie) (1 . 333—4i2)—1,

E(s, p1, I'(3), £) = @)™ I'(s + [41/2 — 1/3)I'(s + [£]/2 — 2[3)rou(s, 11, ['(3), 4),

where I'(s) is the Gamma function and

F.(s, I3, 0 =3 bfj I(p, e2)375(ci?)*F(s, e2°, 1, £) ,

where I'(y, e2?) = Zb (e22/9),e(p15[e2%).
d(modead+2)
5=1(3)

Then the function F(s, p, ['(3), 4) can be analytically continued to the
whole plane as an entire function if ¢ + 0 and to a meromorphic function
at most simple poles at s = 2/3, 4/3 if ¢ = 0. Furthermore F(s, pn, I'(3), £)
is bounded when |Im(s)| is large in every vertical strip of finite width and
satisfies the functional equation

F(s, 1, I3), £) = As, )30~ y|ﬂ<1~s><r§)l(Fw(2 — s, 1, T(3), — 0)

+ F@ =5, T®), —O(e() + (~Die(—p) + LTV,

Next, we consider the case N = 3r such that r is a prime number

of degree 1 satisfying r=1 (9). We define g(c,p) = >, (i) e(ualc) for

mod ¢\ C

pe1/)0. Letp = (/") e P(N) and a be a character of O defined modulo
r. Then we obtain

Vifs, 1, T(N), ) = v<zv>-l(;‘_,’);‘e(i;0:’e>

x CE;M) <,:_>3g(c’ m(%)w(q‘“ ,

if p = 0(//7” such that (T’, ,Zr) =1, where f/ = r/—x(r),

(3.5)

n ‘#':p(syp(3)7£) :"l’tp(s)o,['(S)vZ)'
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les 1 T, 0 = V(7)o o =2 “‘”)Fm, o2

3 eb=1

s-2sf €A° Y 4 ] ~6s 3)
)l () 5 () ge, e () e o,
Igl l =77 \ r/s lc[

if p = a1 such that (77,2) == 1 and (7/,r) = 1, where I'(g, e2°) is the same
as one defined above.

We now use an idea of T. Suzuki i.e. for x = «/f which is an es-
sential cusp of A-type we consider

(3.6)

(3.7 S a (L) (s, n, T(N), 8) .
rrr;t;%gr (7’ )3
By (3.5) we obtain
38) @1 = Va1 3 @) gte A ) el
We put

#o, i T, 0 0 = 33 a0 £) e, (&) el

so that we have the following lemmas like ones in [4].

LemMmA 2. Let7 =0(3), «a = 1(3). Then

c cy
%o D5 ()
e=rlen) d grhod 3oy d/s el

is given by:
(1) incase vt =0(@8r), a =1(3)

;ﬁ:i(—f——l)lirmzw(%] )Z( )'MF ) ) @(C)<| |> el

where @ 1is the Euler function on O and r|M|r° means that M runs over
all powers of r.

(2) incase v =0@), r,r) =1, a =1(3)

(- 3 sl (&)

+230e3=7(7)
b>1,c=1(3)
(¢;r)=1

Lemma 3. Let ¥ = 1(8). Then

2 ‘l’p('S)ﬂyp(N)re) :‘J’pw(s:ﬂy[‘(N)’Z)-
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d as 3¢
33 (G)e(E)
e=~-1r(37r) drgoda‘rc C I I
d=a(3r)
is given by:
1) incaser=0(r)
M ¢
__1 2 < ) ( ) -2(1-8) @ 4- Gs( )
0 % (o) Ggiere 3, o@rer(g
@) in case (,r) =1
3¢
- 3 e@ler (S
Elgé;)(c r)=1 l ‘
Let £ = a/r be of A-type. Then 4, (s, '(N), §)¥ for p = &'[7" is given as
follows:

(1) p=da/r is of A-type.
By Lemma 2 we have

(%>3V(N)%(s, (N, &)

Go = ()@ -a s o s (D) (1) (MY e

r1MTre M/s\[ M|
x 3 el (L)

c=1(3)

(2) p=da'[7" is of B-type.
By Lemma 2 we have

(%) V(N Wis, T'(N), £)

= (-1(%), 2 el E)
7" /3 +zﬁbc3=1?37;n() I l

b>1
(c,r)=1

8) p =7 is of C-type.
By Lemma 3 we have

(:;‘_) VINYls, TV, 0)

(3.11) = (L )i (7). (), e M)

| M|

D ey (8,7 (N),£) = ey (5,0, (N) , ).
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6' 3¢
y WMW“GJ-
=13 le|
(c,7r)=1

4) p=da|r is of D-type.
By Lemma 3 we have

(12 (L) Vauute T 0 = (L) 3 o@el.

3 e8=yra’(r)
c=1(3)
(cy7r)=1

Let
(a0 = 3 (&) e,

¢=1(3) |c]
(c,7r)=1

and note > (moa ry A(N(T/M); = 0 for any Me O such that r|M|r~ if a® is
not the trivial character 1,. Then by (3.9), (3.10), (3.11) and (3.12) we have

ProposiTiON 1. If o is not 1,,

%, (%) s, T, 0

7 (mod 37)
r=103)

— V(%) (@ + o= (=D @@ — 1)
(3.13) X €8s — 2, 0°, £)((8s — 2,0, £)™* (if p is of B-type),
= V(N )“a(—1)(—1)"(;)36(61’){(33 —2,0% 0)¢(38s — 2,a% £)!

(f p is of D-type),
=0 (otherwise) .

Now we can prove

THEOREM 2. Let £ be an integer, N = 3r (r is a prime number of
degree 1 such that r=1(9)) and a be a character defined by modulo r
such that a* x 1, and a(—=1)(—1) = 1. We put

F(s, pt, I'(N), a, £) = [r[*(22)™ (s + [4]/2 — 1/3)['(s + |£]/2 — 2/3)
X (s, 1, '(N), a, 0),

A(s, a, ) = 37711 — a3 — a(A)3%4i)
Fo(s, 1, I(N), a,0) = 3 3" I'(p, eA)37%(ei”)“F (s, e2’, p1, 0, 4) ,

e6=1 D=2

B(a, 1) = G(a)G(a, p)|r]™*,
Here G(a) = 314 woa » a(@)e(alr), G(a, 1) = 34 moa - a(@)e(palr) .

https://doi.org/10.1017/S0027763000000817 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000817

CUBIC THETA FUNCTION 161

Then F(s, u, I'(N), a, ) can be analytically continued to the whole
plane as an entire function. Furthermore F(s, u, '(N), a, £) is bounded
when |Im (s)| is large in every vertical strip of finite width, and satisfies
the functional equation

F(s, 1, '(N), a, £)

— A(s, 0, O)B(s, #>3"“’”\ﬂ‘w'”<|'51)g<%)2@

(3.14) % (Fw(2 — 5,1, I(N), G, —£) + F@ — s, 1, I(N), 0, —2)

% <1 + a(—1)(—1) %3’;;%((;)1;%(7_—¥>) )

Proof. If k is of A-type, by (2.7) we readily obtain

Vs, 1, I'(N), €)

315 = ni~f|mz—“|r|‘*-“(|ﬁm)”(%)"éf<s + 1ERI@ — s + |¢]j2)

X (pePZ(:N) '\1’17(2 -S4 F(N)r -—g)‘lfcp(s, F(N); ﬁ)) .
By (3.8) we further obtain

(316) 3 a(r)(%s%(s, 1, T(N), &) = VIN) " (—D)ae(s, o, PN, @, £) .

r mod 37
r=1(3)

We also consider the same sum as in (3.16) related to the right hand
side of (3.15) using (3.5), (3.6) and (3.13). We note that if we put

C(s, a, ) = C(s, @, O)(1 — 3-°a(2%)if)
and
&(s, a, ) = [r['@n)~*I'(s + 3[¢|[2)C*(s, a, 0),
then

&1 — s, @, — 030 @) (L) = &(s, 0%, 0) .
irl \r|

Moreover by using > a(a’)e(—7a’p/r) = a(7")G(&, 1) we have (3.14).

a’ mod 7

The analytical property of F(s, g, I'(IN), a, £) can be proved like the
case N = 3.

§4. An analogue of Weil’s theorem on the upper half space

We shall omit some proofs of the lemmas in this section because
those are like ones in Weil [5].
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Let

K, s(dw) = 4z [ T+ 102 = YD + 142 - 203)
X (2rv)~2-li-1dg .

LEMMA 4. Let a be a primitive character defined modulo r and as-
sume that both

¥6, 0= 3 anmp( MY

mei—30- {0} [m]

and

v, 08 = 3 auam)m ()

€i—30~{0 [ml

converge absolutely in some half plane satisfying a,, = a_,,. We further put

D(s, £) = @)™ I'(s + [4]/2 — 1/3I'(s + [£]/2 — 2/[3)y(s, 4) ,
O(s, a, £) = |rP*(2r) T (s + |4]/2 — 1)(s + [£]/2 — 2/3)y(s, a, £) .

Suppose that @(s, £) (¢ x0) and D(s,a, £) can be analytically continued
to the whole plane as entire functions and @(s,0) as a meromorphic func-
tion at most simple poles at s = 2/3, 4/3. Suppose that @(s, £) and D(s, a, 4)
are bounded when |Im (s)| is large in every vertical strip of finite width.
Put now Flw)y= 3, 0)amvl’{m,(47r]m|v)e(mz), A= R(?;/S3 @(s,0) and

meI—30-{

suppose that
(4.1) D(s, 4) = (—1)D2 — s, —4).
Then
Flo,(w)) + rAv(w,w))”* = F(w) + rAv(w)**,

where o, = [0 ‘1].

1 0
Put, on the other hand, F(w,a) = Y. ana(m)uK, (dr|m|v)e(mz) and
mea—30- {0}
suppose that
4.2) (s, 0, ) = <—1>¢(]i|)“c.q>(z —sa(1), =),
r r/s

where C is a constant.
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Then
Flo,w), @) = C-F(w, a(_>) ,

0 —1
where w,, = [r2 0].

Proof. The first half of this lemma is Patterson’s lemma (Lemma 7.2
in (3))” and the latter half of it can be proved similarly.

If we put a(a) = [(1) ({] for a € C, then we obtain

LEMMA 5.
(43 Fw, @) = @) 3 a@Fa@/nw) ),
where Fi(w, a) = tAv” + F(w, o).

r -v r —v
Let [ u r’] be an element of 7'(9) and put 7(r,v) = [—u r’]'

Then we easily obtain
4.4) a(u[r)w,, = r-o1(r, v)a(v/r).

Using (4.3) and (4.4), we have

LEmma 6. Let C, = G(a(:) )/G(a) and suppose that
r/s

F(w,(w), a) = C,,F(w’ a (7)3)

for any a such that o® = 1,, and Fy(o,(w)) = Fy(w) with F(w) = zAv*” +
F(w). Then for any integers u satisfying (r,u) =1

(—lri):F,(w) — F((r, walu/r\(w))
_ (:ri)l F(w) — F(1(r, —wa(—u/r)(w)).

3

v
av + 1

By Lemma 6 and the fact ( ) =1 for a=0(), v=0(3), we
3
have

LemmA 7. Let r, r’ be prime numbers of degree 1 such that r, r' =1

92 92 a\ .
5 2( 4 — o =
Here the Laplace operator v <4Bz82+ Bv2> v(&v) is used.
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9). If for any character a defined modulo r satisfying o* % 1,

Flon(w), @) = c,,F(w, a(_)) ,

r
then for any 7 = [C—u —,3] e I'(9)

F(1(w)) = 1(nFy(w)
holds.

Finally we can prove

THEOREM 3. Let 4eZ, r be a prime number of degree 1 such that
r=11(9), and a be a character defined modulo r such that a® % 1,. For

F(w) = zAv? 4+ >, a,vK, (4x|m|v)e(mz) with a, = a_,,
0

meA—30~{0}

suppose that Fi(o(w)) = Fi(w), and &(s, a, £) satisfies the assumptions in
Lemma 4 and (4.2) for C = C, for any ¢ and every a such that a(—1)(—1)* =
1. Then for o '(9)

(4.5) Fi(ow)) = Xo)F\(w) .

Proof. Let ¢ = [g 2] eI'(9). If ¢ =0, then we easily obtain (4.5).

If ¢ 20, then (e,9) = 1. Hence there exist integers s and ¢ such that
a + 9%c and d + 9sc are prime numbers of degree 1. Put p = a + 9,
qg=d+9sc, u = —c and v = —(b + 9sp 4 b9st 4 9qf). Then we obtain

£ al=1o 75l el 7l

If we put 7 = [ _1_7 " —g], then by Lemma 7 we have F\(r(w)) = X(7)F(w).

This completes the proof.
§5. The construction of 6(w)
Let I', be the group consisting of, o, [(1) ﬂ and 7'(9). If we put X

<[(1) ﬂ) = X(w,) = 1, then X can be extended to a character of I, By

using the results of § 2-§ 4 we can prove

THEOREM 4 (Patterson). For me 170 we define
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[ |
(m) = g(#, ¢ 4 3 dfm= £2"%cd,n>1,
c

= (gl c)ti 322 ifm= +wl™ ed’,n>1,
¢

- cg(aﬁ%)i 3 if mo= ket edtn > 1,
C

— gﬁ,‘a 3n/2+5/2, if m = __*_lan—scds, n 2 0 ,

4
c

=0, otherwise,

where { = exp (27i/9), ¢, d € O such that ¢,d =1 (38) and ¢ is square free.
There is then a constant ¢, so that

w) = o v + >, t(muK,,(4z|m|v)e(mz)
meI—30
is automorphic under I'y with X.

Proof. First if ¢ = [(1) ﬂ, we evidently obtain 6(s(w)) = 6(w). Sec-

ondly if ¢ = w, then we have 6(¢(w)) = 6(w) using Patterson’s method by
Theorem 1 and Lemma 4.
We now prove the case g < (9). We put

Fy(s,1,I(N), a, £) = 3**%i~‘a(X)F(s, 1, '(N), a, ),

Fy(s, 22, (N), a, §) = 3*a(2)F(s, 2, (N), a, £)

F(s, 02, I(N), a, {) = 3" ‘a(w)F(s, o2, '(N), a, £)

Fy(s, o', T(N), a, §) = £7'3%8(1)w'a(0)F (s, o2, [(N), a, 4)
£u(s, 0, 8) = (1 4 a(=1)(=1))(E"a@)i — D7(Fy(s, &, I'(NV), a, £)

+ Fy(s, o2, I'(N), a, £) + Fy(s, 0’4, '(N), a, £))
+ Fu(s,1,I'(N),a, £) + (1 + a(—1)(—1)"F,(s, 1, ['(N), a, £) .

If a(—1)(—1)* = 1, the calculation by using Theorem 2 and Corollary 5.2
in (3) gives

GL)  &fs a8 = a(-l)(—1)[(})“&08)(}(@)6"(&)|r|—250<2 — 5,4, —0)

r|
where G”(a) = > a(x)e(x/r). We note that we use (i) = <3) =1
2 mod 7 r/s r/s
for obtaining (5.1) and in the case that a(—1)(—1)’ = —1 (5.1) is trivial.
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Therefore if we put
m ¢
L0, 0) = 3 smam)( ) imp-s
mei—s0 |m]

and
(s, a, 8) = [r[*2r) ™ I'(s + 4|2 — 1/3)['(s + |£4|/2 — 2/3)L(s, a, £) ,
then by (5.1) we obtain

566,00 = oD L) @ @6 (a(-) )i~

T /s
X 51(2 — s, a-(;) , z).
r/s
We now consider the Gauss sum in @ by putting r7 =p. If we de-
fine z(a) = Y, a(x)exp (2rix/p) for a prime number p (€ Z), then we

x mod p

(5.2)

have
(5.3) G(a) = a(r)c(a) .
By (5.3) we see

5(22)G”(a3)G"<a : ( 7)) -

= a(f)@)saz(ﬁ)r(az)f(a : (7>) 7.

Here we recall Davenport-Hasse’s formula (in (1))

(5.5) r(a)r(a-(?))r(a-(?)g) = ¥3)r(a)p .

By using (56.5), we obtain from (5.4)

(5.4)

(5.6) a(— 1)a(12)G~(a3)G"(a : (7)> r-t = G (a- (;)) 1G@) .
Hence from (5.2) and (5.6) we finally have

G.7) £(s, q, 0) = (4)@(%)"0@(2 _ s, a<—) —z) :

r

Therefore by applying Theorem 3 to (5.7) we have 0(c(w)) = %(0)d(w), for
g € I'(9) putting ¢, = rA. This completes the proof of the theorem.
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Remarks 1. Theorem 4 is proved in [3] for I'(3) instead of I'(9), but
in this paper we investigated the latter simplifying the calculation by

i (1), (2), 1.

2. If we apply the argument in the present paper to the biquadratic
Gauss sum in Q(i), then roughly speaking the number corresponding to
C, in Lemma 6 is G(a*)G(@)|r|™>. Hence by using Davenport-Hasse’s formula
we see that we can’t obtain an automorphic function whose coefficients
are biquadratic Gauss sums in a simple analogue of the cubic theta
function.
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