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The predictions of mean-field electrodynamics can now be probed using direct
numerical simulations of random flows and magnetic fields. When modelling
astrophysical magnetohydrodynamics, it is important to verify that such simulations
are in agreement with observations. One of the main challenges in this area is to
identify robust quantitative measures to compare structures found in simulations with
those inferred from astrophysical observations. A similar challenge is to compare
quantitatively results from different simulations. Topological data analysis offers a
range of techniques, including the Betti numbers and persistence diagrams, that can be
used to facilitate such a comparison. After describing these tools, we first apply them
to synthetic random fields and demonstrate that, when the data are standardized in a
straightforward manner, some topological measures are insensitive to either large-scale
trends or the resolution of the data. Focusing upon one particular astrophysical
example, we apply topological data analysis to HI observations of the turbulent
interstellar medium (ISM) in the Milky Way and to recent magnetohydrodynamic
simulations of the random, strongly compressible ISM. We stress that these topological
techniques are generic and could be applied to any complex, multi-dimensional
random field.
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1. Introduction

Mean-field electrodynamics is an integral part of the theory of turbulent flows
in electrically conducting fluids. Following its pioneering formulation using the
second-order smoothing approximation (SOCA) (Steenbeck, Krause & Rédler 1966;
Krause & Raédler 1980), the mean-field induction equation has been derived using
a wide variety of approximations. Essentially the same equation is obtained when
the assumptions of SOCA are relaxed, most importantly, the assumptions of scale
separation between the mean and random magnetic fields and of a short velocity
correlation time (Dittrich et al. 1984; Zeldovich et al. 1988; Molchanov 1991;
Brandenburg & Subramanian 2005). The robustness of this theory to differing
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assumptions suggests its relevance and reliability. However, confidence in the
theoretical basis of mean-field electrodynamics has been shaken by direct numerical
simulations of mean-field dynamo action in driven and convective flows. Comparisons
of such simulations with theory remain inconclusive (e.g. Favier & Bushby 2013,
and references therein). One of the possible reasons for that is the complexity of
the random flows that drive the dynamo: they are often compressible, anisotropic
and non-Gaussian, and the mean magnetic field may not be as symmetric as is
often assumed (e.g. unidirectional or axially symmetric). However, analyses of the
simulation results rarely allow for such complications. This is, perhaps, not surprising,
since the known theory of random fields has been formulated almost exclusively for
Gaussian random fields and their close relatives such as log-normal or x? fields.
Techniques applicable to strongly non-Gaussian random fields are few and not widely
known.

Motivated by the present difficulties experienced by comparisons between the theory
and numerical simulations of mean-field dynamos, we focus upon one particular aspect
of this problem: developing diagnostics of strongly non-Gaussian random fields that
can be used to make quantitative comparisons between different data sets. The
significance of such techniques extends beyond mean-field electrodynamics, as the
need to compare sophisticated numerical simulations with experiments or observations
of natural phenomena is common to many areas of physics. This is particularly true
in astrophysics, where modern telescopes generate observational data at very high
spatial resolution. With ever-increasing computer power, simulations of astrophysical
processes are attaining greater levels of realism. Of particular interest is the notion
of a topological comparison, which (in this context) assesses whether or not the
connectivity of particular structures in simulations match those of the observations.
It is clearly more difficult to quantify topology than it is to measure the standard
statistics such as mean values, correlation functions of various orders, etc. However,
a crucial advantage of topological methods is their generality and freedom from
restrictive and often unjustifiable assumptions, such as the assumption of Gaussian
statistics.

The morphology of a random field, which can be measured using tools such
as the Minkowski functionals, quantifies the shape of structures in the data.
Morphological analysis has been applied to a wide range of problems, including
magnetohydrodynamic (MHD) simulations (Wilkin, Barenghi & Shukurov 2007), the
interstellar medium (Makarenko, Fletcher & Shukurov 2015) and cosmology (Mecke,
Buchert & Wagner 1994). Topological and morphological methods characterize
different properties of a random field, without relying on assumptions of Gaussianity,
and should be viewed as complementary steps in producing a more complete
representation than that provided by standard statistical descriptors. One should bear
in mind, however, that topological or morphological similarity does not necessarily
imply that the underlying physics of two systems is the same. For example, it might
be possible for two flows to be topologically similar but be driven by very different
mechanisms. There is scope (and need) for work that seeks to connect topology and
morphology more directly to physical processes.

We focus on the distribution of hydrogen atoms (H1) in the Milky Way, obtained
from recent observations (see Kalberla et al. 2010). The specific observable is the
volume number density, n, measured in a galactocentric cylindrical coordinate system
(R, ¢, 2), where R is the distance in the galactic plane from the centre of the Galaxy,
¢ represents the azimuthal angle in the galactic plane (with the Sun at ¢ =180°) and z
is the vertical distance from the mid-plane of the galactic disc. Figure 1(a) represents
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FIGURE 1. (a) The isocontours of the HI number density n (in atom cm~) from the
Galactic All Sky Survey (Kalberla et al. 2010) at R = 10 kpc, 202.9° < ¢ < 208.6°,
|z] < 1.1 kpe, with (R, ¢, z) the galactocentric cylindrical coordinates with the Sun at
(R, ¢, 2) = (8.5 kpc, 180°, 0). The horizontal extent of the image is approximately 1 kpc,
its resolution is close to 17 pc. (b) The isocontours of the gas number density n (in
atom cm~3) in a vertical plane, obtained from a three-dimensional magnetohydrodynamic
simulation of Gent et al. (2013a,b) at a resolution of 4 pc. White areas in both panels
correspond to low density values, n <3 x 1073 cm™ on (a) and 5 x 10™* cm™ on (b).

a two-dimensional (2-D) cross-section of n(¢, z), at galactocentric radius R =10 kpc
(which is close to the Sun), in the region 202.9° < ¢ < 208.6° and |z| < 1.1 kpc. Note
that the density field is not the projected density along the entire line of sight (also
called the surface or column density). Doppler shifts of the HI spectral line, along
with a model rotation curve for the Galaxy, allow the observations to be separated
into volume densities on a series of 2-D cylindrical cross-sections. The method is
described in Burton (1988). The spatial extent of this region is approximately 1 x
2 kpc, chosen for ease of comparison with existing simulations. Interstellar gas is
involved in transonic MHD turbulence that supports the mean-field dynamo action (e.g.
Shukurov 2007) recently reproduced in direct numerical simulations (Gressel et al.
2008; Gent et al. 2013a,b; Bendre, Gressel & Elstner 2015).

Figure 1(b) shows a snapshot of the gas density distribution in a numerical
simulation of the multiphase interstellar medium in the solar neighbourhood. The
model describes supernova-driven random flow in the interstellar gas, with gravity
and differential rotation, including the effects of radiative cooling, photoelectric
heating and various transport processes (see Gent et al. 2013a,b, for more details).
The spatial extent of the computational domain is 1 kpc x 1 kpc horizontally and
2 kpc vertically, symmetric about the galactic mid-plane, so the simulation domain
is comparable in size to the region shown on figure 1(a). Note that the magnitude
of the gas density is not directly comparable to the corresponding HT density (which
is only one component of the interstellar gas, although it does make up the majority
of the gas). There are, however, some clear qualitative similarities between the
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simulation and the observations, notably the form of the higher density regions near
the mid-plane. The question is: how well does the model describe reality?

An initial inspection of the data shown in figure 1 immediately reveals three
possible problems that may hinder meaningful comparisons. First, as mentioned
above, the range of the gas densities in the observed and simulated fields in figure 1
differ; the mean and the standard deviation of the gas densities in the two fields
are different too. The observed mean gas density is (n) = 0.065 atom cm—> and
its standard deviation o, = 0.063 atom cm~>. In the simulation, (n) = 0.220 and
0, = 0.349 atom cm~>. These values can also vary quite strongly from snapshot to
snapshot in a simulation and from slice to slice in the real data. The data need to
be standardized before their statistical properties are compared. Second, both the
observed and simulated data have a strong trend in the vertical direction — the gas
density is higher at z = 0 and gets lower as |z| increases. Does the presence of
trends influence the comparison and, if so, how can this be mitigated? Given that
it can often be difficult to separate trends from turbulent fluctuations, can we find
methods of analysis that are insensitive to large-scale trends in the data? Third, the
image resolutions are different — the simulated data have four times higher resolution
than the observation. The standard approach to this problem would be to reduce
the resolution of the simulation to that of the observation. However, this may lose
important information. A better approach would be to select methods of analysis that
are independent of the image resolution. We will show that topological data analysis
meets these requirements.

Over the last decade, topological approaches have been widely applied to the
analysis of random fields (Carlsson 2009; Adler et al. 2010; Adler & Taylor 2011;
Edelsbrunner 2014; Yogeshwaran & Adler 2015). Topological invariants, such as the
Betti numbers, and the associated techniques of persistence diagrams and barcodes,
rank functions and persistence landscapes, as well as persistence images for random
fields, have been applied in cosmology (Gay et al. 2010; Sousbie 2011; Sousbie,
Pichon & Kawahara 2011; Pranav 2015; Pranav et al. 2017) and are beginning
to be used in fluid dynamics (Kramdr er al. 2016), solar magnetohydrodynamics
(Makarenko, Karimova & Novak 2007; Makarenko et al. 2014; Kniazeva, Makarenko
& Urtiev 2015; Knyazeva, Makarenko & Urtiev 2015; Knyazeva et al. 2016;
Knyazeva, Urtiev & Makarenko 2017) and astrophysics (Li et al. 2016; Henderson
et al. 2017; Makarenko et al. 2018).

Complex topological diagnostics, such as persistence landscapes (Bubenik 2015;
Bubenik & Diotko 2017), rank functions (Robins & Turner 2016), persistence images
(Adams et al. 2017), are difficult to interpret in physical terms; they are often not
robust and work well with idealized image textures rather than more irregular patterns.
The bottleneck distance (Cohen-Steiner, Edelsbrunner & Harer 2007) as a measure of
similarity between persistence diagrams, is often inefficient in astrophysical and other
applications (see, e.g. Makarenko er al. 2018). We found that simpler statistics can
be more efficient when applied to real data (Henderson et al. 2017). In this paper,
we discuss topological data analysis (TDA) for random fields and identify simple,
yet efficient topological statistics. We informally describe what topological filtration
is, how to use it for comparison and classification of different scalar fields, and how
stable the results are. Section 2 describes the topological filtration of functions and
its representation in the form of persistence diagrams. We show two different ways
to represent a persistence diagram and introduce statistics that we have found useful
for distinguishing between one-dimensional signals and fields in two dimensions. In
§3 we discuss a standardization of fields, which makes comparisons more reliable.
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Section 4 focuses on topology in the presence of large-scale trends. In §5, we
investigate how the results of topological filtration depend on the image resolution. In
§ 6 we apply some of the TDA methods to observations and numerical simulations of
the ISM and summarize the key principles for the practical application of TDA in § 7.

2. Topological filtration and persistence diagrams

In this section we present the basic ideas of topological filtration along with
some useful topological statistics. Our aim here is to develop these topological ideas
at an intuitive level. Rigorous definitions can be found, for example, in Morozov
(2008), Adler et al. (2010), Edelsbrunner & Harer (2010), Adler & Taylor (2011),
Edelsbrunner (2014), Toth, O’Rourke & Goodman (2017), while Ghrist (2008), Park
et al. (2013), Pranav et al. (2017) and Motta (2018) also provide useful and less
formal expositions.

2.1. Topological filtration

Consider a random function f(x) defined in a domain M. Suppose that f(x) is smooth,
so that its extrema are critical points, Vf(x) =0. (We note that continuity is sufficient
in many applications.) We first introduce sublevel sets (e.g. Edelsbrunner & Harer
2008), those regions where the values of a random function f(x) are below a certain
threshold 4. The sublevel set is defined as

Ap={xeM:f(x)<h} (2.1)
A sequence of levels h; < h, < --- generates a nested family of sublevel sets of f,
A} CA, C .-, which is called the sublevel set filtration of f(x).

Each sublevel set has certain topological properties that we wish to characterize.
When dim(A,) =1 (i.e. f is a function of one variable), the topology is characterized
by the Betti number B, that counts the number of connected components. When
dim(A;,) = 2, the topological properties are the number of connected components,
Bo, and the number of holes in them (more precisely, loops whose interiors are the
holes), B,. In three dimensions, in addition to components and tunnels (loops), voids
can appear (i.e. hollow spaces bounded by closed surfaces), which are counted by
p.. Connected components, loops or tunnels, and closed shells are also referred to
as cycles of dimension 0, 1 and 2, respectively. The alternating sum of the Betti
numbers is a wider known topological quantity, the Euler characteristic,

N—1
x=Y (=1, 2.2)
k=0

where N is the dimension of M.
Equivalent results can be obtained by considering superlevel sets, defined as

Ap={xeM:f(x)>=h} (2.3)

The transition from the sublevel to superlevel sets only interchanges the Betti numbers
Bo and B; in two dimensions, and By and B, in three dimensions. For the rest of the
paper we will only discuss the sublevel set filtration.

The Betti numbers are topological invariants, i.e. they are not affected by
translations, rotations and continuous deformations of the space. In a typical
astrophysical application, where we deal with random fields, the components represent
matter clumps or clouds, the loops are closed chains of matter and the shells surround
regions of reduced density (voids).
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FIGURE 2. (a—d) Sublevel set filtration of a function of one variable (¢) and the resulting
persistence diagram (f). The horizontal green line indicates the increasing threshold #; the
values of the function f(x) <h are shown in a solid line, while f(x) > h in a dotted line.
On each panel the sublevel set at a fixed / is shown as the red intervals on the x axis.
The number of red intervals corresponds to a number of connected components, By, at
this level.

2.2. Topological filtration of a function of one variable

It is easiest to demonstrate a sublevel set filtration in one dimension; this will allow
us to develop some analogies and intuition about the method. We therefore consider
the behaviour of a random function with reference to a threshold level A, considering
the values of x where f(x) < h. Figure 2 provides an example of this technique. As
we vary the level A, the number of components in Aj,, shown as red intervals on the
x axis, changes. When & < 1 the corresponding sublevel set contains one component,
an interval around x = 0.3, and so By = 1. At A =1 a new component appears, a
point at x = 2, which implies that S, = 2 at this level. When we reach A =2 one
more component is born, at x=4, and so By =3. At h =3, the second and the third
components merge and By, = 2 again. According to the (so-called) Elder Rule, the
merger of two components results in the death of the younger one, i.e. the component
that was born later. In this particular case, the third component, which appeared at
h =2, dies at h =3, merging with the second one. Finally, the first and the second
components merge at 7 =4, which results in §y =1. We could continue to increase 4,
until this component also dies, if the function was defined in a wider range of x. Note
that at each local minimum the sublevel set gains a new component, while at a local
maximum, two components merge into one. Functions of one variable can also contain
inflection points, but these do not change the configuration of the sublevel sets.

The filtration process illustrated in figure 2 captures and quantifies the topology of
the sublevel sets. Tracing the varying sublevel sets as a function of threshold 4, the
topology remains static, or persists, between the critical points of f(x), and changes
only when A reaches a critical point. The lifetime, or persistence of a component is

https://doi.org/10.1017/50022377818000752 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377818000752

Topological data analysis and compressible MHD turbulence 7
(ll) 10 -_—'— ™7 T T T
5[
= of
=
5+
10
0
I
(b) 10} : ." ' /'— (c8_' T ‘ '_
i * 1 5
5fe 4 < r | ]
& [ = =6 + -
Sl 0 B —— ]
e _ / g 4l — ] -
= / 8 9l .I. -
=B 1%, !
t: /S a 1_ J 1
—10 -_I/ I 1 1 11 I v ]
" TS I S T U | I T T 1 -
10 -5 0 5 10 —10 -5 0 5 10
u, birth level h

FIGURE 3. (a) A Gaussian random function y = f(x), with the minima marked as green
points, and the maxima as red ones. (b) The persistence diagram obtained as the result
of sublevel set filtration of this function. Every point corresponds to one persistent pair
(u;, v), i=1,...,8. (¢) One more way to illustrate the result of topological filtration of f
is to plot pairs (u;, v;) as a sequence of barcodes, horizontal lines u; < h < v;, one for each
component. The red vertical line in (¢) corresponds to the threshold value & =0. This line
intercepts five out of the eight barcodes, which means there are five components at this
level: By =35. The total length Ly of these barcodes is equal to 61. As will be demonstrated
below, Ly(h) is a useful statistic for comparison of random functions.

defined as v — u, where u is the level at which the component appears (its birth), and
v is the level at which it disappears (its death). This is therefore simply a measure
of the range of levels 4 over which this component exists. Topological filtration of
a function results in a list of values (u, v), one pair for each component, and these
can be plotted in the (u, v)-plane to obtain what is called a persistence diagram. For
our example, the events of birth and death of the components are displayed on the
persistence diagram in figure 2(f). Zero persistence corresponds to the diagonal line
on the diagram; the most persistent components are those that are furthest from the
diagonal.

Thus, topological filtration identifies critical points of a random function, pairs them
and isolates those that correspond to its most significant (persistent) features. This
represents topological properties of the function in terms of a relatively small number
of quantifiable variables.

2.3. Presenting the results of filtration: persistence diagrams and barcodes

Figure 3(a) shows a small part of the realization of a §-correlated Gaussian random
process, f(x), which has a mean of zero and a standard deviation of 6.6. The result
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of the sublevel set filtration of f(x) is a 2 x m array where each of the m pairs (u;, v;)
represents the birth, u;, and the death, v;, of the i-th component, i=1, ..., m. For the
range of x shown, the number of such pairs is m = 8. Figure 3(b) is the persistence
diagram obtained from the topological filtration of the function shown in figure 3(a)
derived as described above. The persistence pairs (u;, v;) can also be represented as a
sequence of barcodes, as shown in figure 3(c), where every point of the persistence
diagram is shown as a horizontal bar extended between its birth and death levels.
The bars are sorted, from the bottom up, according to when they first appear in the
filtration process (which is also bottom up).

Since the number of components depends on the size of the domain, it is useful
to normalize the Betti numbers to unit length, area or volume as appropriate. We
found that different random functions can be usefully compared by considering the
dependence of the Betti numbers per unit length, area or volume on the level A,
normalized to the unit area under the curve. The variation of the total length of the
barcodes,

Lr=> (vi—u), (24)
i=1

also normalized to unit area under the curves, also turns out to be a useful diagnostic.
The barcode length can be conveniently expressed in terms of the standard deviation
of f(x). These statistics make the result of topological filtration independent of the size
of the data set and some are also insensitive to the presence of a large-scale trend and
the resolution of the data: we demonstrate these valuable properties in §§4 and 5.

2.4. Topological filtration of a 2-D field

The topological filtration and related techniques can straightforwardly be generalized
to multi-dimensional scalar random fields but they are easier described at an intuitive
level in two dimensions where the Betti numbers 8, and 8; are defined. Consider a
continuous random function f(x, y) defined in a finite domain, and its isocontour at
a level h, i.e. a curve in the (x, y)-plane where f = h. The set of points (x,y) where
f < h is the sublevel set. We vary h from smaller to larger values and record the
number of components (clouds) and holes in the isocontours at each level together
with the values of 4 where the components and holes appear and disappear. As in one
dimension, the isocontours can also be scanned down from larger to smaller values of
h: this does not affect the results. The transition from the sublevel sets to superlevel
sets swaps the persistent diagrams of By, and B; (in two dimensions). Here, we use
the sublevel sets, i.e. scan f(x,y) up from smaller to larger values.

When the level h reaches the lowest value of f in the domain, the first component
emerges as illustrated in figure 4. Each local minimum of f adds a new component
when it is reached by the increasing isocontour level 4. Two (or more) components can
merge, when 4 increases, if they are connected by a valley (that necessarily contains
a saddle point); then the labelling convention is that the younger component (i.e. that
formed at a larger /) dies whereas the older one continues to exist. Two components
merge when the isocontour contains a saddle point, see figure 4(g); three components
merge, when h passes through a monkey saddle (a degenerate critical point with a
local minimum along one direction and inflection point in another, as opposed to the
ordinary saddle with a minimum in one direction and maximum in another). Three
(or more) components can merge, when there are three (or more) saddle points at
the same level h. The components can merge to form a loop whose interior is a
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FIGURE 4. Topological filtration of a continuous, smooth, 2-D Gaussian scalar field,
f(x,y) (colour coded with the colour bar in (f)), which has a vanishing mean value, unit
standard deviation, and an autocorrelation function C(l) = exp[—/?/(2L?)], where L~ 15.
Sublevel sets, i.e. regions where f(x, y) < h, are shown for increasing values of h: (a)
h=—1.5, (b) h=—1.48, (c) h=0.2, (d) h=0.6 and (e¢) h=0.72. The components (C) and
holes (H) are labelled in (a—e) as described in the text. (g,7) Show how the components
merge and the holes split as the level /& changes. (f) Presents the full range of f(x, y).

hole; each hole at a level & surrounds a local maximum of f that is reached at some
higher level. Holes are born when a loop is formed and die when & passes through
the corresponding local maximum of f. Holes can split up at a saddle point, in which
case the labelling convention is to ascribe the original birth time to the hole with the
larger eventual local maximum, and deem the current level to be the birth time of the
second hole. Figure 4(h) illustrates this.

It is then clear that the birth and death of components and holes are intrinsically
related to the nature of, and connections between, the stationary points of the random
field (its extrema and saddles) and to the values of f at those points. Betti numbers
contain rich information about the random function. Eventually, as & approaches the
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absolute maximum of f in the domain, only one, most persistent component remains
(and no holes). Therefore, By = 1 and B; = 0 at levels h exceeding the absolute
maximum of f in the domain. The lifetime, or persistence, of a component or a
hole is characterized by the range of 4 where it exists. Selecting only those features
that are more persistent, one distils a simplified (and therefore, better manageable)
topological portrait of the random field.

Figure 4 illustrates the topological filtration of a two-dimensional random field using
sublevel sets f(x, y) < h, where & is the level altitude. Figure 4(f) shows a realization a
continuous, smooth, 2-D Gaussian scalar field, f(x, y), of in a domain of 100 pixels in
size, which has a vanishing mean value, unit standard deviation, and an autocorrelation
function C(I) =exp[—/F?/(2L?)] with L~ 15.

The absolute minimum of the field, f = —2.57, occurs at (x, y) = (31, 18). Thus,
the first component C1 is born at A= —2.57 and there are no holes at this level: we
have By =1 and B; =0 at h=—2.57. As h increases, more components are born. At
h=—1.5, panel (a), there are four components C1-C4 and no holes: =4 and 8, =0.
At h = —1.48, panel (b), components Cl and C4 have merged via a saddle point
between them, passed through at a smaller £; the surviving component is labelled
C1 whereas C4 has died as it was born later than C1. There are no holes at h =
—1.48: By =3 and B, = 0. At a higher level & = 0.2, shown in panel (c), most of
the components are merged into a big island, and there are three smaller islands, C5,
C6 and C7, in the bottom half of the panel; moreover, one hole H1 appeared: S, =4
and B, = 1. At a level h = 0.6, panel (d), the number of components is 2, By = 2;
and one more hole H2 has appeared, §; = 1. At a higher level & = 0.72, panel (e),
all components have merged into a single island, 8y =1. There are two holes labelled
H2 and H3, each around a local maximum of f, so f; = 2. Note that some holes
(bordering on the field frame) have not yet completely formed and are not taken into
account as holes. There are six such cases in panel (e). The holes H1 and H2, which
surround the maximum lower than f =0.72, have already died (contracted).

3. Advantages of data standardization in topological filtration

In this section we describe a procedure for standardizing 1-D signals and 2-D fields.
This preprocessing simplifies the comparison of the results of topological filtration
that have been applied to different data. For example, one of our main motivations
is to compare the topology of astronomical observations and numerical simulations:
standardizing the data ensures a natural non-dimensionalization of the data and allows
us to focus on their more subtle properties. We will use 1-D examples to show how
data standardization affects persistence diagrams.

For a random function f(x), its mean value and standard deviation are denoted (f)
and oy, respectively. We introduce a standardized version of f(x) as

G- o)

Oy

so that (f) =0 and o7 = 1.
Figure 5(a) shows the graphs of three related functions. The first one, shown in
solid blue, is
f(x) =5sin(x) + 12 cos(0.2x), (3.2)

with (f) = —1.32 and oy = 8.75. The first term represents a higher-frequency
fluctuation superimposed on a lower-frequency trend. The second one is f; =f + 10
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FIGURE 5. Signal standardization affects persistence diagrams. (a) A signal f(x) of (3.2)
(the solid blue line), and its shifted f; =f + 10 (dashed red) and scaled f, = 3f versions
(dash-dotted green). The persistence diagrams of (b) f (circles) and f; (crosses), and (c) f
(circles) and f; (triangles). (d) The persistence diagrams of the signals f, fi and f, coincide
when they are standardized.

(dashed red), and the third is f, = 3f (dash-dotted green). The blue dots in figure 5(b)
is the persistence diagram of f, while red crosses show the results of filtration of
fi. Both diagrams have the same spatial configuration, but the increased magnitude
of fi results in an upwards shift of its components along the diagonal (red crosses).
However, the persistence diagrams of f and f5, shown in figure 5(c), differ in a
non-trivial way: the increased amplitude results in the components of f, being spread
out in the persistence diagram, while retaining the same relative spacing as those of
y. If we now standardize the signals using (3.1), the persistence diagrams of f, f; and
f> become identical as shown in figure 5(d). Their topologies are thus easily seen to
be identical, as expected. Standardization of 2-D and 3-D fields has the same effect
on the persistence diagrams.

4. Large-scale trends

In practice, it is often necessary to work with data in which small-scale random
fluctuations are superimposed on large-scale trends. For example, figure 1(a) shows
the gas density n observed in the Milky Way. It contains large-scale trends along
and across the galactic mid-plane at z = 0, mainly caused by vertical stratification
and azimuthal variations due to the spiral arms. The best method to isolate the trend
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FIGURE 6. Influence of a linear trend on persistence diagrams. (a) Gaussian §-correlated
random fluctuations with zero mean and unit standard deviation. (b) A new signal f, =
fo + /1 (magenta), formed by combining the Gaussian fluctuations f; and a linear trend
fo = x/2 (dashed black line). (¢) The persistence diagram for the functions f;
and f, obtained without standardization. (d) The persistence diagram obtained after
standardization of both signals, using (3.1). In the persistence diagrams, components
arising solely from the fluctuations are shown as blue dots and those from the fluctuations
plus trend are shown as magenta triangles.

from the fluctuations is not obvious though — we could use horizontal averages, apply
2-D smoothing, fit polynomials or splines, employ wavelet filtering — and the results
obtained will often be dependent on the choice that is made.

In this section we examine how the presence of a trend influences the topological
data analysis and we will show that some measures are relatively insensitive to the
presence or absence of a large-scale trend in the data.

4.1. Trends in 1-D signals

The signal f; in figure 6(a) is Gaussian §-correlated random noise, with zero mean
and a unit standard deviation. Figure 6(b) shows a signal f, (as solid magenta
line), which is obtained by adding f; to a linear trend fy = x/2 (dashed black line).
Figure 6(c) demonstrates how the addition of the trend alters the appearance of the
resulting persistence diagram: the compact cluster of components produced by the
fluctuations (shown as blue dots) are spread out along the diagonal by the linear
trend (magenta triangles). Applying the standardization of (3.1) removes the diagonal
shift of the components but also produces a substantial difference in the lifetime of
the components (see figure 6d) that was not present in the non-standardized diagram.
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FIGURE 7. Influence of a linear trend and standardization on the Betti numbers (S, in
1-D case), and the total barcode length L; at levels. (a) The number of components By/d
at each level h, calculated per unit length of the graph (here d is the length along the
x-axis). The result is shown for the Gaussian §-correlated noise f; (solid blue line) and for
the function f, (in the dotted magenta line), that is the sum of a linear trend fy =x/2 and
the noise f;. (b) The normalized Betti number B,/d after standardization of the functions
fi1 and f>, using (3.1). (¢) The variation of B,/d with h normalized so that the area under
each curve is one and (d) the corresponding normalized total barcode length Lr(h).

On the basis of this, we suggest that the persistence diagram is poorly suited to the
analysis of fluctuations in a signal in the presence of a large-scale trend.

Figure 7(a,b) shows that this problem remains if we consider the Betti number fy.
However, figure 7(c) demonstrates that if we normalize the plot of 8y/d against i so
that the area underneath the curve is one, then the two curves are similar. This is true
for similarly normalized curves for Ly (figure 7d). Whilst the trend clearly introduces
stronger local variations in these variables, their overall shape is the same.

We may have identified a potentially useful way to compare the topology of
fluctuations in different data sets without having to first separate the large- and
small-scale signals. This is worth investigating further, with another example.

Consider a more complicated case of f(x) given in (3.2), as plotted in solid blue
line in figure 5(a), with added §-correlated Gaussian random noise with the zero mean
and increasing standard deviations of A =1, 1.5, 2.5 and 3.5, shown in figure 6(a).

The resulting signals are shown in figure 8(a) by the solid black line for A=1 and
dash-dotted green line for A =2.5, and panels (b,c) show the persistence diagrams for
them. Red triangles in the persistence diagram are for the trend f. The fluctuations
produce a cloud of points in the persistence diagrams aligned with the diagonal. At
the low noise amplitude, these components die fast and are separated from those
arising due to the trend, which are more persistent. Increasing the amplitude of
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FIGURE 8. The influence of a trend on a persistence diagram. (a) Solid black line: the
1-D signal f(x) of (3.2), as shown in figure 5(a), with added Gaussian §-correlated random
noise with standard deviation A = 1. Dash-dotted green line: the Gaussian random noise
added with A =2.5. The persistence diagrams for the signals shown in (a): (b) A=1, (¢)
A =2.5. The red triangular markers on the persistence diagrams correspond to f(x) in the
absence of noise (i.e. A=0).

the fluctuations spreads this cloud out, mixing the trend and the fluctuations. The
interpretation of the persistence diagram is no longer so clear.

Figure 9 shows the original and normalized plots of fy/d and Ly for the function
(3.2) with all four choices of added noise, A = 1, 1.5, 2.5, 3.5. The normalized
versions are not sensitive to the magnitude of A.

5. Topological characteristics and the image resolution

In this section we will show that the topological statistics, introduced above, remain
stable when the image resolution decreases.

Figure 10(a) shows an original observation of the hydrogen gas density distribution,
n(¢, z), in a region of the Milky Way, from the same data as figure 1(a), after data
standardization using (3.1). The image is of 131 pixels height by 349 pixels wide. The
horizontal extent of the region shown is about 5.77 kpc, so the pixel width is about
17 pc. The resolution of the data was coarsened by convolving the image with a 2-D
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FIGURE 9. Original (a,c) and normalized (b,d) plots of By/d and Ly for function (3.2)
with added noise of various standard deviations A.

Gaussian filter,

(n)(x)

_ INa—x—x)2/Q2R) 12,7

= /n(x )e d*x’'. 5.1
We varied the width of the Gaussian kernel as [ =2, 4, 6 pixels and the resulting
smoothed images are shown in figure 10(b—d). The smoothed images were standardized
and a topological filtration applied. Degrading the image resolution using bi-cubic
interpolation, where the output pixel value is a weighted average of pixels in the
4 x 4 neighbourhood, has the same effect as Gaussian smoothing.

The topological filtration of a 2-D image is quantified in terms of two topological
variables, the number of components S, and the number of holes 8;, both functions of
the threshold level h. For a statistically stationary random field in two dimensions, the
magnitudes of the Betti numbers are proportional to the area of the image and they
are therefore usefully presented per unit area. The normalization of the Betti numbers
per correlation cell (area or volume) was suggested by Makarenko et al. (2018) to be
more physically informative and sensitive to the topological properties of the random
fields rather than its spatial scale. Here we follow the simple approach, calculating the
Betti numbers per 1 kpc?.

The Betti numbers and the total length of the barcodes obtained from filtering the
gas density fields of figure 10 are shown in figure 11. It is clear that smoothing with
[ = 4-6 leads to a significant loss of detail that affects the topological structure of
the data, especially for B,. It is understandable that smoothing reduces the numbers
of both components and holes (i.e. By and B;), and contracts the barcodes. Howeyver,
further normalization of the dependencies Bo(h), Bi(h) and Lr(h) alleviates the
problem of image resolution. Figure 12 presents the same results as figure 11 but
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FIGURE 10. (a) Gaussian smoothing of HI1 number density in the Milky Way
from Kalberla et al. (2010) at R=10 kpc. (a) Represents a cross-section of the gas density
distribution, n(¢, z). Here the field is shown after standardization, so that negative n values
occur. The results of blurring this image by a Gaussian function with a kernel width
[=2, 4 and 6 are shown in (b,c,d), respectively. We applied the Gaussian smoothing to
the original (non-standardized) field, and then standardized the obtained 2-D matrix. The
colour bars are identical in all panels, the gas density values are in o, units, the number
of contours on each map equals to 80.

https://doi.org/10.1017/50022377818000752 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377818000752

Topological data analysis and compressible MHD turbulence 17

(b) 4 T T T T T T T T

-«-1 =4.0
—1 =6.0 1

1 i
1 0 1 2 3 4 5 6 T 8
hjo, hjo,

FIGURE 11. Topological characteristics of the observed H1number density n of figure 10
under Gaussian smoothing. The dependence of the Betti numbers per unit area, (a) By and
(b) By versus the isocontour level & (given in the units of o,, the standard deviation of n).
The total length of barcodes (in the units of o,) is shown as a function of & for (c) By
and (d) B;. Solid blue lines are for the density field at the original resolution, the other
lines represent fields smoothed using the Gaussian kernel (5.1) with /=2, 4 and 6.

normalized to unit area under each curve. Thus, images of different resolutions can
be compared directly provided both the observable quantities and the results of their
topological filtration have been properly standardized.

Thus, topological filtration helps to identify a range of resolutions where statistical
properties of the random field remain stable, extending this beyond second-order
moments or power spectra. For the specific field of the interstellar gas number
density, smoothing affects f, more than f;. For example, B,(h) still contains some
details for I =4 whereas Sy(h) loses them for & = 0.50,. This suggests that n(x) has
narrow minima and broad maxima, so that the minima are lost first as the resolution
is being reduced.

6. Comparing the observed and simulated gas density fields

In this section we compare 2-D gas density fields observed in different parts of the
Milky Way (from the GASS survey — Kalberla et al. 2010) and taken from 3-D MHD
simulations of the ISM (Gent et al. 2013a,b).

The GASS data, shown in figure 13, are from cylindrical surfaces at R = 10 and
20 kpc. We consider separately three regions at R =10 kpc, separated by the vertical
lines, that have equal areas. The average values of n are quite different in the three
regions because of the spiral arm pattern of a significant strength at R =10 kpec. Its
strength decreases with R and variations of n with azimuth ¢ are much weaker at
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FIGURE 13. The HInumber density n (atom cm~3) from the GASS survey (Kalberla et al.
2010) in 5 kpc-wide strips along the galactic mid-plane (|z] < 2.5 kpc) at R = 10 kpc
(a) and 20 kpc (b). The vertical lines in (a) separate three regions where gas density
apparently has distinct properties and which are analysed separately.

R=20 kpc (note the difference in the colour schemes in the two panels of figure 13).
Therefore, we do not divide the region at R =20 kpc into separate parts.

We also analysed, using the same tools as for the observed gas distribution,
gas density obtained from numerical simulations of the interstellar medium in a
1 kpc x 1 kpe x 2 kpc domain. Parameters of the simulation are close to those in the
Solar neighbourhood, R = 8.5 kpc. Random flows in the simulated ISM are driven by
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FIGURE 14. Results of topological analysis of the HI number density in four regions in
the Milky Way (as specified in the legends) shown in figure 13 and described in the text.
(a,b) Betti numbers per unit area, f, and B, respectively. (c,d) Total barcode lengths for
Bo B, respectively. All variables are presented as functions of the level height 4 in the
units of the standard deviation of the density variations o,. All curves are normalized to
the unit underlying area.

explosions of supernova stars that inject into the system large amounts of thermal and
kinetic energy. The model includes, among other effects, large-scale velocity shear
due to the galactic differential rotation, stratification in a gravitational field of stars,
heating by the supernovae, optically thin radiative cooling and magnetic fields which
are due to a mean-field dynamo action. We took a vertical cross-section through the
middle of the computational domain at 12 moments separated by 2.5t where t is
the correlation length of the random flow in the time domain. The time lag is large
enough for the snapshots to be statistically independent to a reasonable approximation.
Figure 1(b) shows one such cross-section.

We standardized the data using (3.1), applied the topological filtration described in
§ 2 and computed the Betti numbers and barcode lengths for each level A. The results
were normalized to eliminate, as much as possible, the effects of the image resolution
and systematic trends as described in §§4 and 5. The observations at R =20 kpc have
a lower linear resolution than at R =10 kpc because the angular width of the telescope
beam was the same. Moreover, the resolution in each panel of figure 13 decreases
from right to left, since the right end of the galactocentric azimuthal range shown is
much closer to the Sun. The numerical simulations have a resolution higher than any
of the observational data.

The results shown in figure 14 suggest that the gas distributions in the right-hand
part of figure 13(a) and in figure 13(b) are topologically similar, and both are
different from the other two regions at R = 10 kpc. This can be explained by
the fact that the left and middle zones in figure 13 mostly lie within the Carina
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FIGURE 15. As figure 14 but for the simulated interstellar gas. The error bars represent
the standard deviation of the scatter of the corresponding variable between the twelve
snapshots used for the analysis.

spiral arm (roughly, the azimuthal range 300° < ¢ < 250°) whereas the right zone
mostly comprises the inter-arm region close to the Sun (roughly, the azimuthal range
230°<¢<200°). Spiral arms are the sites of higher star formation rate. Star formation
is very likely to produce a more energetic forcing of the interstellar turbulence,
via supernova explosions and expanding supernova remnants as well as winds from
massive stars. The outer Galaxy R = 16 kpc hosts only weak star formation and spiral
arms are expected to be less pronounced there; condition of the interstellar gas may
be expected to be similar to that in the inter-arm regions near the Sun. Different
properties of turbulence in the arms and inter-arm regions are often suspected but
there is little observational support for this assumption, mainly because the difference
is rather subtle. It is remarkable that the topological data analysis appears to be more
sensitive to the expected difference than other methods, but this suggestion needs to
be carefully verified.

We show in figure 15 the result of a topological filtration of the simulated gas
density. The curves represent means and the error bars the standard deviations across
the twelve snapshots. The pronounced, rather symmetric maximum of S;(h) appears
to be closest to that for the middle zone of the observational data at R =10 kpc (the
dotted red lines in figure 14). That region in the observations shows highly skewed,
long-tailed dependence on h for By, which is also the case for the simulated data. The
middle zone of figure 13 is dominated by the Carina spiral arm, and this suggests
that the parameters selected for the numerical simulation are more appropriate for
the spiral arms of the Milky Way. The promise of topological data analysis is quite
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evident but more work with both observational and numerical data are required to
verify and substantiate these suggestions.

7. Conclusions and discussion

We have outlined an approach to topological data analysis that allows for
comparisons of random fluctuations in different data sets that does not rely on
assumptions of Gaussian statistics. The analysis follows the following steps:

(i) Standardize the data by subtracting the mean and normalizing by the standard
deviation. This makes the topological measures insensitive to the magnitude of
the data.

(i) Compute the Betti numbers By and B, (for two-dimensional data), and the total
barcode length, at each level /& of a topological filtration.

(iii)) Normalize the Betti numbers and barcode lengths to the unit length or area as
appropriate.
(iv) Normalize the results further to unit area under each curve.

Working with the normalized curves removes the sensitivity of the topological
measures to the presence of large-scale trends and to the resolution of the data.
Topologically similar data will have similar normalized variations of By, B; and Lg
with A.

The effects of the standardization and systematic trends depend on the scale
separation between the mean values and fluctuations. For example, for a weaker
scale (or frequency) separation between the two terms in (3.2), the points in the
standardized persistence diagram similar to figure 5(c) no longer coincide. For f(x)
of this form, the standardization is still useful, when the frequency of the second term
is changed from 0.2 to 0.5, but not for frequency ratios that are still closer to unity.
The marginal frequency ratio (or scale separation) is, of course, model dependent.

By applying this approach to observations and numerical simulations of the gas
density distribution in the turbulent interstellar gas of the Milky Way, we were able
to distinguish observations of the spiral arms from those of inter-arm regions and
to identify which regions of the Galaxy most closely resemble the domain of the
simulations.

The kinetic and magnetic Reynolds numbers of the simulations used here do
not exceed 100 (Hollins et al. 2017) and are by far smaller than those in the
interstellar gas of the Milky Way. This means that the simulated fluctuations have a
much narrower range of scales than the observational data. However, comparison of
figures 14 and 15 suggests that this does not undermine the topological comparison
and its discriminatory power. This is understandable since the whole approach of
topological filtration isolates the most significant, ‘persistent’ features of random
fields, and these are dominated by fluctuations of larger scales. Robustness of the
topological filtration under changing image resolution has a similar reason.
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