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FARTHEST POINTS IN W*-COMPACT SETS

R. DEVILLE AND V.E. ZIZLER

We show that while farthest points always exist in w* -compact sets in duals to Radon-
Nikodym spaces, this is generally not the case in dual Radon-Nikodym spaces. We also
show how to characterise weak compactness in terms of farthest points.

The purpose of this note is to find under what conditions the Edelstein-Asplund-
Lau results on the existence of farthest points in weakly compact sets can be extended
to w* -compact sets.

To fix our notation, let C be a norm closed bounded subset of a real Banach space
X and x be an element of X. We define

r(x) = r(x,C) = sup{||x - z\\ | z £ C}

and call r(x) the farthest distance from x to C. Equivalently, r(x) is the radius of
the smallest ball of centre x , containing C. The function r is convex as supremum of
such functions, and continuous since \r(x) — r(y)\ ^ ||x — y\\, for all x , y £ X . A point
z £ C is called a farthest point of C if there exists x £ X such that ||x — z|| = r(x).
The existence of a farthest point of C is equivalent to the fact that the set

is non-empty. Since it follows that any farthest point of a convex set C in a locally
uniformly rotund space is a strongly exposed point of C, the notion of a farthest point
is widely used in the study of the extreme structure of sets. In fact, it was the first
discovered method of obtaining exposed points in sets [10]. We refer the reader to [3]
and [5] for unexplained notions.

Extending the results of [6] and [1], Lau showed [9] that if C is a weakly compact
set in a Banach space X, then the set D defined above is dense in X and thus, in
particular, C has farthest points. Other extensions of the results of [6] and [1] may be
found in [11]. The connection between farthest points and strongly exposed points in
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434 R. Deville and V.E. Zizler [2]

mentioned above led Edelstein and Lewis [7] to ask the following question: Does the
existence of (strongly) exposed points in C imply the existence of farthest points in
C1

Proposition 1 gives a negative answer to this question. Moreover, it shows that
Lau's result on weakly compact sets does not always extend to w* -compact sets in a
dual space X*. However, our Proposition 3 shows that if X has the Radon-Nikodym
property then any w* -compact set in X* contains a farthest point, thus extending
Proposition 1 of [11]. Finally, we point out in Proposition 4 that Lau's result actually
characterises weakly compact sets.

PROPOSITION 1. Let ^ ( N ) be the Ba.na.ch space of all real summable sequences
oo

x = (xn), equipped with its usual norm \\x\\ — ^ \xn\- Let
n = l

C = {(on) G /'(N): £ (l«»l + l«n|2) < I}-

Then C is a weak* -compact convex of £](N) and C has no farthest points.

P R O O F OF PROPOSITION 1: To prove that C has no farthest points, it is enough
to show that, given x G £1(N):

i) r(x) = 1 + ||a:|| and

ii) \\x - z\\ < 1 + ||a?|| for all z 6 C .

To do so, first notice that if z € C then ||z|| < 1. Therefore, ||x - z\\ < \\x\\ + \\z\\ <
1 + \\x\\ and ii) is proved. This also shows that r(x) < 1 + ||K|| . Hence, to prove i), it
is enough to construct a sequence (un) of elements of C such that

For each n G N , let 6n > 0 be such that n(6n + 6%) = 1. Note that 0 < 6n < £

and lim n8n = 1. Let un = (Sn,...,Sn,O,O,...) where 8n is repeated n times. By
n—too

our choice of Sn , un £ C .
oo

Now given x G ̂ ( N ) and e > 0, let p G N be such that £] |xi| < | . We have
n=p+l

for n > p

t=p+l i=n+l

t=l i=p+l
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Choose no > p big enough so that (n — 2p)6n > 1 — f for n ^ no . We have that for
all n ^ n0 :

| | * - « J | > l + ||x||- e.

Therefore,
lim | | i - « n | | =

n—»oo

Remarks, (a) Since £J(N) has the Radon-Nikodym property, C is the norm closed
convex hull of its strongly exposed points [3]. Hence, Proposition 1 gives a negative
answer to the question of Edelstein and Lewis mentioned above.

(b) The proof of Proposition 1 shows that the intersection of all the balls containing
C is the unit ball of £J(N). Note also that the sequence {un} in the proof does not
depend on x.

Before proceeding, let us recall that the subdifferential of a convex function /
defined on a Banach space X is defined by

df(x) = {x* E X*\(Vy 6 X)((x*,y - x) < f(y) - /(*))}.

It was shown in [9] that if C is a closed bounded subset of a Banach space X and r(x)
is the farthest distance function for C, then for any x £ X and x* £ dr(x), we have
that \\x*\\ < 1 and thus sup{{x*,x — z): z 6 C} ̂  ||x*||r(a:) ^ r(x). Moreover, Lau
showed that the set

G = {x £ X\(Vx* G dr{x)){sup{(x*, x - z): z G C} = r(x))},

is dense Gg in X.
We shall need the following.

LEMMA 2. Let C be a closed bounded subset of a Banach space X and r the
farthest distance function on X associated with C. Assume that r is Frechet differ-
entiable at x0 £ X . Then

r(x0) = sup{(zjj,:co — z) \ z € C}, where dr(x0) = {x*0}.

PROOF: According to Lau's result mentioned before the statement of Lemma 2 it
is enough to show that, under our assumptions, the following implication holds:

If r(z0) — sup{(a;J,a;o — z)\z G C} = a > 0, then there is a neighbourhood U of
XQ such that

r{y) - sup{(y*,y - z)\z G C} > 0,
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whenever y £ U and y* £ dr(y).

To prove that the implication holds, take y £ X , y* £ dr(y) and z £ C. We have:

Therefore,

| sup{(y*,y -z)\zeC}- sup{(a :$ ,xo - z)\z £ C}\ ^ \\y - xo\\ + r(xo)\\y* - x*\\.

Now choose a neighbourhood U of XQ such that

2 | |y-«o| |+r( i o) | |y*-iBSII < "

whenever y £ U and y* £ dr(y). This is possible due to the Frechet differentiability
of r at Xo [2, Lemma 5]. If y £ U and y* £ dr(y), then

(r(*0) - sup{(x5,*0 -z)\ze C}) - (r(y) - sup{(y*,y - z)|« 6 C})

< |r(aj0) - r(y)\ + | snp{(y\y - z)\z £ C} - sup{(x;,x0 - z\z £ C}|

< ll*o - 2/H + | |j/ - *o|| + r(xo)\\y* - x*\\ < a

and this implies, by the definition of a, that

r(y) - sup{(y*,y - z)z £ C} > 0

whenever y £ f7 and y* £ 9r(t/). Our implication is proven and the proof of Lemma 2
is finished. |

PROPOSITION 3. Let X be a Banach space with the Radon-Nikodym property,

let X* be its dual space in its usual dual norm and C be a w* -compact subset of X* .

Then the set D of all points in X* which have farthest points in C contains a subset

D\ dense and Gs in X*.

PROOF: First notice that the farthest distance function r associated with C is
w* -lower semicontiniious as supremum of such functions. Since X has the Radon-
Nikodym property it follows from [4] that r is Frechet differentiate on a dense Gg
subset D\ in X* . So, to finish the proof of Proposition 3 we show that if r is Frechet-
differentiable at x, then x admits a farthest point in C. If x 6 D ] , denote by x* the
only element of dr(x). Since r is w* -lower semicontinuous and Frechet differentiable
at x , x* £ X [2, Corollary 1]. Since C is w* -compact, there is a z0 £ C such that
{x*,x — zo) = sup{(s;*,a; — z)\z £ C } . Using Lemma 2 we have r(z) = (x*,x — ZQ) ^
||x*|| • ||z - zo|| < \\x - zo\\ ^ r(x). Thus \\x - zo\\ = r(x) and the proof is finished. |
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PROPOSITION 4. Let X be a. Banach space and C be a closed convex bounded
subset of X . The following are equivalent:

(i) C is weakly compact;
(ii) for every equivalent norm || ||j on X, D — {x G X\r(x) = \\x - z || i

for some z G C} is dense in X, where r(x) = sup{||a; — z\\i\z G C}.

PROOF: (i) => (ii) was proved by Lau in [9]. Conversely, let || • || be the norm of
X and let B(x,r) denote the || • || -ball centred at x and radius r. Assume without loss
of generality that C C 17(0,1). By James' theorem [5] there is a functional / G X*,
||/|| = 1 which does not attain its supremum on C. Let B\ = 5(0,6) D {x £ X|_i <
f(x) < 1} and || • ||i be the Minkowski functional of B\. Note that if Bi(x,r) is the
ball cenetred at x with radius 8 with respect to the norm || • | | i , then

B1(x, 8) = 6B(x, 6)n{y£X\-6^ f(x) - f(y) < 8}.

Pick x0 G B(0,4)n {x G X\f(x) < - 3 } . We claim that if x G 5(x o , l ) , then x
has no farthest point in C when X is equipped with the new norm || | | j , hence D is
not dense in X .

To see it, we first show that r(x) = a, where a = sup{/(z)|2 G C} — f(x).
Indeed, let y £ C; we have |/(y) - f(x)\ < snp{f{z)\z £ C} - f(x) and \\y - x|| <
||y|| + ||xo|| + Ĥ o — x|| ^ 6 ^ 6a (note that for any y £ C and x £ l?(xo,l) we have
f(y) ^ - 1 and f(x) < f{x0) + f(x - x0) < - 2 and thus a > 1). Thus y G B(x,a).
Therefore C C Bi(x,a) and this shows that r(x) ^ a. Conversely if 6 < a, there
exists y G C such that f(y) — f(x) > 8 and so y £ Bi{x,8). This shows that r(x) ^ a.

Now for y £ C, we have \\y - z|| < 6 < 6a and \f(y) - f(x)\ < sup{/(z)|z G
C} — f(x) — a, hence ||x — y||i < a = r(x) and so y is not a farthest point from x in
C. I

Remark. We would like to point out that, while differentiability properties can be used
to show that the set D of points wliich have at least one farthest point in a w* -compact
C of a dual Banach space X is dense in X, convexity properties can be used to show
the uniqueness of farthest points. More precisely, using standard rotundity arguments,
we have

PROPOSITION 5. Let X be a strictly convex Banach space, and C be a norm
closed bounded subset of X such that the corresponding set D is dense in X .

Then the set

U = {y £ X\y has a unique farthest point in C}

is also dense in X .
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PROOF: First the strict convexity of X implies that for all x G X and A > 1,

B(x, | |x| |)nS(Ax,| |Ax| |) = {0}

where B(x,r) (respectively, S(x,r)) denotes the ball (respectively, the sphere) of centre
x and radius r.

Now let x G D and let z be a farthest point from x in C . By translation, there
is no loss of generality in assuming z = 0 . It is enough to show that for any A > 1,
y — \x has a unique farthest point in C, namely 0. We have

B(\x,\\\x\\)DB(x,\\x\\)2C

and hence r(Xx) ^ ||Ax||. On the other hand,

{0} C C n S(Ax, ||Ax||) C B(x, \\x\\) n 5(Ax, ||Ax||) = {0}.

Therefore r(Xx) = ||Ax|| and the only farthest point from y in C is 0. |

Note that if X is not strictly convex, the set U of points which admit unique
farthest points can be empty. Indeed, let X = co(N) and

C = {(zn) £ co(N)|0 < zn < 1 for all n}.
n

C is a norm compact convex subset of co(N), and therefore D = co(N). On the other
hand, if x = (xn) 6 co(N), we have

r(x) = max{max{|xn|, \xn \}\n G N}
n

so r(x) = |xn o | or r(x) — Ix^ — -~\, for some n0 G N . Define:

c, - { ( g G c|Zno = o}

C2 = {(*„) G C|z^ = i -} .

If r(x) = Ix^l (respectively, r(x) = \xng - ±\), Ci (respectively, C2) is included in
the set of farthest points from x in C. In both cases x £ U.
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