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FARTHEST POINTS IN W*.COMPACT SETS

R. DEVILLE AND V.E. ZIZLER

We show that while farthest points always exist in w*-compact sets in duals to Radon-
Nikodym spaces, this is generally not the case in dual Radon-Nikodym spaces. We also
show how to characterise weak compactness in terms of farthest points.

The purpose of this note is to find under what conditions the Edelstein- Asplund-
Lau results on the existence of farthest points in weakly compact sets can be extended
to w* -compact sets.

To fix our notation, let C be a norm closed bounded subset of a real Banach space
X and z be an element of X . We define

r(z) =r(z,C) = sup{||lz — z|| | z € C}

and call #(z) the farthest distance from = to C. Equivalently, r(z) is the radius of
the smallest ball of centre z, containing C'. The function r is convex as supremum of
such functions, and continuous since |r(z)—r(y)| < ||z —y||,forall z, y € X. A point
z € C is called a farthest point of C if there exists £ € X such that ||z ~ z|| = »(z).
The existence of a farthest point of C is equivalent to the fact that the set

D = {z € X|(3z € C)(|l= — zl| = r(=))}

is non-empty. Since it follows that any farthest point of a convex set C in a locally
uniformly rotund space is a strongly exposed point of C, the notion of a farthest point
is widely used in the study of the extreme structure of sets. In fact, it was the first
discovered method of obtaining exposed points in sets [10]. We refer the reader to [3]
and [5] for unexplained notions.

Extending the results of {6] and [1], Lau showed [8] that if C is a weakly compact
set in a Banach space X, then the set D defined above is dense in X and thus, in
particular, C' has farthest points. Other extensions of the results of [6] and [1] may be
found in [11]. The connection between farthest points and strongly exposed points in
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mentioned above led Edelstein and Lewis [7] to ask the following question: Does the
existence of (strongly) exposed points in C' imply the existence of farthest points in
c?

Proposition 1 gives a negative answer to this question. Moreover, it shows that
Lau’s result on weakly compact sets does not always extend to w*-compact sets in a
dual space X*. However, our Proposition 3 shows that if X has the Radon-Nikodym
property then any w*-compact set in X* contains a farthest point, thus extending
Proposition 1 of [11]. Finally, we point out in Proposition 4 that Lau’s result actually

characterises weakly compact sets.

PROPOSITION 1. Let £1(N) be the Banach space of all real summable sequences

o0
z = (zn), equipped with its usual norm |z|| = }_ |zn|. Let

C ={(an) € (N): Y_ (lan] + Janl*) < 1}.

Then C is a weak* -compact convex of {*(N) and C has no farthest points.

PROOF OF PROPOSITION 1: To prove that C has no farthest points, it is enough
to show that, given z € £2(N):
i) r(z)=1+4|=|l and
ii) |lz—z||<14|z| forall z€ C.
To do so, first notice that if z € C then ||z|| < 1. Therefore, ||z — z|| < ||| + ||2]| <
1+ ||z|| and ii)is proved. This also shows that r(z) < 1+ ||z||. Hence, to prove i), it

is enough to construct a sequence (u,) of elements of C such that
lim Jle — unll = 1 + o]
n—oo

For each n € N, let §,, > 0 be such that n(é, + 62) = 1. Note that 0 < §, < 1
and lim né, = 1. Let u, = (§,,...,6,,0,0,...) where §,, is repeated n times. By
n—oo
our choice of §,, u, € C.

o0
Now given z € £'(N) and £ > 0,let p € N be such that Y |z;| < £. We have

n=p+1
forn>p
P n had
e —wall = Y lei = Eal + 3 loi—bal+ 3 e

i=1 i=p+1 i=n+1
} 4 n

> el —pbn— ) el + (n— p)én
i=1 i=p+1

€ €
= |l - 3 — pbn — 3 +(n —p)n.
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Choose no > p big enough so that (n —2p)é, > 1 — § for n > ng. We have that for
all n > ng:
I = wall > 1+ 2] — e.

Therefore,
im ||z —us|l =1+ ||z]|-
n—o0

Remarks. (a) Since £!(N) has the Radon-Nikodym property, C is the norm closed
convex hull of its strongly exposed points [3]. Hence, Proposition 1 gives a negative
answer to the question of Edelstein and Lewis mentioned above.

(b) The proof of Proposition 1 shows that the intersection of all the balls containing
C is the unit ball of £1(N). Note also that the sequence {u,} in the proof does not
depend on z.

Before proceeding, let us recall that the subdifferential of a convex function f
defined on a Banach space X is defined by

8f(z) = {=" € X*|(Vy € X)({=",y — z) < f(y) — f(=))}-

It was shown in [9] that if C is a closed bounded subset of a Banach space X and r(z)
is the farthest distance function for C, then for any £ € X and z* € dr(z), we have
that Jlz*|| < 1 and thus sup{(z*,z — 2): z € C} < ||l=*||r(z) < r(z). Moreover, Lau
showed that the set

G = {z € X|(Vz" € 8r(z))(sup{(z*,z — z): z € C} = r(x))},

is dense G5 in X.
We shall need the following.

LEMMA 2. Let C be a closed bounded subset of a Banach space X and r the
farthest distance function on X associated with C. Assume that r is Fréchet differ-
entiable at ¢ € X . Then

r(zo) = sup{(zg,z0 — 2) | z € C}, where Or(zo) = {24}

PROOF: According to Lau’s result mentioned before the statement of Lemma 2 it
is enough to show that, under our assumptions, the following implication holds:

If r(zo) — sup{(z§,z0 — z)|z € C} = @ > 0, then there is a neighbourhood U of
z¢ such that

r(y) —sup{(y",y — )|z € C} > 0,
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whenever y € U and y* € dr(y).
To prove that the implication holds, take y € X, y* € 8r(y) and z € C. We have:

(¥"y—2) = (¥ 20 — 2)| + |{y", 20 — 2) — (25,20 — 2)|

'(y*ay - z) - <w;7‘c0 - z)| < |
<yl fly = zoll + flv* — =51l 2o — [ -

Therefore,
[sup{(y*,y — 2}z € C} — sup{{z§,z0 — 2)|z € C}| < |ly — @ol| + r(z0)lly* — z5]|-
Now choose a neighbourhood U of z¢ such that
2/ly — oll +r(zo)lly* — z5ll <

whenever y € U and y* € 9r(y). This is possible due to the Fréchet differentiability
of r at xy (2, Lemma 5]. If y € U and y* € 9r(y), then

(r(zo) — sup{{zg, 20 — 2)|z € C}) — (r(y) — sup{{y*,y — 2}|z € C})
< |r(zo) — r(y)] + | sup{{y",y — z}|z € C} — sup{{zg,z0 — 2|z € C}|
< lzo = yll + lly — zoll + 7(zo)lly* — 25l < @

and this implies, by the definition of a, that

r(y) —sup{(y*,y —2)2€ C} >0

whenever y € U and y* € dr(y). Ourimplication is proven and the proof of Lemma 2
is finished. ]

PROPOSITION 3. Let X be a Banach space with the Radon-Nikodym property,

let X* be its dual space in its usual dual norm and C be a w* -compact subset of X*.

Then the set D of all points in X* which have farthest points in C contains a subset
. Dy dense and G5 in X*.

PROOF: First notice that the farthest distance function r associated with C is
w* -lower semicontinuous as supremum of such functions. Since X has the Radon-
Nikodym property it follows from [4] that r is Fréchet differentiable on a dense G
subset Dy in X*. So, to finish the proof of Proposition 3 we show that if » is Fréchet-
differentiable at z, then = admits a farthest point in C. If z € D, denote by z* the
only element of 9r(z). Since r is w*-lower semicontinuous and Fréchet differentiable
at =, ¢* € X [2, Corollary 1]. Since C is w*-compact, there is a zp € C such that
(z*,z — zo) = sup{(z*,z — z)|z € C}. Using Lemma 2 we have r(z) = (z*,z — z) <
[lz*}l - |2 — 20|l < ||z — 20|| < r(x). Thus ||z — zo]| = 7(z) and the proof is finished. @§
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PROPOSITION 4. Let X be a Banach space and C be a closed convex bounded
subset of X . The following are equivalent:
(iy C is weakly compact;
(ii) for every equivalent norm || ||, on X, D ={z € X|r(z) =|le— z || 1
for some z € C} is dense in X , where r(z) = sup{||z — z||:|z € C}.

PROOF: (i) = (ii) was proved by Lau in [9]. Conversely, let || - || be the norm of
X and let B(z,r) denote the ||-||-ball centred at z and radius r. Assume without loss
of generality that C C B(0,1). By James’ theorem [5] there is a functional f € X*,
[[fll =1 which does not attain its supremum on C. Let By = B(0,6) N {z € X|_; <
f(z) <1} and || - ||; be the Minkowski functional of B,. Note that if By(z,r) is the
ball cenetred at = with radius é with respect to the norm || - ||;, then

By(s,6) = 6B(z,8) N {y € X | -5 < f(2) - f(y) < 6}.

Pick zo € B(0,4)N {z € X|[f(z) < —3}. We claim that if z € B(z,,1), then z
has no farthest point in C when X is equipped with the new norm || ||,, hence D is
not dense in X .

To see it, we first show that r(z) = o, where a = sup{f(2)|z € C} — f(=).
Indeed, let y € C; we have |f(y) — f(z)| < sup{f(2)|]z € C} — f(z) and ||y — =|| <
[ly]l + Jlzoll + llzo — z|| < 6 < 6a (note that for any y € C and ¢ € B(zo,1) we have
f(y) 2 -1 and f(z) < f(=o) + f(z — z0) < —2 and thus o > 1). Thus y € B(=z, ).
Therefore C C By(z,c) and this shows that r(z) < a. Conversely if § < a, there
exists y € C suchthat f(y)—f(z) > é§ andso y ¢ By(z,6). This shows that r(z) > a.

Now for y € C, we have |ly — z|| < 6 < 6a and |f(y) — f(z)|] < sup{f(z)|z €
C} - f(z) = a, hence ||z —y|li < a =r(z) and so y is not a farthest point from z in
C. 1

Remark. We would like to point out that, while differentiability properties can be used
to show that the set D of points which have at least one farthest point in a w* -compact
C of a dual Banach space X is dense in X, convexity properties can be used to show
the uniqueness of farthest points. More precisely, using standard rotundity arguments,
we have

PROPOSITION 5. Let X be a strictly convex Banach space, and C be a norm
closed bounded subset of X such that the corresponding set D is dense in X .

Then the set

U = {y € X|y has a unique farthest point in C}

is also dense in X .
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PROOF: First the strict convexity of X implies that forall t € X and A > 1,
B(z,|lzl) n S(Az, [|A=]]) = {0}

where B(z,r) (respectively, S(z,r)) denotes the ball (respectively, the sphere) of centre
z and radius r. i

Now let ¢ € D and let z be a farthest point from z in C. By translation, there
is no loss of generality in assuming z = 0. It is enough to show that for any A > 1,
y = Az has a unique farthest point in C, namely 0. We have

B(Az, [|Az]) 2 B(=,||z[l) 2 C
and hence 7(Az) < ||Az]|. On the other hand,
{0} c €N S(Aa, | Az|l) C B(=, ll[l) 0 S(Az, [|A=]|) = {0}.

Therefore 7(Az) = |[Az|| and the only farthest point from y in C is 0. |

Note that if X 1is not strictly convex, the set U of points which admit unique
farthest points can be empty. Indeed, let X = ¢(N) and

C ={(2n) € &o(N)|0 € 2, 1 for all n}.
n

C is a norm compact convex subset of ¢o(N), and therefore D = ¢o(N). On the other
hand, if z = (z,.) € cg(N), we have

r(2) = max{meax{|znl, lon ~ ~[}n € N}

50 () = |Zn,| or 7(z) = |Tny — ;lal, for some ny € N. Define:
C1 = {(2n) € Clzny = 0}
1
Cy = {(Zn) € C'Z"O = —}.
T

If r(x) = |zny| (respectively, r(z) = |zn, — nlol ), C1 (respectively, C;) is included in
the set of farthest points from z in C. In both cases z ¢ U.
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