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We investigate the late-time Richtmyer–Meshkov instability (RMI) growth of sinuous
perturbations on an air/sulphur hexafluoride interface (Atwood number, A ∼ 0.67)
subjected to a Mach 1.2 planar shock wave at Los Alamos National Laboratory’s vertical
shock tube facility. Interface perturbations are established using a novel membraneless
technique where cross-flowing air and SF6 separated by an oscillating splitter plate
create a perturbed density interface. The interface formed has multi-modal features and
residual small perturbations, however, a dominant mode is still noticeable. The late-time
perturbation growths scale with ka0 initial conditions (where k is the wavenumber and
a0 is the initial amplitude of the dominant mode) as measured at the pre-shock interface.
Past nonlinear models based on potential-flow theory, heuristic/interpolation approaches,
Padé approximants and numerical simulations are evaluated against present experimental
results. Accounting for an explicit ka0 dependence in Sadot et al.’s (Phys. Rev. Lett.,
vol. 80, issue 8, 1998, pp. 1654–1657) model, we propose an empirical rational function
that captures the asymptotic behaviour of perturbation growth for a broad range of initial
conditions (0.30 ≤ ka0 ≤ 0.86). The onset of mixing transition and its initial condition
dependence are investigated with respect to the minimum state criterion (Re = 1.6 × 105)
for unsteady flows by Zhou (Phys. Plasmas, vol. 14, 2007, 082701). Earlier mixing
transitions for higher ka0 initial conditions are noted from local and global Reynolds
number estimates which are corroborated by the existence of an inertial sub-range and
formation of mixing regions indicating the physical significance of the minimum state
criterion in RMI flows. The transition is accompanied by the increasing teapot-like
appearance of joint probability density functions of p–q (invariants of the reduced velocity
gradient tensor), establishing the technique as a useful tool for turbulence detection in
two-dimensional diagnostics.

Key words: transition to turbulence, baroclinic flows, vortex dynamics

1. Introduction

The Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) is driven
by the baroclinic generation of vorticity resulting from the misalignment of density and
pressure gradients when a density-stratified interface is impulsively accelerated by a
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shock wave. The instability has gained significant scientific attention due to its relevance
in supernovae explosions and applications in inertial confinement fusion (ICF) in finding
a viable fusion-based energy source.

The RM instability can be viewed as a form of Rayleigh–Taylor (RT) instability (Taylor
1950) in the weak shock limit where the impulsive force is gravitational. Richtmyer (1960)
identified the similarities a decade later to formulate the linear stability theory for RM
flows where the perturbation amplitude grows linearly until becoming comparable to its
wavelength. The linear-amplitude growth rate for a sinusoidal (single-mode) perturbation
between two fluids of different densities (ρ1, ρ2) is given by

ȧ = kAVa0, (1.1)

where a0 is the initial amplitude, k = 2π/λ is the wavenumber, V is the interface velocity
and A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number. While some experiments (Aleshin
et al. 1988; Vassilenko et al. 1992) have been able to verify the linear stability RM
theory, others (Meshkov 1969; Benjamin 1988) have obtained notably lower growth
rates. The disagreement has been attributed to nonlinearities induced by relatively large
initial-amplitude conditions (Dimonte & Ramaprabhu 2010) or possibly, the effect of
membrane strength (Jones & Jacobs 1997) which may inhibit the initial development of
the RM instability from not being able break down into sufficiently small scales. As the
amplitude and wavelength become comparable, nonlinear mechanisms cause perturbations
to grow as asymmetrical bubbles and spikes and cause a reduction in growth rate.

The most common method employed in laboratory tests studying the RM instability is
to study the passage of a shock wave across a perturbed boundary between two gases. The
main hurdle occurs in forming a well-defined interface between the two gases (Jones &
Jacobs 1997) by methods that do not affect the post-shock flow. Such an issue does not
occur in liquid systems, however, the scale of forces associated with these explosively
driven experiments (Benjamin 1988) poses a much larger safety concern with high
operation costs and large preparation times. Most experiments therefore, starting from the
earliest work of Meshkov (1969, 1970) and his co-workers (Aleshin et al. 1988; Vassilenko
et al. 1992; Andronov et al. 1995) have resorted to gas systems that used a thin sinusoidal
nitrocellulose membrane to separate the gases and set up the initial perturbation. While the
membrane was shattered by the incident shock wave, the fragment pieces produced were
carried with the ensuing flow and affected the late-time development of the RM instability
significantly (Jones & Jacobs 1997). More recent studies (Prasad et al. 2000; Jourdan &
Houas 2005) have employed a wire mesh to support the thin nitrocellulose membrane.
In this scenario, while the membrane suppresses mixing by isolating the two gases
from each other and retarding motions due its inertia and the viscous no-slip condition,
the wire mesh enhances mixing by slicing the membrane into ribbons and producing
wake-generated turbulence. This can make studying the effect of initial conditions on
perturbation growth difficult. The membrane fragments also impede the use of advanced
visualization techniques such as particle image velocimetry (Prestridge et al. 2000), planar
laser-induced florescence (Jacobs et al. 1993; Rightley et al. 1999) and planar Rayleigh
scattering (Budzinski, Benjamin & Jacobs 1994).

The interface can also be formed by withdrawing a thin plate separating the two fluids
(Cavailler et al. 1990; Brouillette & Sturtevant 1994; Bonazza & Sturtevant 1996; Puranik
et al. 2004). The withdrawing motion, however, creates a boundary layer due to the no-slip
condition. This drags a volume of fluid along the plate surface which bounces back off
shock tube walls to form surface gravity waves once the plate is completely removed from
the test section (Bonazza & Sturtevant 1996; Zhou 2017). In addition, the RT instability
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begins developing immediately as soon as the two gases (if the heavier one is above)
come into contact when the plate begins sliding out (Puranik et al. 2004). The interface
produced in this manner is very diffuse (>1 cm) which can reduce the RM instability
growth rate significantly (Mikaelian 1991; Jones & Jacobs 1997; Collins & Jacobs 2002;
Morgan, Likhachev & Jacobs 2016). While Puranik et al.’s (2004) study was the only
work to use a sinusoidally shaped plate, the initial perturbation induced in earlier studies
was solely dependent on the disturbance created by the sliding motion of the flat plate.
Thus, although initial conditions in both cases were subjective to plate retraction, the
latter suffered appreciably more with non-sinusoidal perturbations which were difficult to
characterize and be used for comparison purposes. The plate retraction method allowed
Puranik et al. (2004) to study particularly large initial amplitudes (ka0 = 1.46) in the
heavy/light configuration, however, dispersion of stable Rayleigh–Taylor oscillations in
light/heavy set-up caused the interfacial perturbations to flatten out almost immediately.

Other methods to solve the interface generation problem involve gently oscillating the
shock tube at an appropriate frequency using a stepper motor and crank mechanism
to generate standing waves at the interface location (Jones & Jacobs 1997; Collins &
Jacobs 2002; Jacobs & Krivets 2005; Morgan et al. 2012). While this method produced
particularly well-defined initial perturbations (ka0 ≈ 0.16–0.34), excessively large shock
tube oscillations resulted in an asymmetrical interface. The technique, nevertheless, shows
good promise but extreme oscillatory measures to achieve large ka0 initial conditions
(>0.5) may add complications with the use of fixed optical diagnostic systems and
heavy/large shock tubes. This issue is being addressed by localizing the oscillatory
motion using pistons movements at the interface (Motl et al. 2007) where a stepper
motor oscillates the pistons laterally at a given frequency to develop a standing wave.
Interface reproducibility and controllability using this method, however, still need to
be investigated. Jacobs et al. (2013) induced vertical oscillations in the gas column by
using two out-of-phase loudspeakers attached to the top and bottom of the shock tube.
This creates Faraday waves at the interface which are associated with small random
three-dimensional perturbations.

More recently, a soap-film technique to form gaseous interfaces with a well-characterized
discontinuous configuration was developed (Liu et al. 2018). The interfacial morphology
captured by this method was physically superior to past membrane and membraneless
techniques producing clear roll-up structures uninfluenced by either fragment pieces or
the presence of a diffuse interface layer, respectively. The test section used, however, was
relatively narrow (7 mm), possibly due to soap-film formation limitations which can lead
to wall effects at late times. Lastly, the counterpart of corrugated interfaces interacting
with a planar shock wave, i.e. a non-uniform shock-wave deposition on a flat interface to
generate the RM instability, has also been explored. A planar shock diffracting around
a rigid cylinder as such can be used to produce a rippled shock wave (Zou et al. 2017)
resulting in a ‘

∧
’ shaped interface and a cavity after colliding with a uniform interface.

Given the problems associated with interface generation in gas systems, we develop
a novel yet simple method where the undulating motion of a cross-flow is used to set
up the initial conditions. An airfoil flapper upstream from the test section is used to
oscillate the cross-flow at pre-set frequencies and amplitudes. The technique allows us
to produce near-sinusoidal perturbations with a dominant mode for a large range of ka0
values (0.30–0.86). Thus, we determine the effect of systematically increasing initial
perturbation wavelengths and amplitudes on the growth and mixing transition of the RM
instability. The perturbation growths are compared with previous nonlinear models and
simulations to ascertain their initial condition dependence. Velocity field measurements
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from planar particle image velocimetry are used for vortex identification and obtaining
turbulent statistics to describe the temporal evolution of the flow. The separation of energy
containing and dissipative scales along with the local and global flow characteristics are
then used to determine the effect of initial conditions on mixing transition with particular
emphasis on the transition criterion used.

2. Experimental facility

All experiments are conducted at the Los Alamos National Laboratory (LANL) Vertical
Shock Tube (VST) facility (figure 1a). A diaphragmless plug and sleeve two-piston driver
(Mejia-Alvarez et al. 2015) is used to produce a Mach 1.2 planar shock wave in a 7 m tall
127 mm × 127 mm square cross-section shock tube. The VST consists of three diagnostic
stations (figure 1b). A close-up of station 1 (x = 0 cm) is given in figure 1(c) while stations
2 and 3 are situated at x = 28 and 63 cm downstream. Air is bulk filled from the top
and SF6 from the bottom until the two gases meet and start exiting through the outlet
on the left at station 1 (A ∼ 0.67). This creates a stagnation point flow at the interfacial
location that has the added effect of thinning the diffusion layer. The air (upper side
inlet) and SF6 (lower side inlet) cross-flow is first streamlined individually by passing
through a two-part honeycomb mesh. Flapper oscillations at the mesh exit then produces
an undulating cross co-flow that enters the test section at 0.2 m s−1 (from right-to-left)
through a 12.70 cm × 3.81 cm channel to form a perturbed interface. The cross-flow is
vented out from the exhaust opposite to the inflow to prevent any accumulation within the
shock tube from causing unwanted disruptions to the interface. The steady-state flapper
oscillation frequency and total rotation angle used ranged between 0.25 and 3 Hz and
8 to 16◦.

When the driver is depressurized to generate a shock wave, two pneumatically driven
gates close the inlet and outlet at each end of the test section (see figure 1). This prevents
effects from sidewall openings that can weaken the incident shock wave, introduce
non-uniformities and also damage the flapper mechanism. Although one can expect a
stagnation point flow to form briefly (until the shock arrives, Δt ≈ 0.1 s) from blocking
the cross-flow at the left gate and in turn cause near-wall jetting on the opposite end, the
flow disruption created is minor in comparison to gas purging following shock passage
if the cross-flow slots are left open. The shock location is monitored using six pressure
transducers as it travels down the tube from the driver. The pressure signals are also
used to trigger the optical diagnostic systems at each station. All operations including
timing, servo-motors, test section gates, flapper, shock driver, gas flows and diagnostics
are controlled using LabVIEW.

A single image taken at station 1 just prior to the arrival of the shock wave (t = 0 ms)
is used to record the initial conditions while two-dimensional particle image velocimetry
(PIV) diagnostics capture a pair (7 μs interframe delay) to image the ensuing structures
at stations 2 and 3. Nd:YAG lasers operating at 532 nm wavelength are used for PIV
measurements, and the flow is seeded with olive oil particles (mixed with SF6 bulk and
cross-flow using a Laskin nozzle). An optical train (spherical lens followed by cylindrical
lens) is used to shape the laser beam into a thin diverging light sheet and directed into
the shock tube longitudinally, using a 45◦ angled mirror at the bottom for station 1 and
laterally from sides at stations 2 and 3. The flow fields are visualized at each station
using a TSI PowerView camera having a 4008 × 2672 charged couple device array. The
image pairs are processed using a 3-pass recursive Robust Phase Correlation algorithm
(Eckstein & Vlachos 2009) in the PRANA (PIV, Research and ANAlysis) software
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FIGURE 1. Schematic of the experimental set-up. (a) Overview of the 7 m tall vertical shock
tube (VST). The shock is generated downwards by a pneumatic piston situated at the top end.
(b) Optical diagnostics at stations 1–3 numbered in shock travel direction. Station 1 particle
image velocimetry laser sheet is produced vertically from the base of the VST while those for
station 2 and 3 traverse horizontally. (c) Close-up overview of the initial condition interface
set-up at station 1. Flapper oscillations produce a perturbed interface.

(https://github.com/aether-lab/prana) with a final window size of 32 × 32 pixels at 50 %
overlap which translated to a 464 μm vector spacing.

2.1. Interface characterization
Characterizing the interface for each flapper condition is crucial given the objective of this
study to determine the effect of initial conditions on the late-time development of the RM
instability. Three different sets of initial conditions are investigated using a combination
of oscillating plate frequencies, f (Hz), and sweeping angles, � (◦), (see table 1).
Figure 2 (top row) shows initial interface images for (a) 0.25 Hz, 8◦, (b) 3 Hz, 8◦ and
(c) 3 Hz, 16◦. The interface has a spectrum of residual small-amplitude short-wavelength
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f (Hz) � (◦) λ̄0 (mm) ā0 (mm) ka0

0.25 8 29.1 ± 3.7 1.37 ± 0.17 0.30
3 8 19.7 ± 1.8 1.65 ± 0.18 0.53
3 16 18.3 ± 1.1 2.51 ± 0.15 0.86

TABLE 1. Flapper oscillation parameters and corresponding initial interface characteristics.
Overbar symbols represent mean values with ± as standard deviations.

t = 0 ms t = 0 ms t = 0 ms

t = 2.65 mst = 2.65 mst = 2.65 ms

t = 5.65 ms

10 mm

t = 5.65 ms t = 5.65 ms

(a) (b) (c)

FIGURE 2. Initial condition (t = 0 ms) and ensuing structures at t = 2.65 and 5.65 ms for ka0 =
(a) 0.3, (b) 0.53 and (c) 0.86. The cross-flow direction in the initial conditions is from right to
left.

perturbations (Vandenboomgaerde et al. 2014) and is not perfectly sinusoidal as in the case
of a pure single-mode instability, especially for larger flapper frequencies and sweeping
angles, where the asymmetric and multi-modal features are more pronounced. However,
a dominant wavelength and amplitude are still noticeable. Although the RM-instability
initially follows a linear growth rate, the dominant mode quickly dominates the flow
(Morgan et al. 2012) once nonlinearities set in as the perturbation wavelength and
amplitude become comparable.

We determine the interfacial location using an edge detection image processing routine
in MATLAB. The initial conditions are extracted by fitting the perturbation with a cubic
spline (Epps, Truscott & Techet 2010) and computing its first and second derivatives to
obtain the crest and trough locations. Obtaining the initial amplitudes and wavelengths
from these measurements, we find average values for each experiment (Jacobs et al.
2013) that are then ensemble averaged over eight realizations (ā0, λ̄0) for each flapper
condition, with the corresponding variations (standard deviations) listed in table 1. All
interface measurements are made at the instant just prior to shock impact (t = 0 ms).
Competition between the size of the inlet slot, the size of the wake structure and the
oscillatory displacement of the trailing flapper edge causes disproportionate reductions
in the dominant perturbation wavelength for the higher flapper frequencies in table 1.

It is noteworthy that the spectrum of small-amplitude short-wavelength perturbations
observed is inevitable in real-life experiments where the interface is machine made. In fact,
it has been shown that running numerical simulations with the addition of such residual
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perturbations to single-mode interfaces is necessary to understand the morphology of
the experimental picture (Vandenboomgaerde et al. 2014). As such, the deviation in
experiments herein from the ideal case of a pure single-mode perturbation allows us to
complement single-mode work by improving them to be closer to reality.

3. Results

3.1. Mixing widths and scaling
Growth of the RM instability for increasing ka0 initial conditions is shown in figure 2.
The first image row shows the interface at (t = 0 ms) while the second and third rows
are recorded at t = 2.65 and 5.65 ms. Mixing transition, as observed by the breakdown
of large-scale features into smaller structures, is faster for larger ka0. For low ka0,
the dominant wavelength is preserved for the times measured, while rapid breakdown
to smaller length scales is evident for ka0 = 0.53 and 0.86 at t = 5.65 and 2.65 ms,
respectively. The enhancement in mixing observed that eventually triggers a transition
to turbulence can be related to secondary RM instabilities (Peng, Zabusky & Zhang 2003)
following the primary baroclinic vorticity deposition. This secondary vorticity deposition
dominates at intermediate times due to the misalignment of density gradient across
the interface and vortex-centripetal acceleration arising from the large-scale rotation of
coherent vortices formed by the primary vorticity roll-up. More explicitly, opposite-sign
vorticities generated at the neck and arms of the mushroom structures are advected into the
vortex core. This local fluid entrainment causes mixing and the structure to disintegrate
accordingly.

Since the interface formed is not perfectly sinusoidal, the presence of a spectrum
of residual small-amplitude short-wavelength perturbations (Vandenboomgaerde et al.
2014) and multi-mode fronts observed can cause mode coupling (Rupert 1991) in the
nonlinear late-time growth regime. Large scales develop by means of a bubble-competition
mechanism (Zufiria 1988) and vortex pairing. As each bubble tries to occupy the maximum
possible space and compete with others, smaller bubbles advance less due to lower speeds
(Layzer 1955). This causes them to shrink and slow down while larger ones expand
and acquire higher vortex speeds. Eventually, bubbles overtake their smaller neighbours
to form a larger bubble, also known as a ‘bubble merger’ (Sharp 1984; Glimm et al.
1990). This imbalance in cross-coupling strengths may also induce a tilt effect on the
interface which is likely to become prominent for higher ka0 conditions due to increasing
competition in less space. For example, a clockwise interface tilt at t = 5.65 ms is
noted for the highest ka0 in figure 2(c) due to slower growth near the right edge. This
disturbs the evolution of some adjacent bubbles and spikes further from growing into each
other. A similar tilting feature and disruption in mushroom structures was also noted in
gas-curtain experiments (Orlicz, Balasubramanian & Prestridge 2013) from disparities in
counter-rotating vortex strengths.

The interface breaks up at late times to form mixing regions which then make it
difficult to determine its shape. We define the mixing layer width h as the distance
between 5 % and 95 % values of the average concentration profile with a mean amplitude,
a = h/2. The images are first corrected for non-uniform illumination using morphological
opening and adjusted background subtraction. Morphological opening using a disk-shaped
structuring element of radius greater than the particle diameter allows us to obtain a
background approximation image which can be subtracted from the original image to
give uniform illumination. Spanwise averaging is then performed to obtain a mean olive
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FIGURE 3. Normalized mean concentration distribution of olive oil particles with streamwise
distance; Q̄max represents the maximum of the mean concentration profile. The dashed
lines indicate 5 % and 95 % of the mean particle concentration (ka0 = 0.86, t = 2.65 ms,
h = 44 mm).
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FIGURE 4. (a) Effect of initial conditions on mixing widths with respect to downstream
distance. Mean values at x ≈ 280 mm are h (mm) = 31.3, 34.2, 47.1 and at x ≈ 630 mm
are h (mm) = 39.7, 43.3, 60.1 for ka0 = 0.30, 0.53 and 0.86 (see table 1 for details).
(b) Dimensionless amplitude as a function of normalized distance. Power-law fits follow
k(a − a0) ∝ (kx)n where n = 0.37, 0.35, 0.36, respectively.

oil concentration distribution. A typical normalized plot is shown in figure 3 where the
distance between dashed lines is taken as the mixing width.

Growth in mixing widths with downstream distance are shown in figure 4(a). As
observed, higher ka0 initial conditions result in larger growth with the increase being
notably significant for the highest ka0. Normalizing the layer growth (a − a0) with
wavenumber k (Prasad et al. 2000) highlights the effect in terms of the non-dimensional
amplitude (figure 4b). Power-law exponents from fits to the data are found to range between
0.35 and 0.37 for ka0 = 0.30–0.86. An empirical relation that generalizes the growth of
the studied initial conditions is

k
(

a
a0

)
= 0.6(kx)0.36, (3.1)

where all lengths are in mm. The scaling is shown in figure 5.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.620


The effect of initial conditions on mixing transition in RMI 904 A3-9

k(a/a0) = 0.6(kx)0.36
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FIGURE 5. Dimensional scaling k(a/a0) = 0.6(kx)0.36 yields minimum scatter for present
data.

The late-time growth of the mixing zone has been suggested by a number of researchers
(Mikaelian 1989; Alon et al. 1995; Zhou 2017) to follow a power-law behaviour h ∼ τ θi
where τi is a linear function of time, and the scaling exponent 0.2 � θ � 0.6 has been a
subject of active research. Our generalized scaling exponent (0.36) is in good agreement
with those of Jacobs et al. (2013) (0.3–0.4) and close to Weber et al. (2014) (0.43 ± 0.01),
both of which used membraneless techniques to impose the initial conditions. Values by
Krivets, Ferguson & Jacobs (2017) varied over a large range (0.19–0.57) having ensemble
averages of θb = 0.38 and θs = 0.4 for bubble and spike growth exponents, respectively.
Laser-driven experiments by Dimonte & Schneider (1997) found θ = 0.5 ± 0.1 for A ∼

0.9. Later, Dimonte & Schneider (2000) found bubbles and spike responses of θb = 0.25
and θs = 0.3 (for A ∼ 0.7). However, to compensate for demixing caused by any residual
deceleration in their linear electric motor system (Dimonte et al. 1996), it was suggested
that these exponents may have to be increased by ∼10 %. Experiments performed using
membranes by Prasad et al. (2000) produced a late-time growth exponent of (0.26 ≤ θ ≤
0.33). Although more experiments are needed to ascertain the influence of membranes
on the growth rate, comparing our results with studies employing shock tube set-ups
for similar shock strengths and Atwood numbers (Prasad et al. 2000; Jacobs et al. 2013;
Weber et al. 2014; Krivets et al. 2017) indicates membrane remnants suppress the growth
exponent θ in the light–heavy configuration on average by ∼23 %. This is similar to
an average growth reduction of ∼27 % found in the nonlinear interfacial harmonics by
Mariani et al. (2008) using membranes in comparison to numerical and theoretical growth
rates.

3.2. Evaluation of single-scale nonlinear models
Modelling the extension of the linear regime into the nonlinear growth phase has been
attempted by a number of distinct studies and is a topic of active research in the RMI
community. Among the methods employed for this purpose include using potential-flow
models, heuristic/interpolation approaches, Padé approximants and numerical simulations
solving the Euler conservation system in a hydrodynamic continuum. We provide a
brief overview of these methods followed by a comparison with results from present
experiments to propose a rational interpolation model that matches our late-time growth
rates.
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Layzer’s potential-flow modelling approach (Layzer 1955) was the first to describe
bubble evolution of the RT instability based on an approximate solution satisfying the
equations of motion for a fluid particle in the vicinity of the bubble tip. The problem was
initialized from a flat free-surface interface with a constant-pressure condition imposed at
the bubble vertex and its immediate neighbourhood. Although Layzer’s theory is limited
to incompressible fluids having an infinite density ratio (A = 1), the approximate solutions
presented for the vertex speed and its asymptotic form have served as a guideline in
further understanding the evolution of RT and RM instabilities in different configurations.
Generalizing Layzer’s theory to non-zero initial bubble amplitudes and applying it to the
RM instability, Mikaelian (1998) obtained an analytical solution to capture the motion
of the bubble vertex from the linear to the nonlinear regime. The solution for bubble
amplitude, given as

ab = [a0k + ( 2
3) ln(1 + 3v0kt/2)

]
/k, (3.2)

where v0 represents the initial velocity as ȧ in (1.1), did not deviate from direct numerical
simulation results by more than 10 % for ka0 = 1/6–2/3. Since this analytical expression
was limited to an infinite density ratio system (i.e. A = 1), Mikaelian (2003) generalized
the solution to arbitrary A by using a simple transformation found from analysing an
extension of Layzer’s theory to finite density ratios (Goncharov 2002). The method
essentially is to transition from a linear to nonlinear solution at a specific amplitude a∗,
where the expression for the nonlinear two-dimensional (2-D) RM instability is given by

ab = a∗ + (3 + A)
3(1 + A)k

ln{1 + 3v0k(t − t∗)(1 + A)/(3 + A)} (3.3)

with an asymptotic velocity vb = (3 + A)/[3(1 + A)kt]. More explicitly, ab was given
by the linear regime until t∗ ≡ t∗M = (1/VkA)(1/(3a0k)− 1) when a∗ ≡ a∗

M = 1/3k after
which it followed the generalized Layzer-type solution (3.3). Although only bubble growth
was considered, it is possible to apply the transformation (η → −η, A → −A) from
Goncharov (2002) to obtain the asymptotic spike velocity as vs = (3 − A)/[3(1 − A)kt]
(Jacobs & Krivets 2005). While the solution may not be appropriate when ka0 > 1/3,
the evaluation of (3.3) for an extended ka0 range is appealing due its simplistic nature.
An alternate approach attributed to Enrico Fermi by Layzer (1955) was also proposed
where the linear regime lasted until the bubble growth rate became equal to its asymptotic
velocity. The transition in this case occurred at t∗ ≡ t∗F = (3 + A)/[3(1 + A)k2VAa0] when
a∗ ≡ a∗

F = a0(1 + (3 + A)/[3(1 + A)ka0]). Since t∗F > t∗M and a∗
F > a∗

M, the transition in
the Mikaelian–Fermi model (Mikaelian 2003) (t∗ ≡ t∗F, a∗ ≡ a∗

F) occurred 2–3 times
later than Mikaelian’s (2003) model (t∗ ≡ t∗M, a∗ ≡ a∗

M) resulting in comparatively larger
amplitudes.

Zhang & Guo (2016) considered Layzer’s theory for incompressible, inviscid and
irrotational fluids with arbitrary density ratios in two dimensions to study the asymptotic
large-time behaviour of RT and RM instabilities. The property of both the velocity
and curvature of the finger (both bubble and spike) tip being insensitive to time in the
quasi-steady state was used to obtain an expression for the RT finger velocity which could
then be simplified for the RM case by taking the limit g → 0 to produce a matched solution

vb/s = v0

1 + αkv0t
, (3.4)
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where

α = 3
4

(1 ± A)(3 ± A)

[3 ± A + √
2(1 ± A)1/2]

4(3 ± A)+ √
2(9 ± A)(1 ± A)1/2

[(3 ± A)2 + 2
√

2(3 ∓ A)(1 ± A)1/2]
. (3.5)

More importantly, introducing scaled dimensionless variables uRM = v/v0 and τRM =
αkv0t was shown to describe all bubble and spike growth rates at any density ratio by a
universal curve uRM = 1/(1 + τRM) until a pre-asymptotic stage.

Sadot et al. (1998) formulated an empirical rational function with late-time behaviour
functionality based on comparisons between experiments, numerical simulations and a
simple potential-flow model for single-mode and two-bubble cases. The growth rate was
proposed as

vb/s = v0(1 + v0kt)
1 + (1 ± A)v0kt + Eb/sv

2
0k2t2

, (3.6)

where the term Eb/s = [(1 ± A)/(1 + A)](1/2πC) becomes dominant as t → ∞, vb/s =
1/(Eb/skt) (the plus sign being for the bubble and minus for spike) following the 1/t
dependence obtained from potential-flow theory (Hecht, Alon & Shvarts 1994). The
coefficient C is thus a function of the asymptotic velocity which was suggested to
follow C = 1/(3π) for A � 0.5 and C = 1/(2π) for A → 0 to obtain convergence with
their asymptotic limits. These values were chosen to match the simulation results of
Alon et al. (1995) who obtained Eb = 1.5 for A � 0.5 and Eb ≈ 1.06 at low Atwood
numbers. Asymptotic velocities obtained by Goncharov (2002) and Mikaelian (2003)
followed Eb/s = 3(1 ± A)/(3 ± A) while an extension of Layzer’s theory for finite density
ratios using different velocity potentials by Sohn (2003) showed Eb/s = (2 ± A)/2. The
buoyancy–drag model by Niederhaus & Jacobs (2003) in contrast was used to propose
Eb/s = 1 ± A as a modified form of Sadot et al.’s model. Despite the use of similar
analytical procedures by Alon et al. (1995) and Niederhaus & Jacobs (2003), the
expressions for asymptotic velocities obtained were different. This can be attributed to
the discrepancy in added mass effects employed in the two-dimensional bubble model.
Although Sadot et al.’s (1998) model captures both the 1/t long-time dependence and the
weakly nonlinear solution, up to second order (Haan 1991), the correct value of C and
the corresponding expression for E at intermediate Atwood numbers remains uncertain
(Collins & Jacobs 2002; Jourdan & Houas 2005).

The perturbation expansion method can be used to expand nonlinearities in terms of
spatial harmonics with time-dependent amplitudes. Differentiating the leading harmonics
(Zhang & Sohn 1997a) with respect to time and collecting odd and even cosine Fourier
modes at x = 0 (for spikes) and π/k (for bubbles), leads to perturbations solutions in
the form of truncated Taylor series in the amplitude of the initial perturbation. Since
these solutions are divergent in nature, the radius of convergence of this expansion is very
limited. In order to extend the range of approximation Zhang & Sohn (1997b) constructed
a single-point Padé approximant, a ratio of two power series in t, where the bubble and
spike growth rate were given by

vb/s = v1 ∓ v2, (3.7)

v1 ≡ v0

1 + a0v0k2t + max
{
0, a2

0k2 − A2 + 1
2

}
v2

0k2t2
, (3.8)

v2 ≡ Akv2
0 t

1 + 2k2a0v0t + 4k2v2
0[a2

0k2 + (1/3)(1 − A2)]t2
. (3.9)
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Although the model has been shown to be in good agreement with experiments (Jacobs &
Krivets 2005) and numerical simulations for linear and intermediate nonlinear stages, the
small-time solution information used cannot capture the 1/t asymptotic behaviour of the
potential-flow theory as t = ∞. Another important issue using an average overall velocity
v̄ = (vb + vs)/2 ≡ v1 is the omission of the v2 component which removes the contribution
of even cosine Fourier modes.

Building upon models by Sadot et al. (1998), Mikaelian (1998, 2003) and Zhang & Sohn
(1997b), Dimonte & Ramaprabhu (2010) presented a nonlinear empirical model describing
their 2-D FLASH code numerical simulations for a broad range of Atwood numbers and
scaled initial amplitudes ka0. The model thus focused at more relevant conditions in ICF
and ejecta formation applications where A and ka0 are large. The bubble and spike growth
rates were given as

vb/s = v0
1 + (1 ∓ |A|)τ

1 +
(

4.5 ± |A| + (2 ∓ |A|)|ka0|
4

)
τ + (1 ∓ |A|)(1 ± |A|)τ 2

. (3.10)

The simulations revealed spikes are very sensitive with respect to ka0 whereas bubbles are
not. Long duration simulations further showed spike velocities to deviate from the 1/kt
scaling as |A| → 1, thus indicating their asymptotic non-universality.

Recalling Richtmyer’s (1960) findings, an impulsively accelerated sinusoidal
perturbation in an incompressible system was shown follow a linear-amplitude growth
rate given by

ȧ = kAVa0. (3.11)

In reality, compressibility effects resulting immediately after shock wave passage can
affect both the initial amplitude and the Atwood number. Realizing that post-shock
conditions will differ from pre-shock conditions presented Richtmyer with an ambiguity
in the interpretation of (3.11). A comparison of numerical simulations accounting for
shock-wave compression effects with the incompressible theory was hence performed
where he obtained a better agreement using post-shock values (within 5 %–10 %)
than pre-shock values (differing by a factor of 2). Collins & Jacobs (2002) obtained
favourable agreements for both pre (−2.6 %) and post (−1.8 %) shock theoretical
growth rates with measurements from Mach 1.11 experiments. Results from Mach
1.21 experiments in contrast favoured pre-shock conditions comparing with a (+3.3 %)
theoretical overestimate than (+6.8 %) obtained for post-shock conditions. In general, both
pre- and post- shock conditions were shown to produce very similar initial growth rates due
to opposing growth effects caused by smaller initial amplitudes and interface thicknesses
from shock compression. More explicitly, a decrease in growth rate caused by smaller
amplitudes is compensated by an increase resulting from thinner interface thicknesses to
produce a trivial net effect (Collins & Jacobs 2002).

It is noteworthy that contrary to the impulsively accelerated discontinuous interface
considered in Richtmyer’s linear stability theory, the air–SF6 interface generated herein
has a diffuse nature. Diffusion effects on the instability of a continuous interface under
gravitational acceleration g were first considered by LeLevier, Lasher & Bjorklund (1955)
where a piecewise exponential density distribution was applied to show the instability
growth rate reduced with increase in interface thickness. Investigating the diffuse interface
Rayleigh–Taylor problem dynamically, Duff, Harlow & Hirt (1962) integrated the inviscid
eigenvalue equation for the instability growth rate (Chandrasekhar 1961, equation (42))
with an error-function density distribution to obtain ä = (kgA/ψ)a. Here, ψ represented a
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growth reduction factor which increases with interface thickness having values of ψ = 1
for a discontinuous interface and ψ > 1 for a continuous interface. Duff et al.’s inviscid
dynamic diffusion model provided reasonable agreement with their experiments and
has compared favourably with the measurements of Morgan et al. (2016). Brouillette &
Sturtevant (1994) used Richtmyer’s formulation of Taylor’s theory to extend Duff et al.’s
(1962) model for the case of an impulsively accelerated diffuse interface instability giving

ȧ = kAV
ψ

a0, (3.12)

where ψ was deemed constant following shock passage since the perturbation growth
caused by the impulsive acceleration was much larger than that from molecular diffusion
alone. This suggested that the linear dependence of the initial perturbation growth rate
also occurs for continuous interfaces but is reduced by a factor ψ in comparison to
discontinuous interface cases.

We obtain the so-called growth reduction factor ψ using Rikanati et al.’s (2003)
vorticity deposition model which not only quantifies the effects of compressibility but also
high initial amplitude and initial interface shape on deviations from Richtmyer’s linear
stability theory. Rikanati et al. (2003) applied the local interface vorticity (Samtaney &
Zabusky 1993) and velocity (Baker, Meiron & Orszag 1980) equations at the bubble tip
to obtain the shock-wave imprinted initial bubble velocities in the case of small (ka0 
 1)
and large initial amplitudes. Samtaney & Zabusky (1993) derived an analytical expression
from shock polar analysis for the vorticity deposition per unit length on a planar interface
subjected to an oblique shock. This was used in the velocity equation for a single periodic
interface (Baker et al. 1980) given by the Biot–Savart integral in terms of vortex sheet
strength to derive the initial bubble velocity. The ratio of initial velocities imprinted for
small- and large-amplitude initial conditions was defined as the growth reduction factor
(Rikanati et al. 2003) which for a sinusoidal interface can be expressed in a simplified
form as

ψ =
−a
∫ λ

0
π sin(πx/λ) cot(−π/2x/λ) dx

R

[∫ λ
0

sin(α−)
cos(α+)

cot(π/2[−x + iafp(1 − cos(πx))]/λ) dx

] (3.13)

with pre(−) and post(+) shock-interface inclination angles of

α− = arctan[−(π/λ)a sin(πx/λ)], α+ = arctan[−(π/λ)fpa sin(πx/λ)] (3.14a,b)

Here, λ denotes the periodicity wavelength and fp = (sv − V)/sv is the post-shock
perturbation amplitude reduction factor with sv as the shock speed. The numerical solution
of (3.13) for a Mach 1.2 shock travelling from air to SF6 (Rikanati et al. 2003) is plotted
with respect to pre-shock ka0 in figure 6 which reveals ψ = 1.020, 1.064 and 1.160 for
ka0 = 0.3, 0.53 and 0.86, respectively. Applying these in (3.12) along with the interface
velocity computed from one-dimensional gas dynamics theory defines the initial growth
rate v0 in our diffuse interface experiments.

We evaluate the modelling approaches summarized in table 2 with current
measurements by plotting the overall dimensionless amplitude (kā − ka0) versus
dimensionless time τ = v0kt in figure 7. The overall velocity v̄ = (vb + vs)/2 is integrated
over time where the bubble and spike growth rates are given by vb/s (3.4, 3.6, 3.7, 3.10).
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FIGURE 6. Growth reduction factor versus pre-shock ka0 from the vorticity deposition model
of Rikanati et al. (2003) (3.13) for a Mach 1.2 shock travelling from air to SF6.

Plots labelled Mikaelian (2003) and Mikaelian–Fermi (Mikaelian 2003) use both bubble
and spike asymptotic velocities obtained from Goncharov’s transformation (as described
above) and Sadot et al.’s original model along with modifications to its asymptotic
component Eb/s proposed by other studies have also been included for comparison
purposes. Despite the scatter, resulting from small variations in the initial conditions (see
table 1), the late-time measurements compare favourably with the predictions of Dimonte
& Ramprabhu and Zhang & Gao for ka0 = 0.30. The latter and Mikaelian–Fermi show
a better agreement when ka0 = 0.53 while Dimonte & Ramprabhu’s model provides a
relative underestimation. The late-time measurements when ka0 increases further to 0.86
surpass all previous model predictions with only Sadot et al. approaching the current
experimental results.

Sadot et al.’s model and its asymptotic Eb/s variants from previous studies in addition
to Zhang & Gao have repeating evolution profiles from not having an explicit dependence
on ka0. Dimonte & Ramaprabhu’s correction for this dependence was based on numerical
simulations validated with experiments (Niederhaus & Jacobs 2003; Jacobs & Krivets
2005) and models (Zhang & Sohn 1997b; Sadot et al. 1998; Mikaelian 2003) for A ∼
0.2–0.7, ka0 = 0.26–0.375 at early–intermediate times (τ = 0–30). The model proposed
showed noticeable deviation from experimental results for A ∼ 1, ka0 > 1 at τ = 1. The
long-duration experiments conducted here in comparison explore an extended late-time
regime up till τ ≈ 75 for large ka0 initial conditions which these 2-D single-mode
nonlinear models are not intended for. This could explain the deviation from modelling
predictions for ka0 = 0.86 noted in figure 7. An extreme example of this discrepancy
appears in Zhang & Sohn’s model where no growth is noted after a time τ , manifesting
itself earlier for higher ka0. Alternatively, the RMI evolution herein may be affected
by multi-modal features observed at the interface, especially at the asymptotic stage,
leading to deviations from single-mode theory at late times. It is noteworthy that the
small-scale instabilities may have a three-dimensional nature that can alter overall growth
and contribute to the discrepancy observed as well.

Accounting for an explicit dependence on ka0 that captures our experimental results, we
propose a variant of Sadot et al.’s empirical rational function

Eb/s = (1 ± A)
(1 + A)

ln
(

3
ka0

)
(3.15)
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Model Form ka0 τ

Zhang & Sohn (1997b) v̄ ≡ (vb + vs)

2
= v0

1 + a0v0k2t + max
{

0, a2
0k2 − A2 + 1

2

}
v2

0k2t2
0.31, 0.35, 0.4 0–1

Mikaelian (2003) ab/s = 1
3k

+ (3 ± A)
3(1 ± A)k

ln
(

1 + 3v0k
[

t − 1
VkA

(
1

3a0k
− 1
)]

(1 ± A)
(3 ± A)

)
1/6, 1/3 0–32

Mikaelian–Fermi (Mikaelian 2003) ab/s = a0

(
1 + 3 ± A

3(1 ± A)ka0

)
+ (3 ± A)

3(1 ± A)k
ln
(

1 + 3v0k
[

t − 3 ± A
3(1 ± A)k2VAa0

]
(1 ± A)
(3 ± A)

)
1/6, 1/3 0–32

Dimonte & Ramaprabhu (2010) vb/s = v0
1 + (1 ∓ |A|)τ

1 +
(

4.5 ± |A| + (2 ∓ |A|)|ka0|
4

)
τ + (1 ∓ |A|)(1 ± |A|)τ 2

0–4 0–30

Zhang & Guo (2016) vb/s = v0/

[
1 +
(

3
4

(1 ± A)(3 ± A)

[3 ± A + √
2(1 ± A)1/2]

4(3 ± A)+ √
2(9 ± A)(1 ± A)1/2

[(3 ± A)2 + 2
√

2(3 ∓ A)(1 ± A)1/2]

)
kv0t

]
0.125, 0.5 0–15

Sadot et al. (1998)
vb/s = v0(1 + v0kt)

1 + (1 ± A)v0kt + [(1 ± A)/(1 + A)](1/2πC)v2
0k2t2

where C = 1
3π

for A � 0.5 and C = 1
2π

for A → 0
0.16, 0.31, 0.48, 0.79 0–12

Sadot–Neiderhaus (Neiderhaus 2003) vb/s = v0(1 + v0kt)

1 + (1 ± A)v0kt + (1 ± A)v2
0k2t2

0.06, 0.16, 0.23 0–30

Sadot–Goncharov (Goncharov 2002) vb/s = v0(1 + v0kt)

1 + (1 ± A)v0kt + 3(1 ± A)
3 ± A

v2
0k2t2

0.26, 0.31 0–10

Sadot–Sohn (Sohn 2003) vb/s = v0(1 + v0kt)

1 + (1 ± A)v0kt + (2 ± A)
2

v2
0k2t2

0.26, 0.31 0–4

Sadot–Mansoor (proposed model) vb/s = v0(1 + v0kt)

1 + (1 ± A)v0kt + [(1 ± A)/(1 + A)] ln[3/(ka0)]v2
0k2t2

0.30, 0.53, 0.86 0–75

TABLE 2. Summary of nonlinear models for single-mode perturbations showing their equation, pre-shock scaled initial amplitudes and
non-dimensional time range considered.
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Zhang & Sohn (1997b)

Present experiments

Mikaelian (2003)

Mikaelian–Fermi (Mikaelian 2003)

Dimonte & Ramaprabhu (2010)

Zhang & Gao (2016)

Sadot et al. (1998)

Sadot–Niederhaus (Niederhaus 2003)

Sadot–Goncharov (Goncharov 2002)

7Sadot–Sohn (Sohn 2003)

Sadot–Mansoor (proposed model)

τ τ τ

kā
–

ka
0

ka0 = 0.30 ka0 = 0.53 ka0 = 0.86

FIGURE 7. Evolution of dimensionless overall amplitude (kā − ka0) versus dimensionless
time τ found in present experiments in comparison with past nonlinear models based on
heuristic/interpolation methods (Sadot et al. 1998; Mikaelian 2003), Padé approximation
approach (Zhang & Sohn 1997b) and simulations (Dimonte & Ramaprabhu 2010). Asymptotic
components are Eb/s = 3

2
(1± A)
(1+A) (solid black line); Eb/s = 1 ± A (black dashed line); Eb/s =

3 (1± A)
3± A (black dash-dotted line); Eb/s = (2± A)

2 (black dotted line); and Eb/s = ln
( 3

ka0

)
(1± A)
(1+A)

(blue solid line).

to characterize the asymptotic behaviour of the perturbation growth. This modification
provides a much better agreement with our late-time amplitude measurements for
increasing ka0 values. Similar to Dimonte & Ramaprabhu and Zhang & Zhao, the model
predicts an intermediary growth between Mikaelian (2003) and Sadot et al. (1998) for
ka0 = 0.30 (A− = 0.67). The growth rates increase with the scaled initial amplitudes in
order to match the experimental measurements. More importantly, the 1/t asymptotic
dependence expected from potential flow theory plays an important role in obtaining good
agreement with our extended late-time measurements which has also been observed in the
experiments of Collins & Jacobs (2002) and Niederhaus & Jacobs (2003).

It is important, however, to mention that this asymptotic variant of Sadot et al.’s
model proposed is based on the evolution of dominant modes where multi-modal features
and residual small perturbations are also present. Therefore caution must be taken in
its applicability to predict the evolution of purely single-mode RMI experiments. The
present experiments instead are designed to understand how multi-modal features evolve
given a dominant single mode to reflect real-world RMI conditions more accurately.
Since modelling such a complex flow is difficult, the need to understand how it develops
empirically (as represented by 3.6 and 3.15) is very important. The membraneless method
developed herein to set up initial conditions does not suffer from additional disturbances
in the form of small-scale perturbations caused by membrane rupture following shock
passage. The use of a dominant mode with other residual small perturbations as an
inevitable artifact of machine-made interfaces are complementary to single-mode work in
the RMI community and will be extremely beneficial in developing RMI growth models
closer to reality.

3.3. Vortex identification and invariants of the reduced velocity gradient tensor
Vortical structures resulting from the baroclinic generation of vorticity in RMI flows can
significantly enhance mixing (Peng et al. 2003). While mixing at the smallest scales affects
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molecular level processes directly, with energy converted into heat by viscous dissipation,
large-scale mixing in the range of integral length scales drawing energy directly from
the mean flow can have an indirect influence by advecting fluid through regions where
turbulence characteristics are substantially variant (Ducci & Yianneskis 2007). Vortical
motions can aid macro-mixing processes and mixing transition significantly, yet little is
known in terms of their size–strength characteristics and initial condition dependence in
RMI flows.

The identification of vortex structures in 3-D velocity field data can be performed using
various velocity gradient tensor (VGT) based mathematical schemes. Among the methods
proposed include the Q-criterion (Hunt, Wray & Moin 1988), �-criterion (Chong, Perry
& Cantwell 1990), λci-criterion (Zhou et al. 1999) and λ2-criterion (Jeong & Hussain
1995). The Q-criterion defines a vortex as a connected fluid region where the second
invariant of the velocity gradient tensor (∇u) is positive, Q > 0. Decomposing the tensor
into symmetric and anti-symmetric parts, the second invariant of the full VGT for an
incompressible flow (applicable following the traversal of a low Mach number shock
through the interface) can be expressed as

Q = 1
2

(||Ω||2 − ||S||2) , (3.16)

where

Sij = 1
2

(∇u + (∇u)T
) = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(3.17)

is the strain-rate tensor and

Ωij = 1
2

(∇u − (∇u)T
) = 1

2

(
∂uj

∂xi
− ∂ui

∂xj

)
(3.18)

is the rotation-rate tensor. The Q-criterion represents a local balance between rotation and
strain, identifying vortices as regions where the magnitude of vorticity is larger than that
of strain rate.

Obtaining planar PIV measurements, such as in this study, omits the out-of-plane
velocity components, truncating the full VGT that can be used for vortex identification
analysis. The 2 × 2 reduced VGT formed from a 2-D slice of the 3-D flow field is given
by

∇ũ =

⎡
⎢⎣
∂u
∂x

∂u
∂y

∂v

∂x

∂v

∂y

⎤
⎥⎦ (3.19)

which represents the upper-left 2 × 2 portion of the full VGT (∇u) containing streamwise
and spanwise velocity gradients. The characteristic polynomial of ∇ũ is

λ2 + pλ+ q = 0, (3.20)

where p and q represent the first and second invariants of (3.20), respectively, given by

p = −tr(∇ũ) = − ∂u
∂x

− ∂v

∂y
, (3.21)

q = det(∇ũ) = ∂u
∂x

∂v

∂y
− ∂u
∂y

∂v

∂x
. (3.22)

This expression for q is not an assessment of local rotation excess over strain rate,
producing positive values for irrotational flows in sources and sinks. A more robust
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FIGURE 8. (a) PIV image of the mixing width from example shown in figure 2 (c, t = 2.65
ms) and corresponding plots for (b) vorticity, ωz, overlaid with velocity fluctuation vectors,
(c) Q-criterion and (d) swirl strength, λci.

criterion can be obtained by simplifying (3.16) in terms of the reduced VGT giving (Chen
et al. 2015)

Q = −∂u
∂y

∂v

∂x
− 1

2

[(
∂u
∂x

)2

+
(
∂v

∂y

)2
]

≡ ∂u
∂x

∂v

∂y
− ∂u
∂y

∂v

∂x
− 1

2

(
∂u
∂x

+ ∂v

∂y

)2

, (3.23)

where connected fluid regions with Q > 0 are identified as vortices in planar velocity
fields.

The strength of the vortical motion can be quantified using the λci-criterion where λci
corresponds to the imaginary part of the complex eigenvalues of the VGT. This method
follows from the �-criterion which associates swirling regions with complex eigenvalues
of the VGT and examines the discriminant of the characteristic polynomial as a potential
vortex indicator. As such, connected regions having a positive discriminant from the full
VGT and negative discriminant from the reduced VGT are equivalent to having complex
conjugate eigenvalues for vortex identification. While the λci and �-criteria are based
on same definition, the former has the added advantage of being a measure of the local
swirling strength of the vortex also referred to as the swirl-strength criterion (Zhou et al.
1999).

We use the Q-criterion in conjunction with the λci-criterion to extract vortices and their
associated swirl strengths for increasing ka0 initial conditions. Figure 8 shows an example
for criteria comparison where (a) a sample planar PIV image of the mixing width (from
figure 2c) is presented with its (b) vorticity field and velocity fluctuation vectors and
corresponding vortices identified by (c) Q and (d) λci criteria. As expected, vorticity is
mainly concentrated at the interface, acting to stretch its length and drive mixing. The two
dimensional swirling motions observed in (c,d) represent cross-sections of 3-D structures
which tend to have an elongated tubular form known as ‘vortex tubes’. The appearance
of these structures projected onto a 2-D plane depends entirely on how they are angled
with respect to that plane. A plane perpendicular to the axis of the vortex tube produces a
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FIGURE 9. Probability distribution of vortex size and swirl strength at t = 2.65 ms (a,c) and
5.65 ms (b,d) for increasing ka0 initial conditions. Counts are normalized with respect to total
count (n).

circular projection while a sufficient angular deviation can render it as an ellipsoid or an
elongated feature which is found to be a characteristic of most vortex structures identified
in (c,d). Nevertheless, comparing the structures in (c,d), vortex regions common to both
Q and λci criteria are very similar with a slightly lesser number of vortices identified
for the former method. This results from Q imposing a more restrictive condition for
vortex identification making it a subset of the λci-criterion (Chen et al. 2015). Since the
threshold for λci is not well-defined, we use Q > 0 to identify vortex regions and obtain
the associated mean swirl strengths as corresponding values of λci.

Figure 9 shows the probability distribution of vortex sizes and mean swirl strengths
obtained from eight instantaneous PIV realizations at t = 2.65 ms (a,c) and 5.65 ms (b,d).
Vortex sizes with mean diameters ranging between the Taylor micro-scales and integral
length scales (see § 3.5) are considered to probe the macro-mixing characteristics of the
flow with consistency between data sets. The total count (n) increases with ka0 and time
as the corresponding mixing widths are larger and contain more vortices from breakdown.
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FIGURE 10. Joint probability distribution of vortex size with swirl strength for ka0 = 0.30,
0.53 and 0.86 at t = 2.65 ms (a–c) and t = 5.65 ms (d–f ), respectively.

The distribution of vortex sizes, however, remains unchanged for the different initial
conditions as similar probabilities are noted across the spatial scale. Mean swirl-strength
profiles in comparison also tend towards self-similar distributions eventually but have
larger variations at the earlier time (t = 2.65 ms). These distributions show a peaking
phenomenon for λci ≈ 0.5–1 × 103 and a noticeable decrease for λci � 2 × 103 between
(c,d), indicating a larger presence of weaker vortices at late times.

The distribution of vortex size with respect to mean swirl strength and its evolution can
be examined by plotting the joint probability distribution of the two variables as shown
in figure 10. The equiprobability contours generally increase in the abscissa (size) and
decrease in the ordinate (strength) with time indicating a shift in probability towards larger
weaker structures (a–d,b–e,c–f ). The shift becomes increasingly noticeable for higher ka0
interfaces where the expansion in macro-scale vortex structures is consistent with the
corresponding increase in mixing layer thicknesses. The decrease in mean swirl strengths
with time provides evidence of energy transfer from these vortex structures to smaller
scales. Since larger viscous losses are associated with turbulence, the shift is expected to
be more prominent for higher ka0 initial conditions from having earlier mixing transition
onsets (see § 3.6).

The statistical properties of small-scale turbulence can be investigated following
Cardesa et al.’s (2013) seminal work interpreting joint probability density functions
(p.d.f.s) of invariants of the reduced VGT based on averages of p and q under the
assumption of local isotropy. Resorting to an average-based approach stems from the
difficulty in capturing the local topology of 3-D structures based on their 2-D projection,
as discussed previously. Their work showed that the joint p.d.f. of p–q has an asymmetric
distribution resembling a teapot shape common to all fully developed turbulent flows.
Since this asymmetry stems from a higher probability of quadrants in the p–q diagram
where p and q are oppositely signed in comparison to quadrants where they carry same
signs, it requires 〈pq〉 < 0. In addition, given 〈pq〉 = − 1

15 〈wiSijwj〉 assuming local isotropy,
the inequality 〈pq〉 < 0 follows from the average enstrophy amplification 〈wiSijwj〉 > 0
indicating that the asymmetry in joint p.d.f.s of p–q results from the universal
predominance of vortex stretching at the smallest scales.
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FIGURE 11. Normalized joint p.d.f.s of reduced VGT invariants p and q for ka0 = 0.30, 0.53
and 0.86 at 2.65 ms (a,c,e) and 5.65 ms (b,d, f ), respectively. Contour levels scale
logarithmically. 〈pq〉/〈ω2

3〉3/2 = (a) − 0.053, (b) −0.029, (c) −0.062, (d) −0.029, (e) −0.065,
( f ) −0.054. ω3 = (∂u2/∂x1)− (∂u1/∂x2).

The case of RMI flows in mixing transition herein gives the opportunity to investigate
the evolution of these asymmetricities in joint p.d.f.s of p–q and hence the predominance
of small-scale vortex stretching in transitionally turbulent flows. Figure 11 shows
normalized joint p.d.f.s of p–q for ka0 = 0.30, 0.53 and 0.86 at 2.65 ms (a,c,e) and 5.65 ms
(b,d,f ), respectively. As observed, plots (a,b) for the lowest ka0 representing flows before
mixing transition (see § 3.6) show relatively flat apexes with nearly equal tail extensions
along q = p2/4. The parabola q = p2/4 marks the boundary between real and imaginary
roots of the characteristic polynomial of ∇ũ and has a distinct influence on the p.d.f.
shapes. Plots (c,d) and (e, f ) in comparison for flows in the early and late stages of mixing
transition, respectively (see § 3.6), exhibit an increasing resemblance with a teapot-like
shape in time as a hump at the apex, spout-like extension along q = p2/4 in the second
quadrant and spread in the fourth quadrant become notable. 〈pq〉/〈ω2

3〉3/2 values computed
for flows herein (see figure 11 caption) corroborate Cardesa et al.’s prediction that such
asymmetric joint p.d.f. distributions of p–q are associated with 〈pq〉 < 0. In addition, since
the flow is isotropic at the smallest scales (see § 3.6), negative 〈pq〉 quantities indicate the
predominance of enstrophy amplification from vortex stretching at the smallest scales.
Given RMI flows are time dependent, having a tendency towards turbulence with mixing
in the nonlinear regime, the increasing teapot-like resemblance of the joint p.d.f.s with
time indicates the potential in using p–q plots as a robust tool in determining mixing
transition in 2-D diagnostics.

3.4. Turbulent statistics: velocity fluctuations and turbulent kinetic energy
Fluctuations in the velocity field generated by eddies driving mixing transition can give
more information about the complex interactions of vortex structures. Because the motions
associated with turbulent eddies are approximately random, the velocity fluctuations can
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be obtained using statistical methods. We use spanwise averaging (Balakumar et al. 2012)
for computing fluctuations from single realizations which for the ith velocity component
are defined as

ui(x) = ui(x, y)
y
, (3.24)

u′
i(x, y) = ui(x, y)− ui(x), (3.25)

where superscripts x and y denote averages in the streamwise and spanwise directions,
respectively.

Figure 12 presents p.d.f.s of streamwise (a,b) and spanwise (c,d) velocity fluctuations
for different initial conditions and times. The p.d.f.s are generated using velocity fields
from eight instantaneous PIV realizations. Non-Gaussian profiles with a larger spread are
generally noted for u′ and v′ at t = 2.65 ms (a,c) in comparison to their corresponding
p.d.f.s at t = 5.65 ms (b,d), respectively. While u′ profiles at the earlier time have a
slight to moderate negative skewness (longer left tails), a positive skewness is noted
at t = 5.65 ms downstream. This is noticeable as an inward shift of the left-side tails,
i.e. in negative (downward) fluctuations indicating a decrease in the probability of
large streamwise fluctuations in the shock-wave direction downstream. The p.d.f.s of
spanwise v′ fluctuations tend to be narrower than the corresponding streamwise u′ profiles.
Although the prior have similar distributions at t = 5.65 ms, the latter show an increasing
spread with ka0 which reflects the presence of larger fluctuations. Because turbulence is
characterized by large intermittent velocity fluctuations, with p.d.f.s in developing flows
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ζ = x/h for ka0 = 0.30, 0.53 and 0.86 at (a) t = 2.65 ms and (b) t = 5.65 ms.

having long tails (Jiménez 2000; Orlicz et al. 2015), this may indicate a higher level
of intermittency for larger ka0 values. The differences between u′ and v′ p.d.f. profiles
observed at both times also indicates the presence of anisotropy in the flow field.

Velocity fluctuations from (3.25) can be used to obtain the spanwise-averaged 2-D
turbulent kinetic energy K(x) across the fluid layer as

K(x) =
[

1
2

(
u′2(x, y)

y + v′2(x, y)
y
)]n

, (3.26)

where the superscript n represents the ensemble mean. Turbulent kinetic energy (TKE)
estimates from (3.26) versus the normalized streamwise distance ζ = x/h are shown in
figure 13. TKE values for ζ � 0.6 become closer for all three initial conditions with
the passage of time. The differences appear in the upper half of the mixing region
where larger ka0 initial conditions generally result in higher levels of turbulence; K
peaks between 0.5 � ζ � 0.7 at t = 2.65 ms and 0.3 � ζ � 0.6 at t = 5.65 ms with a
decrease in magnitude over time due to viscous dissipation. The upward shift in peaks
suggests strong velocity variances to drive mixing towards the less dense fluid (air) with
time. This coincides with the characteristics of roll-up mechanisms in expanding and
elongating spike mushroom structures (Peng et al. 2003) where fluid entrainment causes
local mixing enhancements. Since the TKE peaks observed are much larger for the highest
ka0 investigated, the mechanisms that drive mixing towards the less dense fluid seem
increasingly effective for large initial amplitudes.

3.5. Minimum state analysis and turbulent length scales
In this section, we further probe the state of the flow by characterizing turbulence using
global and local measures of the Reynolds number and estimate the relevant turbulent
length scales to determine the existence of an inertial range. Determining the transition to
turbulence in time-dependent Richtmyer–Meshkov flows is crucial in understanding when
viscous dissipation losses become significant in ICF applications. An important aspect of
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this problem is the effect of initial conditions on the turbulent transition with particular
emphasis on the transition criterion used.

Since the unsteady nature of RMI flows involves continuously developing length
and velocity scales, the definition of Reynolds number used to characterize turbulence
must be chosen appropriately to determine flow transition with time. Several methods
for the calculation of Reynolds number have been proposed in the literature yet the
applicability and relative disparity in characterizing mixing transition of these methods
remain questionable. Three different Reynolds number calculations based on local and
global estimates are therefore considered for comparison purposes and investigating their
physical significance in RMI flows.

A local Reynolds number based on turbulent fluctuations can be defined as Re� = δ′h/ν
(Tomkins et al. 2013). The velocity scale δ′ is estimated from the width of u′ and v′

velocity fluctuation p.d.f.s (see e.g. figure 12) taken as the range 99 % of all fluctuations
fall within. The average width of the velocity fluctuation p.d.f.s is used giving δ′ =
(δ′

u + δ′
v)/2 and the characteristic outer length scale is taken as the width of the mixing

layer h. The kinematic viscosity of the gaseous mixture can be estimated from Youngs
(1984) expression ν = (μ1 + μ2)/(ρ1 + ρ2) where subscripts 1 and 2 represent the light
and heavy gases, respectively. Using one-dimensional gas dynamics and normal shock
relations, this produced a value of ν = 7.98 × 10−6 m2 s−1.

The local information based estimate can be compared with global Reynolds number
estimates based on circulation and mixing width growth rate measurements. The
circulation Reynolds number is given by ReΓ = Γ/ν where Γ represents the circulation
of a vortex core or region. Considering positive and negative circulations in the flow field
separately we obtain Re+

Γ and Re−
Γ . These circulations are computed as the sum of local

circulations from individual points in the velocity field where each local circulation occurs
about the centre of a small region dA sizing 2 × 2 vectors (Orlicz et al. 2013). This can be
expressed as

Γ (t) =
∫ ∫

A
ω dA. (3.27)

A large-scale Reynolds number in RMI flows can also be defined as Reh = hḣ/ν where ḣ is
the mixing width growth rate. Previous studies have not found Reh useful in understanding
mixing physics or capturing transition in RM flows. Scattered values reported by Orlicz
et al. (2015) were attributed to mixing width growth rate measurements being affected by
small perturbations at each time. Weber et al. (2014) overcame the spread by evaluating
Reh using curve fits to the mixing width growth data which showed the results as
lacking time dependence. This is expected since mixing growth rates decrease rapidly
with time as mixing widths increase causing the velocity and length scale estimations
in Reh to counteract each other. In our consideration of Reh, ḣ is taken as the initial
perturbation growth rate from (3.12) giving ḣ = 12.5 ms−1, 21.2 ms−1 and 31.9 ms−1 for
ka0 = 0.30, 0.53 and 0.86, respectively.

It is desirable for the mixing transition criterion in RMI flows to be temporally flow
dependent since the unsteady conditions result in continuously evolving length scales
and the associated inertial range to develop accordingly. Dimotakis (2000) proposed a
minimum Reynolds number of 1–2 × 104 to achieve mixing transition in stationary flows
which has been extended to a wide range of time-dependent flow studies (Robey et al.
2003; Zhou et al. 2003a; Zhou, Robey & Buckingham 2003b). While the stationary
flow Reynolds number criterion is indeed a necessary condition, it is not a sufficient
measure for achieving the minimum state in unsteady flows (Zhou 2007). The minimum
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FIGURE 14. Local and global information based Reynolds numbers, Re� = f (u′, h, ν), ReΓ =
f (Γ, ν) and Reh = f (ḣ, h, ν), versus ka0 at (a) t = 2.65 ms and (b) t = 5.65 ms. The dashed lines
indicate the minimum state criterion of Re = 1.6 × 105 by Zhou (2007).

state is described as the lowest laboratory–astrophysical representative Reynolds number
a time-dependent flow must achieve such that the inertial range has extended sufficiently
(λL/λv = 2) to ensure the energy-containing scales are not contaminated by the dissipation
scales. Here λv = 50h Re−3/4 and λL = 5h Re−1/2 denote the inner viscous scale and
Liepmann–Taylor scale as the lower and upper limit of the inertial range, respectively
(Dimotakis 2000). The temporal criterion for unsteady flow minimum state is thus reached
when the Leipmann Taylor scale grows to become twice as large as the inner viscous length
scale which provides Re = 1.6 × 105 (Zhou 2007) as the critical Reynolds number to
faithfully represent the spectral range measured in a laboratory setting to the corresponding
astrophysical phenomenon.

The initial condition and time dependence of Re�, ReΓ , Reh are plotted in figure 14.
The Reynolds numbers increase with ka0 and t where estimates from the circulation based
approach are higher than those obtained from other methods; Re� and Reh values, however,
occur within a factor of 2 of each other as also noted by Tomkins et al. (2013). While ReΓ
generally exceeds the minimum state criterion (dashed lines), Re� values stay under and
Reh values show a cross-over between ka0 = 0.53 and 0.86 at both times. Assuming linear
interpolation, the crossover occurs at lower ka0 values with increase in time indicating
mixing transition to occur earlier for higher ka0 initial conditions. Given these trends
are physically corroborated by the formation of mixing regions (see figure 2), Reh better
characterizes the flow in terms of mixing transition compared to other methods used herein
and demonstrates the physical significance of the minimum state criterion in the context
of RMI studies.

The separation between Taylor microscales and the integral lengths scales can also
provide insight into the extension of the inertial range. The Taylor micro-scale can be
estimated by performing the autocorrelation of velocity fluctuations in the spanwise
direction such that

R(r) = 〈η′( y)η′( y + r)〉
(η′)2

, (3.28)
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where η′ can represent either streamwise or spanwise fluctuations. Since R(r) has a
maximum at the origin, d2R(0)/dr2 is strictly negative. The Taylor microscale can then
be defined based on the curvature of the autocorrelation function at r = 0 as

λT =
[
−1

2
d2R(0)

dr2

]−1/2

, (3.29)

where λT,u is the transverse and λT,v is the longitudinal Taylor microscale. The curvature
is obtained by fitting a parabola to three points on each side of the autocorrelation origin,
i.e. the seven central points. The corresponding integral length scales are simply the area
under the autocorrelation function given by L = ∫∞

0 R(r) dr.
Since λT can be related to velocity derivatives (Pope 2000), the Taylor microscales can

be computed alternatively from

λT,η =
√√√√ 2η′2

i

(dη′
i/dxi)2

. (3.30)

Reynolds number scalings from local isotropy provide another Taylor microscale
estimate following λT ≈ ChRe−1/2 where the scaling factor C can be taken as 2.3 (Weber
et al. 2014),

√
10 (Pope 2000),

√
15 (Tennekes & Lumley 1972), 10 (Orlicz et al. 2015).

Mohaghar et al. (2017) showed Taylor microscales estimated using C = √
15 to be 3–4×

smaller than measured results which was attributed to the presence of resolution effects.
Weber et al. (2014) discussed that a similar discrepancy found using C = 2.3 could not
be accounted by these effects in their set up indicating the need to modify traditional
Reynolds number scaling laws for better agreement when applied to RMI flows. For this
purpose, Orlicz et al. (2015) proposed C = 10 as being a more suitable scaling factor for
consistency with the velocity based Taylor microscale which has also been used herein.

As observed in figure 15, although Taylor microscales obtained from spatial gradients
and auto correlation methods are in good agreement, they are still 3–4× larger than scales
derived from Reynolds numbers. The discrepancy here could result from the presence
of resolution effects as comparisons with previous RMI experiments using a higher
resolution with similar cross-flow conditions to form a diffuse layer interface (Orlicz et al.
2015) show the velocity based Taylor microscales to closely match our Re based Taylor
microscales ≈1 mm. Evaluating these against the integral length scales, the highest L/λT
ratios obtained are 4.6, 5.6, 7.0 for ka0 = 0.30, 0.53, 0.86, respectively, at t = 5.65 ms.
The increasing separation between micro and integral length scales suggests the presence
of an inertial range to be more likely for higher ka0 initial conditions. A more detailed
analysis is presented in the following section.

3.6. Energy spectrum analysis
We investigate the distribution of scales and the existence of an inertial range from
the one-dimensional energy spectra of velocity field measurements. Previous RMI
experiments have shown the presence of a k−5/3 inertial range (Vorobieff et al. 2003;
Reilly et al. 2015) with an exponential dissipation range in the scalar spectrum (Weber
et al. 2012). Zhou’s (2001) theoretical analysis suggested a k−3/2 scaling to occur
during a quasi-steady state (after the shock has traversed the interface with no other
external effects acting on it) before forming the classical Kolmogorov k−5/3 scaling
at fully developed turbulence. Both scalings were also observed in the simulations of
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FIGURE 15. Comparison of Taylor micro-scales obtained using spatial gradient (∂v/∂y, ∂u/∂y)
and autocorrelation (corrv, corru) methods with Reynolds number based derivatives
(λ�, λh, λΓ

+, λΓ −) from λT ≈ 10hRe−1/2 at (a) t = 2.65 ms and (b) t = 5.65 ms.

Thornber et al. (2010, 2012) where a k−3/2 range was driven by the RM instability and
a k−5/3 sub-inertial range occurred at high wavenumbers for late times. Simulations by
Hill, Pantano & Pullin (2006), Grinstein, Gowardhan & Wachtor (2011) and Lombardini,
Pullin & Meiron (2012) found a k−5/3 scaling, Tritschler et al. (2014) a k−3/2 scaling
and Cohen et al. (2002) a k−6/5 scaling within the inertial range. The disagreement in
computational results stems from the sensitivity to initial (Zoldi 2002) and inflow (Saugat
et al. 2004) conditions and difficulties with characterizing subgrid-scale effects in large
eddy simulations (Grinstein 2009).

Although shock-induced mixing in RMI flows is characterized by inhomogeneous
anisotropic unsteady turbulence, the state-of-the-art analysis still uses a theoretical
framework with diagnostics designed for homogeneous isotropic phenomena. The
one-dimensional energy spectra components are obtained from the fast Fourier transform
(FFT) of velocity fluctuations in the horizontal direction with multiplication by its complex
conjugate giving

Eu′ = FFT(u′).conj((FFT(u′)), (3.31)

Ev′ = FFT(v′).conj((FFT(v′)), (3.32)

where Eu′ is the energy spectrum of the streamwise velocity component; Ev′ is the energy
spectrum of the spanwise velocity component. As per the Nyquist frequency constraint,
only the first half of each component is sampled. Both components are averaged vertically
and summed to give the total kinetic energy spectrum at a given time as E(ky).

Figure 16 shows the one-dimensional energy spectra E(ky) for the three initial conditions
at (a) t = 2.65 ms and (b) t = 5.65 ms. Higher energy levels are found to be associated
with higher ka0 initial conditions at t = 2.65 ms. Increasing times in the compensated
spectrum plots show energy decay at small wavenumbers, ky ≤ 250 for ka0 = 0.30 (c)
and ky ≤ 100 for ka0 = 0.53 (d) with an increase at larger wavenumbers indicating
a transfer of energy from large to small scales. Energy losses for ka0 = 0.86 (e) are
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FIGURE 16. Energy spectra for ka0 = 0.30, 0.53 and 0.86 at (a) t = 2.65 ms and
(b) t = 5.65 ms. Compensated spectra for ka0 = 0.30 (c), 0.53 (d) and 0.86 (e) at both times.

noticeably large across all wavenumbers. This is expected in correspondence with the
evolution of a more turbulent transition noted in figure 14 with higher viscous losses.
For ka0 = 0.30 (c), 0.53 (d) and 0.86 (e), the spectra follow the classical Kolmogorov
−5/3 power law in the ranges ky ≈ 400–1000, 300–1500, 150–1500 at t = 2.65 ms
and ky ≈ 500–1500, 150–1500, 200–2000 at t = 5.65 ms, respectively. This shows
a full decade of inertial range existing at t = 5.65 ms for ka0 = 0.53 and at both
times for ka0 = 0.86, indicating transition to turbulence. These findings corroborate
trends noted in figure 14 where higher ka0 initial conditions experience earlier mixing
transitions.

Testing the degree of local isotropy, we plot the normalized cross-correlation spectrum
between u′ and v′ defined as |Eu′v′(ky)|/[Eu′u′(ky)Ev′v′(ky)]1/2 (Tavoularis & Corrsin 1981;
Mohaghar et al. 2017) in figure 17. While the flow is generally anisotropic at large scales,
a significant range of smaller scales (ky ≥ 700) exhibit local isotropy at both times,
t = (a) 2.65 ms, (b) 5.65 ms. The smallest ka0 initial condition investigated corresponds
to the least tendency towards isotropy at these scales. Trends in local isotropy remain
mainly unaltered in time indicating the flow to retain its memory downstream for smaller
scales. Anisotropy noted at the largest scales for ka0 = 0.30 and 0.53 (t = 2.65 ms) shifts
towards the mid-range scales downstream (t = 5.65 ms). The decrease in spectrum for
ka0 = 0.86 meanwhile indicates a breakdown from large to small scales. Decreasing levels
of anisotropy for higher ka0 are noted for ky < 700 at t = 5.65 ms. This reasonably stems
from the earlier mixing transition of higher ka0 initial conditions resulting in finer turbulent
scales.
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FIGURE 17. Normalized cross-correlation spectrum for ka0 = 0.30, 0.53 and 0.86 at
(a) t = 2.65 ms and (b) t = 5.65 ms.

4. Summary and conclusions

This study investigates the effect of initial conditions on the late-time growth and
mixing transition of Richtmyer–Meshkov instability from sinuous perturbations on an
air/sulphur hexafluoride interface (A ∼ 0.67) subjected to a Mach 1.2 planar shock wave.
The experiments are performed at the vertical shock tube facility at Los Alamos National
Laboratory. Interface perturbations are established using a membraneless technique
where cross-flowing air and SF6 separated by an oscillating splitter plate enter the
shock tube with an undulating structure. The initial condition instabilities are not
perfectly sinusoidal and comprise of asymmetric multi-modal features with residual
small perturbations. A dominant wavelength and amplitude, however, are still observed.
This allows understanding how multi-modal features evolve given a dominant single
mode to reflect real-world conditions more accurately. A combination of oscillating plate
frequencies and sweeping angles are used to investigate the effect of three different initial
conditions ka0 = 0.3, 0.53 and 0.86 where k denotes the wavenumber and a0 represents
the initial amplitude of the dominant mode. We find that:

(i) Previous modelling predictions generally show growths devoid of initial condition
dependency producing notable discrepancies between present experimental results
for large ka0 initial conditions. Accounting for an explicit ka0 dependence in Sadot
et al.’s (1998) model, a modified empirical rational function that captures the
asymptotic behaviour of the perturbation growth for 0.30 ≤ ka0 ≤ 0.86 is given by

vb/s = v0(1 + v0kt)
1 + (1 ± A)v0kt + [(1 ± A)/(1 + A)] ln[3/(ka0)]v2

0k2t2
. (4.1)

(ii) Comparing the minimum state criterion (Re = 1.6 × 105) for unsteady flows by
Zhou (2007) with various local and global Reynolds number estimates, the onset
of mixing transition is found to occur earlier for higher ka0 initial conditions. This
temporal criterion describes the lowest turbulent flow Reynolds number where the
inertial range has extended sufficiently (λL/λv = 2) such that the energy containing
scales do not interact with the dissipation scales.
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(iii) Mixing transition prescribed by the minimum state criterion is physically
corroborated by interface break-up and formation of mixing regions. In addition, the
one-dimensional energy spectra of velocity field measurements show a full decade
of the classical k−5/3 inertial scaling to exist in corresponding flow conditions. Both
findings demonstrate the physical significance of the minimum state criterion in RMI
flows.

(iv) The Reynolds number criterion (Re = 1–2 × 104) by Dimotakis (2000) is indeed
a necessary condition for achieving mixing transition in stationary flows but not
a sufficient measure in the case of time-dependent Richtmyer–Meshkov instability
flows.

(v) RMI flows in turbulent transition show an increasing teapot-like resemblance for
joint p.d.f.s of p–q (invariants of the reduced VGT) with time. The asymmetry noted
is associated with negative values of 〈pq〉 which along with local isotropy at the
smallest scales indicates the predominance of enstrophy amplification and hence
vortex stretching.

The evolution of p–q plots into a teapot profile with mixing transition indicates the
potential in using the technique as a valid tool for turbulence detection and estimation
in 2-D diagnostics. This is particularly useful in ICF applications where diagnostics are
limited by spatial constraints and determining the transition to turbulence is crucial in
understanding when viscous dissipation losses become significant.
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