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Abstract
We provide a second-order energy expansion for a gas of N bosonic particles with three-body interactions in the
Gross-Pitaevskii regime. We especially confirm a conjecture by Nam, Ricaud, and Triay in [25], where they predict
the subleading term in the asymptotic expansion of the ground state energy to be of the order

√
𝑁 . In addition, we

show that low-energy states satisfy Bose-Einstein condensation with a rate of the order 𝑁− 3
4 .
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1. Introduction

In this manuscript we study a dilute Bose gas consisting of N quantum particles subject to Bose-Einstein
statistics, in which the individual particles interact with each other via a three-body potential

𝑉𝑁 (𝑥, 𝑦, 𝑧) := 𝑁𝑉
(√

𝑁 (𝑥 − 𝑦),
√
𝑁 (𝑥 − 𝑧)

)
, (1)

defined in terms of a given bounded and non-negative function𝑉 : R3×R3 −→ Rwith compact support.
The quantum gas is then described by the self-adjoint operator

𝐻𝑁 := −
∑

1≤𝑘≤𝑁

Δ 𝑥𝑘 +
∑

1≤𝑖< 𝑗<𝑘≤𝑁

𝑉𝑁 (𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 ), (2)
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acting on the space of permutation-symmetric functions 𝐿2
sym

(
Λ𝑁

)
, where Λ :=

[
− 1

2 ,
1
2
]3 is the

three-dimensional periodic torus, that is,
∑

1≤𝑘≤𝑁 Δ 𝑥𝑘 is defined as the closure of the Laplace operator
acting on permutations symmetric and periodic 𝐶2 functions and 𝑥 − 𝑦 as well as 𝑥 − 𝑧 in Eq. (1) refer
to the distance on the torus. We further assume that 𝑉𝑁 defined in Eq. (1) is permutation symmetric
in order to assure that 𝐻𝑁 preserves permutation symmetry. The particular scaling in Eq. (1) with the
number of particles N is referred to as the Gross-Pitaevskii regime and yields a short-range, but strong,
interaction on the scale 𝑟 = 1√

𝑁
. This especially means that we are dealing with a dilute gas taking

up a volume of the order 𝑁𝑟3 = 1√
𝑁

. Due to the physical relevance of three-body interactions, which
are for example responsible for 2% of the binding energy of liquid He4 [21] and 14% for water [20],
Dilute Bose gases with three-particle interactions have been studied extensively in [23, 24, 25, 26, 15],
where the leading-order asymptotics of the ground state energy in the limit 𝑁 → ∞ has been estab-
lished as well as Bose-Einstein condensation (BEC) in the Gross-Pitaevskii regime. Here (BEC) refers
to the observation that most of the particles occupy the state with zero momentum. Following this body
of work, we will focus for the sake of simplicity on gases without two-body interactions and a repulsive
three-body interaction, which is precisely the setting of [25, Conjecture 5].

In the Gross-Pitaevskii regime, the leading-order term in the asymptotics of the ground state energy
has been derived in [23]

𝐸𝑁 := inf 𝜎(𝐻𝑁 ) = 1
6
𝑏M(𝑉)𝑁 + 𝑜𝑁→∞(𝑁), (3)

which is proportional to the number of particles N with a rather explicit constant 𝑏M (𝑉). Applying
naive first-order perturbation theory, with −

∑
1≤𝑘≤𝑁 Δ 𝑥𝑘 as the unperturbed operator, would suggest

the value 𝑉 (0) for the constant 𝑏M (𝑉). It is, however, due to the singular nature of the scaling in
Eq. (1) that we cannot ignore the presence of three particle correlations leading to a renormalized
constant 𝑏M (𝑉) < 𝑉 (0). In the following we will address a conjecture in [25], which claims that the
subleading term in the asymptotic expansion of 𝐸𝑁 is proportional to

√
𝑁 , see our main Theorem 1.

The contributions to the ground state energy 𝐸𝑁 of the order
√
𝑁 arise based on two-particle, three-

particle, and four-particle correlations in the ground state. As a byproduct from the proof of Theorem
1, we obtain in addition that the ground state ΨGS

𝑁 of the operator 𝐻𝑁 satisfies (BEC) with a rate 1√
𝑁

,
that is, we show that the ratio of particles outside the state with zero momentum compared to the total
number of particles N is of the order 𝑂𝑁→∞

(
1√
𝑁

)
. This is an improvement of the (BEC) result in [23],

where the authors showed that the ratio is of the order 𝑜𝑁→∞(1).
It is worth pointing out that much more is known for Bose gases with two-particle interactions,

where the expansion of the ground state energy to second order is well known in the Gross-Pitaevskii
regime, the thermodynamic limit, and interpolating regimes, see, for example, [3, 7, 8, 10, 11, 13, 22].
Furthermore, (BEC) is well known for the Gross-Pitaevskii regime and regular enough interpolating
regimes, even with an (optimal) rate, see, for example, [1, 2, 4, 5, 6, 9, 12, 18], and the subleading term
in the expansion of the ground state energy is known to be of the order 𝑂𝑁→∞(1). This resolution of
the energy is sharp enough to see the spectral gap, which is of the order 𝑂𝑁→∞(1) as well. For a Bose
gas with three-particle interaction in the Gross-Pitaevskii regime we expect the spectral gap to be of the
magnitude 𝑂𝑁→∞(1), see the conjecture in [25]; however, the second-order expansion of the energy
only allows for a resolution of the order𝑂𝑁→∞

(√
𝑁
)
, which is not sharp enough to see the spectral gap.

As it is not the goal of this manuscript to optimize the regularity of V, we will assume
𝑉 ∈ 𝐶∞(R6) for the sake of convenience (although assuming, e.g., 𝑉 ∈ 𝐻9(R6) would certainly be
sufficient).

The correct constant 𝑏M (𝑉) in the energy asymptotics Eq. (3) can be derived formally by making
a translation-invariant ansatz for the correlation structure 𝜑(𝑥 − 𝑢, 𝑦 − 𝑢) between three particles at
positions x, y, and u, where 𝜑 : R6 −→ R. Utilizing the matrix
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M :=

√
1
2

[
2 1
1 2

]
and the modified Laplace operator ΔM := (M∇R3×R3)2, let us first express the action of the Laplace
operator in relative coordinates as(

Δ 𝑥 + Δ 𝑦 + Δ𝑢
)
𝜑(𝑥 − 𝑢, 𝑦 − 𝑢) = (2ΔM𝜑) (𝑥 − 𝑢, 𝑦 − 𝑢).

For three particles, the energy of the trial state Φ𝜑 (𝑥 − 𝑢, 𝑦 − 𝑢) := 1 − 𝜑(𝑥 − 𝑢, 𝑦 − 𝑢) is then given by

〈Φ𝜑 , (−2ΔM +𝑉)Φ𝜑〉 =
∫
R6

{
2
��M∇𝜑(𝑋)

��2 +𝑉 (𝑋) |1 − 𝜑(𝑋) |2
}
d𝑋.

Optimizing in 𝜑 leads to the definition

𝑏M (𝑉) := inf
𝜑∈ 
𝐻 1 (R6)

∫
R6

{
2
��M∇𝜑(𝑋)

��2 +𝑉 (𝑋) |1 − 𝜑(𝑋) |2
}
d𝑥, (4)

where 
𝐻1(R𝑑) refers to the space of functions 𝑔 : R𝑑 −→ C vanishing at infinity with |∇𝑔 | ∈ 𝐿2 (R𝑑
)
,

see [17, Section 8.3] where the notion 𝐷1 (R𝑑) is used instead. It has been verified in [23] that a unique
minimizer 𝜔 to the variational problem in Eq. (4) exists satisfying the associated Euler–Lagrange
equation

(−2ΔM +𝑉)𝜔 = 𝑉,

and the (modified) scattering length 𝑏M (𝑉) describes the leading-order asymptotics of the ground state
energy correctly, see Eq. (3). Notably, the solution 𝜔 can formally be interpreted as a second-order
correction to the condensate wavefunction Ψ ≡ 1, taking −2ΔM + 𝑉 , acting on functions vanishing
at infinity, as the unperturbed operator and V, acting on the condensate Ψ ≡ 1, as the perturbation.
Our main Theorem 1 confirms that the next term in the energy asymptotics in Eq. (3) is of the order
𝑂𝑁→∞

(√
𝑁
)

due to contributions from the three-particle correlation 𝜔, as well as from two-particle
and four-particle correlations.

In order to quantify the impact of two-particle correlations, we make a translation-invariant ansatz
𝜉 (𝑥 − 𝑢) with 𝜉 : R3 −→ R. Since (Δ 𝑥 + Δ𝑢)𝜉 (𝑥 − 𝑢) = (2Δ𝜉) (𝑥 − 𝑢), we identify the kinetic energy
of 𝜉 as

〈𝜉, (−2Δ)𝜉〉 =
∫
R3

2|∇𝜉 (𝑥) |2d𝑥.

Furthermore, the interaction energy of the wavefunction Φ𝜔 introduced above Eq. (4) with the state
Φ(𝑥 − 𝑢, 𝑦 − 𝑢) := 𝜉 (𝑥 − 𝑢), which describes two correlated particles at position (𝑥, 𝑢) ∈ R6 and a
particle in the condensate at position 𝑦 ∈ R3, reads

〈Φ, 𝑉Φ𝜔〉 + 〈Φ𝜔 , 𝑉Φ〉 =
∫
R6

2𝑉 (𝑥, 𝑦) (1 − 𝜔(𝑥, 𝑦))𝜉 (𝑥)d𝑦d𝑥 =
∫
R3

2𝑉eff (𝑥)𝜉 (𝑥)d𝑥,

where we have introduced the effective two-particle interaction

𝑉eff :

{
R3 −→ R,
𝑥 ↦→

∫
R3 𝑉 (𝑥, 𝑦) (1 − 𝜔(𝑥, 𝑦)) d𝑦.

Adding up kinetic and interaction energy, and optimizing in 𝜉, immediately gives rise to the energy
correction −𝜇(𝑉) with the proportionality constant 𝜇(𝑉) defined as
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𝜇(𝑉) := − inf
𝜉 ∈ 
𝐻 1 (R3)

{∫
R3

2|∇𝜉 (𝑥) |2d𝑥 −
∫
R3

2𝑉eff (𝑥)𝜉 (𝑥)d𝑥
}

=
∫
R6

𝑉eff (𝑥)𝑉eff (𝑦)
8𝜋 |𝑥 − 𝑦 | d𝑥d𝑦. (5)

Proceeding with the four-particle correlations, let us again commit to a translation-invariant ansatz
𝜂(𝑥 − 𝑢, 𝑦 − 𝑢, 𝑧 − 𝑢) with 𝜂 : R9 −→ R. Defining V : R9 −→ R and the matrix M∗ as

V(𝑥1, 𝑥2, 𝑥3) := 𝑉 (𝑥1 − 𝑥3, 𝑥2 − 𝑥3) +𝑉 (𝑥1, 𝑥2) +𝑉 (𝑥1, 𝑥3) +𝑉 (𝑥2, 𝑥3),

M∗ :=

√√√√√1
2

⎡⎢⎢⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎥⎥⎦ ,
we can identify the action of the Laplace operator as(

Δ 𝑥1 + Δ 𝑥2 + Δ 𝑥3 + Δ 𝑥4

)
𝜂(𝑥1 − 𝑥4, 𝑥2 − 𝑥4, 𝑥3 − 𝑥4)

=
( [
∇2

1 + ∇2
2 + ∇2

3 + (−∇1 − ∇2 − ∇3)2]𝜂) (𝑥1 − 𝑥4, 𝑥2 − 𝑥4, 𝑥3 − 𝑥4)

=
� !(∇1,∇2,∇3)

⎡⎢⎢⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎥⎥⎦� !
∇1
∇2
∇3

"#$𝜂"#$(𝑥1 − 𝑥4, 𝑥2 − 𝑥4, 𝑥3 − 𝑥4)

= (2ΔM∗𝜂) (𝑥1 − 𝑥4, 𝑥2 − 𝑥4, 𝑥3 − 𝑥4) (6)

and the action of the potential on 𝜂 as∑
1≤𝑖< 𝑗<𝑘≤4

𝑉 (𝑥𝑖 − 𝑥𝑘 , 𝑥 𝑗 − 𝑥𝑘 )𝜂(𝑥1 − 𝑥4, 𝑥2 − 𝑥4, 𝑥3 − 𝑥4)

= [𝑉 (𝑥1 − 𝑥3, 𝑥2 − 𝑥3) +𝑉 (𝑥1 − 𝑥4, 𝑥2 − 𝑥4) +𝑉 (𝑥1 − 𝑥4, 𝑥3 − 𝑥4) +𝑉 (𝑥2 − 𝑥4, 𝑥3 − 𝑥4)]
× 𝜂(𝑥1 − 𝑥4, 𝑥2 − 𝑥4, 𝑥3 − 𝑥4)

= (V𝜂) (𝑥1 − 𝑥4, 𝑥2 − 𝑥4, 𝑥3 − 𝑥4). (7)

Adding up the kinetic and potential energy of the four-particle correlation 𝜂, therefore yields

〈𝜂, (−2ΔM∗ + V)𝜂〉 =
∫
R9

{
2
��M∗∇𝜂(𝑥)

��2 + V(𝑥) |𝜂(𝑥) |2}d𝑥.

Moreover, the interaction energy 𝑉∗(𝑥, 𝑦, 𝑧) := 𝑉 (𝑥, 𝑦) of 𝜂 with the state

Φ(𝑥 − 𝑢, 𝑦 − 𝑢, 𝑧 − 𝑢) := 𝜔(𝑦 − 𝑢, 𝑧 − 𝑢),

which describes three correlated particles at position (𝑦, 𝑧, 𝑢) ∈ R9 and a particle in the condensate at
position 𝑥 ∈ R3, reads

〈𝜂,𝑉∗Φ〉 + 〈Φ, 𝑉∗𝜂〉 = 2
∫
R9
𝑉 (𝑥, 𝑦)𝜂(𝑥, 𝑦, 𝑧)𝜔(𝑦, 𝑧)d𝑥d𝑦d𝑧 = 2

∫
R9
𝜂(𝑋) 𝑓 (𝑋)d𝑋,

where we have introduced the function 𝑓 (𝑥, 𝑦, 𝑧) := 𝑉 (𝑥, 𝑦)𝜔(𝑦, 𝑧). Combining kinetic, potential and
interaction energy, yields∫

R9

{
2
��M∗∇𝜂(𝑥)

��2 + V(𝑥)𝜂(𝑥)2 − 2 𝑓 (𝑥)𝜂(𝑥)
}
d𝑥 = Q(𝜂) −Q(0),
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where we have introduced the functional

Q(𝜂) :=
∫
R9

{
2
��M∗∇𝜂(𝑥)

��2 + V(𝑥)���� 𝑓 (𝑥)V(𝑥) − 𝜂(𝑥)
����2}d𝑥. (8)

Note that 𝑓
V

is well defined and bounded on the support of V, due to the sign of 𝑉 ≥ 0. Consequently,
the corresponding energy correction is given by −𝜎(𝑉) with

𝜎(𝑉) := Q(0) − inf
𝜂∈ 
𝐻 1 (R9)

Q(𝜂). (9)

Finally, we observe in the presence of an additional particle at position z further interaction terms
between 𝜔 and itself. Utilizing again the potential 𝑉∗(𝑥, 𝑦, 𝑧) := 𝑉 (𝑥, 𝑧), and defining the states Φ1(𝑥 −
𝑢, 𝑦−𝑢, 𝑧−𝑢) := 𝜔(𝑦−𝑢, 𝑧−𝑢) and Φ2(𝑥−𝑢, 𝑦−𝑢, 𝑧−𝑢) := 𝜔(𝑥−𝑢, 𝑧−𝑢), there are two relevant terms

〈Φ1, 𝑉∗Φ1〉 =
∫
R9
𝑉 (𝑥, 𝑦)𝜔(𝑦, 𝑧)2d𝑥d𝑦d𝑧,

〈Φ1, 𝑉∗Φ2〉 =
∫
R9
𝑉 (𝑥, 𝑦)𝜔(𝑥, 𝑧)𝜔(𝑦, 𝑧)d𝑥d𝑦d𝑧,

giving rise to the energy correction 𝛾(𝑉)

𝛾(𝑉) :=
∫
R9
𝑉 (𝑥, 𝑦)𝜔(𝑥, 𝑧)𝜔(𝑦, 𝑧)d𝑥d𝑦d𝑧 + 1

2

∫
R9
𝑉 (𝑥, 𝑦)𝜔(𝑦, 𝑧)2d𝑥d𝑦d𝑧. (10)

It is the content of our main Theorem 1, that 𝛾(𝑉), 𝜇(𝑉), and 𝜎(𝑉) describe the second-order correction
to the leading-order asymptotics of the ground state energy 𝐸𝑁 in Eq. (3), which is of the order
𝑂𝑁→∞

(√
𝑁
)
. The mathematically precise implementation of the correlation structures 𝜔, 𝜉, and 𝜂 will

be based on modified creation and annihilation operators, see, for example, [8], and generalized (unitary)
Bogoliubov transformations, see, for example, [2, 3]. Furthermore, we show that the order𝑂𝑁→∞

(√
𝑁
)

term comes with a nonzero prefactor for a large class of potentials V.

Theorem 1. Let 𝑉 ∈ 𝐶∞ (
R6) be a bounded and non-negative function with compact support, such

that the function 𝑉𝑁 defined in Eq. (1) is permutation symmetric. Furthermore, let 𝛾(𝑉), 𝜇(𝑉), and
𝜎(𝑉) ∈ R be as in Eq. (10), Eq. (5) and Eq. (9) respectively, and let 𝑏M (𝑉) be as in Eq. (4). Then the
ground state energy 𝐸𝑁 := inf 𝜎(𝐻𝑁 ) satisfies

𝐸𝑁 =
1
6
𝑏M (𝑉)𝑁 +

(
𝛾(𝑉) − 𝜇(𝑉) − 𝜎(𝑉)

)√
𝑁 +𝑂𝑁→∞

(
𝑁

1
4

)
. (11)

Furthermore, there exists a 𝜆(𝑉) > 0, such that for all 0 < 𝜆 ≤ 𝜆(𝑉)

𝛾(𝜆𝑉) − 𝜇(𝜆𝑉) − 𝜎(𝜆𝑉) < 0.

Remark 1. While Theorem 1 concerns Bose gases in the ultra-dilute Gross-Pitaevskii regime occupying
a volume of the order 1√

𝑁
, the leading-order behavior of the ground state energy per unit volume 𝑒(𝜌)

is known in the thermodynamic regime as well as a function of the density 𝜌, see [24], and given in
analogy to the leading-order asymptotics in Eq. (3) by

𝑒(𝜌) = 1
6
𝑏M (𝑉)𝜌3 + 𝑜𝜌→0

(
𝜌3

)
.

It is remarkable that the coefficients 𝛾(𝑉), 𝜇(𝑉), and 𝜎(𝑉) from Theorem 1 are defined in terms of
variational problems on the unconfined space R3𝑑 and do not depend on the boundary conditions of the
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box Λ𝑑 . Substituting 𝜌 with 1√
𝑁

in Theorem 1 we therefore expect the second-order expansion of 𝑒(𝜌),
as 𝜌 → 0, to be given by

𝑒(𝜌) = 𝜌3
(

1
6
𝑏M (𝑉) +

(
𝛾(𝑉) − 𝜇(𝑉) − 𝜎(𝑉)

)
𝜌

)
+ 𝑜𝜌→0

(
𝜌4

)
.

This would be in contrast with the second-order expansion of a Bose gas with two-body interactions,
where in the celebrated Lee-Huang-Yang formula, see, for example, [14, 10] and [3] specifically for
the periodic torus Λ, a summation of Fourier coefficients in the Pontryagin dual (2𝜋Z)3 of the locally
compact group Λ appears. It is, however, expected that there is a corresponding Lee-Huang-Yang term
for gases with three-body interactions, which should appear in a third-order expansion of the energy as
a term of the order 𝑂𝑁→∞(1).

Proof strategy of Theorem 1. Following the ideas in [23], respectively [2, 3, 10, 11], which have
been developed in the context of Bose gases with two-body interactions, we are going to unveil the
correlation structure of the ground state with the help of a suitable coordinate transformation. Based on
the strategy presented in [8], our initial coordinate transformation will be of algebraic nature, that is,
we introduce a new set of operators and observe that the many-body operator 𝐻𝑁 is almost diagonal in
these new variables. The algebraic approach immediately allows us to find satisfactory lower bounds on
the ground state energy 𝐸𝑁 . Furthermore, we show that this coordinate transformation can be realized
in terms of a unitary map, at least in an approximate sense, which yields the corresponding upper bound
on 𝐸𝑁 .

In order to find a suitable transformation bringing 𝐻𝑁 into a diagonal form, we observe that collisions
between at most three particles will occur much more frequently compared to collisions between four
or more particles, as we are in the dilute regime where the gas occupies only a volume of the magnitude

1√
𝑁

. Consequently, we first look for a diagonalization of a gas with only three particles 𝑁 = 3, which
will involve the three-particle correlation structure 𝜔, and subsequently lift it to a diagonalization of the
full many-body problem. As it turns out, including the three-particle correlation structure is enough to
identify the leading-order behavior of the ground state energy. To be more precise, utilizing the a priori
information in Eq. (14), we are able to show at this point

𝐸𝑁 =
1
6
𝑏M (𝑉)𝑁 +𝑂𝑁→∞

(√
𝑁
)
. (12)

We want to emphasize that the proof of Eq. (12) depends on our ability to neglect collisions between four
or more particles, and we note that the correlation structure involves mostly particles outside the state
with zero-momentum. It is therefore crucial to have strong a priori information regarding the number
of particles outside the state with zero momentum, which we will refer to as excited particles. In the
language of second quantization, the number of excited particles can naturally be expressed as

N := 𝑁 −N0 := 𝑁 − 𝑎†0𝑎0, (13)

where N is the total number of particles, N0 counts the number of particles with zero momentum and
𝑎0 is the annihilation operator corresponding to the zero-momentum state, see also Section 2 for a
more comprehensive introduction. The following result, which has been verified in [23], tells us that the
number of excited particles is indeed small compared to the total number of particles N, that is,

1
𝑁
〈Ψ𝑁 ,NΨ𝑁 〉 = 𝑜𝑁→∞(1), (14)

for any sequence of states Ψ𝑁 satisfying 〈Ψ𝑁 , 𝐻𝑁Ψ𝑁 〉 = 𝐸𝑁 +𝑂𝑁→∞(1). Notably, the results in [23]
concern particles in R3 subject to a confining external potential, which can be generalized to our setting
on the periodic torus without significant modifications as is explained in [25, Eq. (19)]. Using the a
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priori information in Eq. (14) then allows us to identify the leading-order asymptotics of the ground
state energy 𝐸𝑁 in Eq. (12). In addition, we obtain at this point an improved (BEC) result

1
𝑁
〈ΨGS

𝑁 ,NΨGS
𝑁 〉 = 𝑂𝑁→∞

(
1
√
𝑁

)
(15)

for any sequence of states Ψ𝑁 satisfying 〈Ψ𝑁 , 𝐻𝑁Ψ𝑁 〉 = 𝐸𝑁 + 𝑂𝑁→∞
(
𝑁

1
4

)
, see also the subsequent

Theorem 2 where we further improve this result up to a rate of the order 𝑁− 3
4 , which we believe to

be of independent interest. Based on the observation that our constructed unitary maps create an order
𝑂𝑁→∞(1) amount of excited particles, we conjecture that the optimal rate of condensation is of the
magnitude 1

𝑁 .
Finally, we use an additional coordinate transformation, which implements the two-particle and four-

particle correlation structure 𝜉 and 𝜂, together with the improved control on the number of excited
particles in Eq. (15), in order to identify the coefficient C in front of the

√
𝑁 term in the energy

asymptotics

𝐶 = 𝛾(𝑉) − 𝜇(𝑉) − 𝜎(𝑉).

Notably, collisions between four particles do contribute to the subleading term in the energy expansion
in Eq. (11); however, in analogy to Eq. (12) we can dismiss collisions between five or more particles.

Theorem 2. Let V satisfy the assumptions of Theorem 1 and let Ψ𝑁 be a sequence of elements in
𝐿2

sym
(
Λ𝑁

)
satisfying ‖Ψ𝑁 ‖ = 1 and

〈Ψ𝑁 , 𝐻𝑁Ψ𝑁 〉 ≤ 𝐸𝑁 + 𝐷𝑁
1
4 ,

for some constant 𝐷 > 0. Furthermore let N be the operator counting the number of excitations
introduced in Eq. (13). Then there exists a constant 𝐶 > 0, such that

1
𝑁
〈Ψ𝑁 ,NΨ𝑁 〉 ≤ 𝐶𝑁− 3

4 .

Outline. In Subsection 1.1 we are first deriving the three-particle correlation structure for a model
where the total number of particles is 𝑁 = 3. Following the strategy proposed in [8], we are implementing
in a systematic way the correlation structures from Subsection 1.1 for gases with many particles 𝑁 � 1
in Section 2. Using Bose-Einstein condensation of the ground state as an input, this allows us to
immediately recover the leading-order behavior of 𝐸𝑁 as a lower bound and, in the subsequent Section 3,
also as an upper bound. Furthermore, we obtain at this point an improved version of (BEC) with a rate.
In Section 4, we are going to describe the two-particle and four-particle correlation structure, which
gives rise to the correction 𝜇(𝑉) and the correction 𝜎(𝑉) defined in Eq. (5) and Eq. (9) respectively.
It is the purpose of Subsection 4.2 to verify the lower bound in our main Theorem 1, wherein we use
the improved (BEC) result, and the purpose of Section 5 to verify the corresponding upper bound. In
the following Section 6, we can then provide (BEC) with a rate of the order 𝑁− 3

4 , which concludes the
proof of Theorem 2. The sign of 𝛾(𝜆𝑉) − 𝜇(𝜆𝑉) − 𝜎(𝜆𝑉) is established in Section 7 for small 𝜆 > 0,
alongside other useful properties of the scattering solutions that describe the correlation structure.
Finally Appendix A contains a collection of operator inequalities.

1.1. The three-body Problem

While naive first-order perturbation theory would tell us that the ground state energy 𝐸𝑁 is to leading
order given by the energy of the uncorrelated wavefunction Γ0(𝑥1, . . . , 𝑥𝑁 ) := 1
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〈Γ0, 𝐻𝑁 Γ0〉 =
𝑁 (𝑁 − 1) (𝑁 − 2)

6𝑁2

∫
R3

∫
R3
𝑉 (𝑥, 𝑦) d𝑥d𝑦 =

𝑁

6

∫
R3

∫
R3
𝑉 (𝑥, 𝑦) d𝑥d𝑦 + 𝑜𝑁→∞(𝑁),

it is due to the presence of correlations in the ground state of the operator 𝐻𝑁 , that the leading-order
coefficient 𝑏M (𝑉) in the energy asymptotics of 𝐸𝑁 in Eq. (3) satisfies

𝑏M (𝑉) <
∫
R3

∫
R3
𝑉 (𝑥, 𝑦) d𝑥d𝑦.

In order to quantify the correlation energy
∫
R3

∫
R3 𝑉 (𝑥, 𝑦) d𝑥d𝑦−𝑏M (𝑉), we are going to follow the frame

work developed in [8], and investigate first the corresponding three-particle operator 𝐻(3) := −Δ3 +𝑉𝑁

acting on 𝐿2 (Λ3), where Δ3 := Δ 𝑥1 +Δ 𝑥2 +Δ 𝑥3 , before we study the many particle operator 𝐻𝑁 defined
in Eq. (2). It will be our goal to find a transformation

𝑇 : 𝐿2 (Λ3) −→ 𝐿2 (Λ3)

that removes correlations between states with low momenta and states with high momenta, that is, we
want to bring 𝐻(3) into a block-diagonal form, which allows us to extract the correlation energy. It is
content of Section 2 to lift the block-diagonalization from the three-particle problem, described by the
transformation T, to a block-diagonalization of the many-particle operator 𝐻𝑁 , which will allow us to
identify the correlation energy for the many-particle problem.

Let us first specify the set of low momenta as either the set where all three particles occupy the
zero-momentum state

L0 := {(0, 0, 0)} ⊆ (2𝜋Z)9 (16)

or the set where at most one of the three particles is allowed to have non-zero momentum

L𝐾 :=
⋃

|𝑘 | ≤𝐾

{(𝑘, 0, 0), (0, 𝑘, 0), (0, 0, 𝑘)} ⊆ (2𝜋Z)9,

where 0 ≤ 𝐾 < ∞ is a parameter that we are going to specify later. For the purpose of extracting
the correlation energy, it is enough to consider 𝐾 := 0, however, for technical reasons it is going to
be convenient later to consider positive values 𝐾 > 0 as well. Having the set L𝐾 at hand, we can
define the projection 𝜋𝐾 onto states with low momenta as

𝜋𝐾 (Ψ) :=
∑

(𝑘1𝑘2𝑘3) ∈L𝐾

〈𝑢𝑘1𝑢𝑘2𝑢𝑘3 ,Ψ〉𝑢𝑘1𝑢𝑘2𝑢𝑘3 , (17)

where 𝑢𝑘 (𝑥) := 𝑒𝑖𝑘𝑥 for 𝑘 ∈ (2𝜋Z)3 and 𝑢𝑘1𝑢𝑘2𝑢𝑘3 has to be understood as the function
𝑢𝑘1 (𝑥1)𝑢𝑘2 (𝑥2)𝑢𝑘3 (𝑥3). Let us furthermore introduce the projection Q acting on 𝐿2 (Λ) as

𝑄(𝜙) :=
∑
𝑘≠0

〈𝑢𝑘 , 𝜙〉𝑢𝑘 . (18)

Following the strategy in [8], let R be the pseudoinverse of the operator 𝑄⊗3 (−Δ3 + 𝑉𝑁 )𝑄⊗3, that is,
using the function ℎ(𝑡) := 1

𝑡 for 𝑡 ≠ 0 and ℎ(0) := 0 the operator R is given as

𝑅 = ℎ
(
𝑄⊗3(−Δ3 +𝑉𝑁 )𝑄⊗3

)
,

and let us define the Feshbach-Schur like transformation

𝑇 := 1 + 𝑅𝑉𝑁 𝜋𝐾 . (19)
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Note that T would be a proper Feshbach-Schur map, in case we would exchange𝑄⊗3 with the projection
1−𝜋𝐾 ; however, we prefer to work with𝑄⊗3 for technical reasons. Using the notation {𝐴+H.c.} := 𝐴+𝐴∗

and the observation 𝑇−1 = 1 − 𝑅𝑉𝑁 𝜋𝐾 , yields

𝐻(3)𝑇
−1 = 𝐻(3) − 𝐻(3)𝑅𝑉𝑁 𝜋𝐾 = 𝐻(3) −𝑄⊗3𝐻(3)𝑅𝑉𝑁 𝜋𝐾 − (1 −𝑄⊗3)𝐻(3)𝑅𝑉𝑁 𝜋𝐾

= 𝐻(3) −𝑄⊗3𝑉𝑁 𝜋𝐾 − (1 −𝑄⊗3)𝑉𝑁 𝑅𝑉𝑁 𝜋𝐾 ,

and by taking the adjoint we furthermore obtain

(𝑇−1)†𝐻(3) = 𝐻(3) − 𝜋𝐾𝑉𝑁𝑄
⊗3 − 𝜋𝐾𝑉𝑁 𝑅𝑉𝑁 (1 −𝑄⊗3).

Combining both equations yields

(𝑇−1)†𝐻(3)𝑇
−1 = 𝐻(3)𝑇

−1 − 𝜋𝐾𝑉𝑁𝑄
⊗3 − 𝜋𝐾𝑉𝑁 𝑅𝑉𝑁 (1 −𝑄⊗3) + 𝜋𝐾𝑉𝑁 𝑅𝑉𝑁 𝜋𝐾

= 𝐻(3) −𝑄⊗3𝑉𝑁 𝜋𝐾 − 𝜋𝐾𝑉𝑁𝑄
⊗3 − (1 −𝑄⊗3)𝑉𝑁 𝑅𝑉𝑁 𝜋𝐾

− 𝜋𝐾𝑉𝑁 𝑅𝑉𝑁 (1 −𝑄⊗3) + 𝜋𝐾𝑉𝑁 𝑅𝑉𝑁 𝜋𝐾

= −Δ3 +𝑉𝑁 −𝑄⊗3𝑉𝑁 𝜋𝐾 − 𝜋𝐾𝑉𝑁𝑄
⊗3 − (1 − 𝜋𝐾 −𝑄⊗3)𝑉𝑁 𝑅𝑉𝑁 𝜋𝐾

− 𝜋𝐾𝑉𝑁 𝑅𝑉𝑁 (1 − 𝜋𝐾 −𝑄⊗3) − 𝜋𝐾𝑉𝑁 𝑅𝑉𝑁 𝜋𝐾

= −Δ3 + 𝜋𝐾 (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝜋𝐾 + (1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 )

+
{
𝜋𝐾 (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )

(
1 − 𝜋𝐾 −𝑄⊗3

)
+ H.c.

}
, (20)

where we have used in the final identity Eq. (20) the decomposition

𝑉𝑁 = 𝜋𝐾𝑉𝑁 𝜋𝐾 + (1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 ) +
{
𝜋𝐾𝑉𝑁 (1 − 𝜋𝐾 −𝑄⊗3) + 𝜋𝐾𝑉𝑁𝑄

⊗3 + H.c.
}
.

Defining the almost block-diagonal renormalized potential 𝑉𝑁 as

𝑉𝑁 := 𝜋𝐾 (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝜋𝐾 + (1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 )

+
{(

1 − 𝜋𝐾 −𝑄⊗3
)
(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝜋𝐾 + H.c.

}
, (21)

and multiplying Eq. (20) from the left by 𝑇† and from the right by T, therefore yields the algebraic
identity

𝐻(3) = 𝑇†
(
−Δ3 +𝑉𝑁

)
𝑇. (22)

The presence of
{(

1 − 𝜋𝐾 −𝑄⊗3) (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝜋𝐾 + H.c.
}

in 𝑉𝑁 , which are the terms that violate
the block-diagonal structure, is due to the usage of 𝑄⊗3 instead of 1 − 𝜋𝐾 ; however, it turns out that
these terms do not contribute to the correlation energy to leading order. One therefore expects to read
off the leading-order coefficient 𝑏M (𝑉) in the asymptotic expansion of the ground state energy 𝐸𝑁 in
Eq. (3) from the matrix entries of the renormalized potential(

𝑉𝑁

)
000,000

= 〈𝑢0𝑢0𝑢0, 𝑉𝑁 𝑢0𝑢0𝑢0〉 = 〈𝑢0𝑢0𝑢0, (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑢0𝑢0𝑢0〉.

As we are going to verify in Lemma 16, we have indeed the asymptotic result

𝑏M (𝑉) = 𝑁2〈𝑢0𝑢0𝑢0, (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑢0𝑢0𝑢0〉 +𝑂𝑁→∞

(
1
𝑁

)
.
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2. First-order lower bound

It is the goal of this Section to bring, in analogy to Eq. (22), the many-particle operator 𝐻𝑁 in an
approximate block-diagonal form, which allows us to obtain an asymptotically correct lower bound on
the ground state energy 𝐸𝑁 in Corollary 2. First, we are going to rewrite the operator 𝐻𝑁 defined in
Eq. (2) in the language of second quantization. For this purpose let 𝑎†𝑘 denote the operator that creates
a particle in the mode 𝑢𝑘 , that is, for Φ𝑛 ∈ 𝐿2

sym (Λ𝑛) we define 𝑎†𝑘Φ𝑛 ∈ 𝐿2
sym

(
Λ𝑛+1) as

𝑎†𝑘Φ𝑛 :=
1

√
𝑛 + 1

Ξ𝑛+1 (𝑢𝑘 ⊗ Φ𝑛),

where Ξ𝑛+1 is the orthogonal projection onto 𝐿2
sym

(
Λ𝑛+1) ⊆ 𝐿2 (Λ𝑛+1) , and we write 𝑎𝑘 for its adjoint,

which annihilates a particle in the mode 𝑢𝑘 (𝑥) := 𝑒𝑖𝑘 ·𝑥 . With creation and annihilation operators at
hand, we can write

𝐻𝑁 =
∑

𝑘∈(2𝜋Z)3

|𝑘 |2𝑎†𝑘𝑎𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛∈(2𝜋Z)3

(𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛, (23)

where (𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛 are the matrix elements of 𝑉𝑁 w.r.t. to the basis 𝑢𝑖𝑢 𝑗𝑢𝑘 defined below Eq. (17). If
not indicated otherwise, we will always assume that indices run in the set (2𝜋Z)3, which we will usually
neglect in our notation, and we write 𝑘 ≠ 0 in case the index runs in the set (2𝜋Z)3 \ {0}. Note that the
operator on the right hand side of Eq. (23) is naturally defined on the full Fock space

F
(
𝐿2 (Λ)

)
:=

∞⊕
𝑛=0

𝐿2
sym (Λ𝑛),

while the left-hand side is only defined on 𝐿2
sym

(
Λ𝑁

)
⊆ F

(
𝐿2 (Λ)

)
, and therefore Eq. (23) has to be un-

derstood as being restricted to the subspace 𝐿2
sym

(
Λ𝑁

)
. Furthermore, we observe that𝑉𝑁 is a translation-

invariant multiplication operator, and therefore the matrix elements of 𝑉𝑁 satisfy (𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛 = 0 in
case 𝑖 + 𝑗 + 𝑘 ≠ ℓ + 𝑚 + 𝑛 and otherwise

(𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛 = (𝑉𝑁 ) (𝑖−ℓ) ( 𝑗−𝑚) (𝑘−𝑛) ,000 = 𝑁−2𝑉

(
𝑗 − 𝑚
√
𝑁

,
𝑘 − 𝑛
√
𝑁

)
. (24)

Following the strategy proposed in [8], we are going to introduce a many-particle counterpart to the
three particle map T defined in Eq. (19), which is realized by the set of operators

𝑐𝑘 := 𝑎𝑘 +
1
2

∑
𝑖 𝑗 ,ℓ𝑚𝑛

(𝑇 − 1)𝑖 𝑗𝑘,ℓ𝑚𝑛 𝑎
†
𝑖 𝑎

†
𝑗𝑎ℓ𝑎𝑚𝑎𝑛, (25)

𝜓𝑖 𝑗𝑘 :=
∑
ℓ𝑚𝑛

𝑇𝑖 𝑗𝑘,ℓ𝑚𝑛 𝑎ℓ𝑎𝑚𝑎𝑛. (26)

Here 𝑇𝑖 𝑗𝑘,ℓ𝑚𝑛 := 〈𝑢𝑖𝑢 𝑗𝑢𝑘 , 𝑇𝑢ℓ𝑢𝑚𝑢𝑛〉 denotes the matrix elements of T. The following Lemma 1 is the
many-particle counterpart to Eq. (22), in the sense that it provides an (approximate) block-diagonal
representation of the operator 𝐻𝑁 in terms of the new variables 𝑐𝑘 and 𝜓𝑖 𝑗𝑘 .

Lemma 1. Let 𝑉𝑁 be the operator defined in Eq. (21). Then we have

𝐻𝑁 =
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝜓†
𝑖 𝑗𝑘𝜓ℓ𝑚𝑛 − E , (27)
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where the residual term E is defined as

E :=
1
4

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛;𝑖′ 𝑗′,ℓ′𝑚′𝑚′

|𝑘 |2 (𝑇 − 1)𝑖′ 𝑗′𝑘,ℓ′𝑚′𝑛′ (𝑇 − 1)𝑖 𝑗𝑘,ℓ𝑚𝑛 𝑎
†
ℓ′𝑎

†
𝑚′𝑎

†
𝑛′

×
(
𝑎𝑖′𝑎 𝑗′𝑎

†
𝑖 𝑎

†
𝑗 − 𝛿𝑖𝑖′𝛿 𝑗 𝑗′ − 𝛿𝑖 𝑗′𝛿 𝑗𝑖′

)
𝑎ℓ𝑎𝑚𝑎𝑛.

Proof. Using the permutation symmetry of T, we first identify
∑

𝑘 |𝑘 |2 (𝑐𝑘 − 𝑎𝑘 )†(𝑐𝑘 − 𝑎𝑘 ) as

1
4

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛;𝑖′ 𝑗′,ℓ′𝑚′𝑚′

|𝑘 |2 (𝑇 − 1)𝑖′ 𝑗′𝑘,ℓ′𝑚′𝑛′ (𝑇 − 1)𝑖 𝑗𝑘,ℓ𝑚𝑛 𝑎
†
ℓ′𝑎

†
𝑚′𝑎

†
𝑛′𝑎𝑖′𝑎 𝑗′𝑎

†
𝑖 𝑎

†
𝑗𝑎ℓ𝑎𝑚𝑎𝑛

=
1
2

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

{
(𝑇 − 1)†(−Δ 𝑥3 ) (𝑇 − 1)

}
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝑎†𝑖 𝑎
†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛 + E

=
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

{
(𝑇 − 1)†(−Δ3) (𝑇 − 1)

}
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝑎†𝑖 𝑎
†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛 + E ,

where Δ3 is the Laplace operator on 𝐿2 (Λ)⊗3. Similarly∑
𝑘

|𝑘 |2𝑎†𝑘 (𝑐𝑘 − 𝑎𝑘 ) + H.c. =
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

{
(−Δ3) (𝑇 − 1) + H.c.

}
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝑎†𝑖 𝑎
†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛,∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝜓†
𝑖 𝑗𝑘𝜓ℓ𝑚𝑛 =

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑇†𝑉𝑁𝑇

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝑎†𝑖 𝑎
†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛.

Since

(𝑇 − 1)†Δ3(𝑇 − 1) + {Δ3(𝑇 − 1) + H.c.} = 𝑇†Δ3𝑇 − Δ3

we obtain ∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝜓†
𝑖 𝑗𝑘𝜓ℓ𝑚𝑛

=
∑
𝑘

|𝑘 |2𝑎†𝑘𝑎𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

{
𝑇†

(
−Δ3 +𝑉𝑁

)
𝑇 + Δ3

}
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝑎†𝑖 𝑎
†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛 + E .

We observe that𝑇†
(
−Δ3 +𝑉𝑁

)
𝑇+Δ3 = 𝑉𝑁 by Eq. (22), which concludes the proof by the representation

of 𝐻𝑁 in second quantization, see Eq. (23). �

Making use of the sign (1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 ) ≥ 0, we immediately obtain that∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

((1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 ))𝑖 𝑗𝑘,ℓ𝑚𝑛𝜓
†
𝑖 𝑗𝑘𝜓ℓ𝑚𝑛 ≥ 0.

Therefore Lemma 1 allows us to bound 𝐻𝑁 from below by

𝐻𝑁 ≥
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁 − (1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 )

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝜓†
𝑖 𝑗𝑘𝜓ℓ𝑚𝑛 − E

=
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁 − (1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 )

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝑎†𝑖 𝑎
†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛 − E , (28)
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where we have used the fact that 𝜓𝑖 𝑗𝑘 = 𝑎𝑖𝑎 𝑗𝑎𝑘 in case one of the indices is zero, which is a direct
consequence of the observation that (𝑇 − 1)𝑖 𝑗𝑘,ℓ𝑚𝑛 = 0 in case one of the indices in {𝑖, 𝑗 , 𝑘} is zero.
Note that we can write

𝑉𝑁 − (1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 ) = 𝐴 + 𝐵 + 𝐵∗

with A and B defined as

𝐴 := 𝜋𝐾 (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝜋𝐾 ,

𝐵 :=
(
1 − 𝜋𝐾 −𝑄⊗3

)
(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝜋𝐾 .

Using the sets L(𝑧) := {(𝑧, 0, 0), (0, 𝑧, 0), (0, 0, 𝑧)}, let us first analyze the term involving A

1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(𝐴)𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛 =

1
6

∑
(𝑖 𝑗𝑘) , (ℓ𝑚𝑛) ∈L𝐾

(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛

=
1
6
(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )000,000 (𝑎†0)

3𝑎3
0 +

∑
0< |𝑧 |<𝐾

⎧⎪⎪⎨⎪⎪⎩
1
6

∑
(𝑖 𝑗𝑘) , (ℓ𝑚𝑛) ∈L(𝑧)

(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛

⎫⎪⎪⎬⎪⎪⎭𝑎2†
0 𝑎2

0𝑎
†
𝑧𝑎𝑧 .

Together with the definition of the coefficients

𝜆𝑘,ℓ :=
1

18
〈𝑢0𝑢ℓ𝑢𝑘−ℓ , (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 ) (𝑢0𝑢0𝑢𝑘 + 𝑢0𝑢𝑘𝑢0 + 𝑢𝑘𝑢0𝑢0)〉 (29)

we can write

1
6
(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )000,000 =

1
6
〈𝑢0𝑢0𝑢0, (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑢0𝑢0𝑢0〉 = 𝜆0,0,

and utilizing the permutation symmetry of 𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 we furthermore obtain for 𝑧 ≠ 0

1
6

∑
(𝑖 𝑗𝑘) , (ℓ𝑚𝑛) ∈L(𝑧)

(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛 =
1
6

〈 ∑
(𝑖 𝑗𝑘) ∈L(𝑧)

𝑢𝑖𝑢 𝑗𝑢𝑘 , (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )
∑

(ℓ𝑚𝑛) ∈L(𝑧)

𝑢ℓ𝑢𝑚𝑢𝑛

〉
=

1
2

〈
𝑢0𝑢0𝑢𝑧 , (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )

∑
(ℓ𝑚𝑛) ∈L(𝑧)

𝑢ℓ𝑢𝑚𝑢𝑛

〉
= 9𝜆𝑧,0.

Therefore,

1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(𝐴)𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛 = 𝜆0,0 (𝑎†0)

3𝑎3
0 + 9𝑎2†

0 𝑎2
0

∑
0< |𝑘 | ≤𝐾

𝜆𝑘,0𝑎
†
𝑘𝑎𝑘 . (30)

To keep the notation light, we do not explicitly indicate the N dependence of 𝜆𝑘,ℓ . Similarly

1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(𝐵)𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎ℓ𝑎𝑚𝑎𝑛 = 3𝑎†0𝑎

3
0

∑
ℓ≠0

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ + 9𝑎†0𝑎

2
0

∑
ℓ,0< |𝑘 | ≤𝐾

𝜆𝑘,ℓ𝑎
†
ℓ𝑎

†
𝑘−ℓ𝑎𝑘 . (31)

Putting together Eq. (28), Eq. (30) and Eq. (31) yields

𝐻𝑁 ≥ 𝜆0,0(𝑎†0)
3𝑎3

0 +
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 + Q𝐾 + E ′ − E , (32)
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where we define the operator Q𝐾 and the error term E ′ as

Q𝐾 := 9𝑎2†
0 𝑎2

0

∑
0< |𝑘 | ≤𝐾

𝜆𝑘,0𝑎
†
𝑘𝑎𝑘 + 3� !𝑎†0𝑎3

0

∑
0< |ℓ | ≤𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ + H.c."#$, (33)

E ′ :=
(
3

∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ 𝑎

†
0𝑎

3
0 + 9

∑
ℓ,0< |𝑘 | ≤𝐾

𝜆𝑘,ℓ𝑎
†
ℓ𝑎

†
𝑘−ℓ𝑎𝑘 𝑎

†
0𝑎

2
0 + H.c.

)
. (34)

Let us furthermore introduce the particle number operator

N :=
∑
𝑘≠0

𝑎†𝑘𝑎𝑘 ,

which counts the number of excited particles, that is, the number of particles with momentum 𝑘 ≠ 0.
Since we have the operator identity

∑
𝑘 𝑎

†
𝑘𝑎𝑘 = 𝑁 on the Hilbert space 𝐿2

sym (Λ𝑁 ) ⊆ F
(
𝐿2 (Λ)

)
, we

observe that 𝑎†0𝑎0 = 𝑁 −N , see also Eq. (13), that is, the number of particles with momentum 𝑘 = 0 is
given by the difference between the total number of particles N and the number of excited particles.

In order to control the terms arising in Eq. (32), it is imperative to understand the asymptotic behavior
of the coefficients 𝜆𝑘,ℓ and the matrix entries 𝑇𝑖 𝑗𝑘,ℓ𝑚𝑛 defined below Eq. (26). Since we want to focus
our attention on the many-body analysis, we will postpone our study of the scattering coefficients to
Section 7. For the convenience of the reader, we are going to state the relevant results, which are proven
in Lemma 15 and Lemma 16 respectively,

|𝜆𝑘,ℓ | ≤
𝐶

𝑁2

(
1 + |ℓ |2

𝑁

)−1

, (35)

��(𝑇 − 1)𝑖 𝑗𝑘,ℓ00
�� ≤ 𝐶 1(𝑖 + 𝑗 + 𝑘 = ℓ)

𝑁2(|𝑖 |2 + | 𝑗 |2 + |𝑘 |2)

(
1 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

𝑁 + |ℓ |2

)−2

, (36)��6𝑁2𝜆0,0 − 𝑏M (𝑉)
�� ≤ 1

𝑁
, (37)����6𝑁2𝜆𝑘,ℓ

6
− 𝑏M (𝑉)

���� ≤ 𝐶𝑘,ℓ√
𝑁
. (38)

Furthermore, we need the following result, which is verified in Lemma A2, see Appendix A, and which
allows us to compare the new operators 𝑐𝑘 with the annihilation operators 𝑎𝑘 ,∑

𝑘

|𝑘 |2𝜎 (𝑐𝑘 − 𝑎𝑘 ) (𝑐𝑘 − 𝑎𝑘 )† �
1
𝑁
N 2, (39)∑

𝑘

|𝑘 |2𝜏𝑎†𝑘 N
𝑠𝑎𝑘 �

∑
𝑘

|𝑘 |2𝜏𝑐†𝑘N
𝑠𝑐𝑘 +

1
𝑁
N 𝑠+2 + 𝑁 𝜏 (N + 1)𝑠 (40)

for 0 ≤ 𝜏 ≤ 1, 0 ≤ 𝜎 < 1
2 and integers 𝑠 ≥ 0. Utilizing Eq. (35)-(40), the following Lemma 2, Lemma

3 and Lemma 4, provide relevant bounds on the various terms appearing in Eq. (32), which will be
instrumental in order to establish that the ground state energy 𝐸𝑁 of 𝐻𝑁 is, to leading order, bounded
from below by 1

6𝑏M(𝑉)𝑁 , see Corollary 2. In our first Lemma 2 we provide a lower bound on

𝜆0,0 (𝑎†0)
3𝑎3

0 + Q𝐾

for K large enough, which is an operator that is at most quadratic in the variables 𝑎𝑘 and 𝑎†𝑘 for 𝑘 ≠ 0.
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Lemma 2. Let 𝑏M (𝑉) be the modified scattering length defined in Eq. (4). Then there exists for all
𝜏, 𝛼 > 0, a constant 𝐾0(𝜏, 𝛼) and for all 𝐾 ≥ 𝐾0(𝜏, 𝛼) a constant 𝐶𝐾 > 0, such that

𝜆0,0(𝑎†0)
3𝑎3

0 + Q𝐾 ≥ 1
6
𝑏M (𝑉)𝑁 − 𝛼

∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 − 𝐶𝐾

(
1 + N 2

𝑁
+ N
√
𝑁

)
,

for 𝐾 ≥ 𝐾0(𝜏, 𝛼).

Proof. First of all we observe that we can write

(𝑎†0)
3𝑎3

0 = 𝑁3 − 3𝑁2(N + 3) + 𝑁 (3N 2 + 6N + 2) −N 3 − 3N 2 − 2N
≥ 𝑁3 − 3𝑁2N − 𝑁2𝐷,

for a suitable 𝐷 > 0. Defining

N> := N −
∑

0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎𝑘 ,

we therefore obtain in combination with Eq. (37) and Eq. (38)

𝜆0,0(𝑎†0)
3𝑎3

0 + Q𝐾 − 1
6
𝑏M (𝑉)𝑁

≥ 1
6
𝑏M (𝑉)

⎧⎪⎪⎨⎪⎪⎩9
(𝑎†0)

2𝑎2
0

𝑁2

∑
0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎𝑘 + 3� !
𝑎†0𝑎

3
0

𝑁2

∑
0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎
†
−𝑘 + H.c."#$ − 3N − 𝐷𝑁− 1

2 N
⎫⎪⎪⎬⎪⎪⎭ − 𝐷

=
1
6
𝑏M (𝑉)

{(
9
(𝑎†0)

2𝑎2
0

𝑁2 − 3 − 𝐷𝑁− 1
2

) ∑
0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎𝑘

+ 3� !
𝑎†0𝑎

3
0

𝑁2

∑
0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎
†
−𝑘 + H.c."#$ − 3N>

}
− 𝐷,

for a suitable constant 𝐷 > 0. Since

3
𝑎†0𝑎

3
0

𝑁2

∑
0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎
†
−𝑘 + H.c. ≤ 3

∑
0< |𝑘 | ≤𝐾

(
2𝑎†𝑘𝑎𝑘 + 1

)
≤ 6

∑
0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎𝑘 + 3
(
𝐾

𝜋
+ 1

)3
,

and since we have (
9
(𝑎†0)

2𝑎2
0

𝑁2 − 9 − 𝐷𝑁− 1
2

) ∑
0< |𝑘 | ≤𝐾

𝑎†𝑘𝑎𝑘 ≥ −9
N 2

𝑁
− 𝐷

N
√
𝑁
,

we obtain

𝜆0,0(𝑎†0)
3𝑎3

0 + Q𝐾 ≥ 1
6
𝑏M (𝑉)𝑁 − 1

2
𝑏M (𝑉)N> − 𝐶𝐾

(
1 + N 2

𝑁
+ N
√
𝑁

)
for a suitable, K-dependent, constant 𝐶𝐾 . Finally, we choose 𝐾0(𝜏, 𝛼) large enough such that
1
2𝑏M (𝑉)𝐾0(𝜏, 𝛼)−2𝜏 ≤ 𝛼, and therefore we have for all 𝐾 ≥ 𝐾0(𝜏, 𝛼)

1
2
𝑏M (𝑉)N> ≤ 1

2
𝑏M (𝑉)𝐾−2𝜏

∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 ≤ 𝛼
∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 . �
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In the Lemma 3, we will provide estimates on the residual term E defined in Lemma 1, which will
allow us to compare the size of E with the kinetic energy

∑
𝑘 |𝑘 |2𝑐†𝑘𝑐𝑘 in the variables 𝑐𝑘 . Before we

come to Lemma 3, we need the following Corollary 1, which is a consequence of Eq. (40) and allows us
to estimate monomials in the operators 𝑎𝑘 and 𝑎†𝑘 by the kinetic energy in the variables 𝑐𝑘 and powers
of the particle number operator N .
Corollary 1. Let K𝜏,𝑡 :=

∑𝑡
𝑖=1(−Δ 𝑥𝑖 )𝜏 . Given 0 ≤ 𝜏 ≤ 1, and integers 𝑠, 𝑡 ≥ 1 and 𝛼, 𝛽 ≥ 0, there exist

𝛿 > 0 and 𝐶 > 0, such that for 𝜖 > 0

±
( ∑
𝑖1...𝑖𝑠 , 𝑗1... 𝑗𝑡

𝐺𝑖1...𝑖𝑠 , 𝑗1... 𝑗𝑡 𝑎
†
𝑗𝑡
. . . 𝑎†𝑗1𝑋 𝑎𝑖1 . . . 𝑎𝑖𝑠 + H.c.

)
≤ 𝐶

8888K− 1
2

𝜏,𝑡𝐺K− 1
2

𝜏,𝑠

888888N − 𝛽2 𝑋N − 𝛼2
88

×
{∑

𝑘

|𝑘 |2𝑐†𝑘
(
𝜖N 𝑠+𝛼−1 + 𝜖−1N 𝑡+𝛽−1

)
𝑐𝑘 + (N + 𝑁 𝜏)

(
𝜖N 𝑠+𝛼−1 + 𝜖−1N 𝑡+𝛽−1

)}
,

where 𝐺 : (ran𝑄)⊗𝑠 −→ (ran𝑄)⊗𝑡 and 𝑋 : F
(
𝐿2 (Λ)

)
−→ F

(
𝐿2 (Λ)

)
. In case 𝑠 = 0

±
( ∑
𝑗1... 𝑗𝑡

𝐺 𝑗1... 𝑗𝑡 𝑎
†
𝑗𝑡
. . . 𝑎†𝑗1𝑋 + H.c.

)
≤ 𝐶

8888K− 1
2

𝜏,𝑡𝐺

888888N − 𝛽2 𝑋N − 𝛼2
88

×
{
𝜖N 𝛼 + 𝜖−1

∑
𝑘

|𝑘 |2𝑐†𝑘N
𝑡+𝛽−1𝑐𝑘 + 𝜖−1(N + 𝑁 𝜏)N 𝑡+𝛽−1

}
.

Proof. Let us define for 𝑠, 𝑡 ≥ 1 the operator-valued vector and operator-valued matrix(
Φ𝜏,𝑠

)
𝑘1...𝑘𝑠

:=
(
|𝑘1 |2𝜏 + · · · + |𝑘𝑠 |2𝜏

) 1
2
𝑎𝑘1 . . . 𝑎𝑘𝑠 , (41)

Υ𝑖1...𝑖𝑠 , 𝑗1... 𝑗𝑡 :=
(
K− 1

2
𝜏,𝑡𝐺 K− 1

2
𝜏,𝑠

)
𝑖1...𝑖𝑠 , 𝑗1... 𝑗𝑡

N − 𝛽2 𝑋N − 𝛼2 ,

which allow us to represent∑
𝑖1...𝑖𝑠 , 𝑗1... 𝑗𝑡

𝐺𝑖1...𝑖𝑠 , 𝑗1... 𝑗𝑡 𝑎
†
𝑗𝑡
. . . 𝑎†𝑗1𝑋 𝑎𝑖1 . . . 𝑎𝑖𝑠 = Φ†

𝜏,𝑡N
𝛽
2 ΥN 𝛼

2 Φ𝜏,𝑠 .

Using the fact that ‖Υ‖ ≤
8888K− 1

2
𝜏,𝑡𝐺 K− 1

2
𝜏,𝑠

888888N − 𝛽2 𝑋N − 𝛼2
88, we obtain by Cauchy-Schwarz

±
(
Φ†

𝑡ΥΦ𝑠 + H.c.
)
≤

8888K− 1
2

𝜏,𝑡𝐺 K− 1
2

𝜏,𝑠

888888N − 𝛽2 𝑋N − 𝛼2
88(𝜖Φ†

𝜏,𝑡N 𝛽Φ𝜏,𝑡 + 𝜖−1Φ†
𝜏,𝑠N 𝛼Φ𝜏,𝑠

)
=

8888K− 1
2

𝜏,𝑡𝐺 K− 1
2

𝜏,𝑠

888888N − 𝛽2 𝑋N − 𝛼2
88(𝜖 𝑠∑

𝑘

|𝑘 |2𝜏𝑎†𝑘 N
𝑠+𝛼−1𝑎𝑘 + 𝜖−1 𝑡

∑
𝑘

|𝑘 |2𝜏𝑎†𝑘 N
𝑡+𝛽−1𝑎𝑘

)
.

Since N ≤ 𝑁 we furthermore have by Eq. (40)∑
𝑘

|𝑘 |2𝜏𝑎†𝑘 N
𝑠+𝛼−1𝑎𝑘 �

∑
𝑘

|𝑘 |2𝑐†𝑘N
𝑠+𝛼−1𝑐𝑘 + (N + 1)𝑠+𝛼−1(𝑁 𝜏 +N ). �

With Corollary 1 at hand, we can verify the subsequent Lemma 3.
Lemma 3. For 𝐾 ≥ 0, there exists a constant 𝐶𝐾 > 0, such that

±E ≤ 𝐶𝐾

∑
𝑘

|𝑘 |2𝑐†𝑘

(
N
𝑁

+ 𝑁− 1
2

)
𝑐𝑘 + 𝐶𝐾

(
N
𝑁

+ 𝑁− 1
3

)
(N + 1).
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Proof. Let us denote with I ⊆ (2𝜋Z)3×3 the index set

I := {(0, 0, 0)} ∪
⋃

0< |ℓ | ≤𝐾

{(ℓ, 0, 0), (0, ℓ, 0), (0, 0, ℓ)}

Then we define for 𝐼 = (𝐼1, 𝐼2, 𝐼3), 𝐼 ′ = (𝐼 ′1, 𝐼
′
2, 𝐼

′
3) ∈ I the operator 𝐾 (𝐼 ,𝐼 ′) acting on 𝐿2 (Λ) and the

operator 𝐺 (𝐼 ,𝐼 ′) acting on 𝐿2 (Λ)⊗2 as

𝐾 (𝐼 ,𝐼 ′)
𝑖,𝑖′ :=

1
2

∑
𝑗𝑘

|𝑘 |2 (𝑇 − 1)𝑖′ 𝑗𝑘,𝐼 ′
(
(𝑇 − 1)𝑖 𝑗𝑘,𝐼 + (𝑇 − 1) 𝑗𝑖𝑘,𝐼

)
,

𝐺 (𝐼 ,𝐼 ′)
𝑖 𝑗 ,𝑖′ 𝑗′ :=

1
4

∑
𝑘

|𝑘 |2 (𝑇 − 1)𝑖′ 𝑗′𝑘,𝐼 ′ (𝑇 − 1)𝑖 𝑗𝑘,𝐼 ,

as well as K𝜏,2 := (−Δ 𝑥1 )𝜏 + (−Δ 𝑥2 )𝜏 acting on 𝐿2 (Λ)⊗2. Then we can write E as

E =
∑

𝐼 ,𝐼 ′ ∈I

(∑
𝑖,𝑖′

𝐾 (𝐼 ,𝐼 ′)
𝑖,𝑖′ 𝑎†𝑖

(
𝑎†𝐼1

𝑎†𝐼2
𝑎†𝐼3

𝑎𝐼 ′1
𝑎𝐼 ′2

𝑎𝐼 ′3

)
𝑎𝑖′ +

∑
𝑖 𝑗 ,𝑖′ 𝑗′

𝐺 (𝐼 ,𝐼 ′)
𝑖 𝑗 ,𝑖′ 𝑗′𝑎

†
𝑖 𝑎

†
𝑗

(
𝑎†𝐼1

𝑎†𝐼2
𝑎†𝐼3

𝑎𝐼 ′1
𝑎𝐼 ′2

𝑎𝐼 ′3

)
𝑎𝑖′𝑎 𝑗′

)
. (42)

By the weighted Schur test, the operator norm of K− 1
2

𝜏,2𝐺
(𝐼 ,𝐼 ′)K− 1

2
𝜏,2 is bounded by

‖K− 1
2

𝜏,2𝐺
(𝐼 ,𝐼 ′)K− 1

2
𝜏,2‖ ≤

√
𝛼 (𝐼 ,𝐼 ′)𝛼 (𝐼 ′,𝐼 ) ,

where we define 𝛼 (𝐼 ,𝐼 ′) := sup𝑖′ 𝑗′
∑

𝑖 𝑗

|𝐺 (𝐼 ,𝐼 ′)
𝑖 𝑗,𝑖′ 𝑗′ |

|𝑖 |2𝜏+| 𝑗 |2𝜏 . Let us furthermore introduce 𝑠 := 𝐼1 + 𝐼2 + 𝐼3 and
𝑠′ := 𝐼 ′1 + 𝐼 ′2 + 𝐼 ′3. Making use of Eq. (36), we obtain for the concrete choice 𝜏 := 2

3

𝛼 (𝐼 ,𝐼 ′) ≤ sup
𝑖′ 𝑗′

∑
𝑖 𝑗𝑘

|𝑘 |2 | (𝑇 − 1)𝑖′ 𝑗′𝑘,𝐼 ′ | | (𝑇 − 1)𝑖 𝑗𝑘,𝐼 |
|𝑖 |2𝜏 + | 𝑗 |2𝜏

� 𝑁−4 sup
𝑖′ 𝑗′

∑
𝑖 𝑗𝑘≠0

𝛿𝑖′+ 𝑗′+𝑘=𝑠′𝛿𝑖+ 𝑗+𝑘=𝑠

(|𝑖 |2𝜏 + | 𝑗 |2𝜏) (|𝑖 |2 + | 𝑗 |2 + |𝑘 |2)

≤ 𝑁−4
∑
𝑖≠0

1
|𝑖 |2+2𝜏 � 𝑁−4.

Consequently ‖K− 1
2

𝜏,2𝐺
(𝐼 ,𝐼 ′)K− 1

2
𝜏,2‖ � 𝑁−4. Furthermore, the operator

𝑋 (𝐼 ,𝐼 ′) := 𝑎†𝐼1
𝑎†𝐼2

𝑎†𝐼3
𝑎𝐼 ′1

𝑎𝐼 ′2
𝑎𝐼 ′3

satisfies ‖𝑋 (𝐼 ,𝐼 ′) ‖ ≤ 𝑁3. Therefore we obtain by Corollary 1∑
𝑖 𝑗 ,𝑖′ 𝑗′

𝐺 (𝐼 ,𝐼 ′)
𝑖 𝑗 ,𝑖′ 𝑗′𝑎

†
𝑖 𝑎

†
𝑗

(
𝑎†𝐼1

𝑎†𝐼2
𝑎†𝐼3

𝑎𝐼 ′1
𝑎𝐼 ′2

𝑎𝐼 ′3

)
𝑎𝑖′𝑎 𝑗′ �

∑
𝑘

|𝑘 |2𝑐†𝑘
N
𝑁
𝑐𝑘 + (N + 𝑁 𝜏)N

𝑁
.

Again by Lemma 15 we have ‖𝐾 (𝐼 ,𝐼 ′) ‖ � 𝑁− 7
2 , which concludes the proof by Corollary 1, together with

the observation that the set I in the definition of E in Eq. (42) is finite. �

The next Lemma 4 will give us sufficient bounds on the error term E ′ defined in Eq. (34), which
will be responsible for the appearance of an order 𝑂𝑁→∞

(√
𝑁
)

error in the main results of this Section
Theorem 3 and Corollary 2.
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Lemma 4. There exist constants 𝐶,𝐶𝐾 > 0 such that for 𝐾 ≤
√
𝑁 , where K is as in the definition of

𝜋𝐾 below Eq. (17), and 𝜖 > 0

±� !
∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ 𝑎

†
0𝑎

3
0 + H.c."#$ ≤ 𝜖

∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ + 𝜖 N + 𝐶 N
√
𝑁

+ 𝐶

𝜖

(√
𝑁 + N

√
𝐾 + 1

)
, (43)

±� !
∑

0< |𝑘 | ≤𝐾,ℓ

𝜆𝑘,ℓ𝑎
†
ℓ𝑎

†
𝑘−ℓ𝑎𝑘 𝑎

†
0𝑎

2
0 + H.c."#$ � 𝜖

∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ + 𝜖
N 2

𝑁
+ 𝐶𝐾

N
𝑁

+ 𝐶𝐾

𝜖

(
N
√
𝑁

+ N 2

𝑁

)
. (44)

Furthermore, we have

±� !
∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ 𝑎

†
0𝑎

3
0
N
𝑁

+ H.c."#$ ≤ 𝑁− 1
2

(∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ +N
)
+ 𝑁− 3

2 N 2
(
N +

√
𝑁
)
. (45)

Proof. Given 𝑚 ∈ {0, 1}, let us define the operator 𝑋 := 𝑎†0𝑎
3
0
N𝑚

𝑁𝑚 and the coefficients

Λ(𝑛)
ℓ,𝑘 := (𝑇 − 1)(𝑛−𝑘) (𝑘−ℓ)ℓ,𝑛00 + (𝑇 − 1)(𝑛−𝑘) (𝑘−ℓ)ℓ,0𝑛0 + (𝑇 − 1)(𝑛−𝑘) (𝑘−ℓ)ℓ,00𝑛,

and observe that by Eq. (36) there exists a constant 𝐶 > 0 such that

|Λ(𝑛)
ℓ,𝑘 | ≤

𝐶

𝑁2 (|ℓ |2 + |𝑘 |2)

(
1 + |ℓ |2 + |𝑘 |2

𝑁

)−1

, (46)

where we have assumed w.l.o.g. that |𝑛| ≤
√
𝑁 , since Λ(𝑛)

ℓ,𝑘 = 0 in case |𝑛| > 𝐾 and 𝐾 ≤
√
𝑁 . In order

to verify Eq. (43), respectively Eq. (45), let us write∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ𝑎

†
0𝑎

3
0
N𝑚

𝑁𝑚
=

∑
|ℓ |>𝐾

𝜆0,ℓ 𝑐
†
ℓ𝑎

†
−ℓ𝑋 −

∑
|ℓ |>𝐾

𝜆0,ℓ (𝑐ℓ − 𝑎ℓ)†𝑎†−ℓ𝑋

=
∑
|ℓ |>𝐾

𝜆0,ℓ 𝑐
†
ℓ𝑎

†
−ℓ𝑋 −

∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
−ℓ (𝑐ℓ − 𝑎ℓ)†𝑋 −

∑
|ℓ |>𝐾

∑
𝑛≠0

𝜆0,ℓ Λ
(𝑛)
ℓ,0𝑎

2†
0 𝑎†𝑛𝑎𝑛𝑋. (47)

Regarding the first term in Eq. (47), note that we have for 𝜖 > 0 the estimate

±
∑
|ℓ |>𝐾

𝜆0,ℓ 𝑐
†
ℓ𝑎

†
−ℓ𝑋 ± H.c. ≤ 𝜖

∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ +
1
𝜖
𝑋†� !

∑
|ℓ |>𝐾

|𝜆0,ℓ |2

ℓ2 𝑎†ℓ𝑎ℓ +
∑
|ℓ |>𝐾

|𝜆0,ℓ |2

ℓ2
"#$𝑋.

Using |𝜆𝑘,ℓ | � 𝑁−2(1 + |ℓ |2
𝑁 )−1, see Eq. (35), we have

∑
|ℓ |>𝐾

|𝜆0,ℓ |2
ℓ2 � 𝑁− 7

2 and |𝜆0,ℓ |2
ℓ2 ≤ 1

𝑁 4 (𝐾 2+1) for
|ℓ | > 𝐾 , and therefore we obtain for such K

±
∑
|ℓ |>𝐾

𝜆0,ℓ 𝑐
†
ℓ𝑎

†
−ℓ𝑋 ± H.c. � 𝜖

∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ +
1

𝜖𝑁4 𝑋
†
(

N
𝐾2 + 1

+
√
𝑁

)
𝑋

� 𝜖
∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ +
1
𝜖

N 2𝑚

𝑁2𝑚

(
N

𝐾2 + 1
+
√
𝑁

𝜖

)
,
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where we have used 𝑋†𝑋 � 𝑁2 N 2𝑚

𝑁 2𝑚 and [𝑋,N ] = 0. Regarding the second term in Eq. (47), let us use∑
|ℓ |>𝐾 |ℓ |− 1

2 |𝑁4𝜆0,ℓ |2𝑎†ℓ𝑎ℓ �
N√
𝐾+1

as well as the fact that

∑
ℓ

√
|ℓ | (𝑐ℓ − 𝑎ℓ) (𝑐ℓ − 𝑎ℓ )† � N

by Eq. (39), to estimate for 𝜅 > 0

±
∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
−ℓ (𝑐ℓ − 𝑎ℓ)†𝑋 ± H.c. �

1
𝜅
√
𝐾 + 1

N + 𝜅

𝑁4 𝑋
†N 𝑋 ≤ 1

𝜅
√
𝐾 + 1

N + 𝜅N
2𝑚

𝑁2𝑚 N .

Regarding the final term in Eq. (47) we have that
∑

ℓ |Λ
(𝑛)
ℓ,0 | � 𝑁− 3

2 by Eq. (46), and hence

±
∑
|ℓ |>𝐾

∑
𝑛≠0

𝜆0,ℓ Λ
(𝑛)
ℓ,0𝑎

2†
0 𝑎†𝑛𝑎𝑛𝑋 ± H.c. � 𝑁− 1

2 N .

For 𝑚 = 0, the choice 𝜅 := 𝜖 yields Eq. (43) and for 𝑚 = 1 the choice 𝜅 :=
√
𝑁 and 𝜖 := 1√

𝑁
yields

Eq. (45).
Regarding the proof of Eq. (44), let us define the operators 𝑑𝑘,ℓ := 𝜆𝑘,ℓ𝑁

3
2 𝑎†𝑘−ℓ𝑎𝑘 and write

𝑎†ℓ𝑑𝑘,ℓ = 𝑐†ℓ𝑑𝑘,ℓ + 𝑑𝑘,ℓ (𝑐ℓ − 𝑎ℓ )† + [(𝑐ℓ − 𝑎ℓ )†, 𝑑𝑘,ℓ]. We compute

∑
ℓ

[(𝑐ℓ − 𝑎ℓ)†, 𝑑𝑘,ℓ] =
1
2
𝑁

3
2

(
𝑎3†

0

∑
𝑖 𝑗ℓ

1
3
Λ(0)

ℓ,−𝑖𝜆𝑘,ℓ [𝑎𝑖𝑎−𝑖−ℓ , 𝑎
†
𝑘−ℓ𝑎𝑘 ]

+ 𝑎2†
0

∑
|𝑛 | ≤𝐾

∑
𝑖ℓ

Λ(𝑛)
ℓ,𝑛−𝑖𝜆𝑘,ℓ [𝑎†𝑛𝑎𝑖𝑎𝑛−𝑖−ℓ , 𝑎

†
𝑘−ℓ𝑎𝑘 ]

) 𝑎†0𝑎2
0

𝑁
3
2

=
𝑎3†

0

𝑁
3
2
𝜇 (1)
𝑘 𝑎𝑘𝑎−𝑘

𝑎†0𝑎
2
0

𝑁
3
2

+
𝑎2†

0
𝑁

∑
|𝑛 | ≤𝐾

𝜇 (2)
𝑘,𝑛𝑎

†
𝑛𝑎𝑘𝑎𝑛−𝑘

𝑎†0𝑎
2
0

𝑁
3
2

−
𝑎2†

0
𝑁

∑
𝑖,ℓ

𝜇 (3)
𝑘,𝑖,ℓ𝑎

†
𝑘−ℓ𝑎𝑖𝑎𝑘−𝑖−ℓ

𝑎†0𝑎
2
0

𝑁
3
2
,

where we define the coefficients

𝜇 (1)
𝑘 := 𝑁3

∑
ℓ

1
3
Λ(0)

ℓ,𝑘𝜆𝑘,ℓ ,

𝜇 (2)
𝑘,𝑛 := 𝑁

5
2
∑
ℓ

Λ(𝑛)
ℓ,𝑘𝜆𝑘,ℓ ,

𝜇 (3)
𝑘,𝑖,ℓ := 𝑁

5
2 Λ(𝑘)

ℓ,𝑘−𝑖𝜆𝑘,ℓ .

Using again Eq. (46) and |𝜆𝑘,ℓ | � 𝑁−2(1 + |ℓ |2
𝑁 )−1, we immediately obtain |𝜇 (1)

𝑘 | � 1√
𝑁

, |𝜇 (2)
𝑘,𝑛 | �

1
𝑁 ,

|𝜇 (3)
𝑘,𝑖,ℓ | � 𝑁− 3

2 and
∑

𝑖 |𝜇
(3)
𝑘,𝑖,ℓ | �

1
𝑁 , and therefore by Cauchy-Schwarz

∑
ℓ

(
[(𝑐ℓ − 𝑎ℓ )†, 𝑑𝑘,ℓ]

𝑎†0𝑎
2
0

𝑁
3
2

+ H.c.

)
�

N
√
𝑁
.
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Consequently,

± � !
∑

0< |𝑘 | ≤𝐾,ℓ

𝜆𝑘,ℓ𝑎
†
ℓ𝑎

†
𝑘−ℓ𝑎𝑘 𝑎

†
0𝑎

2
0 + H.c."#$ =

(∑
ℓ

𝑎†ℓ𝑑𝑘,ℓ

𝑎†0𝑎
2
0

𝑁
3
2

+ H.c.

)
�

∑
0< |𝑘 | ≤𝐾

(
𝜖

𝐾3

∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ +
𝐾3

𝜖

∑
ℓ

1
|ℓ |2

𝑑†𝑘,ℓ𝑑𝑘,ℓ +
𝜖

𝐾3

∑
ℓ

𝑑𝑘,ℓ𝑑
†
𝑘,ℓ

+ 𝐾3

𝜖

∑
ℓ

𝑎3†
0 𝑎0

𝑁2 (𝑐ℓ − 𝑎ℓ ) (𝑐ℓ − 𝑎ℓ )†
𝑎†0𝑎

3
0

𝑁2 + N
√
𝑁

)
� 𝜖

∑
ℓ

|ℓ |2𝑐†ℓ𝑐ℓ +
𝐾3

𝜖

∑
0< |𝑘 | ≤𝐾,ℓ

1
|ℓ |2

𝑑†𝑘,ℓ𝑑𝑘,ℓ +
𝜖

𝐾3

∑
0< |𝑘 | ≤𝐾,ℓ

𝑑𝑘,ℓ𝑑
†
𝑘,ℓ

+ 𝐾3

𝜖

∑
0< |𝑘 | ≤𝐾,ℓ

𝑎3†
0 𝑎0

𝑁2 (𝑐ℓ − 𝑎ℓ) (𝑐ℓ − 𝑎ℓ)†
𝑎†0𝑎

3
0

𝑁2 + 𝐾3 N
√
𝑁
.

Similar to the proof of Eq. (43), we observe that 1
𝐾 3

∑
0< |𝑘 | ≤𝐾,ℓ 𝑑𝑘,ℓ𝑑

†
𝑘,ℓ �

N
𝑁 N and, using Eq. (39),

∑
0< |𝑘 | ≤𝐾,ℓ

𝑎3†
0 𝑎0

𝑁2 (𝑐ℓ − 𝑎ℓ ) (𝑐ℓ − 𝑎ℓ )†
𝑎†0𝑎

3
0

𝑁2 � 𝐾3 𝑎
3†
0 𝑎0

𝑁2
N 2

𝑁

𝑎†0𝑎
3
0

𝑁2 ≤ 𝐾3N 2

𝑁
,

∑
0< |𝑘 | ≤𝐾,ℓ

1
|ℓ |2

𝑑†𝑘,ℓ𝑑𝑘,ℓ � 𝐾3 N
√
𝑁

+ 𝐾3𝑁3
∑
ℓ

1
|ℓ |2

|𝜆𝑘,ℓ |2𝑎†𝑘𝑎
†
𝑘−ℓ𝑎𝑘−ℓ𝑎𝑘 � 𝐾3 N

√
𝑁

+ 𝐾3N 2

𝑁
. �

Having Lemma 2, Lemma 3 and Lemma 4 at hand, we can use the lower bound in Eq. (32) in order to
derive the following Theorem 3, which provides strong lower bounds on the quantity 〈Ψ, 𝐻𝑁Ψ〉. Note,
however, that Theorem 3 is only applicable for states Ψ which satisfy the strong condition that Ψ is in
the spectral subspace N ≤ 𝜖𝑁 , that is,

1(N ≤ 𝜖𝑁)Ψ = Ψ, (48)

where the orthogonal projection 1(N ≤ 𝜖𝑁) is defined by means of functional calculus. In the following
we will refer to the property in Eq. (48) as (BEC) in the spectral sense 1(N ≤ 𝜖𝑁)Ψ = Ψ. Furthermore,
we refer to a Hilbert space element Ψ as a state, in case it satisfies ‖Ψ‖ = 1.

Theorem 3. There exist constants 𝛿, 𝐶, 𝑁0 > 0 and 𝜖 > 0, such that

〈Ψ, 𝐻𝑁Ψ〉 ≥ 1
6
𝑏M (𝑉)𝑁 + 𝛿〈Ψ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Ψ〉 + 𝛿〈Ψ,NΨ〉 − 𝐶
√
𝑁

for any state Ψ satisfying 1(N ≤ 𝜖𝑁)Ψ = Ψ and 𝑁 ≥ 𝑁0, where N :=
∑

𝑘≠0 𝑎
†
𝑘𝑎𝑘 .

Proof. By Eq. (32) together with the estimates in Lemma 2, Lemma 3 and Lemma 4 we have for
𝛼, 𝜏, 𝜖 ′ > 0 and 𝐾 ≥ 𝐾0(𝛼, 𝜏)

𝐻𝑁 ≥ 1
6
𝑏M(𝑉)𝑁 + (1 − 𝜖 ′)

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 − 𝐶𝐾,𝜖 ′

∑
𝑘

|𝑘 |2𝑐†𝑘

(
N
𝑁

+ 𝑁− 1
2

)
𝑐𝑘 (49)

− 𝛼
∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 −
(
𝜖 ′ + 𝐶𝐾,𝜖 ′

N
𝑁

+ 𝐶𝐾,𝜖 ′𝑁− 1
3 + 𝐶

𝜖 ′
√
𝐾 + 1

)
N − 𝐶𝐾,𝜖 ′

√
𝑁,
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where 𝐶,𝐶𝐾,𝜖 ′ and 𝐾0(𝛼, 𝜏) are suitable constants. In the following let Ψ be a state satisfying
1[0, 𝜖 𝑁 ) (N )Ψ = Ψ and define Ψ𝑘 := 𝑐𝑘Ψ. By the definition of 𝑐𝑘 it is clear that 1[0, 𝜖 𝑁+2) (N )Ψ𝑘 = Ψ𝑘 ,
and therefore〈

Ψ,
∑
𝑘

|𝑘 |2𝑐†𝑘

(
N
𝑁

+ 𝑁− 1
2

)
𝑐𝑘Ψ

〉
=
∑
𝑘

|𝑘 |2
〈
Ψ𝑘 ,

(
N
𝑁

+ 𝑁− 1
2

)
Ψ𝑘

〉
=
∑
𝑘

|𝑘 |2
〈
Ψ𝑘 ,

(
N
𝑁

+ 𝑁− 1
2

)
1[0, 𝜖 𝑁+2) (N )Ψ𝑘

〉
≤

∑
𝑘

|𝑘 |2
〈
Ψ𝑘 ,

(
𝜖𝑁 + 2
𝑁

+ 𝑁− 1
2

)
Ψ𝑘

〉
=

(
𝜖𝑁 + 2
𝑁

+ 𝑁− 1
2

)〈
Ψ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Ψ
〉
. (50)

In a similar fashion we have

〈Ψ,N 2Ψ〉 ≤ 𝜖𝑁 〈Ψ,NΨ〉. (51)

Furthermore, note that for a suitable constant 𝐷1 > 0∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 ≤ 𝐷1
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 + 𝐷1
N 2

𝑁
+ 𝐷1𝑁

1
2 (52)

by Eq. (40) for 𝜏 < 1
2 , and by Eq. (39) we have

N
(
1 − 𝑅

N
𝑁

)
≤ 𝑅

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 + 𝑅

for a suitable constant 𝑅 > 0. Using 1(N ≤ 𝜖𝑁)Ψ = Ψ with 𝜖 small enough such that 𝑅𝜖 < 1, we
therefore obtain

〈Ψ,NΨ〉 ≤ 𝐷2

〈
Ψ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Ψ
〉
+ 𝐷2, (53)

for a suitable constant 𝐷2 > 0. Combining Eq. (49)-(53), therefore yields for suitable constants D and
𝐷𝐾,𝜖 ′,𝛼, and 0 < 𝜖 < 1

𝑅 ,

〈Ψ, 𝐻𝑁Ψ〉 ≥
[
1 − 𝐷

(
𝜖 ′ + 𝛼 + 𝐷

𝜖 ′
√
𝐾 + 1

)
− 𝐷𝐾,𝜖 ′,𝛼

(
𝜖 + 𝑁− 1

3

)]
〈Ψ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Ψ〉

+ 1
6
𝑏M (𝑉)𝑁 − 𝐷𝐾,𝜖 ′,𝛼

√
𝑁.

We can now make our choice of parameters concrete. First we take choose 𝜏 such that 0 < 𝜏 < 1
2 and

𝛼, 𝜖 ′ > 0 small enough, such that 𝐷 (𝜖 ′ + 𝛼) < 1
2 , and then we take 𝐾 ≥ 𝐾0(𝛼, 𝜏) large enough, such that

𝐷

(
𝜖 ′ + 𝛼 + 𝐷

𝜖 ′
√
𝐾 + 1

)
≤ 1

2
.

Finally, we take 0 < 𝜖 < 1
𝑅 small enough and N large enough, such that

𝐷𝐾,𝜖 ′,𝛼

(
𝜖 + 𝑁− 1

3

)
≤ 1

2
. �
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It has been verified in [23], for the more general setting of particles being confined by an additional
external potential, that any approximate ground state Ψ𝑁 of the operator 𝐻𝑁 satisfies complete Bose-
Einstein condensation

〈Ψ𝑁 ,NΨ𝑁 〉 = 𝑜𝑁→∞(𝑁). (54)

Adapting the localization procedure presented in [19, Theorem A.1] in the form stated in [16, Proposition
6.1] for the following Lemma 5 allows us to lift Bose-Einstein condensation in the sense of Eq. (54),
to Bose-Einstein condensation in the spectral sense, which is a crucial assumption of the previous
Theorem 3.

Lemma 5. Let Ψ satisfy 〈Ψ, 𝐻𝑁Ψ〉 = 𝐸𝑁 + 𝛿 with 𝛿 ≤ 𝑁 . Then there exists a constant 𝐶 > 0, such
that there exists for all 1 ≤ 𝑀 ≤ 𝑁 states Φ satisfying 1(N ≤ 𝑀)Φ = Φ and

〈Φ, 𝐻𝑁Φ〉 ≤ 𝐸𝑁 + 𝐶
(
1 − 2〈Ψ,NΨ

〉 𝑀

)−1
(√

𝑁

𝑀
+ 𝑁

𝑀2 + 𝛿
)
. (55)

Furthermore, there exists a state Φ̃ such that 1
(
N > 𝑀

2
)
Φ̃ = Φ̃ and

〈Ψ,NΨ〉 ≤ 〈Φ,NΦ〉 + 𝐶𝑁

〈Φ̃, 𝐻𝑁 Φ̃
− 𝐸𝑁 〉

(√
𝑁

𝑀
+ 𝑁

𝑀2 + 𝛿
)
. (56)

Proof. In the following let 𝑓 , 𝑔 : R→ [0, 1] be smooth functions satisfying 𝑓 2 + 𝑔2 = 1 and 𝑓 (𝑥) = 1
for 𝑥 ≤ 1

2 , as well as 𝑓 (𝑥) = 0 for 𝑥 ≥ 1, and let us define 𝑚 := ‖ 𝑓
(N
𝑀

)
Ψ‖2 and

Φ :=
1
√
𝑚
𝑓

(
N
𝑀

)
Ψ,

Φ̃ :=
1

√
1 − 𝑚

𝑔

(
N
𝑀

)
Ψ.

Note that ‖Φ‖ = ‖Φ̃‖ = 1, 0 ≤ 𝑚 ≤ 1 and clearly we have 1(N ≤ 𝑀)Φ = Φ and 1
(
N > 𝑀

2
)
Φ̃ = Φ̃.

Making use of the algebraic identity

𝐻𝑁 = 𝑓

(
N
𝑀

)
𝐻𝑁 𝑓

(
N
𝑀

)
+ 𝑔

(
N
𝑀

)
𝐻𝑁 𝑔

(
N
𝑀

)
+ E

with the residual term

E :=
1
2

[
𝑓

(
N
𝑀

)
,

[
𝐻𝑁 , 𝑓

(
N
𝑀

)] ]
+ 1

2

[
𝑔

(
N
𝑀

)
,

[
𝐻𝑁 , 𝑔

(
N
𝑀

)] ]
,

we obtain

𝑚〈Φ, 𝐻𝑁Φ〉 + (1 − 𝑚)〈Φ̃, 𝐻𝑁 Φ̃〉 = 𝐸𝑁 + 𝛿 − 〈Ψ, EΨ〉.

In order to estimate 〈Ψ, EΨ〉, let 𝜋0 denote the projection onto the constant function in 𝐿2 (Λ) and
𝜋1 := 1 − 𝜋0. Then we can rewrite E as

E =
1

4𝑀2

∑
𝐼 ,𝐽 ∈{0,1}3

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(𝜋𝐼1𝜋𝐼2𝜋𝐼3𝑉𝑁 𝜋
𝐽1𝜋𝐽2𝜋𝐽3 )𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎

†
𝑘𝑎

†
𝑗𝑎

†
𝑖 𝑋𝐼 ,𝐽 𝑎ℓ𝑎𝑚𝑎𝑛,
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with

𝑋𝐼 ,𝐽 := 𝑀2
[
𝑓

(
N + #𝐼

𝑀

)
− 𝑓

(
N + #𝐽

𝑀

)]2
+ 𝑀2

[
𝑔

(
N + #𝐼

𝑀

)
− 𝑔

(
N + #𝐽

𝑀

)]2

and #𝐼 counting the number of indices in I that are equal to 1. Using 0 ≤ 𝑋𝐼 ,𝐽 ≤ 𝑋 , where

𝑋 :=
(
‖∇ 𝑓 ‖2 + ‖∇𝑔‖2

)
1(N ≤ 𝑀),

we obtain by the Cauchy-Schwarz inequality

±E � 1
4𝑀2

∑
𝐼 ∈{0,1}3

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(𝜋𝐼1𝜋𝐼2𝜋𝐼3𝑉𝑁 𝜋
𝐼1𝜋𝐼2𝜋𝐼3 )𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎

†
𝑘𝑎

†
𝑗𝑎

†
𝑖 𝑋𝑎ℓ𝑎𝑚𝑎𝑛. (57)

In the following we want to show that for any 𝐼 ∈ {0, 1}3, the Ψ-expectation value of the corresponding
term appearing in the sum on the right side of Eq. (57) is of the order

√
𝑁𝑀+𝑁 . For 𝐼 = (0, 0, 0) we have

(𝑉𝑁 )000,000(𝑎†0)
3𝑋𝑎3

0 � 𝑁−2‖𝑋 ‖(𝑎†0)
3𝑎3

0 ≤
(
‖∇ 𝑓 ‖2 + ‖∇𝑔‖2

)
𝑁.

Similarly, ∑
𝑘≠0

(𝑉𝑁 )001,001(𝑎†0)
2𝑎†𝑘𝑋𝑎𝑘𝑎

2
0 � 𝑀 ≤ 𝑁

in the case 𝐼 = (0, 0, 1). Regarding the case 𝐼 = (0, 1, 1), let us first observe that we have the upper bound

∑
𝑗𝑘,𝑚𝑛≠0

(𝑉𝑁 )0 𝑗𝑘,0𝑚𝑛𝑎
†
0𝑎

†
𝑘𝑎

†
𝑗𝑋𝑎𝑚𝑎𝑛𝑎0 ≤ 𝐶𝑁

∑
𝑘

|𝑘 |2𝑎†𝑘
� !
∑
𝑗≠0

𝑎†0𝑎
†
𝑗𝑋𝑎 𝑗𝑎0

"#$𝑎𝑘 (58)

with the constant 𝐶𝑁 being defined as

𝐶𝑁 := sup
𝑚,𝑛≠0

⎧⎪⎨⎪⎩
∑
𝑗 ,𝑘≠0

��(𝑉𝑁 )0 𝑗𝑘,0𝑚𝑛

��
|𝑘 |2

⎫⎪⎬⎪⎭ =
1
𝑁2

⎧⎪⎨⎪⎩ sup
𝑝,𝑞≠0

∑
𝑡:𝑝+𝑡≠0

��𝑉 (
𝑁− 1

2 𝑡
) ��

|𝑝 + 𝑡 |2
⎫⎪⎬⎪⎭.

Due to our regularity assumptions on V we have
��𝑉 (

𝑁− 1
2 𝑡
) �� � 1

1+𝑁 −1 |𝑡 |2 and therefore

𝐶𝑁 � 𝑁−2
∑

𝑡:𝑝+𝑡≠0

1
|𝑝 + 𝑡 |2 (1 + 𝑁−1 |𝑡 |2)

� 𝑁−2
∫
R3

d𝑥
|𝑝 + 𝑥 |2 (1 + 𝑁−1 |𝑥 |2)

≤ 𝑁−2
∫
R3

d𝑥
|𝑥 |2 (1 + 𝑁−1 |𝑥 |2)

= 𝑁−24𝜋
∫ ∞

0

d𝑟
1 + 𝑁−1𝑟2 = 2𝜋2𝑁− 3

2 , (59)

where we have used the Hardy-Littlewood inequality in the first estimate of Eq. (59). Since∑
𝑗≠0

𝑎†0𝑎
†
𝑗𝑋𝑎 𝑗𝑎0 � 𝑀𝑁
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we obtain by Eq. (58)〈
Ψ,

∑
𝑗𝑘,𝑚𝑛≠0

(𝑉𝑁 )0 𝑗𝑘,0𝑚𝑛𝑎
†
0𝑎

†
𝑘𝑎

†
𝑗𝑋𝑎𝑚𝑎𝑛𝑎0 Ψ

〉
� 𝑁− 1

2 𝑀

〈
Ψ,

∑
𝑘

|𝑘 |2𝑎†𝑘𝑎𝑘 Ψ

〉
≤ 𝑁− 1

2 𝑀 〈Ψ, 𝐻𝑁 Ψ〉 ≤ 𝑁− 1
2 𝑀 (𝐸𝑁 + 𝑁) � 𝑁

1
2 𝑀,

where we have used the assumption 𝛿 ≤ 𝑁 and the upper bound on 𝐸𝑁 derived in Theorem 4. The only
distinguished case left is 𝐼 = (1, 1, 1). We start its analysis by defining

V𝛼,𝛽 :=
1

4𝑀2

∑
𝐼 ,𝐽 ∈{0,1}3:
#𝐼=𝛼,#𝐽=𝛽

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(𝜋𝐼1𝜋𝐼2𝜋𝐼3𝑉𝑁 𝜋
𝐽1𝜋𝐽2𝜋𝐽3)𝑖 𝑗𝑘,ℓ𝑚𝑛𝑎

†
𝑘𝑎

†
𝑗𝑎

†
𝑖 𝑋𝐼 ,𝐽𝑎ℓ𝑎𝑚𝑎𝑛,

which allows us to estimate, using the Cauchy-Schwarz inequality,

V3,3 ≤ 𝐻𝑁 −
(
V2,3 + V3,2 + V1,3 + V3,1 + V0,3 + V3,0

)
≤ 𝐻𝑁 + 1

2
V3,3 + 6

(
V0,0 + V1,1 + V2,2

)
.

From the previous cases we know that

〈Ψ, (V0,0 + V1,1 + V2,2)Ψ〉 � 𝑁
1
2 𝑀 + 𝑁,

〈Ψ, 𝐻𝑁Ψ〉 � 𝑁,

and therefore 〈Ψ,V3,3Ψ〉 � 𝑁
1
2 𝑀 + 𝑁 . Summarizing what we have so far yields the inequality

𝑚〈Φ, 𝐻𝑁Φ〉 + (1 − 𝑚)〈Φ̃, 𝐻𝑁 Φ̃〉 ≤ 𝐸𝑁 + 𝛿 + 𝐶
(√

𝑁

𝑀
+ 𝑁

𝑀2

)
.

Using 〈Φ̃, 𝐻𝑁 Φ̃〉 ≥ 𝐸𝑁 and the simple observation that 𝑚 ≥ 1− 2〈Ψ,NΨ〉
𝑀 immediately yields Eq. (55),

and using 〈Φ, 𝐻𝑁Φ〉 ≥ 𝐸𝑁 we obtain for a suitable constant 𝐶 > 0

1 − 𝑚 ≤ 𝐶

〈Φ̃, 𝐻𝑁 Φ̃
− 𝐸𝑁 〉

(√
𝑁

𝑀
+ 𝑁

𝑀2 + 𝛿
)
.

In order to derive Eq. (56), we note that N = 𝑓
(N
𝑀

)
N 𝑓

(N
𝑀

)
+ 𝑔

(N
𝑀

)
N 𝑔

(N
𝑀

)
and therefore

〈Ψ, EΨ〉 = 𝑚〈Φ,NΦ〉 + (1 − 𝑚)〈Φ̃,N Φ̃〉 ≤ 〈Φ,NΦ〉 + (1 − 𝑚)𝑁. �

Before we come to the lower bound on the ground state energy 𝐸𝑁 in the main result of this Section
Corollary 2, let us first state the corresponding upper bound in the subsequent Theorem 4, which has
essentially been verified in [23]. To be precise, it has been shown in [23] that 𝐸𝑁 ≤ 1

6𝑏M (𝑉)𝑁 +𝐶𝑁 2
3 ,

and, as is explained in [25], the method in [23] can be improved to yield 𝐸𝑁 ≤ 1
6𝑏M (𝑉)𝑁 + 𝐶𝑁 1

2 as
well. However, since the computations in the proof of Theorem 4 are relevant for the proof of the upper
bound in Theorem 1, and for the sake of completeness, we are nevertheless going to verify Theorem 4
in detail in the subsequent Section 3.

Theorem 4. There exists a constant 𝐶 > 0 such that the ground state energy 𝐸𝑁 is bounded from above
by 𝐸𝑁 ≤ 1

6𝑏M (𝑉)𝑁 + 𝐶
√
𝑁 .

Using Bose-Einstein condensation in the spectral sense, Theorem 3 allows us to derive an asymptot-
ically correct lower bound on the ground state energy in Corollary 2 with an error of the order

√
𝑁 , see
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Eq. (62). In this context we call Ψ𝑁 an approximate ground state, in case ‖Ψ𝑁 ‖ = 1 and there exists a
constant 𝐶 > 0 such that

〈Ψ𝑁 , 𝐻𝑁Ψ𝑁 〉 ≤ 𝐸𝑁 + 𝐶. (60)

Note that the assumption in Eq. (60) is more restrictive compared to the one employed in [23], where
the authors call Ψ𝑁 an approximate ground state in case ‖Ψ𝑁 ‖ = 1 and

lim
𝑁→∞

1
𝑁
〈Ψ𝑁 , 𝐻𝑁Ψ𝑁 〉 = 1

6
𝑏M (𝑉). (61)

The fact that Eq. (60) implies Eq. (61) follows immediately from the leading-order asymptotics in
Eq. (3), which has been verified in [23], together with the trivial lower bound 〈Ψ𝑁 , 𝐻𝑁Ψ𝑁 〉 ≥ 𝐸𝑁 .

Corollary 2. The ground state ΨGS
𝑁 of the operator 𝐻𝑁 satisfies for a suitable 𝐶 > 0

〈ΨGS
𝑁 ,NΨGS

𝑁 〉 ≤ 𝐶
√
𝑁,

and we have the lower bound

𝐸𝑁 ≥ 1
6
𝑏M(𝑉)𝑁 − 𝐶

√
𝑁. (62)

Furthermore there exists a constant 𝐶 > 0 and states Φ𝑁 , such that Φ𝑁 is an approximate ground state
of 𝐻𝑁 satisfying (BEC) in the spectral sense with rate 1√

𝑁
, that is,

〈Φ𝑁 , 𝐻𝑁Φ𝑁 〉 ≤ 𝐸𝑁 + 𝐶,

1
(
N ≤ 𝐶

√
𝑁
)
Φ𝑁 = Φ𝑁 ,

and we have the estimate on the kinetic energy
〈
Φ𝑁 ,

∑
𝑘 |𝑘 |2𝑐†𝑘𝑐𝑘Φ𝑁

〉
≤ 𝐶

√
𝑁 .

Proof. From the results in [23] we know that the ground state ΨGS
𝑁 of 𝐻𝑁 satisfies

〈ΨGS
𝑁 ,NΨGS

𝑁 〉 = 𝑜𝑁→∞(𝑁).

Consequently, we know by Lemma 5 that there exist states 𝜉𝑁 satisfying

〈𝜉𝑁 , 𝐻𝑁 𝜉𝑁 〉 ≤ 𝐸𝑁 + 𝐶
(

1
𝜖
√
𝑁

+ 1
𝜖2𝑁

)
(63)

and 1(N ≤ 𝜖𝑁)𝜉𝑁 = 𝜉𝑁 , where we choose 𝜖 > 0 as in Theorem 3. By Theorem 3 and Theorem 4 we
therefore obtain for a suitable constant 𝐶 > 0

1
6
𝑏M(𝑉)𝑁 + 𝛿

〈
𝜉𝑁 ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘𝜉𝑁

〉
+ 𝛿〈𝜉𝑁 ,N 𝜉𝑁 〉 − 𝐶

√
𝑁 ≤ 〈𝜉𝑁 , 𝐻𝑁 𝜉𝑁 〉

≤ 𝐸𝑁 + 𝐶 ≤ 1
6
𝑏M(𝑉)𝑁 + 𝐶

√
𝑁. (64)

This immediately implies 𝐸𝑁 ≥ 1
6𝑏M (𝑉)𝑁 − 𝐶

√
𝑁 for a suitable constant 𝐶 > 0 and

〈𝜉𝑁 ,N 𝜉𝑁 〉 = 𝑂𝑁→∞
(√

𝑁
)
, (65)
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as well as
〈
𝜉𝑁 ,

∑
𝑘 |𝑘 |2𝑐†𝑘𝑐𝑘𝜉𝑁

〉
= 𝑂𝑁→∞

(√
𝑁
)
. Furthermore, there exist by Lemma 5 states 𝜉𝑁

satisfying 1
(
N > 𝜖

2 𝑁
)
𝜉𝑁 = 𝜉𝑁 and

〈ΨGS
𝑁 ,NΨGS

𝑁 〉 � 〈𝜉𝑁 ,N 𝜉𝑁 〉 +
√
𝑁

〈𝜉𝑁 , 𝐻𝑁 𝜉𝑁
− 𝐸𝑁 〉 �

√
𝑁 +

√
𝑁

〈𝜉𝑁 , 𝐻𝑁 𝜉𝑁 〉 − 𝐸𝑁

. (66)

In the following we show by a contradiction argument, similar to the one employed in the proof of
[4, Theorem 1.1], that

lim inf
𝑁

{
〈𝜉𝑁 , 𝐻𝑁 𝜉𝑁 〉 − 𝐸𝑁

}
= ∞. (67)

For this purpose let us assume that Eq. (67) is violated, that is, we assume that there exists a subsequence
𝑁 𝑗 and a constant 𝐶 > 0 such that sup 𝑗 〈𝜉𝑁 𝑗 , 𝐻𝑁 𝑗 𝜉𝑁 𝑗 〉 − 𝐸𝑁 𝑗 ≤ 𝐶. Let us complete this subsequence to
a proper sequence by defining 𝜉 ′𝑁 := 𝜉𝑁 in case 𝑁 = 𝑁 𝑗 for some j and 𝜉 ′𝑁 := ΨGS

𝑁 otherwise. Clearly
𝜉 ′𝑁 is a sequence of approximate ground states, see Eq. (60), and as such 𝜉 ′𝑁 satisfies complete (BEC)
by the results in [23], that is, 〈𝜉 ′𝑁 ,N 𝜉 ′𝑁 〉 = 𝑜𝑁→∞(𝑁). This is, however, a contradiction to

〈𝜉 ′𝑁 𝑗 ,N 𝜉 ′𝑁 𝑗 〉 = 〈𝜉𝑁 𝑗 ,N 𝜉𝑁 𝑗 〉 ≥
𝜖

2
𝑁,

which concludes the proof of Eq. (67). Combining Eq. (66) and Eq. (67) yields

〈ΨGS
𝑁 ,NΨGS

𝑁 〉 ≤ 𝐶
√
𝑁,

for a suitable constant 𝐶 > 0. Applying again Lemma 5 for the state ΨGS
𝑁 and 𝑀 := 𝐾

√
𝑁 , we obtain

states Φ𝑁 satisfying 1(N ≤ 𝐾
√
𝑁)Φ𝑁 = Φ𝑁 and

〈Φ𝑁 , 𝐻𝑁Φ𝑁 〉 ≤ 𝐸𝑁 + 𝐶

1 − 2
𝐾
√
𝑁
〈ΨGS

𝑁 ,NΨGS
𝑁

〉 ≤ 𝐸𝑁 + 𝐶

1 − 2𝐶
𝐾

,

for a large enough 𝐶 > 0. Consequently Φ𝑁 is a sequence of approximate ground states for 𝐾 >
2𝐶. Finally we notice that the states Φ𝑁 satisfy the chain of inequalities in Eq. (64) as well, and
therefore 〈

Φ𝑁 ,
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Φ𝑁

〉
= 𝑂𝑁→∞

(√
𝑁
)
. �

3. First-order upper bound

It is the goal of this section to introduce a trial state Γ, which simultaneously annihilates the variables
𝑐𝑘 for 𝑘 ≠ 0 and 𝜓ℓ𝑚𝑛 in case (ℓ, 𝑚, 𝑛) ≠ 0, at least in an approximate sense, which allows us to verify
the upper bound on the ground state energy 𝐸𝑁 in Theorem 4. For the rest of this Section we specify
the parameter K introduced above the definition of 𝜋𝐾 in Eq. (17) as 𝐾 := 0, which especially means
that with 𝜂𝑖 𝑗𝑘 := (𝑇 − 1)𝑖 𝑗𝑘,000 we have

𝑐𝑘 = 𝑎𝑘 +
1
2

∑
𝑖 𝑗

𝜂𝑖 𝑗𝑘 𝑎
†
𝑖 𝑎

†
𝑗𝑎

3
0, (68)

𝜓𝑖 𝑗𝑘 = 𝑎𝑖𝑎 𝑗𝑎𝑘 + 𝜂𝑖 𝑗𝑘 𝑎3
0. (69)
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In order to find a suitable state Γ, let 𝜂𝑖 𝑗𝑘 := (𝑇 − 1)𝑖 𝑗𝑘,000 and let us follow the strategy in [23],
respectively in the case of Bose gases with two-particle interactions see, for example, [3, 7, 13], by
defining the generator

G :=
1
6

∑
𝑖 𝑗𝑘

𝜂𝑖 𝑗𝑘 𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎

3
0 (70)

of a unitary group 𝑈𝑠 := 𝑒𝑠G
†−𝑠G and 𝑈 := 𝑈1. The generator G is chosen, such that

𝑐𝑘 = 𝑎𝑘 + [𝑎𝑘 ,G],

and in particular, as we show this section, the unitary U has the property𝑈−1𝑐𝑘𝑈 ≈ 𝑎𝑘 and𝑈−1𝜓𝑖 𝑗𝑘𝑈 ≈
𝑎𝑖𝑎 𝑗𝑎𝑘 in a suitable sense. Denoting with

Γ0(𝑥1, . . . , 𝑥𝑁 ) := 1 (71)

the constant function in 𝐿2
sym

(
Λ𝑁

)
, that is, 𝑎𝑘Γ0 = 0 for 𝑘 ≠ 0, we observe that Γ := 𝑈Γ0 is a suitable

trial state for the (approximate) annihilation of 𝑐𝑘 , given 𝑘 ≠ 0, and 𝜓ℓ𝑚𝑛, given (ℓ, 𝑚, 𝑛) ≠ 0, where the
action of the unitary U introduces a three-particle correlation structure on the completely uncorrelated
wavefunction Γ0. We note at this point, that the action of the unitary operator U only creates an 𝑂 (1)
amount of particles, in the sense that

𝑈−𝑠 N𝑚𝑈𝑠 ≤ 𝑒𝐶𝑚 |𝑠 | (N + 1)𝑚, (72)

as is proven in Appendix A, see Lemma A1.
For the purpose of verifying that 𝑈−1𝜓𝑖 𝑗𝑘𝑈 is approximately identical to 𝑎𝑖𝑎 𝑗𝑎𝑘 , we first apply

Duhamel’s formula, which yields

𝑈−1𝑎𝑖𝑎 𝑗𝑎𝑘𝑈 = 𝑎𝑖𝑎 𝑗𝑎𝑘 −
∫ 1

0
𝑈−𝑠

[
𝑎𝑖𝑎 𝑗𝑎𝑘 ,G

]
𝑈𝑠 d𝑠 +

∫ 1

0
𝑈−𝑠

[
𝑎𝑖𝑎 𝑗𝑎𝑘 ,G†]𝑈𝑠 d𝑠. (73)

Furthermore, note that we can write[
𝑎𝑖𝑎 𝑗𝑎𝑘 ,G

]
= 𝜂𝑖 𝑗𝑘𝑎

3
0 + (𝛿1𝜓)𝑖 𝑗𝑘 + (𝛿2𝜓)𝑖 𝑗𝑘

using the definition

(𝛿1𝜓)𝑖1𝑖2𝑖3 :=
1
2

∑
𝜎∈𝑆3

∑
𝑗

𝜂𝑖𝜎1 𝑖𝜎2 𝑗1(𝑖𝜎3 = 0) 𝑎†𝑗𝑎
4
0,

(𝛿2𝜓)𝑖1𝑖2𝑖3 :=
1
2

∑
𝜎∈𝑆3

∑
𝑗

𝜂𝑖𝜎1 𝑖𝜎2 𝑗1(𝑖𝜎3 ≠ 0) 𝑎†𝑗𝑎𝑖𝜎3
𝑎3

0 +
1
4

∑
𝜎∈𝑆3

∑
𝑗𝑘

𝜂𝑖𝜎1 𝑗𝑘 𝑎
†
𝑘𝑎

†
𝑗𝑎𝑖𝜎2

𝑎𝑖𝜎3
𝑎3

0.

Therefore we can identify the transformed operators 𝑈−1𝜓𝑖 𝑗𝑘𝑈 as

𝑈−1𝜓𝑖 𝑗𝑘𝑈 = 𝑎𝑖𝑎 𝑗𝑎𝑘 +
∫ 1

0
𝑈−𝑠

{[
𝑎𝑖𝑎 𝑗𝑎𝑘 , G†] − (𝛿1𝜓)𝑖 𝑗𝑘 − (𝛿2𝜓)𝑖 𝑗𝑘 − 𝜂𝑖 𝑗𝑘𝑎

3
0
}
𝑈𝑠d𝑠 + 𝜂𝑖 𝑗𝑘𝑈−1𝑎3

0𝑈

= 𝑎𝑖𝑎 𝑗𝑎𝑘 +
∫ 1

0
𝑈−𝑠

[
𝑎𝑖𝑎 𝑗𝑎𝑘 ,G†]𝑈𝑠d𝑠 −

∫ 1

0
𝑈−𝑠 (𝛿1𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠 −

∫ 1

0
𝑈−𝑠 (𝛿2𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠

+
∫ 1

0

∫ 1

𝑠
𝑈−𝑡𝜂𝑖 𝑗𝑘

[
𝑎3

0,G†]𝑈𝑡d𝑡d𝑠, (74)
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where we have used Duhamel’s formula to express𝑈−1𝜂𝑖 𝑗𝑘𝑎
3
0𝑈−𝑈−𝑠𝜂𝑖 𝑗𝑘𝑎

3
0𝑈𝑠 . The following Lemma 6

demonstrates that we can treat the quantities 𝛿1𝜓 and 𝛿2𝜓 in Eq. (74) as error terms. In order to formulate
Lemma 6, recall the set L0 := {(0, 0, 0)} from Eq. (16) and let us define

𝐴 := (2𝜋Z)9 \ L0 = (2𝜋Z)9 \ {(0, 0, 0)},

and the potential energy EP of an operator-valued three particle vector Θ𝑖1𝑖2𝑖3 as

EP (Θ) :=
∑

(𝑖1𝑖2𝑖3) , (𝑖′1𝑖
′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3Θ
†
𝑖1𝑖2𝑖3

Θ𝑖′1𝑖
′
2𝑖

′
3
. (75)

To keep the notation light, we will occasionally write EP (Θ𝑖1𝑖2𝑖3) for EP (Θ) with dummy indices 𝑖1𝑖2𝑖3.

Lemma 6. There exists a constant 𝐶 > 0, such that

EP (𝛿1𝜓) ≤ 𝐶𝑁
1
2 (N + 1), (76)

EP (𝛿2𝜓) ≤ 𝐶 (N + 1)4. (77)

Furthermore, E𝑃
( [
𝑎𝑖1𝑎𝑖2𝑎𝑖3 , G†] ) ≤ 𝐶𝑁− 3

2 (N + 1)5.

Proof. Let us define 𝐴 𝑗 as the set of all s such that (−𝑠, 𝑗 − 𝑠, 0) ∈ 𝐴 and

𝛼 𝑗 := 9
∑

𝑠,𝑡 ∈𝐴 𝑗

𝜂−𝑠 (𝑠− 𝑗) 𝑗𝜂−𝑡 (𝑡− 𝑗) 𝑗 (𝑉𝑁 )−𝑠 ( 𝑗−𝑠)0,−𝑡 ( 𝑗−𝑡)0.

Making use of the fact that 𝑉𝑁 ≥ 0, we obtain by the Cauchy-Schwarz inequality∑
(𝑖1𝑖2𝑖3) , (𝑖′1𝑖

′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 (𝛿1𝜓)†𝑖1𝑖2𝑖3 (𝛿1𝜓)𝑖′1𝑖′2𝑖′3 ≤ (𝑎†0)
4𝑎4

0

∑
𝑗

𝛼 𝑗 𝑎 𝑗𝑎
†
𝑗 ≤ 𝑁4

(∑
𝑗

𝛼 𝑗

)
(N + 1).

By Lemma 15 and the fact that | (𝑉𝑁 )−𝑠 ( 𝑗−𝑠)0,−𝑡 ( 𝑗−𝑡)0 | � 1
𝑁 2 , we have 𝑁4 ∑

𝑗 𝛼 𝑗 � 𝐶𝑁
1
2 , which

concludes the proof of Eq. (76). In order to verify Eq. (77), let us first define

(𝛿̃2,𝜎𝜓)𝑖1𝑖2𝑖3 :=
∑
𝑗𝑘

𝜂𝑖𝜎1 𝑗𝑘 𝑎
†
𝑘𝑎

†
𝑗𝑎𝑖𝜎2

𝑎𝑖𝜎3
𝑎3

0.

Then we obtain, using the sign 𝑉𝑁 ≥ 0 and a Cauchy-Schwarz estimate,

EP (𝛿2𝜓) �
∑
𝜎∈𝑆3

EP
(
𝛿̃2,𝜎𝜓

)
+ EP

(
𝛿2𝜓 − 1

4

∑
𝜎∈𝑆3

𝛿̃2,𝜎𝜓

)
= 6EP

(
𝛿̃2,id𝜓

)
+ EP

(
𝛿2𝜓 − 1

4

∑
𝜎∈𝑆3

𝛿̃2,𝜎𝜓

)
.

Proceeding as in the proof of Eq. (76), we obtain

EP

(
𝛿2𝜓 − 1

4

∑
𝜎∈𝑆3

𝛿̃2,𝜎𝜓

)
� 𝑁− 1

2 (N + 1)2.

Regarding the term EP
(
𝛿̃2,id𝜓

)
, let us define

(𝐺)𝑖1..𝑖4 , 𝑗1.. 𝑗4 := (𝑉𝑁 )𝑖1𝑖2 (− 𝑗3− 𝑗4) , 𝑗1 𝑗2 (−𝑖3−𝑖4)𝜂𝑖3𝑖4 (−𝑖3−𝑖4)𝜂 𝑗3 𝑗4 (− 𝑗3− 𝑗4)
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for (𝑖1, 𝑖2,− 𝑗3 − 𝑗4) ∈ 𝐴 and ( 𝑗1, 𝑗2,−𝑖3 − 𝑖4) ∈ 𝐴, and (𝐺)𝑖1..𝑖4 , 𝑗1.. 𝑗4 := 0 otherwise. Then

EP
(
𝛿̃2,id𝜓

)
=

∑
𝑖1..𝑖4 , 𝑗1.. 𝑗4

(𝐺)𝑖1..𝑖4 , 𝑗1.. 𝑗4 (𝑎
†
0)

3𝑎†𝑖1𝑎
†
𝑖2
𝑎 𝑗3𝑎 𝑗4𝑎

†
𝑖3
𝑎†𝑖4𝑎 𝑗1𝑎 𝑗2𝑎

3
0

=
∑

𝑖1..𝑖4 , 𝑗1.. 𝑗4

(𝐺)𝑖1..𝑖4 , 𝑗1.. 𝑗4 (𝑎
†
0)

3𝑎†𝑖1𝑎
†
𝑖2
𝑎†𝑖3𝑎

†
𝑖4
𝑎 𝑗3𝑎 𝑗4𝑎 𝑗1𝑎 𝑗2𝑎

3
0 + 2

×
∑

𝑖1..𝑖3 , 𝑗1.. 𝑗3 ,𝑘

(𝐺 ′)𝑖1..𝑖3 , 𝑗1.. 𝑗3 (𝑎
†
0)

3𝑎†𝑖1𝑎
†
𝑖2
𝑎†𝑖3𝑎 𝑗3𝑎 𝑗1𝑎 𝑗2𝑎

3
0

+
∑

𝑖1𝑖2 , 𝑗1 𝑗2

(𝐺 ′′)𝑖1𝑖2 , 𝑗1 𝑗2 (𝑎
†
0)

3𝑎†𝑖1𝑎
†
𝑖2
𝑎 𝑗1𝑎 𝑗2𝑎

3
0, (78)

with (𝐺 ′)𝑖1..𝑖3 , 𝑗1.. 𝑗3 :=
∑

𝑘 𝐺𝑖1..𝑖3𝑘, 𝑗1.. 𝑗3𝑘 and (𝐺 ′′)𝑖1𝑖2 , 𝑗1 𝑗2 :=
∑

𝑘1𝑘2 𝐺𝑖1𝑖2𝑘1𝑘2 , 𝑗1 𝑗2𝑘1𝑘2 . In the follow-
ing let us study the term involving 𝐺 ′′, which is responsible for the largest contribution. Since
(𝑉𝑁 )𝑖1𝑖2 (−𝑘1−𝑘2) , 𝑗1 𝑗2 (−𝑘1−𝑘2) = (𝑉𝑁 )𝑖1𝑖20, 𝑗1 𝑗20, see Eq. (24), we obtain

∑
𝑖1𝑖2 , 𝑗1 𝑗2

(𝐺 ′′)𝑖1𝑖2 , 𝑗1 𝑗2 (𝑎
†
0)

3𝑎†𝑖1𝑎
†
𝑖2
𝑎 𝑗1𝑎 𝑗2𝑎

3
0 =

(∑
𝑘1𝑘2

|𝜂𝑘1𝑘2 (−𝑘1−𝑘2) |2
) ∑
𝑖1𝑖2 , 𝑗1 𝑗2

(𝑉𝑁 )𝑖1𝑖20, 𝑗1 𝑗20(𝑎†0)
3𝑎†𝑖1𝑎

†
𝑖2
𝑎 𝑗1𝑎 𝑗2𝑎

3
0

� 𝑁−3
∑

𝑖1𝑖2 , 𝑗1 𝑗2

(𝑉𝑁 )𝑖1𝑖20, 𝑗1 𝑗20(𝑎†0)
3𝑎†𝑖1𝑎

†
𝑖2
𝑎 𝑗1𝑎 𝑗2𝑎

3
0 � 𝑁−3 (𝑎†0)

3(N + 1)2𝑎3
0 ≤ (N + 1)2,

where we have used ∑
𝑖1𝑖2 , 𝑗1 𝑗2

(𝑉𝑁 )𝑖1𝑖20, 𝑗1 𝑗20𝑎
†
𝑖1
𝑎†𝑖2𝑎 𝑗1𝑎 𝑗2 � (N + 1)2,∑

𝑘1𝑘2

|𝜂𝑘1𝑘2 (−𝑘1−𝑘2) |2 � 𝑁−3,

see Lemma 15. Proceeding similarly for the other terms in Eq. (78), concludes the proof of Eq. (77).
Regarding the bound on E𝑃

( [
𝑎𝑖1𝑎𝑖2𝑎𝑖3 ,G†] ) , let us identify

[
𝑎𝑖1𝑎𝑖2𝑎𝑖3 , G†] = {

3
2
1(𝑖1 = 0) (𝑎†0)

2𝑎𝑖2𝑎𝑖3 A + 31(𝑖1 = 𝑖2 = 0)𝑎†0𝑎𝑖3 A

+ 1(𝑖1 = 𝑖2 = 𝑖3 = 0) A
}
+ {Permutations},

whereA := 1
6
∑

𝑖 𝑗𝑘 𝜂𝑖 𝑗𝑘𝑎𝑖𝑎 𝑗𝑎𝑘 . Due to the sign𝑉𝑁 ≥ 0 and the permutations symmetry of𝑉𝑁 , as well as
to the fact that there are 6 permutations of the set {1, 2, 3}, we can bound the operator E𝑃

( [
𝑎𝑖1𝑎𝑖2𝑎𝑖3 ,G†] )

from above by

6 E𝑃

(
3
2
1(𝑖1 = 0) (𝑎†0)

2𝑎𝑖2𝑎𝑖3 A + 31(𝑖1 = 𝑖2 = 0)𝑎†0𝑎𝑖3 A + 1(𝑖1 = 𝑖2 = 𝑖3 = 0) A
)

≤ 18 E𝑃

(
3
2
1(𝑖1 = 0) (𝑎†0)

2𝑎𝑖2𝑎𝑖3 A

)
+ 18 E𝑃

(
31(𝑖1 = 𝑖2 = 0)𝑎†0𝑎𝑖3 A

)
+ 18 E𝑃 (1(𝑖1 = 𝑖2 = 𝑖3 = 0) A).

In the following we focus on E𝑃

(
1(𝑖1 = 0) (𝑎†0)

2𝑎𝑖2𝑎𝑖3 A

)
, the other terms can be treated in a similar

fashion. By Lemma 15 we have A†A � 𝑁−3 (N + 1)3, and therefore
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E𝑃

(
1(𝑖1 = 0) (𝑎†0)

2𝑎𝑖2𝑎𝑖3 A

)
= A†

∑
(𝑖 𝑗) , (ℓ𝑚) ∈𝐴0

(𝑉𝑁 )0 𝑗𝑘,0𝑚𝑛𝑎
†
𝑘𝑎

†
𝑗𝑎

2
0 (𝑎

†
0)

2𝑎𝑚𝑎𝑛A

� 𝑎2
0 (𝑎

†
0)

2A†(N + 1)2A = 𝑎2
0 (𝑎

†
0)

2(N + 4)A†A(N + 4) � 𝑎2
0 (𝑎

†
0)

2𝑁−3(N + 1)5 ≤ 𝑁−1(N + 1)5,

where 𝐴0 contains all pairs ( 𝑗 𝑘) such that (0 𝑗 𝑘) ∈ 𝐴. �

As a consequence of Lemma 6, we obtain that the trial state Γ defined below Eq. (71) has a potential
energy EP (𝜓) of the order 𝑂𝑁→∞

(√
𝑁
)
, see the following Corollary 3.

Corollary 3. There exists a constant 𝐶 > 0, such that 〈Γ, EP (𝜓 + 𝛿1𝜓)Γ〉 ≤ 𝐶 and

〈Γ, EP (𝜓)Γ〉 ≤ 𝐶
√
𝑁.

Proof. Recall that we can express the transformed quantity 𝑈−1𝜓𝑖 𝑗𝑘𝑈 by Eq. (74) as

𝑈−1𝜓𝑖 𝑗𝑘𝑈 = 𝑎𝑖𝑎 𝑗𝑎𝑘 +
∫ 1

0
𝑈−𝑠

[
𝑎𝑖𝑎 𝑗𝑎𝑘 ,G†]𝑈𝑠d𝑠 −

∫ 1

0
𝑈−𝑠 (𝛿1𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠 −

∫ 1

0
𝑈−𝑠 (𝛿2𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠

+
∫ 1

0

∫ 1

𝑠
𝑈−𝑡𝜂𝑖 𝑗𝑘

[
𝑎3

0,G†]𝑈𝑡d𝑡d𝑠,

where we have used Duhamel’s formula to express𝑈−1𝜂𝑖 𝑗𝑘𝑎
3
0𝑈 −𝑈−𝑠𝜂𝑖 𝑗𝑘𝑎

3
0𝑈𝑠 . Using the sign 𝑉𝑁 ≥ 0

and Lemma 6, we estimate using the Cauchy-Schwarz inequality

EP
(∫ 1

0
𝑈−𝑠 (𝛿1𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠

)
≤

∫ 1

0
𝑈−𝑠EP (𝛿1𝜓)𝑈𝑠 d𝑠 ≤ 𝐶𝑁

1
2

∫ 1

0
𝑈−𝑠 (N + 1)4𝑈𝑠d𝑠 ≤ 𝐶 ′𝑁

1
2 (N + 1),

EP
(∫ 1

0
𝑈−𝑠 (𝛿2𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠

)
≤

∫ 1

0
𝑈−𝑠EP (𝛿2𝜓)𝑈𝑠 d𝑠 ≤ 𝐶𝑁

1
2

∫ 1

0
𝑈−𝑠 (N + 1)4𝑈𝑠d𝑠 ≤ 𝐶 ′(N + 1)4.

(79)

for suitable 𝐶,𝐶 ′, where we utilize Eq. (72) in order to estimate 𝑈−𝑠 (N + 1)4𝑈𝑠 . Similarly

EP
(∫ 1

0
𝑈−𝑠

[
𝑎𝑖𝑎 𝑗𝑎𝑘 ,G†]𝑈𝑠d𝑠

)
≤ 𝐶 ′𝑁− 3

2 (N + 1)5 (80)

follows from Lemma 6. Regarding the term in the last line of Eq. (74), we note that[
𝑎3

0, G†]† [𝑎3
0,G†] � 𝑁 (N + 1)3

follows from an analogous argument as we have seen in the proof of Lemma 6 and∑
(𝑖 𝑗𝑘) , (ℓ𝑚𝑛) ∈𝐴

(𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛𝜂𝑖 𝑗𝑘𝜂ℓ𝑚𝑛 � 𝑁−2

by Eq. (36). Therefore

EP
(∫ 1

0

∫ 1

𝑠
𝑈−𝑡𝜂𝑖 𝑗𝑘

[
𝑎3

0,G†]𝑈𝑡d𝑡d𝑠
)
≤ 1

2

∫ 1

0

∫ 1

𝑠
𝑈−𝑡EP

(
𝜂𝑖 𝑗𝑘

[
𝑎3

0,G†] )𝑈𝑡 d𝑡d𝑠 � 𝑁−1 (N + 1)3,

(81)
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where we have used Eq. (72) again. Using 𝑎𝑖𝑎 𝑗𝑎𝑘Γ0 = 0 in case (𝑖 𝑗 𝑘) ∈ 𝐴, we obtain by Eq. (74)
together with Eq. (79), Eq. (80) and Eq. (81) for a suitable constant C

〈Γ, EP (𝜓)Γ〉 =
〈
Γ0, EP

(
𝑈−1𝜓𝑈

)
Γ0

〉
≤ 𝐶𝑁

1
2
〈
Γ0, (N + 1)5Γ0

〉
= 𝐶𝑁

1
2 .

Analogously we obtain 〈Γ, EP (𝜓 + 𝛿1𝜓)Γ〉 ≤ 𝐶. �

Regarding the variable 𝑐𝑘 = 𝑎𝑘 + [𝑎𝑘 , G] from Eq. (68), let us apply Duahmel’s formula

𝑈−1𝑐𝑘𝑈 = 𝑎𝑘 −
∫ 1

0
𝑈−𝑠 [𝑎𝑘 ,G]𝑈𝑠 d𝑠 +𝑈−1 [𝑎𝑘 , G]𝑈 = 𝑎𝑘 +

∫ 1

0

∫ 1

𝑠
𝑈−𝑡

[
[𝑎𝑘 ,G],G†]𝑈𝑡 d𝑡d𝑠, (82)

where we have used
[
𝑎𝑘 , G†] = 0 for 𝑘 ≠ 0 and [[𝑎𝑘 ,G],G] = 0, which follows from the observation

that 𝜂𝑖 𝑗𝑘 = 0 in case one of the indices in {𝑖, 𝑗 , 𝑘} is zero. The following Lemma 7 provides useful
estimates on the quantity

[
[𝑎𝑘 , G],G†] . In order to formulate Lemma 7 let us define the kinetic energy of

an operator-valued one-particle vector Θ𝑘 , written as EK (Θ) or EK (Θ𝑘 ) with k being a dummy index, as

EK (Θ) :=
∑
𝑘

|𝑘 |2Θ†
𝑘Θ𝑘 . (83)

Lemma 7. For 𝑚 ≥ 0 there exists a constant 𝐶𝑚 > 0, such that

EK
(
N𝑚

[
[𝑎𝑘 ,G], G†] ) ≤ 𝐶𝑚𝑁

−1(N + 1)5+2𝑚.

Proof. Let us write the double commutator as
[
[𝑎𝑘 ,G],G†] = (𝛿1𝑐)𝑘 + (𝛿2𝑐)𝑘 + (𝛿3𝑐)𝑘 , where

(𝛿1𝑐)𝑘 := (𝑎†0)
3𝑎3

0

∑
𝑖 𝑗

|𝜂𝑖 𝑗𝑘 |2𝑎𝑘 ,

(𝛿2𝑐)𝑘 := (𝑎†0)
3𝑎3

0

∑
𝑖 𝑗 , 𝑗′𝑘′

𝜂𝑖 𝑗′𝑘′𝜂𝑖 𝑗𝑘𝑎
†
𝑗𝑎 𝑗′𝑎𝑘′ ,

(𝛿3𝑐)𝑘 :=
[
𝑎3

0, (𝑎
†
0)

3
] (∑

𝑖 𝑗

𝜂𝑖 𝑗𝑘𝑎
†
𝑗𝑎

†
𝑘

)� !
∑
𝑖′ 𝑗′𝑘′

𝜂𝑖′ 𝑗′𝑘′𝑎𝑖′𝑎 𝑗′𝑎𝑘′
"#$.

By Eq. (36) it is clear that ∑
𝑖 𝑗

|𝜂𝑖 𝑗𝑘 |2 �
1
𝑁4

∑
𝑡

1
(|𝑘 |2 + |𝑡 |2)2 �

1
𝑁4 |𝑘 |

,

and therefore

EK (N𝑚𝛿1𝑐) =
∑
𝑘

|𝑘 |2 (𝛿1𝑐)†𝑘N
2𝑚 (𝛿1𝑐)𝑘 �

1
𝑁8

∑
𝑘≠0

𝑎†𝑘

(
(𝑎†0)

3𝑎3
0

)2
N 2𝑚𝑎𝑘 ≤ 1

𝑁2N
2𝑚+1.

Using 𝐽𝑝1 𝑝2 𝑝3 , 𝑝
′
1 𝑝

′
2 𝑝

′
3

:=
∑

𝑞𝑞′𝑘 |𝑘 |2𝜂𝑞′𝑝′
2 𝑝

′
3
𝜂𝑞𝑝′

1𝑘
𝜂𝑞′𝑝1𝑘𝜂𝑞𝑝2 𝑝3 and 𝐽𝑝2 𝑝3 , 𝑝

′
2 𝑝

′
3

:=
∑

𝑝1 𝐽𝑝1 𝑝2 𝑝3 , 𝑝1 𝑝
′
2 𝑝

′
3

EK (N𝑚𝛿2𝑐) =
(
(𝑎†0)

3𝑎3
0

)2 ∑
𝑗 𝑝′𝑛′, 𝑝 𝑗′𝑘′

𝐽 𝑗 𝑝′𝑛′, 𝑝 𝑗′𝑘′ 𝑎
†
𝑗𝑎

†
𝑝′𝑎

†
𝑛′ (N + 2)2𝑚𝑎𝑝𝑎 𝑗′𝑎𝑘′

+
(
(𝑎†0)

3𝑎3
0

)2 ∑
𝑝′𝑛′, 𝑗′𝑘′

𝐽𝑝′𝑛′, 𝑗′𝑘′ 𝑎
†
𝑝′𝑎

†
𝑛′ (N + 1)2𝑚𝑎 𝑗′𝑎𝑘′ .
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Utilizing the operator 𝑋 𝑗𝑘, 𝑗′𝑘′ :=
∑

𝑞 |𝑘 |𝜂𝑞 𝑗𝑘𝜂𝑞 𝑗′𝑘′ acting on 𝐿2 (Λ)⊗2 and the permutation operator
(𝑆Ψ) (𝑥1, 𝑥2, 𝑥3) := Ψ(𝑥2, 𝑥1, 𝑥3) acting on 𝐿2 (Λ)⊗3, we can write

𝐽 = (1 ⊗ 𝑋†)𝑆(1 ⊗ 𝑋),

and 𝐽 = 𝑋†𝑋 . Consequently

‖𝐽‖ ≤ ‖𝑆‖ ‖1 ⊗ 𝑋 ‖2 = ‖𝑋 ‖2 = ‖𝐽‖.

By Eq. (36) we have ‖𝐽‖ ≤ 𝐶𝑁− 15
2 for a suitable constant C. Consequently

EK (N𝑚𝛿2𝑐) ≤ 𝐶𝑁− 15
2

(
(𝑎†0)

3𝑎3
0

)2
(N + 2)3+2𝑚 ≤ 𝐶𝑁− 3

2 (N + 2)3+2𝑚.

Similarly one can show that EK (N𝑚𝛿3𝑐) � 𝑁−1 (N + 1)5+2𝑚, and therefore

EK
(
N𝑚

[
[𝑎𝑘 , G],G†] ) = EK (N𝑚𝛿1 +N𝑚𝛿2 +N𝑚𝛿3)

≤ 3EK (N𝑚𝛿1) + 3EK (N𝑚𝛿2) + 3EK (N𝑚𝛿3) � 𝐶𝑚𝑁
−1(N + 1)5+2𝑚. �

As a consequence of Lemma 7, we obtain that the trial state Γ defined below Eq. (71) has a kinetic
energy EK (𝑐) of the order𝑂𝑁→∞(1) in the subsequent Corollary 4. Since in the residual term E defined
in Lemma 1 the term EK

(√
N 𝑐

)
≤ 1

2EK (𝑐) +
1
2EK (N 𝑐) appears, it will be convenient to estimate the

expectation value in the state Γ of EK (N𝑚𝑐) for 𝑚 ≥ 1 as well.

Corollary 4. Let Γ be the state defined below Eq. (71) and 𝑚 ≥ 0. Then there exists a constant 𝐶 > 0,
such that 〈Γ, EK (N𝑚𝑐)Γ〉 ≤ 𝐶𝑚

𝑁 .

Proof. By Eq. (72) we have

𝑈−1N 2𝑚𝑈 = (𝑈−1N𝑚𝑈)†𝑈−1N𝑚𝑈 � (N𝑚 + 1)2

and hence

𝑈−1EK (N𝑚𝑐)𝑈 = EK
(
𝑈−1N𝑚𝑈𝑈−1𝑐𝑈

)
� EK

(
(N𝑚 + 1)𝑈−1𝑐𝑈

)
,

where we have used that for operators 𝑓𝑘 and 𝐴, 𝐵 satisfying 𝐴†𝐴 ≤ 𝐶𝐵†𝐵 we have

EK (𝐴 𝑓𝑘 ) ≤ 𝐶EK (𝐵 𝑓𝑘 ).

Proceeding as in the proof of Corollary 3, we obtain by Eq. (82) and Lemma 7

EK
(
(N𝑚 + 1)𝑈−1𝑐𝑈

)
� EK ((N𝑚 + 1)𝑎) +

∫ 1

0
EK

(
(N𝑚 + 1)𝑈−𝑡

[
[𝑎𝑘 ,G],G†]𝑈𝑡

)
d𝑡

= EK ((N𝑚 + 1)𝑎) +
∫ 1

0
𝑈−𝑡EK

(
𝑈𝑡 (N𝑚 + 1)𝑈𝑡

[
[𝑎𝑘 ,G],G†] )𝑈𝑡d𝑡

� EK ((N𝑚 + 1)𝑎) +
∫ 1

0
𝑈−𝑡EK

(
(N𝑚 + 1)

[
[𝑎𝑘 ,G],G†] )𝑈𝑡d𝑡

� EK ((N𝑚 + 1)𝑎) + 𝑁−1
∫ 1

0
𝑈−𝑡 (N + 1)5+2𝑚𝑈𝑡d𝑡

� EK ((N𝑚 + 1)𝑎) + 𝑁−1 (N + 1)5+2𝑚.
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where we have made use of Eq. (36) again. Using 𝑎𝑘Γ0 = 0 for 𝑘 ≠ 0, therefore yields

〈Γ, EK (N𝑚𝑐)Γ〉 =
〈
Γ0,𝑈

−1EK (N𝑚𝑐)𝑈Γ0
〉

� 〈Γ0, EK ((N𝑚 + 1)𝑎)Γ0〉 + 𝑁−1〈Γ0, (N + 1)5+2𝑚Γ0
〉
=

1
𝑁
. �

Having Corollary 3 and Corollary 4 at hand, we are in a position to verify the upper bound on the
ground state energy 𝐸𝑁 in Theorem 4.

Proof of Theorem 4. Let 𝐴 := (2𝜋Z)9 \ {(0, 0, 0)}, and let Γ be the state defined below Eq. (71). Using
Eq. (27) and Eq. (21), and the fact that

(
𝑉𝑁

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

= (𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛 for index triples (𝑖 𝑗 𝑘), (ℓ𝑚𝑛) ∈ 𝐴,
we obtain

𝐻𝑁 =
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 + 𝜆0,0(𝑎†0)
3𝑎3

0 +
1
6

∑
(𝑖 𝑗𝑘) , (ℓ𝑚𝑛) ∈𝐴

(𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛𝜓
†
𝑖 𝑗𝑘𝜓ℓ𝑚𝑛

+
(
3𝑎†0𝑎

3
0

∑
ℓ≠0

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ + H.c.

)
− E

= 𝜆0,0 (𝑎†0)
3𝑎3

0 + EK (𝑐) + EP (𝜓) +
(
3𝑎†0𝑎

3
0

∑
ℓ≠0

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ + H.c.

)
− E .

By a symmetry argument it is clear that 〈Γ, 𝑎†0𝑎
3
0𝑎

†
ℓ𝑎

†
−ℓΓ〉 = 0. Applying Corollary 3 as well as

Corollary 4, with 𝑚 = 0, yields for suitable constants 𝐶 > 0

〈Γ, EP (𝜓)Γ〉 ≤ 𝐶
√
𝑁, 〈Γ, EK (𝑐)Γ〉 ≤

𝐶

𝑁
.

Furthermore, observe that 𝑁3𝜆0,0 ≤ 1
6𝑏M (𝑉)𝑁 + 𝐶 ′ by Eq. (37) for a suitable 𝐶 ′. In order to estimate

the final term 〈Ψ, EΨ〉, note that we have by Eq. (72) for 𝑚 ∈ N

〈Γ,N𝑚Γ〉 = 〈Γ0,𝑈
−1N𝑚𝑈Γ0〉 � 〈Γ0, (N + 1)𝑚Γ0〉 = 1. (84)

Using Lemma 3 together with the estimate from Corollary 4 for 𝑚 = 0 and 𝑚 = 1, we therefore obtain
|〈Ψ, EΨ〉| � 𝑁− 1

3 . �

4. Refined correlation structure

Utilizing the set of operators defined in Eq. (25) and Eq. (26), we were able to identify the ground state
energy 𝐸𝑁 up to errors of the magnitude 𝑂𝑁→∞(

√
𝑁) in the previous Sections 2 and 3. It is the purpose

of this Section to obtain a higher resolution of the energy, which especially captures the subleading
term proportional to

√
𝑁 in the asymptotic expansion of 𝐸𝑁 , using a more refined correlation structure

compared to the one introduced in Subsection 1.1. On a technical level, the new correlation structure
is implemented by the new set of operators 𝑑𝑘 and 𝜉𝑖 𝑗𝑘 defined below in Eq. (89) and Eq. (90), which
constitute a refined version of the operators 𝑐𝑘 and 𝜓𝑖 𝑗𝑘 respectively. Writing the operator 𝐻𝑁 in terms
of 𝑑𝑘 and 𝜉𝑖 𝑗𝑘 will then allow us to verify the lower bound from Theorem 1 in Subsection 4.2 and the
corresponding upper bound in Section 5.

The approach presented in Sections 2 and 3 fails to capture the correct term of order
√
𝑁 for two

reasons: (I) The following expression appearing in Eq. (32)

3
∑
|ℓ |>𝐾

𝑁2𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ

𝑎†0𝑎
3
0

𝑁2 (85)
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is expected to lower the ground state energy by an amount proportional to
√
𝑁 , to be precise naive

perturbation theory suggests that the term in Eq. (85) is giving rise to an energy correction proportional to∑
|ℓ |>𝐾

|𝑁2𝜆0,ℓ |2

|ℓ |2
= 𝑂 (

√
𝑁), (86)

see Eq. (35), and therefore consistent with our estimate in Lemma 4. (II) In the pursue of an upper bound
on 𝐸𝑁 we expressed the unitary conjugated variables 𝑈−1𝜓𝑖 𝑗𝑘𝑈 as a sum of 𝑎𝑖𝑎 𝑗𝑎𝑘 and various error
terms according to Eq. (74) as

𝑈−1𝜓𝑖 𝑗𝑘𝑈 = 𝑎𝑖𝑎 𝑗𝑎𝑘 +
∫ 1

0
𝑈−𝑠

[
𝑎𝑖𝑎 𝑗𝑎𝑘 ,G†]𝑈𝑠d𝑠 −

∫ 1

0
𝑈−𝑠 (𝛿1𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠 −

∫ 1

0
𝑈−𝑠 (𝛿2𝜓)𝑖 𝑗𝑘𝑈𝑠d𝑠

+
∫ 1

0

∫ 1

𝑠
𝑈−𝑡𝜂𝑖 𝑗𝑘

[
𝑎3

0,G†]𝑈𝑡d𝑡d𝑠. (87)

While most of the terms appearing in Eq. (87) give a contribution of the order 𝑜𝑁→
(√

𝑁
)
, the term 𝛿1𝜓

is expected to increase the ground state energy by an amount proportional to
√
𝑁 , which is consistent

with our estimate in Eq. (76). In order to extract the energy shift due to the expression in Eq. (85), we
follow the strategy in Subsection 1.1 and introduce an additional two-particle correlation structure via
a map acting on the two-particle space

𝑇2 : 𝐿2 (Λ2) −→ 𝐿2 (Λ2)

in Eq. (88), which will give rise to the negative energy correction −𝜇(𝑉)
√
𝑁 from Theorem 1. To be

precise, we define the map 𝑇2 via its matrix elements as

(𝑇2 − 1)ℓ (−ℓ) ,00 := (𝑇2 − 1)00,ℓ (−ℓ) := 3𝑁
𝜆0,ℓ

|ℓ |2
, (88)

for |ℓ | > 𝐾 and (𝑇2−1) 𝑗𝑘,𝑚𝑛 := 0 otherwise, where 𝜆𝑘,ℓ is defined below Eq. (32). Regarding the energy
shift associated with 𝛿1𝜓, it is a natural idea to include this term in the definition of our new operators
𝜉𝑖 𝑗𝑘 , giving rise to the positive energy correction 𝛾(𝑉)

√
𝑁 from Theorem 1. However, a computation in

Eq. (93) demonstrates that the presence of 𝛿1𝜓 produces new four-particle correlation terms of the form∑
𝑢𝑖 𝑗𝑘

𝜃𝑢𝑖 𝑗𝑘𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎

†
𝑘

𝑎4
0

𝑁2 + H.c.,

with coefficients 𝜃𝑢𝑖 𝑗𝑘 proportional to 𝑁2 ∑
𝑚𝑛 (𝑉𝑁 )𝑖 𝑗𝑘,0𝑚𝑛𝜂𝑚𝑛𝑢 , which behave like

𝑁− 3
2 1(𝑖 + 𝑗 + 𝑘 + 𝑢 = 0)

for momenta of the order
√
𝑁 , and decay fast for higher momenta. Therefore, the four-particle correlation

terms are expected to lower the ground state energy, similar to Eq. (86), by an amount of the order∑
|𝑢 |, |𝑖 |, | 𝑗 |, |𝑘 | ≤

√
𝑁

|𝑁− 3
2 1(𝑖 + 𝑗 + 𝑘 + 𝑢 = 0) |2

|𝑖 |2 + | 𝑗 |2 + |𝑘 |2 + |𝑢 |2
= 𝑂 (

√
𝑁).

Again we extract the correlation energy by introducing a map, acting this time on the four-particle space

𝑇4 : 𝐿2 (Λ4) −→ 𝐿2 (Λ4)

in Eq. (95), which gives rise to the negative energy correction −𝜎(𝑉)
√
𝑁 from Theorem 1.
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In the following let𝑇 : 𝐿2 (Λ3) −→ 𝐿2 (Λ3) be the map constructed in Eq. (19), and for now let us think
of 𝑇2 : 𝐿2 (Λ2) −→ 𝐿2 (Λ2) and 𝑇4 : 𝐿2 (Λ4) −→ 𝐿2 (Λ4) as generic bounded permutation-symmetric
operators modeling the two-particle and four-particle correlation structure respectively. Following the
approach in Section 2, we are implementing many-particle counterparts to the transformations T, 𝑇2,
and 𝑇4 as

𝑑𝑘 := 𝑎𝑘 +
∑
𝑗 ,𝑚𝑛

(𝑇2 − 1) 𝑗𝑘,𝑚𝑛 𝑎
†
𝑗𝑎𝑚𝑎𝑛 +

1
2

∑
𝑖 𝑗 ,ℓ𝑚𝑛

(𝑇 − 1)𝑖 𝑗𝑘,ℓ𝑚𝑛 𝑎
†
𝑖 𝑎

†
𝑗𝑎ℓ𝑎𝑚𝑎𝑛 (89)

+ 1
6

∑
𝑢𝑖 𝑗,𝑣ℓ𝑚𝑛

(𝑇4 − 1)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛,

𝜉𝑖 𝑗𝑘 :=
∑
ℓ𝑚𝑛

(𝑇)𝑖 𝑗𝑘,ℓ𝑚𝑛 𝑎ℓ𝑎𝑚𝑎𝑛 + (𝛿1𝜓)𝑖 𝑗𝑘 +
∑

𝑢,𝑣ℓ𝑚𝑛

(𝑇4 − 1)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛. (90)

Note that 𝑇2 is not included in the definition of 𝜉𝑖 𝑗𝑘 , as it would only give contributions of the order
𝑂𝑁→∞(1). Using the Laplace operator Δ𝑠 acting on the space 𝐿2 (Λ)⊗𝑠 and the coefficients

(𝜒)𝑖1..𝑖4 , 𝑗1.. 𝑗4 :=
1
2

∑
𝜎∈𝑆3

1( 𝑗1 = .. = 𝑗4 = 𝑖𝜎3 = 0)𝜂𝑖𝜎1 𝑖𝜎2 𝑖4
, (91)

let us furthermore define the operators 𝑋2 := 𝑇†
2 (−Δ2)𝑇2 + Δ2 and

𝑋4 :=
({
(−Δ4 + 4(𝑉𝑁 ⊗ 1)) (𝑇4 − 1) + 4(𝑉𝑁 ⊗ 1)𝜒

}
+ H.c.

)
(92)

+ (𝑇4 − 1)†(−Δ4) (𝑇4 − 1) +
(
(𝑇 ⊗ 1 − 1)†4(𝑉𝑁 ⊗ 1) (𝑇4 − 1 + 𝜒) + H.c.

)
+ (𝑇4 − 1 + 𝜒)†4(𝑉𝑁 ⊗ 1) (𝑇4 − 1 + 𝜒).

A straightforward computation, similar to the one in Eq. (27), reveals that up to excess terms involving
𝑋2, 𝑋4 and an error term Ẽ , we can write the operator 𝐻𝑁 as a sum of squares in the variables 𝑑𝑘 and
𝜉𝑖 𝑗𝑘 according to∑

𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝜉†𝑖 𝑗𝑘𝜉ℓ𝑚𝑛

= 𝐻𝑁 + 1
2

∑
𝑗𝑘,𝑚𝑛

(𝑋2) 𝑗𝑘,𝑚𝑛 𝑎
†
𝑗𝑎

†
𝑘𝑎𝑚𝑎𝑛 +

1
24

∑
𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛

(𝑋4)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛 + Ẽ , (93)

where the error Ẽ contains all the non-fully contracted products appearing in the squares∑
𝑘

|𝑘 |2 (𝑑𝑘 − 𝑎𝑘 )†(𝑑𝑘 − 𝑎𝑘 ),
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

(𝜉𝑖 𝑗𝑘 − 𝜓𝑖 𝑗𝑘 )†(𝜉ℓ𝑚𝑛 − 𝜓𝑖 𝑗𝑘 ). (94)

In this context we define the fully contracted part of a product of monomials(
𝑎†𝑖1 . . . 𝑎

†
𝑖𝑟
𝑎 𝑗1 . . . 𝑎 𝑗𝑡

) (
𝑎†
𝑖′1
. . . 𝑎†

𝑖′
𝑟′
𝑎 𝑗′1

. . . 𝑎 𝑗′
𝑡′

)
as 𝐶 𝑗1... 𝑗𝑡 ,𝑖

′
1...𝑖

′
𝑟′
𝑎†𝑖1 . . . 𝑎

†
𝑖𝑟
𝑎 𝑗′1

. . . 𝑎 𝑗′
𝑡′

with 𝐶 𝑗1... 𝑗𝑡 ,𝑖
′
1...𝑖

′
𝑟′

being the expectation of 𝑎 𝑗1 . . . 𝑎 𝑗𝑡 𝑎
†
𝑖′1
. . . 𝑎†𝑖𝑟′ in

the vacuum. For a term by term definition of Ẽ see Eq. (111) in Subsection 4.1.
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In the following we want to choose 𝑇4, such that the term 4(𝑉𝑁 ⊗ 1)𝜒 is cancelled in the expression
{..} from Eq. (92), at least after symmetrization and projection onto the range of 𝑄⊗4, that is, we define

𝑇4 := 1 − 𝑅4Πsym𝑄
⊗44(𝑉𝑁 ⊗ 1)𝜒 = 1 − 𝑅4Πsym𝑄

⊗44(𝑉𝑁 ⊗ 1)𝜒, (95)

where Πsym is the orthogonal projection onto the subspace 𝐿2
sym (Λ4) ⊆ 𝐿2 (Λ4) and 𝑅4 is the pseudoin-

verse of

𝑄⊗4
(
−Δ4 + 4(𝑉𝑁 ⊗ 1)

)
𝑄⊗4 = 𝑄⊗4(−Δ4 + 4(𝑉𝑁 ⊗ 1))𝑄⊗4. (96)

In order to obtain an improved representation of the operator 𝑋4 defined in Eq. (92), let us introduce the
constants

𝜎𝑁 :=
𝑁4

6
〈(𝑉𝑁 ⊗ 1)𝜒𝑢⊗4

0 , (1 − 𝑇4)𝑢⊗4
0 〉, (97)

=
𝑁4

24
〈
(𝑇4 − 1)𝑢⊗4

0 , (−Δ4 + 4𝑉𝑁 ⊗ 1)(𝑇4 − 1)𝑢⊗4
0

〉
,

𝛾𝑁 :=
𝑁4

6
〈(𝑉𝑁 ⊗ 1)𝜒𝑢⊗4

0 , 𝜒𝑢⊗4
0 〉 = 𝑁4

6
〈(𝑉𝑁 ⊗ 1)𝜒𝑢⊗4

0 , 𝜒𝑢⊗4
0 〉, (98)

which allow us to write 𝛾𝑁 −𝜎𝑁 = 𝑁 4

24 (𝑋4)0000,0000. Furthermore, we define the three-particle stateΘ as

(Θ)𝑖 𝑗𝑘 := 4
(
Πsym

𝑋4
24

Πsym

)
0𝑖 𝑗𝑘,000

, (99)

(Θ)0 𝑗𝑘 := 6
(
Πsym

𝑋4
24

Πsym

)
00 𝑗𝑘,000

for {𝑖, 𝑗 , 𝑘} all different from zero and (Θ)𝑖 𝑗𝑘 := 0 otherwise. According to the definition of 𝑇4 we have
𝑄⊗4Πsym𝑋4Πsym𝑃

⊗4 = 0, and therefore

1
24

∑
𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛

(𝑋4)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛

=
1

24

∑
𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛

(Πsym𝑋4Πsym)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛

= (𝑎†0)
4𝑎4

0 𝑁
−4(𝛾𝑁 − 𝜎𝑁 ) + � !

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝑎†𝑖 𝑎
†
𝑗𝑎

†
𝑘 𝑎

†
0𝑎

4
0 + H.c."#$. (100)

In order to understand the size of the term in Eq. (100) better, we are going to rewrite it in terms of the
variables 𝜓𝑖 𝑗𝑘 defined in Eq. (26), respectively the variables

𝜓𝑖 𝑗𝑘 = 𝑎𝑖𝑎 𝑗𝑎𝑘 + 𝜂𝑖 𝑗𝑘 𝑎3
0 (101)

defined in Eq. (26) for the concrete choice 𝐾 := 0, see Eq. (69), with the corresponding operator
𝑇𝐾=0 := 1 + 𝑅𝑉𝑁 𝜋0, see Eq. (17). Note that

(𝑇−1
𝐾=0)

†Θ = Θ + 2(𝜎𝑁 − 𝛾𝑁 )𝑢⊗3
0 ,

https://doi.org/10.1017/fms.2025.10113 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10113


36 M. Brooks

and therefore

1
24

∑
𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛

(𝑋4)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛 = 𝑁−4 (𝑎†0)

4𝑎4
0 (𝜎𝑁 − 𝛾𝑁 )

+ � !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$.

In order to address the correlation term in Eq. (85), we use the concrete choice for 𝑇2 from Eq. (88).
With

𝜇𝑁 :=
𝑁2

2
(𝑋2)00,00, (102)

this choice for a transformation 𝑇2 yields

1
2

∑
𝑗𝑘,𝑚𝑛

(𝑋2) 𝑗𝑘,𝑚𝑛 𝑎
†
𝑗𝑎

†
𝑘𝑎𝑚𝑎𝑛 = 𝑁−2(𝑎†0)

2𝑎2
0 𝜇𝑁 +

(
3𝑁𝑎2

0

∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ + H.c.

)
.

Summarizing what we have so far allows us to write the operator 𝐻𝑁 in terms of the new variables 𝑑𝑘

and 𝜉𝑖 𝑗𝑘 as

𝐻𝑁 =
∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 +
1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(
𝑉𝑁

)
𝑖 𝑗𝑘,ℓ𝑚𝑛

𝜉†𝑖 𝑗𝑘𝜉ℓ𝑚𝑛 + 𝑁−4 (𝑎†0)
4𝑎4

0 (𝛾𝑁 − 𝜎𝑁 ) − 𝑁−2(𝑎†0)
2𝑎2

0 𝜇𝑁

−
(
3𝑁𝑎2

0

∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ + H.c.

)
− � !

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$ − Ẽ . (103)

Defining the error term

E∗ := 3
(
𝑎†0𝑎0 − 𝑁

)
𝑎2

0

∑
|ℓ |>𝐾

𝜆0,ℓ 𝑎
†
ℓ𝑎

†
−ℓ + 9𝑎†0𝑎

2
0

∑
ℓ,0< |𝑘 | ≤𝐾

𝜆𝑘,ℓ𝑎
†
ℓ𝑎

†
𝑘−ℓ𝑎𝑘 , (104)

we obtain as a consequence of Eq. (103) the following Corollary 5.

Corollary 5. Let 𝑑𝑘 and 𝜉𝑖 𝑗𝑘 be as in Eq. (89) and Eq. (90), with 𝑇2 defined in Eq. (88) and 𝑇4 defined
in Eq. (95), 𝛾𝑁 , 𝜎𝑁 , and 𝜇𝑁 as in Eq. (98), Eq. (97) and Eq. (102), and let E∗ be as in Eq. (104), Θ as
in Eq. (99) and 𝜓𝑖 𝑗𝑘 as in Eq. (101). Furthermore, recall the definition of 𝜆0,0 in Eq. (29) and Q𝐾 in
Eq. (33). Then

𝐻𝑁 ≥ (𝑎†0)
3𝑎3

0𝜆0,0 + 𝑁−4 (𝑎†0)
4𝑎4

0 (𝛾𝑁 − 𝜎𝑁 ) − 𝑁−2(𝑎†0)
2𝑎2

0 𝜇𝑁 +
∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 + Q𝐾 (105)

− � !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$ +

(
E∗ + E†

∗

)
− Ẽ .

Making use of the notation EK (𝑑) from Eq. (83) and EP (𝜉) from Eq. (75), we obtain in the case 𝐾 = 0
the identity

𝐻𝑁 = 𝜆0,0(𝑎†0)
3𝑎3

0 + (𝛾𝑁 − 𝜎𝑁 )𝑁−4(𝑎†0)
4𝑎4

0 − 𝜇𝑁𝑁
−2(𝑎†0)

2𝑎2
0 + EK (𝑑) + EP (𝜉)

− � !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$ +

(
E∗ + E†

∗

)
− Ẽ . (106)
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Proof. Using Eq. (103) and the definition of 𝑉𝑁 in Eq. (21), as well as the identities in Eq. (30) and
Eq. (31), we obtain

𝐻𝑁 = 𝜆0,0 (𝑎†0)
3𝑎3

0 + (𝛾𝑁 − 𝜎𝑁 )𝑁−4(𝑎†0)
4𝑎4

0 − 𝜇𝑁𝑁
−2 (𝑎†0)

2𝑎2
0 +

∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 + Q𝐾

+ 1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

((1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 ))𝑖 𝑗𝑘,ℓ𝑚𝑛𝜉
†
𝑖 𝑗𝑘𝜉ℓ𝑚𝑛

− � !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$ +

(
E∗ + E†

∗

)
− Ẽ .

Since Q0 = 0 and

1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

((1 − 𝜋𝐾 )𝑉𝑁 (1 − 𝜋𝐾 ))𝑖 𝑗𝑘,ℓ𝑚𝑛𝜉
†
𝑖 𝑗𝑘𝜉ℓ𝑚𝑛 ≥ 0,

1
6

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

((1 − 𝜋0)𝑉𝑁 (1 − 𝜋0))𝑖 𝑗𝑘,ℓ𝑚𝑛𝜉
†
𝑖 𝑗𝑘𝜉ℓ𝑚𝑛 = EP (𝜉),

we immediately obtain Eq. (105), respectively Eq. (106). �

4.1. Analysis of the error terms

In the following we are providing an explicit representation of the error term Ẽ introduced in Eq. (93),
which we subsequently use in Lemma 8 in order to control Ẽ . For this purpose, we are going to utilize
the following estimates on the matrix elements of 𝑇,𝑇2 and 𝑇4��(𝑇 − 1)𝑖 𝑗𝑘,ℓ00

�� ≤ 𝐶 1(𝑖 + 𝑗 + 𝑘 = ℓ)
𝑁2 (|𝑖 |2 + | 𝑗 |2 + |𝑘 |2)

(
1 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

𝑁 + |ℓ |2

)−2

, (107)

| (𝑇2 − 1) 𝑗𝑘,00 | ≤ 𝐶𝑁−1 1( 𝑗 + 𝑘 = 0)
| 𝑗 |2 + |𝑘 |2

(
1 + | 𝑗 |2 + |𝑘 |2

𝑁

)−1

, (108)

| (𝑇4 − 1)ℓ𝑖 𝑗𝑘,0000 | ≤ 𝐶𝑁− 7
2
1(ℓ + 𝑖 + 𝑗 + 𝑘 = 0)
|ℓ |2 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

(
1 + |ℓ |2 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

𝑁

)−3

, (109)

which are verified in Lemma 15 and Lemma 18 respectively. Furthermore, it is useful to introduce the
two-particle state (𝜑0

2) 𝑗𝑘 := 𝑁 (𝑇2 − 1) 𝑗𝑘,00, the three-particle states (𝜑0
3)𝑖 𝑗𝑘 := 𝑁

3
2

2 (𝑇 − 1)𝑖 𝑗𝑘,000 and for
𝑚 ∈ (2𝜋Z)3 \ {0}

(𝜑𝑚
3 )𝑖 𝑗𝑘 :=

𝑁
3
2

2
(𝑇 − 1)𝑖 𝑗𝑘,𝑚00 +

𝑁
3
2

2
(𝑇 − 1)𝑖 𝑗𝑘,0𝑚0 +

𝑁
3
2

2
(𝑇 − 1)𝑖 𝑗𝑘,00𝑚,

and the four particle state (𝜑0
4)𝑢𝑖 𝑗𝑘 := 𝑁 2

6 (𝑇4 − 1)𝑢𝑖 𝑗𝑘,0000 as well as

(𝜑4)𝑢𝑖 𝑗𝑘 := 𝑁2 (𝑇4 − 1 + 𝜒)𝑢𝑖 𝑗𝑘,0000.

Additionally, let us introduce for 𝜑 ∈ 𝐿2 (Λ𝑠) and 𝜓 ∈ 𝐿2 (Λ𝑡 ) with 𝑠, 𝑡 ≥ 0, and ℓ ≤ min{𝑠, 𝑡}, the
operator

𝐺ℓ (𝜑, 𝜓) := Tr1→ℓ

[
(−Δ)𝑥1𝜑𝜓

†] (110)
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acting on 𝐿2 (Λ𝑡−ℓ ) −→ 𝐿2 (Λ𝑠−ℓ). In coordinates, the operator is given by(
𝐺ℓ (𝜑, 𝜓)

)
𝑖1...𝑖𝑠−ℓ , 𝑗1... 𝑗𝑡−ℓ

:=
∑

𝑘1...𝑘ℓ

|𝑘1 |2𝜑𝑘1...𝑘ℓ 𝑖1...𝑖𝑠−ℓ𝜓𝑘1...𝑘ℓ 𝑗1... 𝑗𝑡−ℓ .

Finally let 𝐺 := Tr1→3

[
𝑉𝑁 ⊗ 1𝜑4𝜑

†
4

]
. With this at hand we can write

Ẽ =
∑

(𝑠,𝑡 ,ℓ,𝑚,𝑛) ∈S
𝐶𝑠,𝑡 ,ℓ

∑
𝑖1...𝑖𝑠−ℓ
𝑗1... 𝑗𝑡−ℓ

(
𝐺ℓ (𝜑𝑚

𝑠 , 𝜑
𝑛
𝑡 )
)
𝑖1...𝑖𝑠−ℓ , 𝑗1... 𝑗𝑡−ℓ

𝑎†𝑖𝑠−ℓ . . . 𝑎
†
𝑖1

𝑎†𝑚 (𝑎†0)
𝑠−1𝑎𝑡−1

0 𝑎𝑛

𝑁
𝑠+𝑡

2
𝑎 𝑗1 . . . 𝑎 𝑗𝑡−ℓ

+
∑
𝑖, 𝑗

(
𝐺
)
𝑖, 𝑗
𝑎†𝑖

(𝑎†0)
4𝑎4

0
𝑁4 𝑎 𝑗 , (111)

where 𝐶𝑠,𝑡 ,ℓ := (𝑠−1)!(𝑡−1)!
(ℓ−1)!(𝑠−ℓ)!(𝑡−ℓ)! and the set of allowed configurations (𝑠, 𝑡, ℓ, 𝑚, 𝑛) ∈ S is defined by

the rules ℓ ≤ min{𝑠, 𝑡} and ℓ < max{𝑠, 𝑡}, where 2 ≤ 𝑠, 𝑡 ≤ 4 and |𝑛|, |𝑚 | ≤ 𝐾 with 𝑚 = 0, respectively
𝑛 = 0, in case 𝑠 ≠ 3, respectively 𝑡 ≠ 3. Note that the criterion ℓ < max{𝑠, 𝑡} makes sure that we only
include non-fully contracted parts of the first product in Eq. (94) and 𝐺 is the kernel associated with
the non-fully contracted part of the second product in Eq. (94). Furthermore, 𝐶𝑠,𝑡 ,ℓ counts the various
different ways to have an ℓ − 1 fold contraction between 𝑠 − 1 many annihilation operators and 𝑡 − 1
many creation operators, that is, 𝐶𝑠,𝑡 ,ℓ counts the number of partially defined injective functions

𝑓 : {1, . . . , 𝑠 − 1} −→ {1, . . . , 𝑡 − 1}

with #dom 𝑓 = ℓ − 1. Let us illustrate the derivation of Eq. (94), looking at the term∑
𝑘

|𝑘 |2 (𝑑𝑘 − 𝑎𝑘 )†(𝑑𝑘 − 𝑎𝑘 ),

from Eq. (94). According to the definition of 𝑑𝑘 in Eq. (89), the term 𝑑𝑘 − 𝑎𝑘 decomposes into three
terms, and in the following we focus only on the last one involving 𝑇4 − 1∑
𝑘

|𝑘 |2� !1
6

∑
𝑢𝑖 𝑗,𝑣ℓ𝑚𝑛

(𝑇4 − 1)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛

"#$
†� !1

6

∑
𝑢𝑖 𝑗,𝑣ℓ𝑚𝑛

(𝑇4 − 1)𝑢𝑖 𝑗𝑘,𝑣ℓ𝑚𝑛 𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎𝑣𝑎ℓ𝑎𝑚𝑎𝑛

"#$
= 𝑁−4

∑
𝑘,𝑢𝑖 𝑗,𝑢′𝑖′ 𝑗′

|𝑘 |2 (𝜑4
0)𝑢𝑖 𝑗𝑘 (𝜑

4
0)𝑢′𝑖′ 𝑗′𝑘 (𝑎†0)

4𝑎𝑢𝑎𝑖𝑎 𝑗𝑎
†
𝑢′𝑎

†
𝑖′𝑎

†
𝑗′𝑎

4
0

= 𝑁−4
∑

𝑘,𝑢𝑖 𝑗,𝑢′𝑖′ 𝑗′

|𝑘 |2 (𝜑4
0)𝑢𝑖 𝑗𝑘 (𝜑

4
0)𝑢′𝑖′ 𝑗′𝑘𝑎

†
𝑢′𝑎

†
𝑖′𝑎

†
𝑗′ (𝑎

†
0)

4𝑎4
0𝑎𝑢𝑎𝑖𝑎 𝑗

+ 9𝑁−4
∑

𝑗𝑘,𝑢𝑖,𝑢′𝑖′

|𝑘 |2 (𝜑4
0)𝑢𝑖 𝑗𝑘 (𝜑

4
0)𝑢′𝑖′ 𝑗𝑘𝑎

†
𝑢′𝑎

†
𝑖′ (𝑎

†
0)

4𝑎4
0𝑎𝑢𝑎𝑖

+ 18𝑁−4
∑

𝑖 𝑗𝑘,𝑢,𝑢′

|𝑘 |2 (𝜑4
0)𝑢𝑖 𝑗𝑘 (𝜑

4
0)𝑢′𝑖′ 𝑗′𝑘𝑎

†
𝑢′ (𝑎†0)

4𝑎4
0𝑎𝑢

+ 6𝑁−4
∑
𝑢𝑖 𝑗𝑘

|𝑘 |2 (𝜑4
0)𝑢𝑖 𝑗𝑘 (𝜑

4
0)𝑢′𝑖′ 𝑗′𝑘 (𝑎†0)

4𝑎4
0

=
3∑

ℓ=1
𝐶4,4,ℓ

∑
𝑖1 ...𝑖4−ℓ
𝑗1... 𝑗4−ℓ

(
𝐺ℓ (𝜑0

4, 𝜑
0
4)
)
𝑖1 ...𝑖4−ℓ , 𝑗1 ... 𝑗4−ℓ

𝑎†𝑖4−ℓ . . . 𝑎
†
𝑖1

(𝑎†0)
4𝑎4

0
𝑁4 𝑎 𝑗1 . . . 𝑎 𝑗4−ℓ

+ 6𝑁−4
∑
𝑢𝑖 𝑗𝑘

|𝑘 |2 (𝜑4
0)𝑢𝑖 𝑗𝑘 (𝜑

4
0)𝑢′𝑖′ 𝑗′𝑘 (𝑎†0)

4𝑎4
0. (112)
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Notably, the final term in Eq. (112) is a fully contracted contribution and therefore part of the operator
𝑋4 defined in Eq. (92) and not of the error term Ẽ .

Estimating the various terms appearing in Eq. (111) individually allows us to prove the following
Lemma 8.

Lemma 8. There exists a constant 𝐶 > 0 and a function 𝜖 : [0,∞) −→ (0, 𝐶) satisfying
lim𝐾→∞ 𝜖 (𝐾) = 0, such that we have for K as in the definition of 𝜋𝐾 below Eq. (17)

±Ẽ ≤ 𝐶𝑁− 1
4
∑
𝑘

|𝑘 |2𝑐†𝑘

(
N
√
𝑁

+ 1
)2
𝑐𝑘 + 𝐶𝑁− 1

4

(
N
√
𝑁

+ 1
)2 (

N +
√
𝑁
)
+ 𝜖 (𝐾)N .

Proof. In the following let 𝜏 ≤ 1
2 . Using the fact that ‖ 𝑎†

𝑚 (𝑎†
0)
𝑠−1𝑎𝑡−1

0 𝑎𝑛

𝑁
𝑠+𝑡

2
‖ ≤ 1, there exists by Corollary 1

a constant 𝐶 > 0 such that for 𝛿 > 0 and 𝑠, 𝑡 ≥ ℓ + 1

±
�   !

∑
𝑖1...𝑖𝑠−ℓ
𝑗1... 𝑗𝑡−ℓ

(
𝐺ℓ,𝜎,𝜏 (𝜑𝑚

𝑠 , 𝜑
𝑛
𝑡 )
)
𝑖1...𝑖𝑠−ℓ , 𝑗1... 𝑗𝑡−ℓ

(Φ𝜎,𝑠)†𝑖1...𝑖𝑠−ℓ
𝑎†𝑚 (𝑎†0)

𝑠−1𝑎𝑡−1
0 𝑎𝑛

𝑁
𝑠+𝑡

2
(Φ𝜏,𝑡 ) 𝑗1... 𝑗𝑡−ℓ + H.c.

"###$
≤ 𝐶

8888K− 1
2

𝜏,𝑠−ℓ𝐺ℓ (𝜑𝑚
𝑠 , 𝜑

𝑛
𝑡 )K

− 1
2

𝜏,𝑡−ℓ

8888(∑
𝑘

|𝑘 |2𝑐†𝑘
(
𝛿N 𝑠−ℓ−1 + 𝛿−1N 𝑡−ℓ−1

)
𝑐𝑘

+
(
N +

√
𝑁
) (
𝛿N 𝑠−ℓ−1 + 𝛿−1N 𝑡−ℓ−1

))
. (113)

For 𝜏 = 𝜎 = 0, we have the improved bound on the left-hand side of Eq. (113)

𝐶
88𝐺ℓ (𝜑𝑚

𝑠 , 𝜑
𝑛
𝑡 )
88(𝛿N 𝑠−ℓ + 𝛿−1N 𝑡−ℓ

)
. (114)

In the case that either s or t is equal to ℓ, for example, 𝑡 = ℓ we obtain by Corollary 1

±
( ∑
𝑖1...𝑖𝑠−ℓ

(
𝐺ℓ,𝜎,𝜏 (𝜑𝑚

𝑠 , 𝜑
𝑛
𝑡 )
)
𝑖1...𝑖𝑠−ℓ

(Φ𝜎,𝑠)†𝑖1...𝑖𝑠−ℓ
𝑎†𝑚 (𝑎†0)

𝑠−1𝑎𝑡−1
0 𝑎𝑛

𝑁
𝑠+𝑡

2
+ H.c.

)
≤ 𝐶

8888K− 1
2

𝜏,𝑠−ℓ𝐺ℓ (𝜑𝑚
𝑠 , 𝜑

𝑛
𝑡 )
8888(𝛿−1 + 𝛿

∑
𝑘

|𝑘 |2𝑐†𝑘N
𝑠−ℓ−1𝑐𝑘 + 𝛿

(
N +

√
𝑁
)
N 𝑠−ℓ−1

)
. (115)

In order to obtain good estimates on the operator norms
8888K− 1

2
𝜎,𝑠−ℓ𝐺ℓ (𝜑𝑚

𝑠 , 𝜑
𝑛
𝑡 )K

− 1
2

𝜏,𝑡−ℓ

8888, observe that we

obtain by a Cauchy-Schwarz argument

8888K− 1
2

𝜎,𝑠−ℓ𝐺ℓ (𝜑𝑚
𝑠 , 𝜑

𝑛
𝑡 )K

− 1
2

𝜏,𝑡−ℓ

8888 ≤

√8888K− 1
2

𝜎,𝑠−ℓ𝐺ℓ (𝜑𝑚
𝑠 , 𝜑

𝑚
𝑠 )K

− 1
2

𝜎,𝑠−ℓ

88888888K− 1
2

𝜏,𝑡−ℓ𝐺ℓ (𝜑𝑛
𝑡 , 𝜑

𝑛
𝑡 )K

− 1
2

𝜏,𝑡−ℓ

8888,
that is, it is enough to control the norm of the symmetric ones. In the following we choose 𝜎 = 𝜏 = 1

2 ,
except for the case 𝑠 = 𝑡 = 2 where we choose 𝜎 = 𝜏 = 0. By Eq. (107) and Eq. (109) we obtain for a
suitable 𝐶 > 0
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2

1
2 ,3
𝐺1(𝜑0

4, 𝜑
0
4)K

− 1
2

1
2 ,3

8888 ≤ 𝐶𝑁− 3
2 ,

8888K− 1
2

1
2 ,2
𝐺1 (𝜑𝑚

3 , 𝜑
𝑚
3 )K

− 1
2

1
2 ,2

8888 ≤ 𝐶𝑁−1,8888K− 1
2

1
2 ,2
𝐺2(𝜑0

4, 𝜑
0
4)K

− 1
2

1
2 ,2

8888 ≤ 𝐶𝑁− 3
2 ,

8888K− 1
2

1
2 ,1
𝐺2 (𝜑𝑚

3 , 𝜑
𝑚
3 )K

− 1
2

1
2 ,1

8888 ≤ 𝐶𝑁− 1
2 ,8888K− 1

2
1
2 ,1
𝐺3(𝜑0

4, 𝜑
0
4)K

− 1
2

1
2 ,1

8888 ≤ 𝐶𝑁−1,
88𝐺3(𝜑𝑚

3 , 𝜑
𝑚
3 )

88 ≤ 𝐶𝑁.

Furthermore by Eq. (108),
88𝐺1(𝜑0

2, 𝜑
0
2)
88 ≤ 𝜖 in case K is large enough and

88𝐺2(𝜑0
2, 𝜑

0
2)
88 ≤ 𝐶

√
𝑁 , as

well as
888𝐺888 ≤ 𝐶𝑁−1 by Eq. (109). Choosing 𝛿 := 𝑁

𝑡−𝑠
4 , and combining the estimates on the operator

norms with Eq. (113), respectively Eq. (114), and Eq. (115) concludes the proof by Eq. (111). �

Following the ideas in the proof of Lemma 8, we can furthermore compare the operator
∑

𝑘 |𝑘 |2𝜏𝑎†𝑘𝑎𝑘

with the corresponding operator
∑

𝑘 |𝑘 |2𝜏𝑑†𝑘𝑑𝑘 in the variables 𝑑𝑘 defined in Eq. (89). This is the content
of the subsequent Lemma 9.

Lemma 9. Let 0 ≤ 𝜏 < 1
4 . Then there exists 𝐾0, 𝐶 > 0 such that for 𝐾 ≥ 𝐾0, with K as in the definition

of 𝜋𝐾 below Eq. (17), ∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 ≤ 𝐶
∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 + 𝐶𝑁− 3
2 N 3 + 𝐶𝑁 𝜏 .

Proof. By Eq. (40), there exists a constant 𝐶 > 0 such that∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 ≤ 𝐶
∑
𝑘

|𝑘 |2𝜏𝑐†𝑘𝑐𝑘 + 𝐶𝑁
−1N 2 + 𝐶𝑁 𝜏 .

Furthermore, we have by Cauchy-Schwarz the estimate∑
𝑘

|𝑘 |2𝜏𝑐†𝑘𝑐𝑘 ≤ 2
∑
𝑘

|𝑘 |2𝜏𝑑†𝑘𝑑𝑘 + 2
∑
𝑘

|𝑘 |2𝜏 (𝑑𝑘 − 𝑐𝑘 )†(𝑑𝑘 − 𝑐𝑘 ).

Similar to the definition of 𝐺ℓ in Eq. (110) let us introduce

𝐺 ′
ℓ := Tr1→ℓ

[
(−Δ)𝑥1𝜑

0
2(𝜑

0
2)

†] ,
𝐺 ′′

ℓ := Tr1→ℓ

[
(−Δ)𝑥1𝜑

0
4(𝜑

0
4)

†] .
A similar computation as in Eq. (111) together with a Cauchy-Schwarz estimate yields∑

𝑘

|𝑘 |2𝜏 (𝑑𝑘 − 𝑐𝑘 )†(𝑑𝑘 − 𝑐𝑘 ) ≤ 𝐶𝐺 ′
2
(𝑎†0)

2𝑎2
0

𝑁2 + 𝐶
∑
𝑖, 𝑗

(𝐺 ′
1)𝑖, 𝑗𝑎

†
𝑖

(𝑎†0)
2𝑎2

0
𝑁2 𝑎 𝑗

+ 𝐶
4∑

ℓ=1

∑
𝑖1...𝑖4−ℓ
𝑗1... 𝑗4−ℓ

(
𝐺 ′′

ℓ

)
𝑖1...𝑖4−ℓ , 𝑗1... 𝑗4−ℓ

𝑎†𝑖4−ℓ . . . 𝑎
†
𝑖1

(𝑎†0)
4𝑎4

0
𝑁4 𝑎 𝑗1 . . . 𝑎 𝑗4−ℓ ,

for a suitable constant𝐶 > 0. Utilizing the estimates in Eq. (108) and Eq. (109) we obtain that |𝐺 ′
2 | � 1,

‖𝐺 ′
2‖ �

1
𝐾 2 , |𝐺 ′′

4 | � 𝑁 𝜏− 1
2 ≤ 1 and ‖𝐺 ′′

ℓ ‖ � 𝑁 𝜏−2 ≤ 𝑁− 3
2 for ℓ ≤ 3. Consequently there exists a 𝐶 > 0

such that ∑
𝑘

|𝑘 |2𝜏 (𝑑𝑘 − 𝑐𝑘 )†(𝑑𝑘 − 𝑐𝑘 ) ≤ 𝐶 + 𝐶

𝐾2N + 𝐶𝑁− 3
2 (N + 1)3.
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Using N ≤
∑

𝑘 |𝑘 |2𝜏𝑎†𝑘𝑎𝑘 and
∑

𝑘 |𝑘 |2𝜏𝑑†𝑘𝑑𝑘 ≤
∑

𝑘 |𝑘 |2𝑑†𝑘𝑑𝑘 we therefore obtain∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 ≤ 𝐶

𝐾2

∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 + 𝐶
∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 + 𝐶𝑁− 3
2 N 3 + 𝐶𝑁 𝜏 + 𝐶𝑁−1N 2

≤ 𝐶

𝐾2

∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 + 𝐶
∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 + 2𝐶𝑁− 3
2 N 3 + 2𝐶𝑁 𝜏 .

Choosing K large enough such that 𝐶
𝐾 2 < 1 concludes the proof. �

Before we come to the proof of the lower bound in Theorem 1 in the following Subsection 4.2, we
are going to derive sufficient estimates on∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c.

in the following Lemma 10. In order to verify Lemma 10, we require the estimate∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 ≤ 𝐶

(∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 +N + 1

)
(116)

for 𝑐𝑘 := 𝑎𝑘 + 1
2
∑

𝑖 𝑗 (𝑇 − 1)𝑖 𝑗𝑘,000𝑎
†
𝑖 𝑎

†
𝑗𝑎

3
0, which is verified in Appendix A, see Lemma A3.

Lemma 10. Let 0 ≤ 𝛾 < 1
4 . Then there exists a 𝐶 > 0 such that

±� !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$ ≤ 𝑁− 1

4
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 + 𝑁− 1
4 N + 𝐶𝑁

1
4 .

Proof. Let us define for 𝑖 𝑗 𝑘 ≠ 0

𝜁𝑖 𝑗𝑘 :=
1

24

(
Πsym4(𝑉𝑁 ⊗ 1) (𝑇4 − 1 + 𝜒)

)
0𝑖 𝑗𝑘,0000

=
1

24

(
Πsym4(𝑉𝑁 ⊗ 1) (𝑇4 − 1 + 𝜒)

)
0𝑖 𝑗𝑘,0000

, (117)

𝜁𝑘 :=
1

24

(
Πsym4(𝑇†𝑉𝑁 ⊗ 1) (𝑇4 − 1 + 𝜒)

)
00𝑘 (−𝑘) ,0000

,

where 𝜒 is defined in Eq. (91). Then we have the decomposition

� !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$

= 4� !
∑
𝑖 𝑗𝑘≠0

𝜁𝑖 𝑗𝑘 (𝑎†0)
4𝑎0 𝜓𝑖 𝑗𝑘 + H.c."#$ + 6

(∑
𝑘≠0

𝜁𝑘 (𝑎†0)
4𝑎2

0 𝑎𝑘𝑎−𝑘 + H.c.

)
. (118)

Note that 𝜁𝑘 = 1
24

(
Πsym4(𝑉𝑁 ⊗ 1) (𝑇4 − 1 + 𝜒)

)
00𝑘 (−𝑘) ,0000

for |𝑘 | > 𝐾 . Using the regularity of V and

the bounds derived in Eq. (107) and Eq. (109), we observe that we have |𝑁3𝜁𝑘 | � 𝑁− 1
2

(
1 + |𝑘 |2

𝑁

)−1
, and

therefore

±
(∑
𝑘≠0

𝜁𝑘 (𝑎†0)
4𝑎2

0𝑎𝑘𝑎−𝑘 + H.c.

)
� 𝜖

∑
𝑘≠0

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘 + 𝜖−1𝑁
1
2−𝜏 � 𝜖

∑
𝑘≠0

|𝑘 |2𝜏𝑐†𝑘𝑐𝑘 + 𝜖N + 𝜖𝑁 𝜏 + 𝜖−1𝑁
1
2−𝜏 ,
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where we have used Eq. (40). Choosing 𝜖 of the order 𝑁− 1
4 and 𝜏 = 1

2 concludes the analysis of the
second term in Eq. (118). Regarding the first term, we use the definition of 𝑐𝑘 below Eq. (116), in order
to identify

∑
𝑖 𝑗𝑘 𝜁𝑖 𝑗𝑘 (𝑎†0)

4𝜓𝑖 𝑗𝑘𝑎0 as∑
𝑖 𝑗𝑘

𝜁𝑖 𝑗𝑘 (𝑎†0)
4𝑎𝑖𝑎 𝑗𝑐𝑘𝑎0 −

∑
𝑖 𝑗𝑘

𝜁𝑖 𝑗𝑘 (𝑎†0)
4𝑎𝑖𝑎 𝑗 (𝑐𝑘 − 𝑎𝑘 )𝑎0 +

∑
𝑖 𝑗𝑘

𝜁𝑖 𝑗𝑘 (𝑎†0)
4𝑎4

0 (𝑇 − 1)𝑖 𝑗𝑘,000

=
∑
𝑖 𝑗𝑘

𝜁𝑖 𝑗𝑘 (𝑎†0)
4𝑎𝑖𝑎 𝑗𝑐𝑘𝑎0 −

1
2

∑
𝑖 𝑗𝑘,𝑖′ 𝑗′

𝜁𝑖 𝑗𝑘 (𝑇 − 1)𝑖′ 𝑗′𝑘,000𝑎
†
𝑖′𝑎

†
𝑗′𝑎

4†
0 𝑎4

0𝑎𝑖𝑎 𝑗

− 2
∑
𝑖 𝑗𝑘,𝑖′

𝜁𝑖 𝑗𝑘 (𝑇 − 1)𝑖′ 𝑗𝑘,000𝑎
†
𝑖′𝑎

4†
0 𝑎4

0𝑎𝑖 . (119)

In the following we are going to verify that the most significant term
∑

𝑖 𝑗𝑘 𝜁𝑖 𝑗𝑘 (𝑎†0)
4𝑎𝑖𝑎 𝑗𝑐𝑘𝑎0 in Eq. (119)

satisfies the desired bound. By Cauchy-Schwarz, we have for 𝜖 > 0

� !
∑
𝑖 𝑗𝑘

𝜁𝑖 𝑗𝑘 (𝑎†0)
4𝑎𝑖𝑎 𝑗𝑐𝑘𝑎0 + H.c."#$ ≤ 𝜖

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 + 𝜖
−1

∑
𝑘

1
|𝑘 |2

�����∑
𝑖 𝑗

𝜁𝑖 𝑗𝑘𝑎
†
0𝑎

4
0𝑎

†
𝑖 𝑎

†
𝑗

�����2
= 𝜖

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 + 𝜖
−1𝐺 (0)𝑋 + 𝜖−1

∑
𝑖,𝑖′

(𝐺 (1) )𝑖,𝑖′𝑎†𝑖 𝑎𝑖′𝑋 + 𝜖−1
∑

𝑖 𝑗 ,𝑖′ 𝑗′
(𝐺 (2) )𝑖 𝑗 ,𝑖′ 𝑗′𝑎†𝑖 𝑎

†
𝑗𝑋𝑎 𝑗′𝑎𝑖′

with 𝐺 (0) := 𝑁5 ∑
𝑖 𝑗𝑘

|𝜁𝑖 𝑗𝑘 |2
|𝑘 |2 , 𝐺 (1)

𝑖,𝑖′ := 𝑁5𝛿𝑖,𝑖′
∑

𝑗𝑘
|𝜁𝑖 𝑗𝑘 |2+𝜁𝑖 𝑗𝑘 𝜁 𝑗𝑖𝑘

|𝑘 |2 and 𝐺 (2)
𝑖 𝑗 ,𝑖′ 𝑗′ := 𝑁5 ∑

𝑘
𝜁𝑖 𝑗𝑘 𝜁𝑖′ 𝑗′𝑘

|𝑘 |2 , and
𝑋 := 𝑁−5𝑎4†

0 𝑎0𝑎
†
0𝑎

4
0. Using again the regularity of V and Eq. (107), as well as the bounds on 𝑇4 in

Eq. (109), yields

|𝜁𝑖 𝑗𝑘 | ≤ 𝐶𝑁− 7
2 𝛿𝑖+ 𝑗+𝑘=0

(
1 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

𝑁

)−3

,

and therefore |𝐺 (0) | � 1 and ‖𝐺 (1) ‖ � 𝑁− 3
2 . The choice 𝜖 := 𝑁− 1

4 then yields

𝜖−1𝐺 (0)𝑋 + 𝜖−1
∑
𝑖,𝑖′

𝐺 (1)
𝑖,𝑖′𝑎

†
𝑖 𝑎𝑖′𝑋 � 𝑁

1
4 + 𝑁− 5

4 N .

Finally ‖𝐺 (2) ‖ ≤ 𝑁− 3
2 , and therefore∑

𝑖 𝑗 ,𝑖′ 𝑗′
𝐺 (2)

𝑖 𝑗 ,𝑖′ 𝑗′𝑎
†
𝑖 𝑎

†
𝑗𝑋𝑎 𝑗′𝑎𝑖′ � 𝑁− 3

2 N 2 ≤ 𝑁− 1
2 N .

This concludes the proof together with Eq. (116). �

4.2. Proof of the lower bound in Theorem 1

In this subsection, we are going to verify the lower bound in Theorem 1 making use of the sequence of
states Φ𝑁 constructed in Corollary 2, which simultaneously satisfies

1
(
N ≤ 𝐶

√
𝑁
)
Φ𝑁 = Φ𝑁 ,

〈Φ𝑁 , 𝐻𝑁Φ𝑁 〉 ≤ 𝐸𝑁 + 𝐶,〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Φ𝑁

〉
≤ 𝐶

√
𝑁.
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Starting point for our investigations is then the lower bound

𝐻𝑁 ≥
∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘 + (𝑎†0)
3𝑎3

0𝜆0,0 + 𝑁−4 (𝑎†0)
4𝑎4

0 (𝛾𝑁 − 𝜎𝑁 ) − 𝑁−2(𝑎†0)
2𝑎2

0 𝜇𝑁 + Q𝐾

− � !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$ +

(
E∗ + E†

∗

)
− Ẽ ,

see Eq. (105). As is proven in Section 7, the coefficients 𝛾𝑁 , 𝜇𝑁 and 𝜎𝑁 converge to the corresponding
constants 𝛾(𝑉), 𝜇(𝑉) and 𝜎(𝑉) introduced in Eq. (10), Eq. (5) and Eq. (9)

𝛾𝑁 = 𝛾(𝑉)
√
𝑁 +𝑂𝑁→∞

(
𝑁− 1

4

)
, (120)

𝜇𝑁 = 𝜇(𝑉)
√
𝑁 +𝑂𝑁→∞(1), (121)

𝜎𝑁 = 𝜎(𝑉)
√
𝑁 +𝑂𝑁→∞

(
𝑁

1
4

)
, (122)

see Lemma 17. Given 𝜖 > 0, assume that K is large enough such that the function 𝜖 (𝐾) from Lemma 8
satisfies 𝜖 (𝐾) ≤ 𝜖 . Making use of the fact that

1
(
N ≤ 𝐶

√
𝑁
)
Φ𝑁 = Φ𝑁 ,〈

Φ𝑁 ,
∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Φ𝑁

〉
�
√
𝑁,

we immediately obtain for C and 𝐶 large enough

|〈Φ𝑁 , ẼΦ𝑁 〉| ≤ 𝐶𝑁− 1
4

〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Φ𝑁

〉
+ 𝜖 〈Φ𝑁 ,NΦ𝑁 〉 + 𝐶𝑁

1
4 ≤ 𝐶𝑁

1
4 + 𝜖 〈Φ𝑁 ,NΦ𝑁 〉.

Similarly we obtain by Lemma 10 and Lemma 4 for suitable 𝐶,𝐶 > 0������〈Φ𝑁 ,
� !

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$Φ𝑁 〉

������
≤ 𝐶𝑁− 1

4

(〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘Φ𝑁

〉
+
√
𝑁

)
+ 𝐶𝑁

1
4 ≤ 𝐶𝑁

1
4 ,���〈Φ𝑁 ,

(
E∗ + E†

∗

)
Φ𝑁 〉

��� ≤ 𝐶𝑁
1
4 .

By Lemma 2 we furthermore obtain for 𝜏, 𝜖 > 0 and K large enough, and a suitable 𝐶 > 0,

〈Φ𝑁 ,
(
(𝑎†0)

3𝑎3
0𝜆0,0 + Q𝐾

)
Φ𝑁 〉 ≥ 1

6
𝑏M (𝑉)𝑁 − 𝜖

〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘Φ𝑁

〉
− 𝐶.

Moreover we note that we have by Eq. (120)-(122)

〈Φ𝑁 , 𝑁
−4(𝑎†0)

4𝑎4
0 (𝜎𝑁 − 𝛾𝑁 )Φ𝑁 〉 ≤ (𝜎𝑁 − 𝛾𝑁 ) + |𝜎𝑁 − 𝛾𝑁 |〈Φ𝑁 ,

(
1 − 𝑁−4(𝑎†0)

4𝑎4
0

)
Φ𝑁 〉

≤ 𝜎𝑁 − 𝛾𝑁 + |𝜎𝑁 − 𝛾𝑁 |
〈
Φ𝑁 ,

N
𝑁
Φ𝑁

〉
≤ (𝜎(𝑉) − 𝛾(𝑉))

√
𝑁 + 𝑜𝑁→∞

(
𝑁

1
4

)
,
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and similarly 〈Φ𝑁 , 𝑁
−2(𝑎†0)

2𝑎2
0 𝜇𝑁Φ𝑁 〉 ≤ 𝜇(𝑉)

√
𝑁 + 𝑜𝑁→∞(1). Finally by Lemma 9

〈Φ𝑁 ,NΦ𝑁 〉 ≤
〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝜏𝑎†𝑘𝑎𝑘Φ𝑁

〉
≤ 𝐶

〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘Φ𝑁

〉
+ 𝐶𝑁 𝜏 . (123)

Choosing 𝜏 < 1
4 and 𝜖 < 1

2𝐶 concludes the proof, since

𝐸𝑁 + 𝐶 ≥ 〈Φ𝑁 , 𝐻𝑁Φ𝑁 〉 ≥ 1
6
𝑏M (𝑉)𝑁 + (𝛾 − 𝜎 − 𝜇)

√
𝑁

− 𝐶𝑁
1
4 + (1 − 2𝐶𝜖)

〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘Φ𝑁

〉
.

5. Second-order upper bound

It is the goal of this Section to introduce a trial state Φ, which simultaneously annihilates the variables
𝑑𝑘 for 𝑘 ≠ 0 and 𝜉ℓ𝑚𝑛 in case (ℓ, 𝑚, 𝑚) ≠ 0, at least in an approximate sense. We are then going to
use this trial state Φ to verify the upper bound in Theorem 1. For the rest of this Section we specify the
parameter K introduced above the definition of 𝜋𝐾 in Eq. (17) as 𝐾 := 0. In order to find Φ, we define
𝛼 𝑗𝑘 := (𝑇2 − 1) 𝑗𝑘,00 and 𝛽𝑢𝑖 𝑗𝑘 := (𝑇4 − 1)𝑢𝑖 𝑗𝑘,0000, and the generator

G2 :=
1
2

∑
𝑗𝑘

𝛼 𝑗𝑘𝑎
†
𝑗𝑎

†
𝑘𝑎

2
0,

G4 :=
1

24

∑
𝑢𝑖 𝑗𝑘

𝛽𝑢𝑖 𝑗𝑘𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎

4
0 (124)

of a unitary group 𝑊𝑠 := 𝑒𝑠 (G2+G4)†−𝑠 (G2+G4) and 𝑊 := 𝑊1. We note at this point, that the action of the
unitary operator W only creates an 𝑂 (1) amount of particles, in the sense that

𝑊−𝑠 N𝑚𝑊𝑠 ≤ 𝑒𝐶𝑚 |𝑠 | (N + 1)𝑚, (125)

as is proven in Appendix A, see Lemma A1. Applying Duhamel’s formula, we can express
𝑊−1𝑎𝑖1𝑎𝑖2𝑎𝑖3𝑊 as

𝑊−1𝑎𝑖1𝑎𝑖2𝑎𝑖3𝑊 = 𝑎𝑖1𝑎𝑖2𝑎𝑖3 −
∫ 1

0
𝑊−𝑠 [𝑎𝑖1𝑎𝑖2𝑎𝑖3 ,G4]𝑊𝑠d𝑠 +

∫ 1

0
𝑊−𝑠 [𝑎𝑖1𝑎𝑖2𝑎𝑖3 ,G†

2 + G†
4 − G2]𝑊𝑠d𝑠.

(126)

Furthermore, note that we can write

[𝑎𝑖1𝑎𝑖2𝑎𝑖3 , G4] =
∑
𝑢

𝛽𝑢𝑖1𝑖2𝑖3𝑎
†
𝑢𝑎

4
0 + (𝛿𝜉)𝑖1𝑖2𝑖3 , (127)

where we define the error term

(𝛿𝜉)𝑖1𝑖2𝑖3 :=
1
4

∑
𝜎∈𝑆3

∑
𝑗𝑘

𝛽𝑖𝜎2 𝑖𝜎3 𝑗𝑘𝑎
†
𝑗𝑎

†
𝑘𝑎𝑖𝜎1

𝑎4
0 +

1
12

∑
𝜎∈𝑆3

∑
𝑖 𝑗𝑘

𝛽𝑖𝜎3 𝑖 𝑗𝑘
𝑎†𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎𝑖𝜎1

𝑎𝑖𝜎2
𝑎4

0.
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Therefore we can write the transformed operators 𝑊−1𝜉𝑖1𝑖2𝑖3𝑊 as

𝑊−1𝜉𝑖1𝑖2𝑖3𝑊 = (𝜓 + 𝛿1𝜓)𝑖1𝑖2𝑖3 −
∫ 1

0
𝑊−1

𝑠 (𝛿𝜉)𝑖1𝑖2𝑖3𝑊𝑠 d𝑠 +
∫ 1

0
𝑊−𝑠 [𝑎𝑖𝑎 𝑗𝑎𝑘 ,G†

2 + G†
4 − G2]𝑊𝑠d𝑠

+
∫ 1

0

∫ 𝑠

0
𝑊−1

𝑡

[∑
𝑢

𝛽𝑢𝑖1𝑖2𝑖3𝑎
†
𝑢𝑎

4
0, G

†
2 + G†

4 − G2 − G4

]
𝑊𝑡 d𝑡d𝑠

+
∫ 1

0
𝑊−𝑠 [𝜉𝑖1𝑖2𝑖3 − 𝑎𝑖1𝑎𝑖2𝑎𝑖3 , G†

2 + G†
4 − G2 − G4]𝑊𝑠 d𝑠. (128)

Recall the definition of EP defined in Eq. (75). The following Lemma 11 provides sufficient bounds on
the various error terms appearing in Eq. (128).

Lemma 11. There exists a constant 𝐶 > 0, such that

EP (𝛿𝜉) ≤ 𝐶 (N + 1)6. (129)

Furthermore, we have EP
(
[𝑎𝑖1𝑎𝑖2𝑎𝑖3 ,G†

2 + G†
4 − G2]

)
≤ 𝐶 (N + 1)6 and

EP
(
[𝜉𝑖1𝑖2𝑖3 − 𝑎𝑖1𝑎𝑖2𝑎𝑖3 , G†

2 + G†
4 − G2 − G4]

)
≤ 𝐶 (N + 1)6, (130)

EP

([∑
𝑢

𝛽𝑢𝑖1𝑖2𝑖3𝑎
†
𝑢𝑎

4
0, G

†
2 + G†

4 − G2 − G4

])
≤ 𝐶 (N + 1)6. (131)

Proof. Let us define

(𝛿1𝜉)𝑖1𝑖2𝑖3 :=
1
4

∑
𝑗𝑘

𝛽𝑖2𝑖3 𝑗𝑘𝑎
†
𝑗𝑎

†
𝑘𝑎𝑖1𝑎

4
0,

𝐶𝑁 := sup
𝑖1

∑
𝑗𝑘,𝑖2𝑖3 ,𝑖

′
1𝑖

′
2𝑖

′
3

���(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 𝛽𝑖2𝑖3 𝑗𝑘 𝛽𝑖′2𝑖
′
3 𝑗𝑘

��� � 𝑁−5,

where we have used Eq. (109) to estimate 𝐶𝑁 . Applying Cauchy-Schwarz yields∑
(𝑖1𝑖2𝑖3) , (𝑖′1𝑖

′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 (𝛿1𝜉)†𝑖1𝑖2𝑖3 (𝛿1𝜉)𝑖′1𝑖′2𝑖′3 ≤ 𝐶𝑁 (𝑎†0)
4𝑎4

0

(∑
𝑖1

𝑎†𝑖1𝑎𝑖1

)
(N + 1)2. (132)

Using the fact that 𝐶𝑁 (𝑎†0)
4𝑎4

0

(∑
𝑖1 𝑎

†
𝑖1
𝑎𝑖1

)
≤ 𝐶𝑁 𝑁

5 � 1, we observe that the quantity in Eq. (132) is
bounded by the right-hand side of Eq. (129). Let us furthermore define

(𝛿2𝜉)𝑖1𝑖2𝑖3 :=
1

12

∑
𝑖 𝑗𝑘

𝛽𝑖3𝑖 𝑗𝑘𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎𝑖1𝑎𝑖2𝑎

4
0.

In the following we want to distinguish between the cases 𝐴′ := {(𝑖1𝑖2𝑖3) ∈ 𝐴 : 𝑖1, 𝑖2 ≠ 0} and
𝐴′′ := 𝐴 \ 𝐴′, leading to the definition

𝐶 ′
𝑁 := sup

𝑖1𝑖2

∑
𝑖 𝑗𝑘,𝑖3 ,𝑖

′
1𝑖

′
2𝑖

′
3

1
(
(𝑖1, 𝑖2, 𝑖3), (𝑖′1𝑖

′
2𝑖

′
3) ∈ 𝐴′) ���(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 𝛽𝑖3𝑖 𝑗𝑘 𝛽𝑖′3𝑖 𝑗𝑘

��� � 𝑁−5,

𝐶 ′′
𝑁 := sup

𝑖1𝑖2

∑
𝑖 𝑗𝑘,𝑖3 ,𝑖

′
1𝑖

′
2𝑖

′
3

1
(
(𝑖1, 𝑖2, 𝑖3), (𝑖′1𝑖

′
2𝑖

′
3) ∈ 𝐴′′) ���(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 𝛽𝑖3𝑖 𝑗𝑘 𝛽𝑖′3𝑖 𝑗𝑘

��� � 𝑁− 13
2 ,

https://doi.org/10.1017/fms.2025.10113 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10113


46 M. Brooks

where we have again used Eq. (109). Applying Cauchy-Schwarz leads to the estimate∑
(𝑖1𝑖2𝑖3) , (𝑖′1𝑖

′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 (𝛿2𝜉)†𝑖1𝑖2𝑖3 (𝛿2𝜉)𝑖′1𝑖′2𝑖′3 ≤ 𝐶 ′
𝑁 𝑁

4(N + 1)5 + 𝐶 ′′
𝑁 𝑁

6(N + 1)3,

which is bounded by the right-hand side of Eq. (129). Finally we use that 𝑉𝑁 is permutation-symmetric
and non-negative, and therefore the left-hand side of Eq. (129) is bounded by

6
∑

(𝑖1𝑖2𝑖3) , (𝑖′1𝑖
′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 (𝛿1𝜉 + 𝛿2𝜉)†𝑖1𝑖2𝑖3 (𝛿1𝜉 + 𝛿2𝜉)𝑖′1𝑖′2𝑖′3

≤ 12
∑

(𝑖1𝑖2𝑖3) , (𝑖′1𝑖
′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 (𝛿1𝜉)†𝑖1𝑖2𝑖3 (𝛿1𝜉)𝑖′1𝑖′2𝑖′3 + 12
∑

(𝑖1𝑖2𝑖3) , (𝑖′1𝑖
′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3 (𝛿2𝜉)†𝑖1𝑖2𝑖3 (𝛿2𝜉)𝑖′1𝑖′2𝑖′3 .

Regarding the term EP
(
[𝑎𝑖1𝑎𝑖2𝑎𝑖3 ,G†

2 + G†
4 − G2]

)
, let us analyze the term involving the commutator

with G2, the terms involving G†
2 +G

†
4 can be analyzed in a similar fashion as has been done in Lemma 6.

We compute

[𝑎𝑖1𝑎𝑖2𝑎𝑖3 , G2] = 𝛼𝑖2𝑖3𝑎𝑖1𝑎
2
0 +

∑
𝑢

𝛼𝑢𝑖3𝑎
†
𝑢𝑎𝑖2𝑎𝑖3 + {Permutations}. (133)

In order to analyze the first term on the right-hand side of Eq. (133), let us define 𝐷𝑁 :=
sup𝑖1

∑
𝑖2𝑖3 ,𝑖

′
1𝑖

′
2𝑖

′
3

���(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3𝛼𝑖2𝑖3𝛼𝑖′2𝑖
′
3

��� and note that 𝐷𝑁 � 𝑁−3 by Eq. (108). Hence

∑
(𝑖1𝑖2𝑖3) , (𝑖′1𝑖

′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3
(
𝛼𝑖2𝑖3𝑎𝑖1𝑎

2
0

)†
𝛼𝑖′2𝑖

′
3
𝑎𝑖′1

𝑎2
0 ≤ 𝐷𝑁𝑁

3 � 1.

Regarding the second term on the right-hand side of Eq. (133), we use again the split 𝐴 = 𝐴′ ∪ 𝐴′′ and
define

𝐷 ′
𝑁 := sup

𝑖1𝑖2

∑
𝑢,𝑖3 ,𝑖

′
1𝑖

′
2𝑖

′
3

1
(
(𝑖1, 𝑖2, 𝑖3), (𝑖′1𝑖

′
2𝑖

′
3) ∈ 𝐴′) ���(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3𝛼𝑢𝑖3𝛼𝑢𝑖′3

��� � 𝑁− 5
2 ,

𝐷 ′
𝑁 := sup

𝑖1𝑖2

∑
𝑢,𝑖3 ,𝑖

′
1𝑖

′
2𝑖

′
3

1
(
(𝑖1, 𝑖2, 𝑖3), (𝑖′1𝑖

′
2𝑖

′
3) ∈ 𝐴′′) ���(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3𝛼𝑢𝑖3𝛼𝑢𝑖′3

��� � 𝑁−4,

where we have used Eq. (108). Consequently

∑
(𝑖1𝑖2𝑖3) , (𝑖′1𝑖

′
2𝑖

′
3) ∈𝐴

(𝑉𝑁 )𝑖1𝑖2𝑖3 ,𝑖′1𝑖′2𝑖′3

(∑
𝑢

𝛼𝑢𝑖3𝑎
†
𝑢𝑎𝑖2𝑎𝑖3

)† (∑
𝑢

𝛼𝑢𝑖3𝑎
†
𝑢𝑎𝑖2𝑎𝑖3

)
� 𝑁− 1

2 (N + 1)3 + 1,

and therefore EP
(
[𝑎𝑖1𝑎𝑖2𝑎𝑖3 ,G2]

)
≤ 12EP

(
𝛼𝑖2𝑖3𝑎𝑖1𝑎

2
0
)
+ 12EP

(∑
𝑢 𝛼𝑢𝑖3𝑎

†
𝑢𝑎𝑖2𝑎𝑖3

)
� (N + 1)3. The

inequalities in Eq. (130) and Eq. (131) can be verified similarly. �

With Lemma 11 at hand, we show in the subsequent Corollary 6 that after conjugation with the
unitary W, the potential energy of the operators 𝜉𝑖 𝑗𝑘 is comparable to the potential energy of (𝜓 + 𝛿1)𝑖 𝑗𝑘 .

Corollary 6. There exists a constant 𝐶 > 0, such that

𝑊−1EP (𝜉)𝑊 ≤ 𝐶 EP (𝜓 + 𝛿1𝜓) + 𝐶 (N + 1)6.
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Proof. Using the sign 𝑉𝑁 ≥ 0, we obtain by the Cauchy-Schwarz inequality and the representation of
𝑊−1𝜉𝑖1𝑖2𝑖3𝑊 in Eq. (128) the estimate

𝑊−1EP (𝜉)𝑊 = EP
(
𝑊−1𝜉𝑊

)
≤ 5EP (𝜓 + 𝛿1) + 5

∫ 1

0
𝑊−1

𝑠 EP (𝛿𝜉)𝑊𝑠d𝑠

+ 5
∫ 1

0
𝑊−𝑠EP

(
[𝑎𝑖𝑎 𝑗𝑎𝑘 , G†

2 + G†
4 − G2]

)
d𝑠𝑊𝑠

+ 5
2

∫ 1

0

∫ 𝑠

0
𝑊−1

𝑡 EP

([∑
𝑢

𝛽𝑢𝑖1𝑖2𝑖3𝑎
†
𝑢𝑎

4
0, G

†
2 + G†

4 − G2 − G4

])
𝑊𝑡d𝑡d𝑠

+ 5
∫ 1

0
𝑊−𝑠EP

(
[𝜉𝑖1𝑖2𝑖3 − 𝑎𝑖1𝑎𝑖2𝑎𝑖3 , G†

2 + G†
4 − G2 − G4]

)
𝑊𝑠d𝑠

� EP (𝜓 + 𝛿1) +
∫ 1

0
𝑊−𝑠 (N + 1)6𝑊𝑠 d𝑠 +

∫ 1

0

∫ 𝑠

0
𝑊−𝑡 (N + 1)6𝑊𝑡 d𝑡d𝑠 � EP (𝜓 + 𝛿1) + (N + 1)6,

where we have first used Lemma 11 and subsequently Eq. (125) in the last line. �

Regarding the variable 𝑑𝑘 , Duhamel’s formula yields for 𝑘 ≠ 0

𝑊−1𝑑𝑘𝑊 = 𝑐𝑘 +
∫ 1

0

∫ 𝑠

0
𝑊−𝑡

[
[𝑎𝑘 , 𝐺2 + 𝐺4],G†

2 + G†
4

]
𝑊𝑡d𝑡d𝑠 +

∫ 1

0
𝑊−𝑠

[
𝑑𝑘 − 𝑎𝑘 , 𝐺

†
2 + 𝐺

†
4

]
𝑊𝑠d𝑠.

(134)

Recall the kinetic energy of an operator-valued one-particle vector Θ𝑘 defined in Eq. (83). Then the
following Lemma 12 provides sufficient bounds on the various error terms appearing in Eq. (134).

Lemma 12. There exists a constant 𝐶 > 0, such that for 𝑚 ∈ N

EK
(
N𝑚

[
𝑑𝑘 − 𝑎𝑘 , 𝐺

†
2 + 𝐺

†
4

] )
≤ 𝐶

𝑁
(N + 1)5+2𝑚,

EK
(
N𝑚

[
[𝑎𝑘 , 𝐺2 + 𝐺4], G†

2 + G†
4

] )
≤ 𝐶

𝑁
(N + 1)5+2𝑚.

Proof. Let us compute as an example for 𝑘 ≠ 0[
[𝑎𝑘 , 𝐺4], G†

4

]
=

1
24

∑
𝑖1𝑖2𝑖3

𝛽𝑘𝑖1𝑖2𝑖3

[
𝑎†𝑖1𝑎

†
𝑖2
𝑎†𝑖3𝑎

4
0,G

†
4

]
=

1
24

∑
𝑖1𝑖2𝑖3

𝛽𝑘𝑖1𝑖2𝑖3𝑎
†
𝑖1
𝑎†𝑖2

[
𝑎†𝑖3 , G

†
4

]
𝑎4

0 +
1

24

∑
𝑖1𝑖2𝑖3

𝛽𝑘𝑖1𝑖2𝑖3𝑎
†
𝑖1

[
𝑎†𝑖2 ,G

†
4

]
𝑎†𝑖3𝑎

4
0

+ 1
24

∑
𝑖1𝑖2𝑖3

𝛽𝑘𝑖1𝑖2𝑖3

[
𝑎†𝑖1 ,G

†
4

]
𝑎†𝑖2𝑎

†
𝑖3
𝑎4

0 +
1

24

∑
𝑖1𝑖2𝑖3

𝛽𝑘𝑖1𝑖2𝑖3𝑎
†
𝑖1
𝑎†𝑖2𝑎

†
𝑖3

[
𝑎4

0,G
†
4

]
,

and let us focus on the term∑
𝑖1𝑖2𝑖3

𝛽𝑘𝑖1𝑖2𝑖3𝑎
†
𝑖1
𝑎†𝑖2

[
𝑎†𝑖3 , G

†
4

]
𝑎4

0 =
1
6

∑
𝑖1𝑖2𝑖3 , 𝑗1 𝑗2 𝑗3

𝛽𝑘𝑖1𝑖2𝑖3 𝛽𝑖3 𝑗1 𝑗2 𝑗3 (𝑎
†
0)

4𝑎4
0𝑎

†
𝑖1
𝑎†𝑖2𝑎 𝑗1𝑎 𝑗2𝑎 𝑗3 .

Defining

𝐶𝑁 :=
∑

𝑘,𝑖1𝑖2 , 𝑗1 𝑗2 𝑗3

|𝑘 |2
�����∑
𝑖3

𝛽𝑘𝑖1𝑖2𝑖3 𝛽𝑖3 𝑗1 𝑗2 𝑗3

�����2 � 𝑁− 19
2 ,
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where we have used Eq. (109), we obtain

EK

(∑
𝑖1𝑖2𝑖3

𝛽𝑘𝑖1𝑖2𝑖3N𝑚𝑎†𝑖1𝑎
†
𝑖2

[
𝑎†𝑖3 , G

†
4

]
𝑎4

0

)
� 𝑁− 19

2

(
(𝑎†0)

4𝑎4
0

)2
(N + 1)5+2𝑚 ≤ 𝑁− 3

2 (N + 1)5+2𝑚.

The other estimates in Lemma 12 can be verified similarly. �

Similar to Corollary 6, we show in the following Corollary 7 that, after conjugation with the unitary
W, the kinetic energy of the operators 𝑑𝑘 is comparable to the one of 𝑐𝑘 .

Corollary 7. There exists a constant 𝐶 > 0, such that for 𝑚 ∈ N

𝑊−1E𝐾 (N𝑚𝑑)𝑊 ≤ 𝐶E𝐾 (𝑐) + 𝐶E𝐾 (N𝑚𝑐) + 𝐶

𝑁
(N + 1)5+2𝑚.

Proof. By Eq. (125) we have (𝑊−1N𝑚𝑊)∗𝑊−1N𝑚𝑊 = 𝑊−1N 2𝑚𝑊 � N 2𝑚 + 1, hence

𝑊−1EK (N𝑚𝑑)𝑊 = EK
(
𝑊−1N𝑚𝑊𝑊−1𝑑𝑊

)
� EK

(
𝑊−1𝑑𝑊

)
+ EK

(
N𝑚𝑊−1𝑑𝑊

)
.

Following the ideas in Corollary 6, we estimate using Eq. (134)

EK
(
N𝑚𝑊−1𝑑𝑊

)
≤ 3 EK (N𝑚𝑐)

+ 3
2

∫ 1

0

∫ 𝑠

0
𝑊−𝑡EK

(
N𝑚

[
[𝑎𝑘 , 𝐺2 + 𝐺4],G†

2 + G†
4

] )
𝑊𝑡d𝑠

+ 3
∫ 1

0
𝑊−𝑠EK

(
N𝑚

[
𝑑𝑘 − 𝑎𝑘 , 𝐺

†
2 + 𝐺

†
4

] )
𝑊𝑠d𝑠

� EK (N𝑚𝑐) + 1
𝑁

∫ 1

0

∫ 𝑠

0
𝑊−𝑡 (N + 1)5+2𝑚𝑊𝑡d𝑠 +

1
𝑁

∫ 1

0
𝑊−𝑠 (N + 1)5𝑊𝑠d𝑠

� EK (N𝑚𝑐) + 1
𝑁
(N + 1)5+2𝑚,

where we have first used Lemma 12 and subsequently Eq. (125) in the last line. �

Before we come to the proof of the upper bound in Theorem 1, we are showing in the following
Lemma 13 that even without a unitary conjugation, the kinetic energy of 𝑐𝑘 is comparable with the one
of 𝑑𝑘 . The price for dropping the unitary W is that we obtain an order 𝑂𝑁→∞

(√
𝑁
)

prefactor in front
of the excess term (N + 3)3+2𝑚, instead of a prefactor of the order 𝑂𝑁→∞(1).

Lemma 13. There exists a constant 𝐶 > 0, such that for 𝑚 ∈ N

E𝐾 (N𝑚𝑐) ≤ 𝐶E𝐾 (N𝑚𝑑) + 𝐶
√
𝑁 (N + 1)3+2𝑚.

Proof. Note that we can write 𝑐𝑘 as

𝑐𝑘 = 𝑑𝑘 − 2
∑
𝑗

𝛼 𝑗𝑘𝛼 𝑗𝑘𝑎
†
𝑗𝑎

2
0 − 4

∑
𝑢𝑖 𝑗

𝛽𝑢𝑖 𝑗𝑘𝑎
†
𝑢𝑎

†
𝑖 𝑎

†
𝑗𝑎

4
0,

and therefore

E𝐾 (N𝑚𝑐) ≤ 3 E𝐾 (N𝑚𝑑) + 12 E𝐾

(∑
𝑗

𝛼 𝑗𝑘 N𝑚𝑎†𝑗𝑎
2
0

)
+ 48 E𝐾

(∑
𝑢𝑖 𝑗

𝛽𝑢𝑖 𝑗𝑘 N𝑚𝑎†𝑢𝑎
†
𝑖 𝑎

†
𝑗𝑎

4
0

)
.
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Defining the constant 𝐶𝑁 :=
∑

𝑗𝑘 |𝑘 |2 |𝛼 𝑗𝑘 |2 � 𝑁− 3
2 , which follows from Eq. (108), we obtain

E𝐾

(∑
𝑗

𝛼 𝑗𝑘 N𝑚𝑎†𝑗𝑎
2
0

)
≤ 𝐶𝑁 (𝑎†0)

2𝑎2
0 (N + 1)𝑚+1 �

√
𝑁 (N + 1)𝑚+1.

Similarly we obtain

E𝐾

(∑
𝑢𝑖 𝑗

𝛽𝑢𝑖 𝑗𝑘 N𝑚𝑎†𝑢𝑎
†
𝑖 𝑎

†
𝑗𝑎

4
0

)
�
√
𝑁 (N + 3)3 �

√
𝑁 (N + 1)3. �

Proof of the upper bound in Theorem 1. Let us define the trial state Φ := 𝑊Γ, where Γ is the state
defined below Eq. (71), and recall the representation of 𝐻𝑁 in Eq. (106)

〈Φ, 𝐻𝑁Φ〉 = 𝜆0,0𝑁
3〈Φ, 𝑁−3(𝑎†0)

3𝑎3
0Φ〉 + (𝛾𝑁 − 𝜎𝑁 )〈Φ, 𝑁−4 (𝑎†0)

4𝑎4
0Φ〉 − 𝜇𝑁 〈Φ, 𝑁−2(𝑎†0)

2𝑎2
0Φ〉

+ 〈Φ, EK (𝑑)Φ〉 + 〈Φ, EP (𝜉)Φ〉 + 2ℜ𝔢〈Φ, E∗Φ〉 −
〈
Φ, ẼΦ

〉
−
〈
Φ,

� !
∑

𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$Φ

〉
.

By Eq. (125) and the fact that ±
(
𝑁−𝑚(𝑎†0)

𝑚𝑎𝑚
0 − 1

)
� 𝑁−1N , we obtain that���〈Φ, 𝑁−3(𝑎†0)

3𝑎3
0Φ〉 − 1

��� � 𝑁−1〈Φ,NΦ〉 = 𝑁−1〈Γ,𝑊−1N𝑊Γ〉 � 𝑁−1〈Γ, (N + 1)Γ〉 � 𝑁−1,

see Eq. (84) for the last estimate. Making use of Lemma 8, Lemma 4 and Lemma 10 yields

|〈Φ, E∗Φ〉| � 𝑁− 1
4 〈Φ, EK (𝑐)Φ〉 + 𝑁

1
4 〈Φ,NΦ〉,���〈Φ, � !

∑
𝑖 𝑗𝑘,ℓ𝑚𝑛

(Θ)𝑖 𝑗𝑘 𝜓†
𝑖 𝑗𝑘 𝑎

†
0𝑎

4
0 + H.c."#$Φ

〉��� � 𝑁− 1
4 〈Φ, EK (𝑐)Φ〉 + 𝑁− 1

4 〈Φ,NΦ〉 + 𝑁
1
4 ,

���〈Φ, ẼΦ〉��� � 𝑁− 1
4

〈
Φ, EK

((
N
√
𝑁

+ 1
)
𝑐

)
Φ

〉
+ 𝑁

1
4

〈
Φ,

(
N
√
𝑁

+ 1
)2 (

N +
√
𝑁
)
Φ

〉
+ 〈Φ,NΦ〉.

Observe that 〈Φ,N𝑚Φ〉 � 1 and furthermore we have by Lemma 13 and Corollary 7

〈Φ, E𝐾 (N𝑚𝑐)Φ〉 � 〈Φ, E𝐾 (N𝑚𝑑)Φ〉 +
√
𝑁 =

〈
Γ,𝑊−1E𝐾 (N𝑚𝑑)𝑊Γ

〉
+
√
𝑁

� 〈Γ, E𝐾 (𝑐)Γ〉 + 〈Γ, E𝐾 (N𝑚𝑐)Γ〉 +
√
𝑁 �

√
𝑁,

where we used Corollary 4 in the last estimate. Putting together what we have so far, and utilizing Eq.
(120)-(122) again, yields

〈Φ, 𝐻𝑁Φ〉 = 1
6
𝑏M(𝑉)𝑁 +

(
𝛾(𝑉) − 𝜎(𝑉) − 𝜇(𝑉)

)√
𝑁 + 〈Φ, EK (𝑑)Φ〉 + 〈Φ, EP (𝜉)Φ〉 +𝑂𝑁→∞

(
𝑁

1
4

)
.

Using Corollary 6, Corollary 7, Corollary 3 and Corollary 4, we further have

0 ≤ 〈Φ, EP (𝜉)Φ〉 = 〈Γ,𝑊−1EP (𝜉)𝑊Γ〉 � 〈Γ, EP (𝜓 + 𝛿1𝜓)Γ〉 + 1 � 1,

0 ≤ 〈Φ, EK (𝑑)Φ〉 = 〈Γ,𝑊−1EK (𝑑)𝑊Γ〉 � 〈Γ, EK (𝑐)Γ〉 +
1
𝑁
�

1
𝑁
. �
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6. Proof of Theorem 2

In the following, we want to verify Theorem 2, claiming that any sequence of states Ψ𝑁 with

〈Ψ𝑁 , 𝐻𝑁Ψ〉 ≤ 𝐸𝑁 +𝑂𝑁→∞
(
𝑁

1
4

)
,

satisfies complete Bose-Einstein condensation with a rate of the order 𝑁− 3
4 . Together with Theorem 1,

the statement follows immediately once we can show that

𝐻𝑁 (𝛼) := 𝐻𝑁 − 𝛼N ≥ 1
6
𝑏M (𝑉)𝑁 +

(
𝛾(𝑉) − 𝜇(𝑉) − 𝜎(𝑉)

)√
𝑁 − 𝐶𝑁

1
4 , (135)

for some constant C. In order to prove Eq. (135), we observe that by the results in [23, Section 7], see also
the comment below [25, Theorem 4], the modified operators 𝐻𝑁 (2𝛼) satisfy the asymptotic identity

lim
𝑁→∞

1
𝑁

inf 𝜎
(
𝐻𝑁 (2𝛼)

)
= inf

𝑢∈𝐿2 (Λ):‖𝑢 ‖=1
E 𝛼

GP (𝑢),

where the modified Gross-Pitaevskii functional is defined as

E 𝛼
GP (𝑢) := 〈𝑢, (−Δ)𝑢〉 + 𝑏M (𝑉)

6

∫
Λ
|𝑢(𝑥) |6d𝑥 + 2𝛼‖𝑃𝑢‖2 − 2𝛼

using the projection 𝑃 = 1 − 𝑄, with Q being introduced in Eq. (18). Note that in the notation of [25]
the operator 𝐻𝑁 (2𝛼) reads

𝐻𝑁 (2𝛼) = 𝐻𝑁 + 2𝛼
𝑁∑
𝑗=1

𝑃𝑥 𝑗 − 2𝛼𝑁.

Furthermore, for 𝛼 < 2𝜋2, we have that

〈𝑢, (−Δ)𝑢〉 ≥ 4𝜋2‖𝑄𝑢‖2 ≥ 2𝛼‖𝑢‖2 − 2𝛼‖𝑃𝑢‖2,

and by Hölder’s inequality we have

1 =

(∫
|𝑢 |2d𝑥

)3
≤

(∫
Λ

1d𝑥
)2 ∫

|𝑢 |6d𝑥 =
∫

|𝑢 |6d𝑥

for any 𝑢 ∈ 𝐿2 (Λ) with ‖𝑢‖ = 1, leading to the lower bound

lim
𝑁→∞

1
𝑁

inf 𝜎
(
𝐻𝑁 (2𝛼)

)
≥ 𝑏M (𝑉)

6
.

Therefore, the ground state Ψ𝑁 ,𝛼 of 𝐻𝑁 (𝛼) satisfies

〈Ψ𝑁 ,𝛼, 𝐻𝑁 (𝛼)Ψ𝑁 ,𝛼〉 = 〈Ψ𝑁 ,𝛼, 𝐻𝑁 (2𝛼)Ψ𝑁 ,𝛼〉 + 𝛼〈Ψ𝑁 ,𝛼,NΨ𝑁 ,𝛼〉

≥ 𝑏M (𝑉)
6

𝑁 + 𝛼〈Ψ𝑁 ,𝛼,NΨ𝑁 ,𝛼〉 − 𝑜𝑁→∞(𝑁),

and by Theorem 1 we obtain the matching upper bound

〈Ψ𝑁 ,𝛼, 𝐻𝑁 (𝛼)Ψ𝑁 ,𝛼〉 = inf 𝜎
(
𝐻𝑁 (𝛼)

)
≤ inf 𝜎

(
𝐻𝑁

)
≤ 𝑏M (𝑉)

6
𝑁 + 𝑜𝑁→∞(𝑁).
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As a consequence, the states Ψ𝑁 ,𝛼 satisfy complete Bose-Einstein condensation

〈Ψ𝑁 ,𝛼,NΨ𝑁 ,𝛼〉 = 𝑜𝑁→∞(𝑁),

and we can proceed exactly as in Corollary 2, as long as the additional condition 𝛼 < 𝛿 holds with 𝛿
being the constant in Eq. (64). In particular, there exist states Φ𝑁 ,𝛼 such that

〈Φ𝑁 ,𝛼, 𝐻𝑁 (𝛼)Φ𝑁 ,𝛼〉 ≤ inf 𝜎
(
𝐻𝑁 (𝛼)

)
+ 𝐶,

1
(
N ≤ 𝐶

√
𝑁
)
Φ𝑁 ,𝛼 = Φ𝑁 ,𝛼,

and we have the estimate on the kinetic energy
〈
Φ𝑁 ,𝛼,

∑
𝑘 |𝑘 |2𝑐†𝑘𝑐𝑘Φ𝑁 ,𝛼

〉
≤ 𝐶

√
𝑁 . Note that the

localization results in Lemma 5 hold without any modification for the operator 𝐻𝑁 (𝛼), since N
commutes with the localization functions 1(N ≤ 𝑀). Following Subsection 4.2, we therefore arrive at
the lower bound

inf 𝜎
(
𝐻𝑁 (𝛼)

)
+ 𝐶 ≥ 〈Φ𝑁 ,𝛼, 𝐻𝑁 (𝛼)Φ𝑁 ,𝛼〉 ≥

1
6
𝑏M (𝑉)𝑁 + (𝛾 − 𝜎 − 𝜇)

√
𝑁

− 𝛼〈Φ𝑁 ,𝛼,NΦ𝑁 ,𝛼〉 − 𝐶𝑁
1
4 + (1 − 2𝐶𝜖)

〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘Φ𝑁

〉
.

Using again Eq. (123), for 𝜏 < 1
4 , we obtain for a large enough constant C

inf 𝜎
(
𝐻𝑁 (𝛼)

)
≥ 1

6
𝑏M(𝑉)𝑁 + (𝛾 − 𝜎 − 𝜇)

√
𝑁 − 𝐶𝑁

1
4

+ (1 − 2𝐶𝜖 − 𝐶𝛼)
〈
Φ𝑁 ,

∑
𝑘

|𝑘 |2𝑑†𝑘𝑑𝑘Φ𝑁

〉
.

Choosing 𝛼 and 𝜖 small enough such that 2𝜖 + 𝛼 < 1
𝐶 concludes the proof of Eq. (135).

7. Analysis of the scattering coefficients

This Section is devoted to the study of the variational problems in the definition of 𝑏M(𝑉) in Eq. (4)
and the definition of 𝜎(𝑉) in Eq. (9) as well as the study of their corresponding minimizers 𝜔 and 𝜂.
Especially we want to compare 𝛾(𝑉), 𝜇(𝑉), and 𝜎(𝑉) defined in Eq. (10), Eq. (5) and Eq. (9) with
𝛾𝑁 , 𝜇𝑁 , and 𝜎𝑁 defined in Eq. (97), Eq. (102) and Eq. (98), see Lemma 17. The proof will be based on
the observation that the N-dependent quantities can be seen as a counterpart on the three-dimensional
torus Λ to the N-independent quantities defined in terms of variational problems on the full space R3.
Similarly we will compare in Lemma 16 the modified scattering length 𝑏M (𝑉), which can be expressed
in terms of the minimizer 𝜔 as

𝑏M (𝑉) =
∫
R6
(1 − 𝜔)𝑉 d𝑥,

see [23], with its counterpart on the torus Λ defined in Eq. (29) as

6𝜆0,0 = 〈𝑢0𝑢0𝑢0, (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑢0𝑢0𝑢0〉 = (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )000,000.

The proof of Lemma 16 is based on the observation that (1−𝜔)𝑉 = 𝑉 −𝜔𝑉 is the full space counterpart
to the renormalized potential 𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 .
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In the following Lemma 14 we want to derive properties of Q defined in Eq. (8) as

Q(𝜑) =
∫
R9

{
2
��M∗∇𝜑(𝑥)

��2 + V(𝑥)���� 𝑓 (𝑥)V(𝑥) − 𝜑(𝑥)
����2}d𝑥

and its minimizers. For this purpose it will be useful to introduce for a given cut-off parameter ℓ and
a smooth function 𝜒 : R6 −→ R function with 𝜒(𝑥) = 1 for |𝑥 |∞ ≤ 1

3 and 𝜒(𝑥) = 0 for |𝑥 |∞ > 1
2 , the

modified function

𝑓ℓ (𝑥1, 𝑥2, 𝑥3) := 𝑉 (𝑥1, 𝑥2)𝜒(ℓ−1𝑥2, ℓ
−1𝑥3)𝜔(𝑥2, 𝑥3).

Furthermore, we define the corresponding functional, acting on 
𝐻1(R9), as

Qℓ (𝜑) :=
∫
R9

{
2
��M∗∇𝜑(𝑥)

��2 + V(𝑥)���� 𝑓ℓ (𝑥)V(𝑥) − 𝜑(𝑥)
����2}d𝑥,

and 𝜎ℓ (𝑉) := Qℓ (0) − inf𝜑∈ 
𝐻 1 (R9) Qℓ (𝜑).

Lemma 14. There exists a unique minimizer 𝜂 of the functional Q in 
𝐻1(R9), and 𝜂 satisfies the point-
wise bounds 0 ≤ 𝜂 ≤ 1

−2ΔM∗
𝑓 and 𝜎(𝑉) =

∫
R9 𝑓 (𝑥)𝜂(𝑥)d𝑥, as well as

(−2ΔM∗ + V)𝜂 = 𝑓

in the sense of distributions. Furthermore, Qℓ has a unique minimizer 𝜂ℓ , and 𝜂ℓ satisfyies 0 ≤ 𝜂ℓ ≤
1

−2ΔM∗
𝑓ℓ and 𝜎ℓ (𝑉) =

∫
R9 𝑓ℓ (𝑥)𝜂ℓ (𝑥)d𝑥, as well as (−2ΔM∗ + V)𝜂ℓ = 𝑓ℓ and

𝜎(𝑉) = lim
ℓ→∞

𝜎ℓ (𝑉).

Proof. Following the proof of [23], we observe that since Q(0) < ∞, there exists a minimizing
sequence 𝜑𝑛 ∈ 
𝐻1 (R9) for Q with sup𝑛 ‖∇𝜑𝑛‖ < ∞ and sup𝑛

888√V( 𝑓
V
− 𝜑𝑛

)888 < ∞, and therefore there
exists by Banach-Alaoglu a subsequence 𝜑𝑛 and elements 𝑋,𝑌 ∈ 𝐿2 (R9) such that ∇𝜑𝑛 ⇀ 𝑋 and√
V

(
𝑓
V
− 𝜑𝑛

)
⇀ 𝑌 converge weakly in 𝐿2 (R9). By [17, Theorem 8.6], we obtain that there exists an

element 𝜂 ∈ 
𝐻1(R9) such that 𝑋 = ∇𝜂 and 𝜑𝑛 |𝐴 converges (strongly) to 𝜂 |𝐴 in 𝐿2 (𝐴) for any set 𝐴 ⊆ R9

of finite measure. Since
√
V is a bounded function, we further have the convergence of

√
V

(
𝑓
V
− 𝜑𝑛

)
|𝐴

to
√
V

(
𝑓
V
− 𝜂

)
|𝐴, and in particular 𝑌 =

√
V

(
𝑓
V
− 𝜂

)
. In summary we have

∇𝜑𝑛 ⇀ ∇𝜂,
√
V

(
𝑓

V
− 𝜑𝑛

)
⇀

√
V

(
𝑓

V
− 𝜂

)
weakly in 𝐿2 (R9), and therefore we observe that 𝜂 is a minimizer of Q

Q(𝜂) = 2‖M∗∇𝜂‖2 +
888√V( 𝑓

V
− 𝜂

)8882
≤ lim inf

𝑛

{
2‖M∗∇𝜑𝑛‖2 +

888√V( 𝑓
V

− 𝜑𝑛

)8882
}
= lim inf

𝑛
Q(𝜑𝑛).

Computing 0 = d
d𝑡Q(𝜂 + 𝑡𝜑) for 𝜑 ∈ 𝐶∞

0 (R9) immediately gives in the sense of distributions

(−2ΔM∗ + V)𝜂 = 𝑓 ,
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and computing 0 = d
d𝑡Q(𝜂 + 𝑡𝜂) yields 𝜎(𝑉) =

∫
R9 𝑓 (𝑥)𝜂(𝑥)d𝑥. Regarding the uniqueness, we note that

𝜑 ↦→ ‖M∗∇𝜑‖2 is strictly convex on 
𝐻1 (R9), and therefore Q is strictly convex too. Consequently the
minimizer 𝜂 is unique. Using that 𝑓

V
≥ 0, we have���� 𝑓 (𝑥)V(𝑥) − |𝜑(𝑥) |

���� = �������� 𝑓 (𝑥)V(𝑥)

���� − |𝜑(𝑥) |
���� ≤ ���� 𝑓 (𝑥)V(𝑥) − 𝜑(𝑥)

����,
and using furthermore the fact that 𝜑 ↦→

∫
R9 |∇𝜑(𝑥) |2d𝑥 is a Dirichlet form yields∫

R9

��M∗∇|𝜑(𝑥) |
��2d𝑥 = |detM∗ |

∫
R9

��∇𝑥 |𝜑(M∗𝑥) |
��2d𝑥 ≤ |detM∗ |

∫
R9

��∇𝑥𝜑(M∗𝑥)
��2d𝑥

=
∫
R9

��M∗∇𝜑(𝑥)
��2d𝑥.

Therefore, Q(|𝜑|) ≤ Q(𝜑) for all 𝜑 ∈ 
𝐻1(R9) and by the uniqueness of the minimizer we obtain
𝜂 = |𝜂 | ≥ 0. For the purpose of obtaining an upper bound on 𝜂, we observe that 1

M∗∇ 𝑓 ∈ 𝐿2 (R9) and
define the functional

Q̃(𝜑) :=
∫
R9

{
2
���M∗∇𝜑(𝑥) +

1
2M∗∇

𝑓 (𝑥)
���2 + V(𝑥) |𝜑(𝑥) |2}d𝑥.

Since Q̃(𝜑) = Q(𝜑) + Q̃(0) −Q(0), we observe that 𝜂 is the unique minimizer of 𝑄. It is furthermore
clear that ∫

R9
V(𝑥)

����min{𝜑, 1
−2ΔM∗

𝑓 }
����2d𝑥 ≤

∫
R9
V(𝑥) |𝜑(𝑥) |2d𝑥,

and utilizing again that 𝜑 ↦→
∫
R9 |∇𝜑(𝑥) |2d𝑥 is a Dirichlet form yields∫

R9

���M∗∇min{𝜑, 1
−2ΔM∗

𝑓 } + 1
2M∗∇

𝑓 (𝑥)
���2d𝑥

=
∫
R9

���M∗∇
(
min{𝜑, 1

−2ΔM∗
𝑓 } + 1

2ΔM∗
𝑓 (𝑥)

)���2d𝑥

=
∫
R9

���M∗∇
(
min{𝜑 + 1

2ΔM∗
𝑓 (𝑥), 0}

)���2d𝑥

≤
∫
R9

���M∗∇
(
𝜑 + 1

2ΔM∗
𝑓 (𝑥)

)���2d𝑥

=
∫
R9

���M∗∇𝜑(𝑥) +
1

2M∗∇
𝑓 (𝑥)

���2d𝑥.

In particular, Q̃(min{𝜑, 1
−2ΔM∗

𝑓 }) ≤ Q̃(𝜑), and therefore we obtain by the uniqueness of minimizer
for Q̃

𝜂 = min
{
𝜂,

1
−2ΔM∗

𝑓

}
≤ 1

−2ΔM∗
𝑓 .

The properties of Qℓ can be verified analogously.
In order to compare 𝜎(𝑉) with 𝜎ℓ (𝑉), let us first verify the point-wise bounds

𝜂ℓ ≤ 𝜂 ≤ 𝜂ℓ +
1

−2ΔM∗
( 𝑓 − 𝑓ℓ). (136)
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For this purpose we introduce the additional functionals Q′
ℓ and Q′′

ℓ as

Q′
ℓ (𝜑) :=

∫
R9

{
2
���M∗∇𝜑 −M∗∇𝜂

���2 + V����𝜑 − 𝜂 + 𝑓 − 𝑓ℓ
V

����2}d𝑥,

Q′′
ℓ (𝜑) :=

∫
R9

{
2
���M∗∇𝜑 −M∗∇𝜂ℓ +

1
2M∗∇

𝑓 − 1
2M∗∇

𝑓ℓ

���2 + V|𝜑 − 𝜂ℓ |2
}
d𝑥.

By a straightforward computation, we observe that Q′
ℓ (𝜑) = Qℓ (𝜑) + Q′

ℓ (0) − Qℓ (0) and similarly
Q′′

ℓ (𝜑) = Q(𝜑) +Q′′
ℓ (0) −Q(0). Therefore 𝜂ℓ is the unique minimizer of Q′

ℓ , and since 𝑓 (𝑥) ≥ 𝑓ℓ (𝑥)
we further have

Q′
ℓ (min{𝜑, 𝜂}) ≤ Q′

ℓ (𝜑).

Consequently 𝜂ℓ ≤ 𝜂. The second inequality in Eq. (136) follows analogously, utilizing that 𝜂 is the
unique minimizer of Q′′

ℓ and that

Q′′
ℓ

(
min

{
𝜑, 𝜂ℓ +

1
−2ΔM∗

( 𝑓 − 𝑓ℓ)
})

≤ Q′′
ℓ (𝜑).

Using the fact that | 𝑓 (𝑥) − 𝑓ℓ (𝑥) | �
1( |𝑥 |> ℓ3 )

|𝑥 |4 , see [23], the fundamental solution

Γ
(

9
2

)
28𝜋 9

2 det[𝑀∗]
1

|M−1
∗ (𝑥 − 𝑦) |7

for the differential operator −2ΔM∗ and the observation 1
|M−1

∗ 𝑣 | ≤
‖M∗ ‖
|𝑣 | , we obtain

1
−2ΔM∗

( 𝑓 − 𝑓ℓ) (𝑥) =
Γ
(

9
2

)
28𝜋 9

2 det[𝑀∗]

∫
R9

𝑓 (𝑦) − 𝑓ℓ (𝑦)
|M−1

∗ (𝑥 − 𝑦) |7
d𝑦 �

∫
|𝑦 | ≥ ℓ3

1
|𝑦 |4 |𝑥 − 𝑦 |7

d𝑦

�
∫
R9

1
(ℓ + |𝑦 |)4 |𝑥 − 𝑦 |7

d𝑦 ≤
∫
R9

1
(ℓ + |𝑦 |)4 |𝑦 |7

d𝑦 = ℓ−2
∫
R9

1
(1 + |𝑦 |)4 |𝑦 |7

d𝑦,

where we have used symmetric rearrangement. Since
∫
R9

1
(1+|𝑦 |)4 |𝑦 |7 d𝑦 < ∞ is finite, we obtain that

1
−2ΔM∗

( 𝑓 − 𝑓ℓ) converges point-wise to zero and consequently 𝜂ℓ converges point-wise to 𝜂 by Eq. (136).
Using Fatou’s Lemma and 𝑓ℓ (𝑥)𝜂ℓ (𝑥) ≥ 0, as well as the fact that 𝑓ℓ converges point-wise to f, therefore
yields

𝜎(𝑉) =
∫
R9

𝑓 (𝑥)𝜂(𝑥)d𝑥 ≤ lim inf
ℓ→∞

∫
R9

𝑓ℓ (𝑥)𝜂ℓ (𝑥)d𝑥 = lim inf
ℓ→∞

𝜎ℓ (𝑉) ≤ lim sup
ℓ→∞

𝜎ℓ (𝑉) ≤ 𝜎(𝑉),

where we have used in the last inequality that 𝑓ℓ𝜂ℓ ≤ 𝑓 𝜂 by Eq. (136). �

Before we can compare the modified scattering length 𝑏M (𝑉) with its counterpart on the torus in
Lemma 16, we need the following auxiliary result Lemma 15.

Lemma 15. Recall the definition of the coefficients 𝜆𝑘,ℓ in Eq. (29) and the definition of T in Eq. (19).

Then there exists a constant 𝐶 > 0 such that |𝜆𝑘,ℓ | ≤ 𝐶
𝑁 2

(
1 + |ℓ |2

𝑁

)−1
and

��(𝑇 − 1)𝑖 𝑗𝑘,ℓ00
�� ≤ 𝐶 1(𝑖 + 𝑗 + 𝑘 = ℓ)

𝑁2 (|𝑖 |2 + | 𝑗 |2 + |𝑘 |2)

(
1 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

𝑁 + |ℓ |2

)−2

. (137)
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Proof. In order to verify Eq. (137), we observe that for |ℓ | ≤ 𝐾 and 𝑛 ≥ 2

∇𝑛 (𝑇 − 1)𝑒𝑖ℓ𝑥 = ∇𝑛𝑅𝑉𝑁 𝑒
𝑖ℓ𝑥

can be written as the sum of terms of the form

𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 ∇𝑎𝑅1−𝑏𝑄⊗3𝑉𝑁 𝑒
𝑖ℓ𝑥 , (138)

where the coefficients satisfy 𝑘1 + · · · + 𝑘𝑚 + 2𝑚 + 𝑎 + 2𝑏 = 𝑛 and either (I) that 𝑏 = 1, (II) that 𝑏 = 0
and 𝑎 = 1 or (III) that 𝑏 = 0, 𝑎 = 0 and 𝑚 ≥ 1. We are going to verify Eq. (138) by induction, using the
resolvent identity

−Δ𝑅 = 𝑄⊗3 −𝑄⊗3𝑉𝑁𝑄
⊗3𝑅.

We start with the case 𝑛 = 2

∇2𝑅𝑉𝑁 𝑒
𝑖ℓ𝑥 = −(−Δ)𝑅𝑉𝑁 𝑒

𝑖ℓ𝑥 = 𝑄⊗3𝑉𝑁𝑄
⊗3𝑅𝑉𝑁 𝑒

𝑖ℓ𝑥 −𝑄⊗3𝑉𝑁 𝑒
𝑖ℓ𝑥 , (139)

and observe that the first term in Eq. (139) is of the type (III) and the second one is of type (I). For the
inductive argument, let

𝑇 = 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 ∇𝑎𝑅1−𝑏𝑄⊗3𝑉𝑁 𝑒
𝑖ℓ𝑥

be of type X with X being (I), (II) or (III), and let us compute

∇𝑇 =
(
𝑄⊗3∇𝑘1+1(𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 + · · · +𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚+1(𝑉𝑁 )𝑄⊗3

)
× (𝑉𝑁 )𝑄⊗3 ∇𝑎𝑅1−𝑏𝑄⊗3𝑉𝑁 𝑒

𝑖ℓ𝑥 (140)
+𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 ∇𝑎+1𝑅1−𝑏𝑄⊗3𝑉𝑁 𝑒

𝑖ℓ𝑥 . (141)

The terms in the first two lines, see Eq. (140), are clearly of type X again. Regarding the term in the
third line, see Eq. (141), we obtain that ∇𝑇 is type I in case T itself is type I. In case T is type III we
obtain that ∇𝑇 is type II, and finally in case T is type II, we have 𝑎 = 1 and use Eq. (139) again

𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 ∇𝑎+1𝑅1−𝑏𝑄⊗3𝑉𝑁 𝑒
𝑖ℓ𝑥

= 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3𝑉𝑁𝑄
⊗3𝑅𝑉𝑁 𝑒

𝑖ℓ𝑥 (142)
+𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3𝑉𝑁 𝑒

𝑖ℓ𝑥 . (143)

The right-hand side of Eq. (143) is clearly a sum of a type I and type III term, which concludes the
inductive proof of Eq. (138).

In the following we are going to verify individually for the three cases (I)–(III) that the Fourier
transform of the expression in Eq. (138) has an 𝐿∞ bound of the order 𝑁−2 (

√
𝑁 + |ℓ |)𝑛−2 for 𝑛 ≥ 2,

which immediately implies Eq. (137). Let us first of all state the useful bounds888√𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3
888 ≤

√
‖𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3‖ �

√
𝑁
𝑘
2 +1

, (144)8888 1
∇𝑄

⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3 1
∇

8888 � √
𝑁

𝑘
, (145)888√𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3𝑒𝑖𝐾 ·𝑋

888 ≤
√
〈𝑒𝑖𝐾 ·𝑋 ,∇𝑘 (𝑉𝑁 )𝑒𝑖𝐾 ·𝑋 〉 �

√
𝑁
𝑘
2 −2

(146)
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for 𝑘 ≥ 0. Regarding the case (I), we obtain immediately by Eq. (144) and Eq. (146)��〈𝑒𝑖𝐾 ·𝑋 , 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 ∇𝑎𝑉𝑁 𝑒
𝑖ℓ𝑥

〉��
�
√
𝑁

𝑘1+···+𝑘𝑚+2𝑚−4 (√
𝑁 + |ℓ |

)𝑎 ≤ 𝑁−2(
√
𝑁 + |ℓ |)𝑛−2.

Since the case (II) is similar to the case (III), let us directly have a look at the case (III), where we use
the fact that by Eq. (145)

‖
√
𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3𝑅∇‖2 = ‖

√
𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3𝑅∇2𝑅

√
𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3‖

≤ ‖
√
𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3𝑅

√
𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3‖ ≤ ‖

√
𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3 1

−Δ
√
𝑄⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3‖

= ‖ 1
∇𝑄

⊗3∇𝑘 (𝑉𝑁 )𝑄⊗3 1
∇ ‖ �

√
𝑁

𝑘
,

to obtain��〈𝑒𝑖𝐾 ·𝑋 , 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚−1 (𝑉𝑁 )𝑄⊗3 𝑄⊗3𝑉𝑁𝑄
⊗3 𝑅𝑉𝑁 𝑒

𝑖ℓ𝑥
〉�� (147)

�
√
𝑁
𝑘𝑚

2
888√𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 𝑄⊗3∇𝑘𝑚−1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 𝑒𝑖𝐾 ·𝑋

888 8888 1
∇𝑄

⊗3𝑉𝑁 𝑒
𝑖ℓ𝑥

8888.
As a consequence of Eq. (144) and Eq. (146) we have888√𝑄⊗3𝑉𝑁𝑄⊗3 𝑄⊗3∇𝑘𝑚−1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 𝑒𝑖𝐾 ·𝑋

888 � √
𝑁

𝑘1+···+𝑘𝑚+2(𝑚−1)−2
. (148)

This yields the desired estimate for the term in Eq. (147), since
88 1
∇𝑄

⊗3𝑉𝑁 𝑒
𝑖ℓ𝑥

88 � √
𝑁

−2. The bounds
on 𝜆𝑘,ℓ can be verified similarly. �

In the following Lemma 16, we show that the renormalized potential 𝑁2 (𝑉𝑁 − 𝑉𝑁 𝑅𝑉𝑁 ) converges
to 𝑏M (𝑉)𝛿(𝑥 − 𝑦, 𝑥 − 𝑧) in a suitable sense. The analogous result for Bose gases with two-particle
interactions has been verified in [8, Lemma 1].

Lemma 16. Let 𝑏M(𝑉) be the modified scattering length introduced in Eq. (4). Then��𝑁2(𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )000,000 − 𝑏M (𝑉)
�� ≤ 1

𝑁

Furthermore, (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛 = 0 in case 𝑖 + 𝑗 + 𝑘 ≠ ℓ + 𝑚 + 𝑛 and otherwise��𝑁2 (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )𝑖 𝑗𝑘,ℓ𝑚𝑛 − 𝑏M (𝑉)
�� ≤ 𝐶𝑖 𝑗𝑘,ℓ𝑚𝑛√

𝑁

for suitable constants 𝐶𝑖 𝑗𝑘,ℓ𝑚𝑛.

Proof. Let 𝜔 be the unique minimizer to the variational problem in Eq. (4), which exists according
to [23] and satisfies in the sense of distributions

(−2ΔM +𝑉)𝜔 = 𝑉.

Furthermore, let 𝜒 be a smooth function with 𝜒(𝑥) = 1 for |𝑥 |∞ ≤ 1
3 and 𝜒(𝑥) = 0 for |𝑥 |∞ > 1

2 ,
and let us denote for a function f the rescaled version with 𝑓 𝐿 (𝑥) := 𝑓 (𝐿𝑥). Then we define for
𝑛 = (𝑛1, 𝑛2, 𝑛3) ∈ (2𝜋Z)3×3 and 0 < ℓ <

√
𝑁

𝜓𝑛 (𝑥, 𝑦, 𝑧) := 𝑒𝑖𝑛1𝑥𝑒𝑖𝑛2𝑦𝑒𝑖𝑛3𝑧 𝜒
√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)𝜔

√
𝑁 (𝑥 − 𝑦, 𝑥 − 𝑧). (149)
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In the following we want to show that 𝜓𝑛 is an approximation of 𝑅𝑉𝑁 𝑒
𝑖𝑛1𝑥𝑒𝑖𝑛2𝑦𝑒𝑖𝑛3𝑧 . For this purpose

we observe that the function 𝜓𝑛 satisfies the differential equation

(−Δ +𝑉𝑁 )𝜓𝑛 = 𝑒𝑖𝑛1𝑥𝑒𝑖𝑛2𝑦𝑒𝑖𝑛3𝑧
(
𝑉𝑁 − 𝜉𝑛 (𝑥 − 𝑦, 𝑥 − 𝑧)

)
, (150)

where we define 𝜉𝑛 : T2 −→ R as

𝜉𝑛 := 𝑒−𝑖𝑛1𝑥𝑒−𝑖𝑛2𝑦𝑒−𝑖𝑛3𝑧
[
Δ , 𝑒𝑖𝑛1𝑥𝑒𝑖𝑛2𝑦𝑒𝑖𝑛3𝑧 𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)

]
𝜔
√
𝑁 (𝑥 − 𝑦, 𝑥 − 𝑧) (151)

=
(
(∇ + 𝑖𝑛)2𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧) − 𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)Δ

)
𝜔
√
𝑁 (𝑥 − 𝑦, 𝑥 − 𝑧)

=

(
Δ
(
𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)

)
+ 2∇

(
𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)

)
∇ − (𝑛2

1 + 𝑛
2
2 + 𝑛

2
3)𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)

+ 2𝑖𝑛
(
∇
(
𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)

)
+ 𝜒

√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)∇

))
𝜔
√
𝑁 (𝑥 − 𝑦, 𝑥 − 𝑧)

= 2ΔM (𝜒
√
𝑁
ℓ )𝜔

√
𝑁 + 4M2∇(𝜒

√
𝑁
ℓ )∇𝜔

√
𝑁 − (𝑛2

1 + 𝑛
2
2 + 𝑛

2
3)𝜒

√
𝑁
ℓ 𝜔

√
𝑁 (152)

+ 4𝑖(𝑛1 − 𝑛2)
(
∇𝑥1 (𝜒

√
𝑁
ℓ )𝜔

√
𝑁 + 𝜒

√
𝑁
ℓ ∇𝑥1 (𝜔

√
𝑁 )

)
+ 4𝑖(𝑛1 − 𝑛3)

(
∇𝑥2 (𝜒

√
𝑁
ℓ )𝜔

√
𝑁 + 𝜒

√
𝑁
ℓ ∇𝑥2 (𝜔

√
𝑁 )

)
.

In order to verify that 𝜉𝑛 can be treated as an error term, we first note that we haveD
ΔM𝜒

√
𝑁
ℓ =

(√
𝑁

−1
ℓ
)4 EΔM𝜒

ℓ√
𝑁 ,D

M2∇𝜒
√
𝑁
ℓ =

(√
𝑁

−1
ℓ
)5DM2∇𝜒

ℓ√
𝑁 ,

and utilizing the density 𝜌 := −2ΔM𝜔 we obtain

E
𝜔
√
𝑁 (𝐾) =

√
𝑁

−6
𝜔

1√
𝑁 (𝐾) =

√
𝑁

−6 𝜌̂(
√
𝑁

−1
𝐾)

|
√
𝑁

−1
𝐾 |2

=
√
𝑁

−4 𝜌̂(
√
𝑁

−1
𝐾)

|𝐾 |2
,

F∇𝜔√
𝑁 (𝐾) =

√
𝑁

−4 𝜌̂(
√
𝑁

−1
𝐾)𝐾

|𝐾 |2
,

Furthermore, we observe that we can write the Fourier transform of 𝜉𝑛 as

𝜉𝑛 =
D
ΔM𝜒

√
𝑁
ℓ ∗ E

𝜔
√
𝑁 + 2

D
M2∇𝜒

√
𝑁
ℓ ∗ F∇𝜔√

𝑁 − (𝑛2
1 + 𝑛

2
2 + 𝑛

2
3)
E
𝜒

√
𝑁
ℓ ∗ E

𝜔
√
𝑁

+ 4𝑖(𝑛1 − 𝑛2)
( D
∇𝑥1 (𝜒

√
𝑁
ℓ ) ∗ E

𝜔
√
𝑁 +

E
𝜒

√
𝑁
ℓ ∗ D∇𝑥1 (𝜔

√
𝑁 )

)
+ 4𝑖(𝑛1 − 𝑛3)

( D
∇𝑥2 (𝜒

√
𝑁
ℓ ) ∗ E

𝜔
√
𝑁 +

E
𝜒

√
𝑁
ℓ ∗ D∇𝑥2 (𝜔

√
𝑁 )

)
.

Since 𝜌 ∈ 𝐿1 (R6), see [23], we have 𝜌̂ ∈ 𝐿∞(R6), and distinguishing between the cases |𝐾 | �
√
𝑁
ℓ and

|𝐾 | �
√
𝑁
ℓ , yields the estimate

�� DΔM𝜒
√
𝑁
ℓ ∗ E

𝜔
√
𝑁 (𝐾)

�� � √
𝑁

−4 (√
𝑁

−1
ℓ
)4 ∫

R6

| EΔM𝜒(
√
𝑁

−1
ℓ𝑃) |

|𝐾 + 𝑃 |2
d𝑃 �

√
𝑁

−4
min

⎧⎪⎪⎨⎪⎪⎩
( √

𝑁

ℓ |𝐾 |

)2

, 1
⎫⎪⎪⎬⎪⎪⎭.
(153)
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Using that 𝜌 has compact support as a consequence of the scattering equation, we obtain that
𝑥∇𝜌(𝑥) ∈ 𝐿1 (R6) and therefore���𝐾1 𝜌̂(

√
𝑁

−1
𝐾1) − 𝐾2 𝜌̂(

√
𝑁

−1
𝐾2)

��� � |𝐾1 − 𝐾2 |.

Since DM2∇𝜒 is reflection antisymmetric, we furthermore have

�� D
M2∇𝜒

√
𝑁
ℓ ∗ F∇𝜔√

𝑁
�� � √

𝑁
−4 (√

𝑁
−1
ℓ
)5 ∫

R6

|DM2∇𝜒(
√
𝑁

−1
ℓ𝑃) |

|𝐾 + 𝑃 |2
| (𝐾 + 𝑃) − (𝐾 − 𝑃) |d𝑃

+
√
𝑁

−4 (√
𝑁

−1
ℓ
)5 ∫

R6

���DM2∇𝜒(
√
𝑁

−1
ℓ𝑃)

��� ���(𝐾 − 𝑃) 𝜌̂
(√
𝑁

−1
(𝐾 − 𝑃)

) ������� 1
|𝐾 + 𝑃 |2

− 1
|𝐾 − 𝑃 |2

����
�
√
𝑁

−4
min

⎧⎪⎪⎨⎪⎪⎩
( √

𝑁

ℓ |𝐾 |

)2

, 1
⎫⎪⎪⎬⎪⎪⎭.

Summarizing what we have so far, we can estimate the Fourier coefficients of 𝜉0 by

|𝜉0 (𝐾) | � 𝑁−2 min
⎧⎪⎪⎨⎪⎪⎩
( √

𝑁

ℓ |𝐾 |

)2

, 1
⎫⎪⎪⎬⎪⎪⎭. (154)

Proceeding similarly for general 𝑛 ≠ 0 we observe the slightly weaker estimate

|𝜉𝑛 (𝐾) | � 𝑁−2 min

{ √
𝑁

ℓ |𝐾 | , 1
}
. (155)

In the following let R denote the resolvent of the operator 𝑄⊗3 (−Δ + 𝑉𝑁 )𝑄⊗3 on the torus, and note
that we obtain as a consequence of the differential equation Eq. (150)

𝑅𝑉𝑁 𝑒
𝑖𝑛1𝑥𝑒𝑖𝑛2𝑦𝑒𝑖𝑛3𝑧 = 𝜓𝑛 + 𝑅𝜉𝑛 (𝑥 − 𝑦, 𝑥 − 𝑧)𝑒𝑖𝑛1𝑥𝑒𝑖𝑛2𝑦𝑒𝑖𝑛3𝑧 + (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)𝜓𝑛. (156)

Using the fact that V has compact support, there exists a ℓ0 > 0 such that 𝜒 1
ℓ (𝑥) = 1 for 𝑥 ∈ supp(𝑉)

and ℓ ≥ ℓ0, and therefore we obtain for 𝑛 = (𝑛1, 𝑛2, 𝑛3) and 𝑚 = (𝑚1, 𝑚2, 𝑚3)

(𝑉𝑁 )𝑚,𝑛 − 〈𝑉𝑁 𝑒
𝑖𝑚1𝑥𝑒𝑖𝑚2𝑦𝑒𝑖𝑚3𝑧 , 𝜓𝑛〉 =

𝛿𝑛=𝑚
𝑁2

∫
R6
𝑒
𝑖
𝑚2−𝑛2√
𝑁

𝑥
𝑒
𝑖
𝑚3−𝑛3√
𝑁

𝑦
𝑉 (𝑥, 𝑦)

(
1 − 𝜔(𝑥, 𝑦)

)
d𝑥d𝑦

=
𝛿𝑛=𝑚
𝑁2 𝑏M (𝑉) +𝑂𝑁→∞

(
𝑁− 5

2

)
, (157)

where 𝑛 := 𝑛1+𝑛2+𝑛3 and we have used that we can express the minimum in Eq. (4) according to [23] as

𝑏M(𝑉) =
∫
R6
𝑉 (𝑥, 𝑦)

(
1 − 𝜔(𝑥, 𝑦)

)
d𝑥d𝑦.

We observe that in the case 𝑚 = 0 and 𝑛 = 0, we even have the exact identity

𝑁2 (𝑉𝑁 )000,000 − 𝑁2〈𝑉𝑁 , 𝜓0〉 = 𝑏M(𝑉).

Consequently we obtain

𝑁2 (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )000,000 = 𝑏M (𝑉) − 𝑁2〈𝑅𝑉𝑁 , 𝜉0〉 − 3𝑁2
∑
𝑘

〈𝑉𝑁 , (𝑅𝑉𝑁 − 1)𝑒𝑖𝑘 (𝑥−𝑦) 〉〈𝑒𝑖𝑘 (𝑥−𝑦) , 𝜓0〉.
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Using Lemma 15 and the fact that (𝑅𝑉)𝑖 𝑗𝑘,000 = (𝑇 − 1)𝑖 𝑗𝑘,000 = 0 in case 𝑖 ≠ −( 𝑗 + 𝑘), we can estimate

𝑁2 |〈𝑅𝑉𝑁 , 𝜉0〉| = 𝑁2

������∑𝑗𝑘 (𝑅𝑉𝑁 )−( 𝑗+𝑘) 𝑗𝑘 𝜉0(−( 𝑗 + 𝑘), 𝑗 , 𝑘)

������
� 𝑁−2

∑
𝑗𝑘

(
1 + | 𝑗 |2+|𝑘 |2

𝑁

)−2

| 𝑗 |2 + |𝑘 |2
min

⎧⎪⎪⎨⎪⎪⎩
( √

𝑁

ℓ(| 𝑗 | + |𝑘 |)

)2

, 1
⎫⎪⎪⎬⎪⎪⎭

≤ 𝑁−2
∑
𝑗𝑘

(
1 + | 𝑗 |2+|𝑘 |2

𝑁

)− 3
2
( √

𝑁
ℓ ( | 𝑗 |+ |𝑘 |)

)2

| 𝑗 |2 + |𝑘 |2
�

1
ℓ2 .

Again by Lemma 15 we have that���〈𝑉𝑁 , (𝑅𝑉𝑁 − 1)𝑒𝑖𝑘 (𝑥−𝑦) 〉
��� � 𝑁−2

(
1 + |𝑘 |2

𝑁

)−1

,

and following the proof of Eq. (153) we obtain that | 〈𝑒𝑖𝑘 (𝑥−𝑦) , 𝜓0〉 | � 𝑁−2 1
1+|𝑘 |2 . Therefore

𝑁2
∑
𝑘

���〈𝑉𝑁 , (𝑅𝑉𝑁 − 1)𝑒𝑖𝑘 (𝑥−𝑦) 〉〈𝑒𝑖𝑘 (𝑥−𝑦) , 𝜓0〉
��� � 𝑁−2

∑
𝑘

(
1 + |𝑘 |2

𝑁

)−1

1 + |𝑘 |2
� 𝑁− 3

2 .

Choosing ℓ of the order
√
𝑁 yields��𝑁2 (𝑉𝑁 −𝑉𝑁 𝑅𝑉𝑁 )000,000 − 𝑏M (𝑉)

�� � 1
𝑁
. (158)

For general 𝑛 = (𝑛1, 𝑛2, 𝑛3) and 𝑚 = (𝑚1, 𝑚2, 𝑚3) with 𝑛1 + 𝑛2 + 𝑛3 = 𝑚1 + 𝑚2 + 𝑚3 the estimates in
Eq. (155) and Eq. (157) yield in a similar fashion the desired estimate. �

In Eq. (156) we saw that 𝑅𝑉𝑁 , an object defined on the torus Λ, is approximated by

𝜓𝑛 (𝑥, 𝑦, 𝑧) := 𝜒
√
𝑁
ℓ (𝑥 − 𝑦, 𝑥 − 𝑧)𝜔

√
𝑁 (𝑥 − 𝑦, 𝑥 − 𝑧),

which involves the corresponding object 𝜔 defined on the full space. In the following Lemma 17 we
make use of this correspondence again, to compare 𝛾𝑁 , 𝜇𝑁 and 𝜎𝑁 with 𝛾, 𝜇 and 𝜎.
Lemma 17. Let 𝛾𝑁 , 𝜇𝑁 and 𝜎𝑁 be as in Eq. (97), Eq. (102) and Eq. (98), and 𝜎(𝑉), 𝜇(𝑉) and 𝛾(𝑉)
as in Eq. (10), Eq. (5) and Eq. (9). Then

𝛾𝑁 = 𝛾(𝑉)
√
𝑁 +𝑂𝑁→∞

(
𝑁− 1

4

)
,

𝜇𝑁 = 𝜇(𝑉)
√
𝑁 +𝑂𝑁→∞(1),

𝜎𝑁 = 𝜎(𝑉)
√
𝑁 +𝑂𝑁→∞

(
𝑁

1
4

)
,

and there exists a constant 𝜆(𝑉) > 0 such that for 0 < 𝜆 ≤ 𝜆(𝑉)

𝛾(𝜆𝑉) − 𝜇(𝜆𝑉) − 𝜎(𝜆𝑉) < 0. (159)

Furthermore, 𝜎𝑁 and 𝛾𝑁 are independent of the parameter K from the definition of 𝜋𝐾 below Eq. (17),
and the limit 𝜇(𝑉) = lim𝑁

𝜇𝑁√
𝑁

is independent of K as well.
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Proof. In order to analyze 𝛾𝑁 , let us denote with 𝐿𝑖 : 𝐿2 (Λ4) −→ 𝐿2 (Λ4) the linear map that exchanges
the fist factor in the tensor product 𝐿2 (Λ4) � 𝐿2 (Λ)⊗4 with the i-th factor and observe that

√
𝑁

−1
𝛾𝑁 =

𝑁
7
2

6

3∑
𝑖=1

〈𝐿𝑖 1 ⊗ (𝑅𝑉𝑁 ), (𝑉𝑁 ⊗ 1)𝐿 𝑗 1 ⊗ (𝑅𝑉𝑁 )〉.

Furthermore, recall the definition of 𝜓0 from Eq. (149) in the proof of Lemma 16 and define

𝛾 (ℓ) :=
∫
R9
𝑉 (𝑥, 𝑦)

(
𝜒

1
ℓ (𝑥, 𝑧)𝜔(𝑥, 𝑧)𝜒

1
ℓ (𝑦, 𝑧)𝜔(𝑦, 𝑧) + 1

2

���𝜒 1
ℓ (𝑦, 𝑧)𝜔(𝑦, 𝑧)

���2)d𝑥d𝑦d𝑧

=
𝑁

7
2

6

3∑
𝑖, 𝑗=1

〈𝐿𝑖 1 ⊗ 𝜓0, (𝑉𝑁 ⊗ 1)𝐿 𝑗 1 ⊗ 𝜓0〉,

where the second identity holds by a scaling argument for all 0 < ℓ < 𝑁 . We observe that by the
permutation symmetry of 𝑉𝑁 we have 𝐿𝑖𝑉𝑁 ⊗ 1𝐿𝑖 = 𝑉𝑁 ⊗ 1 and therefore

𝑁
7
2

���〈𝐿𝑖 1 ⊗ 𝜓0, (𝑉𝑁 ⊗ 1)𝐿 𝑗 1 ⊗ 𝜓0〉
��� ≤ sup

𝑖∈{1,2,3}
〈𝐿𝑖 1 ⊗ 𝜓0, (𝑉𝑁 ⊗ 1)𝐿𝑖 1 ⊗ 𝜓0〉

= 𝑁
7
2 〈1 ⊗ 𝜓0, (𝑉𝑁 ⊗ 1)1 ⊗ 𝜓0〉 =

∫
R9
𝑉 (𝑥, 𝑦)

���𝜒 1
ℓ (𝑦, 𝑧)𝜔(𝑦, 𝑧)

���2d𝑥d𝑦d𝑧 � 1.

Using 𝐿𝑖𝑉𝑁 ⊗ 1𝐿𝑖 = 𝑉𝑁 ⊗ 1 again, together with the identity in Eq. (156) and the Cauchy-Schwarz
inequality yields���√𝑁−1

𝛾𝑁 − 𝛾 (ℓ)
��� � 𝑁

7
2
√
〈1 ⊗ (𝑅𝜉0 (𝑥 − 𝑦, 𝑥 − 𝑧)), (𝑉𝑁 ⊗ 1)1 ⊗ (𝑅𝜉0(𝑥 − 𝑦, 𝑥 − 𝑧))〉 (160)

+ 𝑁
7
2

√〈
1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3), (𝑉𝑁 ⊗ 1)1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)

〉
.

Regarding the analysis of the term on the right side of Eq. (160), we observe that

𝜌 := −2ΔM𝜔 = 𝑉 (1 − 𝜔)

satisfies ∇𝑘 𝜌 ∈ 𝐿1 due to the regularity assumptions on V. Proceeding as in Eq. (153) we obtain the
improved version of Eq. (154)

���𝜉0(𝐾)
��� � 𝑁−2 min

⎧⎪⎪⎨⎪⎪⎩
( √

𝑁

ℓ |𝐾 |

)2

, 1
⎫⎪⎪⎬⎪⎪⎭
(
1 + |𝐾 |2

𝑁

)−𝑚
, (161)

Similar to Eq. (138) we can write ∇𝑛𝑅𝜉0, where 𝜉0 is introduced in Eq. (151), as the sum of terms of
the form

𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 ∇𝑎𝑅1−𝑏𝜉0, (162)

where the coefficients satisfy 𝑘1 + · · · + 𝑘𝑚 + 2𝑚 + 𝑎 + 2𝑏 = 𝑛 and either (I) that 𝑏 = 1, (II) that 𝑏 = 0
and 𝑎 = 1 or (III) that 𝑏 = 0, 𝑎 = 0 and 𝑚 ≥ 1 as well as 𝑘𝑚 = 0. In the following we are going to verify
individually for the three cases (I)–(III) that the Fourier transform of the expression in Eq. (162) has an
𝐿∞ bound of the order

√
𝑁
𝑛

𝑁 3ℓ2 for 𝑛 ≥ 4, and consequently���𝑅𝜉0(𝐾)
��� � 1

ℓ2𝑁2 |𝐾 |2
𝑁

|𝐾 |2

(
1 + |𝐾 |2

𝑁

)−𝑚
. (163)
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Regarding the case (I), we obtain using Eq. (161) and our regularity assumptions on V by a direct
computation in Fourier space, for 𝑛 ≥ 4

��〈𝑒𝑖𝐾 ·𝑋 , 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚 (𝑉𝑁 )𝑄⊗3 ∇𝑎𝜉0
〉�� � √

𝑁
𝑘1+···+𝑘𝑚+𝑎+2𝑚

𝑁2ℓ2 =

√
𝑁

𝑛

𝑁3ℓ2 .

Since the case (II) is similar to the case (III), let us directly have a look at the case (III), where we use
the fact that ‖

√
𝑄⊗3𝑉𝑁𝑄⊗3𝑅∇‖ � 1 to obtain��〈𝑒𝑖𝐾 ·𝑋 , 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘𝑚−1 (𝑉𝑁 )𝑄⊗3 𝑄⊗3𝑉𝑁𝑄

⊗3 𝑅𝜉0
〉�� (164)

�
888√𝑄⊗3𝑉𝑁𝑄⊗3 𝑄⊗3∇𝑘𝑚−1 (𝑉𝑁 )𝑄⊗3 . . . 𝑄⊗3∇𝑘1 (𝑉𝑁 )𝑄⊗3 𝑒𝑖𝐾 ·𝑋

888 8888 1
∇𝑄

⊗3𝜉0

8888.
Since we have

88 1
∇𝑄

⊗3𝜉0
88 � 1

𝑁ℓ2 , we obtain together with Eq. (148) that the term in Eq. (164) is bounded

by
√
𝑁
𝑘1+···+𝑘𝑚+2(𝑚−1)−2

𝑁ℓ2 =
√
𝑁
𝑛

𝑁 3ℓ2 , which concludes the proof of Eq. (163). Consequently

𝑁
7
2 〈1 ⊗ (𝑅𝜉0(𝑥 − 𝑦, 𝑥 − 𝑧)), (𝑉𝑁 ⊗ 1)1 ⊗ (𝑅𝜉0(𝑥 − 𝑦, 𝑥 − 𝑧))〉 � 1

ℓ4 . (165)

Using 𝑁
7
2 〈1 ⊗ (𝑅𝑉𝑁 − 1)𝑒𝑖𝑘 (𝑥𝑖−𝑥 𝑗 ) , (𝑉𝑁 ⊗ 1)1 ⊗ (𝑅𝑉𝑁 − 1)𝑒𝑖𝑘′ (𝑥𝑖−𝑥 𝑗 ) 〉 � 𝑁

3
2

(
1 + |𝑘−𝑘′ |2

𝑁

)−2
by

Lemma 15 for 𝑖 ≠ 𝑗 , we further have

𝑁
7
2 〈1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)𝜓0, (𝑉𝑁 ⊗ 1)1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)𝜓0〉 (166)

�
∑
𝑘,𝑘′

𝑁
3
2

(
1 + |𝑘 − 𝑘 ′ |2

𝑁

)−2��〈𝑒𝑖𝑘 (𝑥−𝑦) , 𝜓0〉
�� ��〈𝑒𝑖𝑘′ (𝑥−𝑦) , 𝜓0〉

��
� 𝑁− 5

2
∑
𝑘,𝑘′

(
1 + |𝑘 − 𝑘 ′ |2

𝑁

)−2 1
1 + |𝑘 |2

1
1 + |𝑘 ′ |2

� 𝑁− 3
2 .

By Eq. (160) we consequently obtain
���√𝑁−1

𝛾𝑁 − 𝛾 (ℓ)
��� � ℓ−

3
2 for ℓ ≤

√
𝑁 . Note that for ℓ1, ℓ2 > 0 we

can always pick an arbitrary 𝑁 ≥ max{ℓ1, ℓ2}2 yielding���𝛾 (ℓ1) − 𝛾 (ℓ2)
��� � 1

min{ℓ1, ℓ2}
3
2
,

that is, 𝛾 (ℓ) is convergent with rate 1
ℓ

3
2

, and by monotone convergence the limit is given by 𝛾(𝑉).
In order to establish the convergence of 𝜎𝑁 , let us define 𝑓𝑁 ,ℓ := (𝑉𝑁 ⊗ 1)1 ⊗ 𝜓0, where we keep

track of the N and ℓ dependence in our notation, and

𝜎𝑁 ,ℓ := 𝑁
7
2 〈 𝑓𝑁 ,ℓ , 𝑅4 𝑓𝑁 ,ℓ〉,

for ℓ <
√
𝑁 and let 𝑅4 be defined above Eq. (96). As a consequence of the operator inequality

(𝑉𝑁 ⊗ 1)𝑅 (𝑁 )
4 (𝑉𝑁 ⊗ 1) ≤ (𝑉𝑁 ⊗ 1) 1

−Δ (𝑉𝑁 ⊗ 1) � 𝑉𝑁 ⊗ 1,
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we obtain by Eq. (165) and Eq. (166)

𝑁
7
2

〈
1 ⊗ 𝑅𝜉0, (𝑉𝑁 ⊗ 1)𝑅 (𝑁 )

4 (𝑉𝑁 ⊗ 1)1 ⊗ 𝑅𝜉0

〉
� 𝑁

7
2 〈1 ⊗ 𝑅𝜉0, (𝑉𝑁 ⊗ 1)1 ⊗ 𝑅𝜉0〉 �

1
ℓ2 ,

𝑁
7
2 〈1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)𝜓0, (𝑉𝑁 ⊗ 1)𝑅 (𝑁 )

4 (𝑉𝑁 ⊗ 1)1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)𝜓0〉

� 𝑁
7
2 〈1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)𝜓0, (𝑉𝑁 ⊗ 1)1 ⊗ (𝑅𝑉𝑁 − 1) (1 −𝑄⊗3)𝜓0〉 � 𝑁− 3

2 .

Using the identity Eq. (156), this immediately implies for ℓ <
√
𝑁���√𝑁−1

𝜎𝑁 − 𝜎𝑁 ,ℓ

��� � ℓ− 3
4 . (167)

To understand the dependence of 𝜎𝑁 ,ℓ on the parameter N, recall the function

𝑓ℓ (𝑥1, 𝑥2, 𝑥3) := 𝑉 (𝑥1, 𝑥2)𝜒
1
ℓ (𝑥2, 𝑥3)𝜔(𝑥2, 𝑥3)

and 𝜂ℓ : R9 −→ R from Lemma 14, which solves in the sense of distributions(
−2ΔM∗ + V

)
𝜂ℓ = 𝑓ℓ . (168)

By Lemma 14 we have the point-wise bound 0 ≤ 𝜂ℓ ≤ 𝜂∗ℓ with

𝜂∗ℓ (𝑥) :=
1

−2ΔM∗
𝑓ℓ (𝑥) =

Γ
(

9
2

)
28𝜋 9

2 det[𝑀∗]

∫
R9

𝑓ℓ (𝑦)d𝑦
|M−1

∗ (𝑥 − 𝑦) |7
.

In the following let us write 𝑥1𝑔 for the function 𝑥 ↦→ 𝑥1𝑔(𝑥). By Eq. (168) we obtain that 𝜌ℓ := −2ΔM∗𝜂ℓ
satisfies the (uniform in ℓ) bounds

‖𝜌ℓ ‖𝐿1 (R9) ≤ ‖ 𝑓ℓ ‖𝐿1 (R9) + ‖V𝜂∗ℓ ‖𝐿1 (R9) � 1, (169)

‖𝑥1𝜌ℓ ‖𝐿1 (R9) ≤ ‖𝑥1 𝑓ℓ ‖𝐿1 (R9) + ‖V𝑥1𝜂
∗
ℓ ‖𝐿1 (R9) � 1, (170)

where we have used in the second estimates that 𝑓ℓ (𝑥) is compactly supported in the variables
𝑥1 and 𝑥2, and satisfies sup𝑥1 ,𝑥2

𝑓ℓ (𝑥) � 1
1+|𝑥3 |4

, see the estimates on 𝜔 in [23], and therefore
‖(1 + |𝑥1 |) 𝑓ℓ ‖𝐿1 (R9) � 1, as well as the fact that 𝑥 ↦→ 1

|𝑥 |4V(𝑥) ∈ 𝐿1 (R9) and hence

‖V𝑥𝜂∗ℓ ‖𝐿1 (R9) � ‖|𝑥 |5𝜂∗ℓ ‖∞ � sup
𝑥

|𝑥 |5
∫
R9

d𝑦
|𝑥 − 𝑦 |7 (|𝑦1 | + |𝑦2 |)5 |𝑦3 |2

� 1,

and similarly we obtain ‖V𝜂∗ℓ ‖𝐿1 (R9) � 1. Using Eq. (168), we obtain the analogue estimates on the
derivatives of 𝜌ℓ 88∇𝑘 𝜌ℓ

88
𝐿1 (R9) +

88𝑥1∇𝑘 𝜌ℓ
88
𝐿1 (R9) � 1. (171)

Having 𝜂ℓ at hand, we use a smooth function 𝜒∗ with 𝜒∗(𝑥) = 1 for |𝑥 |∞ ≤ 1
2 and 𝜒∗(𝑥) = 0 for |𝑥 |∞ > 2

3 ,
in order to define

Ψ := 𝜒∗(𝑥1 − 𝑥2, 𝑥1 − 𝑥3, 𝑥1 − 𝑥4) 𝜂
√
𝑁

ℓ (𝑥1 − 𝑥2, 𝑥1 − 𝑥3, 𝑥1 − 𝑥4).

Notably, the state Ψ allows us to express

𝑅4 𝑓𝑁 ,ℓ = Ψ + 𝑅4𝜁 + (𝑅4V𝑁 − 1)(1 −𝑄⊗4)Ψ, (172)
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with 𝜁 := [2ΔM∗ , 𝜒∗]𝜂
√
𝑁

ℓ = 2ΔM∗ (𝜒∗)𝜂
√
𝑁

ℓ + 4M2
∗∇(𝜒∗)∇𝜂

√
𝑁

ℓ and

V𝑁 (𝑥1, 𝑥2, 𝑥3, 𝑥4) := 𝑁V
(√

𝑁 (𝑥1 − 𝑥2),
√
𝑁 (𝑥1 − 𝑥3),

√
𝑁 (𝑥1 − 𝑥4)

)
.

Proceeding as in the proof of Eq. (154), we have by Eq. (171)��𝜁 (𝐾)�� � 𝑁− 7
2 min

{
1

|𝐾 |2
, 1

} (
1 + |𝐾 |2

𝑁

)−𝑚
. (173)

Using the fact that ‖
√
𝑄⊗4V𝑁𝑄⊗4𝑅4∇‖ ≤ 1 we furthermore obtain

��𝑅4𝜁 (𝐾)
�� =

���𝜁 (𝐾) − 〈𝐾,V𝑁 𝑅4𝜁〉
���

|𝐾 |2
≤

���𝜁 (𝐾)��� +√
〈𝐾,V𝑁𝐾〉

〈
𝜁, 1

−Δ 𝜁
〉

|𝐾 |2
�

max{𝑁− 1
4 , |𝐾 |−2}

𝑁
7
2 |𝐾 |2

.

Using furthermore Eq. (162), we can utilize Eq. (173) to improve this result to

��𝑅4𝜁 (𝐾)
�� � max{𝑁− 1

4 , |𝐾 |−1}
𝑁

7
2 |𝐾 |2

(
1 + |𝐾 |2

𝑁

)−𝑚
. (174)

In analogy to Eq. (161), one can show that
���� D
𝜒

√
𝑁
ℓ 𝜔

√
𝑁 (𝑘)

���� � 𝑁−2 1
1+|𝑘 |2

(
1 + |𝑘 |2

𝑁

)−𝑚
, and therefore we

have
��� 𝑓̂𝑁 ,ℓ (𝐾)

��� � 𝑁− 7
2

(
1 + |𝐾 |2

𝑁

)−𝑚
, which yields together with Eq. (174)

𝑁
7
2
��〈 𝑓𝑁 ,ℓ , 𝑅4𝜁〉

�� � 𝑁− 1
4 . (175)

Furthermore, in analogy to Eq. (174), we have the estimate���Ψ̂(𝐾)
��� � 1

𝑁
7
2 |𝐾 |2

(
1 + |𝐾 |2

𝑁

)−𝑚
.

Denoting with I the set of all indices 𝐾 = (𝑘1, . . . , 𝑘4) such that 𝑘1 + · · · + 𝑘4 = 0 and at least one of the
indices satisfies 𝑘𝛼 = 0, we obtain

𝑁
7
2
��〈 𝑓𝑁 ,ℓ , (𝑅4V𝑁 − 1) (1 −𝑄⊗4)Ψ〉

�� = 𝑁
7
2

�����∑
𝐾 ∈I

Ψ̂(𝐾)〈(V𝑁 𝑅4 − 1) 𝑓𝑁 ,ℓ , 𝑒
𝑖𝐾 ·𝑋 〉

�����
� 𝑁− 7

2
∑
𝐾 ∈I

𝑁
3
4

|𝐾 |2

(
1 + |𝐾 |2

𝑁

)−3

� 𝑁− 3
4 , (176)

where we used

|〈V𝑁 𝑅4 𝑓𝑁 ,ℓ , 𝑒
𝑖𝐾 ·𝑋 〉| ≤ 〈𝑒𝑖𝐾 ·𝑋 ,V𝑁 𝑒

𝑖𝐾 ·𝑋 〉
1
2 〈 𝑓𝑁 ,ℓ ,

1
−Δ 𝑓𝑁 ,ℓ〉

1
2 � 𝑁− 7

2 𝑁
3
4 .

Applying Eq. (172), Eq. (175) and Eq. (176) therefore yields for ℓ <
√
𝑁
2

𝜎𝑁 ,ℓ = 𝑁
7
2 〈 𝑓𝑁 ,ℓ , 𝑅4 𝑓𝑁 ,ℓ〉 = 𝑁

7
2 〈 𝑓𝑁 ,ℓ ,Ψ〉 +𝑂𝑁→∞

(
𝑁− 1

4

)
= 〈 𝑓ℓ , 𝜂ℓ〉 +𝑂𝑁→∞

(
𝑁− 1

4

)
= 𝜎ℓ (𝑉) +𝑂𝑁→∞

(
𝑁− 1

4

)
.
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In combination with Eq. (167) and the fact that 𝜎(𝑉) = limℓ 𝜎ℓ (𝑉), see Lemma 14, we obtain that
|𝜎ℓ (𝑉) − 𝜎(𝑉) | � 1√

ℓ
and conclude ���√𝑁−1

𝜎𝑁 − 𝜎(𝑉)
��� � 𝑁− 1

4 .

To establish the convergence of
√
𝑁

−1
𝜇𝑁 , let us recall the effective potential

𝑉eff :

{
R3 −→ R,
𝑥 ↦→

∫
R3 𝑉 (𝑥, 𝑦) (1 − 𝜔(𝑥, 𝑦)) d𝑦,

and let 𝜃 solve −2Δ𝜃 = 𝑉eff with 𝜃 (𝑥) −→
|𝑥 |→∞

0. Then

𝜇(𝑉) =
∫
R3
𝑉eff (𝑥)𝜃 (𝑥) d𝑥.

Applying the techniques developed in this proof so far, yields furthermore

|
√
𝑁

−1
𝜇𝑁 − 𝜇(𝑉) | � 1

√
𝑁
.

Finally, in order to establish Eq. (159) let us denote with 𝜔𝜆 the minimizer in Eq. (4) for the rescaled
potential 𝜆𝑉 , which satisfies 0 ≤ 𝜔𝜆 ≤ 1 and 𝜔𝜆 (𝑥, 𝑦) ≤ 𝜆𝐶 (𝑉 )

1+|𝑥 |4+|𝑦 |4 , for a V dependent, constant
𝐶 (𝑉) > 0. Consequently lim𝜆→0 (1 − 𝜔𝜆) = 1, and hence we obtain by dominated convergence

lim
𝜆→0

1
𝜆2 𝜇(𝜆𝑉) = lim

𝜆→0

∫
R12

𝑉 (𝑥, 𝑢)𝑉 (𝑦, 𝑣) (1 − 𝜔𝜆 (𝑥, 𝑢)) (1 − 𝜔𝜆 (𝑦, 𝑣))
8𝜋 |𝑥 − 𝑦 | d𝑢d𝑣d𝑥d𝑦

=
∫
R12

𝑉 (𝑥, 𝑢)𝑉 (𝑦, 𝑣)
8𝜋 |𝑥 − 𝑦 | d𝑢d𝑣d𝑥d𝑦 ∈ (0,∞).

This concludes the proof, since 𝜎(𝑉) ≥ 0 and

1
𝜆3 𝛾(𝜆𝑉) ≤

3𝐶 (𝑉)2

2

∫
R9

𝑉 (𝑥, 𝑦)
(1 + |𝑦 |4 + |𝑧 |4)2 d𝑥d𝑦d𝑧 < ∞. �

Making use of Eq. (172) again, we can furthermore verify decay properties for the matrix entries of
𝑇4 − 1 in momentum space in the subsequent Lemma 18.

Lemma 18. Recall the definition of the linear map 𝑇2 in Eq. (88) and 𝑇4 in Eq. (95). Then there exists

a constant 𝐶 > 0 such that | (𝑇2 − 1) 𝑗𝑘,00 | ≤ 𝐶𝑁−1 1( 𝑗+𝑘=0)
| 𝑗 |2+|𝑘 |2

(
1 + | 𝑗 |2+|𝑘 |2

𝑁

)−1
,

| (𝑇4 − 1)ℓ𝑖 𝑗𝑘,0000 | ≤ 𝐶𝑁− 7
2
1(ℓ + 𝑖 + 𝑗 + 𝑘 = 0)
|ℓ |2 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

(
1 + |ℓ |2 + |𝑖 |2 + | 𝑗 |2 + |𝑘 |2

𝑁

)−3

.

Proof. For the purpose of verifying the bound on

(𝑇4 − 1)𝑢𝑖 𝑗𝑘,0000 = 〈𝑒𝑖𝐾 ·𝑋 , 𝑅4 (𝑉𝑁 ⊗ 1)1 ⊗ 𝑅𝑉𝑁 〉

with 𝐾 = (𝑢𝑖 𝑗 𝑘), let us choose ℓ :=
√
𝑁
3 and recall the elements 𝜁 and Ψ from Eq. (172), and the set I

above Eq. (176), in the proof of Lemma 17. With these elements at hand, we can write
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〈𝑒𝑖𝐾 ·𝑋 , 𝑅4(𝑉𝑁 ⊗ 1)1 ⊗ 𝑅𝑉𝑁 〉 = 〈𝑒𝑖𝐾 ·𝑋 , 𝑅4𝜁〉 + 〈𝑒𝑖𝐾 ·𝑋 ,Ψ〉 +
∑
𝐾 ′ ∈I

〈V𝑁 𝑅4𝑒
𝑖𝐾 ·𝑋 , 𝑒𝑖𝐾

′ ·𝑋 〉〈𝑒𝑖𝐾 ′ ·𝑋 ,Ψ〉

+
〈
𝑒𝑖𝐾 ·𝑋 , 𝑅4(𝑉𝑁 ⊗ 1)1 ⊗

{
𝑅𝑉𝑁 − 𝜓

}〉
. (177)

In the proof of Lemma 17 we have established

|〈𝑒𝑖𝐾 ·𝑋 , 𝑅4𝜁〉| = |𝑅4𝜁 (𝐾) | �
1

𝑁
7
2 |𝐾 |2

(
1 + |𝐾 |2

𝑁

)−𝑚
,

|〈𝑒𝑖𝐾 ·𝑋 ,Ψ〉| � 1
𝑁

7
2 |𝐾 |2

(
1 + |𝐾 |2

𝑁

)−𝑚
.

Regarding the sum over I we have�����∑
𝐾 ′ ∈I

〈V𝑁 𝑅4𝑒
𝑖𝐾 ·𝑋 , 𝑒𝑖𝐾

′ ·𝑋 〉〈𝑒𝑖𝐾 ′ ·𝑋 ,Ψ〉

����� = 1
|𝐾 |2

�����∑
𝐾 ′ ∈I

〈(V𝑁 − V𝑁 𝑅4V𝑁 )𝑒𝑖𝐾 ·𝑋 , 𝑒𝑖𝐾
′ ·𝑋 〉〈𝑒𝑖𝐾 ′ ·𝑋 ,Ψ〉

�����
�

1
𝑁

7
2 |𝐾 |2

∑
𝐾 ′ ∈I

��〈(V𝑁 − V𝑁 𝑅4V𝑁 )𝑒𝑖𝐾 ·𝑋 , 𝑒𝑖𝐾
′ ·𝑋 ��〉

|𝐾 ′ |2

(
1 + |𝐾 ′ |2

𝑁

)−3

�
1

𝑁
7
2 |𝐾 |2

.

Regarding the final term in Eq. (177), we observe that we have the estimate��〈𝑒𝑖𝐾 ·𝑋 , 𝑅4(𝑉𝑁 ⊗ 1)1 ⊗
{
𝑅𝑉𝑁 − 𝜓

}〉�� = 1
|𝐾 |2

��〈(1 − 𝑅4V𝑁 )𝑒𝑖𝐾 ·𝑋 , (𝑉𝑁 ⊗ 1)1 ⊗
{
𝑅𝑉𝑁 − 𝜓

}〉��
≤

√〈
1 ⊗

{
𝑅𝑉𝑁 − 𝜓

}
, (𝑉𝑁 ⊗ 1)1 ⊗

{
𝑅𝑉𝑁 − 𝜓

}〉
|𝐾 |2

√〈
(1 − 𝑅4V𝑁 )𝑒𝑖𝐾 ·𝑋 , 𝑉𝑁 ⊗ 1(1 − 𝑅4V𝑁 )𝑒𝑖𝐾 ·𝑋

〉
.

By Eq. (165) and Eq. (166) we know that
〈
1 ⊗

{
𝑅𝑉𝑁 − 𝜓

}
, (𝑉𝑁 ⊗ 1)1 ⊗

{
𝑅𝑉𝑁 − 𝜓

}〉
� 𝑁−5,〈

(1 − 𝑅4V𝑁 )𝑒𝑖𝐾 ·𝑋 , 𝑉𝑁 ⊗ 1(1 − 𝑅4V𝑁 )𝑒𝑖𝐾 ·𝑋 〉
≤ 2

〈
𝑒𝑖𝐾 ·𝑋 , 𝑉𝑁 ⊗ 1𝑒𝑖𝐾 ·𝑋 〉

+ 2
〈
𝑅4V𝑁 𝑒

𝑖𝐾 ·𝑋 , 𝑉𝑁 ⊗ 1𝑅4V𝑁 𝑒
𝑖𝐾 ·𝑋 〉

�
1
𝑁2 +

〈
V𝑁 𝑒

𝑖𝐾 ·𝑋 , 𝑅4V𝑁 𝑒
𝑖𝐾 ·𝑋 〉

�
1
𝑁2 +

〈
𝑒𝑖𝐾 ·𝑋 ,V𝑁 𝑒

𝑖𝐾 ·𝑋 〉
�

1
𝑁2 .

Finally we note that the bound on 𝑇2 is an immediate consequence of the regularity of V and the bounds
on 𝑅𝑉𝑁 established in Lemma 15. �

A. Appendix A

In the following we establish comparability results between transformed and nontransformed quantities.
The first result in this direction, Lemma A1, establishes that the unitarily transformed powers of the
particle number operator N , w.r.t. the transformations 𝑈𝑠 and 𝑊𝑠 , are again of the same order as the
bare powers in N .

Lemma A1. Let𝑈𝑠 be the unitary map defined below Eq. (70) and𝑊𝑠 the one defined below Eq. (124).
Then there exists for all 𝑚 ∈ N constants 𝐶𝑚 > 0, such that

𝑈−𝑠 N𝑚𝑈𝑠 ≤ 𝑒𝐶𝑚 |𝑠 | (N + 1)𝑚, (A.1)

𝑊−𝑠 N𝑚𝑊𝑠 ≤ 𝑒𝐶𝑚 |𝑠 | (N + 1)𝑚. (A.2)
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Proof. Let us recall the definition of the generator G† − G with

G =
1
6

∑
𝑖 𝑗𝑘

𝜂𝑖 𝑗𝑘 𝑎
†
𝑖 𝑎

†
𝑗𝑎

†
𝑘𝑎

3
0,

𝜂𝑖 𝑗𝑘 = (𝑇 − 1)𝑖 𝑗𝑘,000

of the unitary group 𝑈𝑡 from Eq. (70). As a consequence of the bounds on T from Lemma 15, we have

±
(
G + G†

)
≤ 1

6

∑
𝑖

�  !𝑎
†
𝑖 𝑎𝑖 +

� !
∑
𝑗𝑘

𝜂𝑖 𝑗𝑘 𝑎
†
𝑗𝑎

†
𝑘𝑎

3
0
"#$
†� !
∑
𝑗𝑘

𝜂𝑖 𝑗𝑘 𝑎
†
𝑗𝑎

†
𝑘𝑎

3
0
"#$
"##$ � N + N 2

𝑁
� N + 1.

Together with 0 ≤ (𝑥 + 𝑛 + 3)𝑘 − (𝑥 + 𝑛)𝑘 ≤ 𝐶𝑛,𝑘 (𝑥 + 3)𝑘−1 for a suitable 𝐶𝑛,𝑘 > 0, we obtain

[G, (N + 3)𝑚] + H.c. = −((N + 3)𝑚 −N𝑚)G + H.c.

= −
√
(N + 3)𝑚 −N𝑚

(
G + G†

)√
(N + 6)𝑚 − (N + 3)𝑚 + H.c. � (N + 3)𝑚.

Applying Duhamel’s formula then yields

𝑈−𝑡 (N + 3)𝑚𝑈𝑡 − (N + 3)𝑚 =
∫ 𝑡

0
𝑈−𝑠 [G, (N + 3)𝑚]𝑈𝑠 d𝑠 + H.c. �

∫ 1

0
𝑈−𝑠 (N + 3)𝑚𝑈𝑠 d𝑠.

Consequently Grönwall’s inequality gives us

𝑈−𝑡 (N + 3)𝑚𝑈𝑡 ≤ 𝑒𝐶 |𝑡 | (N + 3)𝑚

for a suitable constant 𝐶 > 0, which concludes the proof of Eq. (A.1). The proof of Eq. (A.2) follows
analogously from ±

(
G2 + G†

2

)
� N + 1 and

±
(
G4 + G†

4

)
� 𝑁−3

(
𝑁 (N + 1)3 +N 5

2

)
� N + 1,

where we have used Lemma 18 in order to control the coefficients of 𝑇2 and 𝑇4. �

In the subsequent Lemma A2 we are going to compare the kinetic energy
∑

𝑘 |𝑘 |2𝜏𝑎†𝑘𝑎𝑘 in the
operators 𝑎𝑘 with a fractional Laplace (−Δ)𝜏 , with the corresponding expression in the variables 𝑐𝑘 .

Lemma A2. Let 0 ≤ 𝜏 ≤ 1 and 0 ≤ 𝜎 < 1
2 . Then

∑
𝑘 |𝑘 |2𝜎 (𝑐𝑘 − 𝑎𝑘 ) (𝑐𝑘 − 𝑎𝑘 )† � 1

𝑁 N 2, and
furthermore we have for integers 𝑠 ≥ 0∑

𝑘

|𝑘 |2𝜏𝑎†𝑘 N
𝑠𝑎𝑘 �

∑
𝑘

|𝑘 |2𝜏𝑐†𝑘N
𝑠𝑐𝑘 +

1
𝑁
N 𝑠+2 + 𝑁 𝜏 (N + 1)𝑠 . (A.3)

Proof. Let us define
(
𝐺 (𝐼 ,𝐼 ′)

𝜏

)
𝑖 𝑗 ,𝑖′ 𝑗′

:= 1
4
∑

𝑘 |𝑘 |2𝜏 (𝑇 − 1)𝑖′ 𝑗′𝑘,𝐼 ′ (𝑇 − 1)𝑖 𝑗𝑘,𝐼 for

𝐼, 𝐼 ′ ∈ I := {(0, 0, 0)} ∪
⋃

0< |ℓ | ≤𝐾

{(ℓ, 0, 0), (0, ℓ, 0), (0, 0, ℓ)}
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as well as for 0 ≤ 𝛾 ≤ 1 the operator-valued vector and matrix

(Φ𝜏) 𝑗𝑘 :=
(
| 𝑗 |2𝜏 + |𝑘 |2𝜏

) 1
2
𝑎 𝑗𝑎𝑘 ,(

Υ(𝐼 ,𝐼 ′)
𝛾,𝜏

)
𝑗𝑘, 𝑗′𝑘′

:=
(
K− 1

2
𝛾,2𝐺

(𝐼 ,𝐼 ′)
𝜏 K− 1

2
𝛾,2

)
𝑗′𝑘′, 𝑗𝑘

𝑎𝐼 ′1
𝑎𝐼 ′2

𝑎𝐼 ′3
N 𝑠𝑎†𝐼1

𝑎†𝐼2
𝑎†𝐼3

,

with K𝛾,2 := (−Δ 𝑥)𝛾 + (−Δ 𝑦)𝛾 . With these definitions at hand we obtain∑
𝑘

|𝑘 |2𝜏 (𝑐𝑘 − 𝑎𝑘 )N 𝑠 (𝑐𝑘 − 𝑎𝑘 )† =
1
2

∑
𝐼 ,𝐼 ′

Φ†
𝛾

(
Υ(𝐼 ,𝐼 ′)

𝛾,𝜏 + H.c.
)
Φ𝛾 .

For 𝛾 > 𝜏 − 1
2 we have by the estimates from Lemma 15 that

‖K− 1
2

𝛾,2𝐺
(𝐼 ,𝐼 ′)
𝜏 K− 1

2
𝛾,2‖ � 𝑁−4.

Together with 88(N + 1)−
𝑠
2 𝑎𝐼 ′1

𝑎𝐼 ′2
𝑎𝐼 ′3

N 𝑠𝑎†𝐼1
𝑎†𝐼2

𝑎†𝐼3
(N + 1)−

𝑠
2
88 � 𝑁3

on the N particle sector, we obtain
(
Υ(𝐼 ,𝐼 ′)

𝛾,𝜏 + H.c.
)
≤ 𝐶

𝑁 (N + 1)𝑠 for 𝛾 > 𝜏 − 1
2 and a suitable constant

C. Using Cauchy-Schwarz we therefore have∑
𝑘

|𝑘 |2𝜏 (𝑐𝑘 − 𝑎𝑘 )N 𝑠 (𝑐𝑘 − 𝑎𝑘 )† �
1
𝑁
Φ†

𝛾 (N + 1)𝑠Φ𝛾 = 2𝐶
∑
𝑘

|𝑘 |2𝛾𝑎†𝑘
N 𝑠+1

𝑁
𝑎𝑘 .

Applying this result for 𝜏′ := 𝜎, 𝛾′ := 0 and 𝑠′ := 0, yields the first claim of the Lemma∑
𝑘

|𝑘 |2𝜎 (𝑐𝑘 − 𝑎𝑘 ) (𝑐𝑘 − 𝑎𝑘 )† ≤ 1
𝑁
N 2.

Concerning Eq. (A.3), we have∑
𝑘

|𝑘 |2𝜏𝑎†𝑘 N
𝑠𝑎𝑘 ≤ 2

∑
𝑘

|𝑘 |2𝜏𝑐†𝑘 N
𝑠𝑐𝑘 + 2

∑
𝑘

|𝑘 |2𝜏 (𝑐𝑘 − 𝑎𝑘 )†N 𝑠 (𝑐𝑘 − 𝑎𝑘 ),

and furthermore we can express∑
𝑘

|𝑘 |2𝜏 (𝑐𝑘 − 𝑎𝑘 )†N 𝑠 (𝑐𝑘 − 𝑎𝑘 ) =
∑
𝐼 ,𝐼 ′

(
𝑓 𝐼 ,𝐼

′
𝑋 𝐼 ,𝐼 ′

0 +
∑
𝑘≠0

𝑔𝐼 ,𝐼 ′

𝑘 𝑎†𝑘𝑋
𝐼 ,𝐼 ′

1 𝑎𝑘 +
1
2
Φ†

𝛾

(
Υ̃(𝐼 ,𝐼 ′)

𝛾,𝜏 + H.c.
)
Φ𝛾

)
(A.4)

with

𝑋 𝐼 ,𝐼 ′

0 := 𝑎†𝐼1
𝑎†𝐼2

𝑎†𝐼3

(
N 𝑠 + 2𝑠N 𝑠−1 + 𝑠(𝑠 − 1)N 𝑠−2

)
𝑎𝐼 ′1

𝑎𝐼 ′2
𝑎𝐼 ′3

,

𝑋 𝐼 ,𝐼 ′

1 := 𝑎†𝐼1
𝑎†𝐼2

𝑎†𝐼3

(
2N 𝑠 + 4𝑠N 𝑠−1 + 4𝑠(𝑠 − 1)N 𝑠−2 + 2𝑠(𝑠 − 1) (𝑠 − 2)N 𝑠−3

)
𝑎𝐼 ′1

𝑎𝐼 ′2
𝑎𝐼 ′3

,

𝑋2 := 𝑎†𝐼1
𝑎†𝐼2

𝑎†𝐼3

(
N 𝑠 + 4𝑠N 𝑠−1 + 6𝑠(𝑠 − 1)N 𝑠−2 + 4𝑠(𝑠 − 1) (𝑠 − 2)N 𝑠−3

+ 𝑠(𝑠 − 1) (𝑠 − 2) (𝑠 − 3)N 𝑠−4
)
𝑎𝐼 ′1

𝑎𝐼 ′2
𝑎𝐼 ′3

,
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𝑓 𝐼 ,𝐼
′

:=
∑
𝑖 𝑗

[(
𝐺 𝐼 ,𝐼 ′

𝜏

)
𝑖 𝑗 ,𝑖 𝑗

+
(
𝐺 𝐼 ,𝐼 ′

𝜏

)
𝑖 𝑗 , 𝑗𝑖

]
,

𝑔𝐼 ,𝐼 ′

𝑗 :=
∑
𝑖

[(
𝐺 𝐼 ,𝐼 ′

𝜏

)
𝑖 𝑗 ,𝑖 𝑗

+
(
𝐺 𝐼 ,𝐼 ′

𝜏

)
𝑖 𝑗 , 𝑗𝑖

]
,

Υ̃(𝐼 ,𝐼 ′)
𝛾,𝜏 :=

(
K− 1

2
𝛾,2𝐺

(𝐼 ,𝐼 ′)
𝜏 K− 1

2
𝛾,2

)
𝑗′𝑘′, 𝑗𝑘

𝑋2.

Following the proof of the first part of the Lemma, we obtain for 𝛾 > 𝜏 − 1
2

1
2

∑
𝐼 ,𝐼 ′

Φ†
𝛾

(
Υ̃(𝐼 ,𝐼 ′)

𝛾,𝜏 + H.c.
)
Φ𝛾 �

∑
𝑘

|𝑘 |2𝛾𝑎†𝑘
N 𝑠+1

𝑁
𝑎𝑘 .

Using Lemma 15 again, yields | 𝑓 | � 𝑁 𝜏−3 and |𝑔 𝑗 | � 𝑁max{𝜏− 1
2 ,0} − 4, and consequently

𝑓 𝐼 ,𝐼
′
𝑋 𝐼 ,𝐼 ′

0 +
∑
𝑘≠0

𝑔𝐼 ,𝐼 ′

𝑘 𝑎†𝑘𝑋
𝐼 ,𝐼 ′

1 𝑎𝑘 � 𝑁 𝜏N 𝑠 + 𝑁max{𝜏− 1
2 ,0}

N 𝑠+1

𝑁
� 𝑁 𝜏N 𝑠 .

Summarizing what we have so far we obtain for 𝛾 > 𝜏 − 1
2∑

𝑘

|𝑘 |2𝜏𝑎†𝑘 N
𝑠𝑎𝑘 �

∑
𝑘

|𝑘 |2𝜏𝑐†𝑘N
𝑠𝑐𝑘 +

1
𝑁

∑
𝑘

|𝑘 |2𝛾𝑎†𝑘 N
𝑠+1𝑎𝑘 + 𝑁 𝜏 (N + 1)𝑠 .

Choosing 𝛾 := max{𝜏 − 1
3 , 0} and iterating this equation at most two times with 𝜏′ := max{𝜏 − 1

3 , 0}
and 𝛾′ := max{𝛾 − 1

3 , 0}, and using N ≤ 𝑁 , yields the desired statement. �

Similar to Lemma A2, the following Lemma A3 allows us to compare the operators

𝑐𝑘 := 𝑎𝑘 +
1
2

∑
𝑖 𝑗

(𝑇 − 1)𝑖 𝑗𝑘,000𝑎
†
𝑖 𝑎

†
𝑗𝑎

3
0

with the operators 𝑐𝑘 .

Lemma A3. Then there exists a 𝐶 > 0, such that∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 ≤ 𝐶

(∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 +N + 1

)
.

Proof. Similar to Eq. (A.4), we can write

∑
𝑘

|𝑘 |2 (𝑐𝑘 − 𝑐𝑘 )†(𝑐𝑘 − 𝑐𝑘 ) =
∑

𝐼 ,𝐼 ′≠0

(
𝑓 𝐼 ,𝐼

′
𝑋 𝐼 ,𝐼 ′

0 +
∑
𝑘≠0

𝑔𝐼 ,𝐼 ′

𝑘 𝑎†𝑘𝑋
𝐼 ,𝐼 ′

1 𝑎𝑘 +
1
2
Φ†

1

(
Υ̃(𝐼 ,𝐼 ′)

1,1 + H.c.
)
Φ1

)
,

where 𝑓 𝐼 ,𝐼
′
, 𝑔𝐼 ,𝐼 ′

𝑘 , Υ̃(𝐼 ,𝐼 ′)
1,1 , 𝑋 𝐼 ,𝐼 ′

0 and 𝑋 𝐼 ,𝐼 ′

1 are defined below Eq. (A.4) for the concrete choice 𝑠 := 0 and

(Φ1) 𝑗𝑘 :=
(
| 𝑗 |2 + |𝑘 |2

) 1
2
𝑎 𝑗𝑎𝑘 .
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Using 𝐼, 𝐼 ′ ≠ 0, we obtain the improved estimates ±𝑋 𝐼 ,𝐼 ′

0 � 𝑁2N and ±𝑋 𝐼 ,𝐼 ′

1 � 𝑁2N . Consequently

± ( 𝑓 𝐼 ,𝐼 ′𝑋 𝐼 ,𝐼 ′

0 + H.c.) � N ,

(
∑
𝑘≠0

𝑔𝐼 ,𝐼 ′

𝑘 𝑎†𝑘𝑋
𝐼 ,𝐼 ′

1 𝑎𝑘 + H.c.) � 𝑁− 3
2 N 2 ≤ N .

Furthermore,

±1
2
Φ†

1

(
Υ̃(𝐼 ,𝐼 ′)

1,1 + H.c.
)
Φ1 �

∑
𝑘

|𝑘 |2𝑎†𝑘
N
𝑁
𝑎𝑘 �

∑
𝑘

|𝑘 |2𝑐†𝑘𝑐𝑘 +N + 1,

where we have used Eq. (40) in the last estimate. �

Acknowledgments. We would like to thank Marco Caporaletti and Benjamin Schlein for insightful discussions.

Competing interest. The authors have no competing interest to declare.

Financial Support. Funding from the ERC Advanced Grant ERC-AdG CLaQS, grant agreement n. 834782, is gratefully
acknowledged.

References

[1] A. Adhikari, C. Brennecke and B. Schlein. Bose-Einstein condensation beyond the Gross–Pitaevskii regime. Ann. Henri
Poincaré 22(2021), 1163–1233.

[2] C. Boccato, C. Brennecke, S. Cenatiempo and B. Schlein. Complete Bose-Einstein Condensation in the Gross-Pitaevskii
regime. Commun. Math. Phys. 359 (2018), 975–1026.

[3] C. Boccato, C. Brennecke, S. Cenatiempo and B. Schlein. Bogoliubov Theory in the Gross–Pitaevskii Limit. Acta Math.
222(2019), 219–335.

[4] C. Boccato, C. Brennecke, S. Cenatiempo and B. Schlein. Optimal Rate for Bose-Einstein Condensation in the Gross-
Pitaevskii Regime. Commun. Math. Phys. 376 (2020), 1311–1395.

[5] C. Boccato and R. Seiringer. The Bose gas in a box with Neumann boundary conditions. Ann. Henri Poincaré 24 (2023),
1505–1560.

[6] C. Brennecke, M. Brooks, C. Caraci and J. Oldenburg. A Short Proof of Bose-Einstein Condensation in the Gross-Pitaevskii
Regime and Beyond. Ann. Henri Poincaré 26 (2024), 1353–1373.

[7] C. Brennecke, M. Caporaletti and B. Schlein. Excitation Spectrum for Bose Gases beyond the Gross–Pitaevskii Regime.
Rev. Math. Phys. 34 (2022), 1–61.

[8] M. Brooks. Diagonalizing Bose Gases in the Gross-Pitaevskii Regime and Beyond. Commun. Math. Phys. 406 (2025), 1–59.
[9] S. Fournais. Length scales for BEC in the dilute Bose gas. Partial Differential Equations, Spectral Theory, and Mathematical

Physics (2021), 115–133.
[10] S. Fournais and J. Solovej. The energy of dilute Bose gases. Ann. of Math. 192(2020), 893–976.
[11] S. Fournais and J. Solovej. The energy of dilute Bose gases II: The general case. Invent. Math. 232(2023), 863–994.
[12] F. Haberberger, C. Hainzl, P. Nam, R. Seiringer and A. Triay. The free energy of dilute Bose gases at low temperatures.

arXiv:2304.02405 (2023), 1–68.
[13] C. Hainzl, B. Schlein and A. Triay. Bogoliubov Theory in the Gross-Pitaevskii Limit: a Simplified Approach. Forum Math.

Sigma 10(2022), 1–39.
[14] T. Lee, K. Huang and C. Yang. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature

properties. Phys. Rev. 106(1957), 1135–1145.
[15] L. Junge and F. Visconti. Ground state energy of a dilute Bose gas with three-body hard-core interactions. arXiv:2406.09019

(2024), 1–8.
[16] M. Lewin, P. Nam, S. Serfaty and J. Solovej. Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math.

68(2015), 413–471.
[17] E. Lieb and M. Loss. Analysis, vol. 14 of Graduate Studies in Mathematics. American Mathematical Society, 2001.
[18] E. Lieb and R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88 (2002).
[19] E. Lieb and J. Solovej. Ground State Energy of the One-Component Charged Bose Gas. Commun. Math. Phys. 217 (2001),

1–4.
[20] E. Mas, R. Bukowski and K. Szalewicz. Ab initio three-body interactions for water. II. Effects on structure and energetics of

liquid. J. Chem. Phys. 118 (2003), 127–163.
[21] R. Murphy and J. Barker. Three-body interactions in liquid and solid helium. Phys. Rev. A 3 (1971), 1037–1040.

https://doi.org/10.1017/fms.2025.10113 Published online by Cambridge University Press

arXiv:2304.02405
arXiv:2406.09019
https://doi.org/10.1017/fms.2025.10113


70 M. Brooks

[22] P. Nam, M. Napiorkowski, J. Ricaud and A. Triay. Optimal rate of condensation for trapped bosons in the Gross–Pitaevskii
regime. Anal. PDE 15 (2021), 1585–1616.

[23] P. Nam, J. Ricaud and A. Triay. The condensation of a trapped dilute Bose gas with three-body interactions. Probab. Math.
Phys. 4(2023), 91–149.

[24] P. Nam, J. Ricaud and A. Triay. Ground state energy of the low density Bose gas with three-body interactions. J. Math.
Phys. 63(2022), 1–12.

[25] P. Nam, J. Ricaud and A. Triay. Dilute Bose gas with three-body interaction: recent results and open questions. J. Math.
Phys. 63(2022), 1–13.

[26] F. Visconti. Ground state energy of the low density Bose gas with two-body and three-body interactions. arXiv:2402.05646
(2024), 1–65.

https://doi.org/10.1017/fms.2025.10113 Published online by Cambridge University Press

arXiv:2402.05646
https://doi.org/10.1017/fms.2025.10113

	1 Introduction
	1.1 The three-body Problem

	2 First-order lower bound
	3 First-order upper bound
	4 Refined correlation structure
	4.1 Analysis of the error terms
	4.2 Proof of the lower bound in Theorem 1

	5 Second-order upper bound
	6 Proof of Theorem 2
	7 Analysis of the scattering coefficients
	A Appendix A
	References

