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Abstract

We provide a second-order energy expansion for a gas of N bosonic particles with three-body interactions in the
Gross-Pitaevskii regime. We especially confirm a conjecture by Nam, Ricaud, and Triay in [25], where they predict
the subleading term in the asymptotic expansion of the ground state energy to be of the order VN. In addition, we

3
show that low-energy states satisfy Bose-Einstein condensation with a rate of the order N™4.
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1. Introduction

In this manuscript we study a dilute Bose gas consisting of N quantum particles subject to Bose-Einstein
statistics, in which the individual particles interact with each other via a three-body potential

Vn(x,y,2) = NV(\/N(x—y),\/N(x—z)), (1)

defined in terms of a given bounded and non-negative function V : R*xR> — R with compact support.
The quantum gas is then described by the self-adjoint operator

Hy = — Z Ay, + Z VN (Xi, X, Xk), )

1<k<N l<i<j<k<N
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acting on the space of permutation-symmetric functions Lfym (AN ), where A := [—%, %]3 is the
three-dimensional periodic torus, that is, }}; <, <y Ax, is defined as the closure of the Laplace operator
acting on permutations symmetric and periodic C? functions and x — y as well as x — z in Eq. (1) refer
to the distance on the torus. We further assume that Vj; defined in Eq. (1) is permutation symmetric
in order to assure that Hy preserves permutation symmetry. The particular scaling in Eq. (1) with the
number of particles N is referred to as the Gross-Pitaevskii regime and yields a short-range, but strong,

interaction on the scale r = ——. This especially means that we are dealing with a dilute gas taking

ﬁ

up a volume of the order Nr3 = # Due to the physical relevance of three-body interactions, which

are for example responsible for 2% of the binding energy of liquid He* [21] and 14% for water [20],
Dilute Bose gases with three-particle interactions have been studied extensively in [23, 24, 25, 26, 15],
where the leading-order asymptotics of the ground state energy in the limit N — oo has been estab-
lished as well as Bose-Einstein condensation (BEC) in the Gross-Pitaevskii regime. Here (BEC) refers
to the observation that most of the particles occupy the state with zero momentum. Following this body
of work, we will focus for the sake of simplicity on gases without two-body interactions and a repulsive
three-body interaction, which is precisely the setting of [25, Conjecture 5].

In the Gross-Pitaevskii regime, the leading-order term in the asymptotics of the ground state energy
has been derived in [23]

En = iIlfO'(HN) = ébM(V)N"'UN—mo(N), 3)

which is proportional to the number of particles N with a rather explicit constant b (V). Applying
naive first-order perturbation theory, with — 3} ., < A, as the unperturbed operator, would suggest
the value V(O) for the constant b (V). It is, however, due to the singular nature of the scaling in
Eq. (1) that we cannot ignore the presence of three particle correlations leading to a renormalized
constant b p((V) < V\(O). In the following we will address a conjecture in [25], which claims that the
subleading term in the asymptotic expansion of E is proportional to VN, see our main Theorem 1.
The contributions to the ground state energy En of the order VN arise based on two-particle, three-
particle, and four-particle correlations in the ground state. As a byproduct from the proof of Theorem
1, we obtain in addition that the ground state ‘I’]C\;,S of the operator Hy satisfies (BEC) with a rate \/#ﬁ,
that is, we show that the ratio of particles outside the state with zero momentum compared to the total
number of particles N is of the order O N (‘/Lﬁ) This is an improvement of the (BEC) result in [23],

where the authors showed that the ratio is of the order oy —o0(1).

It is worth pointing out that much more is known for Bose gases with two-particle interactions,
where the expansion of the ground state energy to second order is well known in the Gross-Pitaevskii
regime, the thermodynamic limit, and interpolating regimes, see, for example, [3, 7, 8, 10, 11, 13, 22].
Furthermore, (BEC) is well known for the Gross-Pitaevskii regime and regular enough interpolating
regimes, even with an (optimal) rate, see, for example, [1, 2, 4, 5, 6, 9, 12, 18], and the subleading term
in the expansion of the ground state energy is known to be of the order O y_,«(1). This resolution of
the energy is sharp enough to see the spectral gap, which is of the order Oy (1) as well. For a Bose
gas with three-particle interaction in the Gross-Pitaevskii regime we expect the spectral gap to be of the
magnitude On (1), see the conjecture in [25]; however, the second-order expansion of the energy

only allows for a resolution of the order O y — (\/ﬁ ) which is not sharp enough to see the spectral gap.

As it is not the goal of this manuscript to optimize the regularity of V, we will assume
V € C™(R®) for the sake of convenience (although assuming, e.g., V € H°(R®) would certainly be
sufficient).

The correct constant b o((V) in the energy asymptotics Eq. (3) can be derived formally by making
a translation-invariant ansatz for the correlation structure ¢(x — u,y — u) between three particles at
positions x, y, and u, where ¢ : R® — R. Utilizing the matrix
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and the modified Laplace operator A o := (MVRaxRa)Z, let us first express the action of the Laplace
operator in relative coordinates as

(Ax+Ay +Ay)@(x —u,y —u) = A M) (X —u,y — u).

For three particles, the energy of the trial state ®,(x —u,y —u) := 1 — ¢(x — u,y — u) is then given by

(@, (—2A 0 + V) D) = fRﬁ {2|MV¢(X)|2 +V(X)|1 - ¢(X)|2}dx.

Optimizing in ¢ leads to the definition

b(V) = inf /{2|MV¢(X)|2+V(X)|1—¢(X)|2}dx, @)
peH!(R®) JRO

where H'(R9) refers to the space of functions g : RY — C vanishing at infinity with |Vg| € L?(RY),
see [17, Section 8.3] where the notion D' (Rd) is used instead. It has been verified in [23] that a unique
minimizer w to the variational problem in Eq. (4) exists satisfying the associated Euler-Lagrange
equation

(22Apm +V)w =V,

and the (modified) scattering length b (V) describes the leading-order asymptotics of the ground state
energy correctly, see Eq. (3). Notably, the solution w can formally be interpreted as a second-order
correction to the condensate wavefunction ¥ = 1, taking —2A 54 + V, acting on functions vanishing
at infinity, as the unperturbed operator and V, acting on the condensate ¥ = 1, as the perturbation.
Our main Theorem | confirms that the next term in the energy asymptotics in Eq. (3) is of the order
o N_m(\/ﬁ ) due to contributions from the three-particle correlation w, as well as from two-particle

and four-particle correlations.

In order to quantify the impact of two-particle correlations, we make a translation-invariant ansatz
£(x —u) with € : R — R. Since (A + Ay)é(x — u) = (2A&)(x — u), we identify the kinetic energy
of £ as

(€ (-200) = [ 2%
Furthermore, the interaction energy of the wavefunction @, introduced above Eq. (4) with the state

®(x —u,y —u) := £(x — u), which describes two correlated particles at position (x,u) € R® and a
particle in the condensate at position y € R3, reads

(@.V0,) + (@0, V0) = [ W(3)(1 - = [ Waoecds,

where we have introduced the effective two-particle interaction

Ve R? — R,
T e LV (- o y) dy.

Adding up kinetic and interaction energy, and optimizing in &, immediately gives rise to the energy
correction —u (V) with the proportionality constant p(V) defined as
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u(V):= — inf { /Rgzwaxnzdx— /Rgzvem)f(x)dx}

£eH(RY)

_ / Ve (X) Vet (y)
RO

dxdy. )
8rlx — yl

Proceeding with the four-particle correlations, let us again commit to a translation-invariant ansatz
n(x —u,y —u,z —u) with 5 : R — R. Defining V : R® — R and the matrix M., as

V(x1,x2,x3) ;= V(x; —x3,x3 —x3) + V(x1,x2) + V(x1,x3) + V(x2,x3),

211
M, = 121},
112

N —

we can identify the action of the Laplace operator as

(A, + A, + Ay + Ay )m(x1 — X4, X2 — X4, X3 — X4)

([V% +V5+ V54 (- - Vo - V3)2]TI) (X1 — X4, X2 — X4, X3 — X4)

2 1 1]/V,
=[(V1,V2,V3)|1 2 1{| Vo |7 [(x1 — x4, X2 — X4, X3 — X4)

112|\v;
= (2A . 1) (X1 = X4, X2 — X4, X3 — X4) 6)

and the action of the potential on 7 as

V(x; = xp, x5 — xp)n(x1 — X4, X2 — X4, X3 — X4)

|<i<j<k<4
= [V(x1 = x3,x2 —x3) + V(X1 — x4, %2 — x4) + V(1 = x4,x3 — x4) + V(2 — x4, %3 — x4)]
X (X1 — X4, X2 — X4,X3 — X4)

= (V) (x1 — x4, X2 — X4, X3 — X4). (7
Adding up the kinetic and potential energy of the four-particle correlation 7, therefore yields
2
(=280, +7m) = [ PMIn@F + 7P
R
Moreover, the interaction energy V. (x,y, z) := V(x,y) of n with the state
O(x—u,y—u,z—u):=w(y—u,z—u),

which describes three correlated particles at position (y, z,u) € R and a particle in the condensate at
position x € R3, reads

0.V.®) + (@, Vo) =2 [ Ve ey D dndydz =2 [ n(07(00x.

where we have introduced the function f(x,y,z) := V(x, y)w(y, z). Combining kinetic, potential and
interaction energy, yields

[ oM + v me? 27 om)ax = 2 - 200)
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where we have introduced the functional

f(x)
V(x)

o = [, {2|M*Vn(x)|2 +V0| I

2
}dx. (8)

Note that % is well defined and bounded on the support of V, due to the sign of V > 0. Consequently,
the corresponding energy correction is given by —o (V) with

o(V):=Q(0) - inf Q(n). €))

neH!' (R%)

Finally, we observe in the presence of an additional particle at position z further interaction terms
between w and itself. Utilizing again the potential V..(x, y, z) := V(x, z), and defining the states ®; (x —
u,y—u,z—u) :=w(y—u,z—u) and ®;(x—u, y—u, z—u) := w(x—u, z—u), there are two relevant terms

(@1.v.01) = [ Vixyol. Pz
R

(P, V. Dy) = /9 V(x, y)w(x, z)w(y, z)dxdydz,
R

giving rise to the energy correction y (V)

v W)= [ Ve etaidds g [ Vioeadd 10
R? RO

It is the content of our main Theorem 1, that y(V), u(V), and o (V) describe the second-order correction
to the leading-order asymptotics of the ground state energy Ex in Eq. (3), which is of the order

ON S (\/ﬁ ) The mathematically precise implementation of the correlation structures w, &, and 7 will
be based on modified creation and annihilation operators, see, for example, [8], and generalized (unitary)
Bogoliubov transformations, see, for example, [2, 3]. Furthermore, we show that the order O n (\/ﬁ )
term comes with a nonzero prefactor for a large class of potentials V.

Theorem 1. Let V € C‘X’(Ré) be a bounded and non-negative function with compact support, such
that the function Vy defined in Eq. (1) is permutation symmetric. Furthermore, let y(V), u(V), and
o (V) e RbeasinEq. (10), Eq. (5) and Eq. (9) respectively, and let by (V) be as in Eq. (4). Then the
ground state energy E :=inf o (Hy) satisfies

1 1
En = cbm(VIN+ (y(V) = u(V) = (V) ) VN + O o (V). (1n
Furthermore, there exists a A(V) > 0, such that for all0 < 2 < A(V)
y(AV) = u(AV) = o (AV) < 0.

Remark 1. While Theorem | concerns Bose gases in the ultra-dilute Gross-Pitaevskii regime occupying
a volume of the order LN, the leading-order behavior of the ground state energy per unit volume e(p)

is known in the thermodynamic regime as well as a function of the density p, see [24], and given in
analogy to the leading-order asymptotics in Eq. (3) by

1

e(p) = G

bam(V)p* + 0,0 (,03)~

It is remarkable that the coefficients y(V), u(V), and o (V) from Theorem | are defined in terms of
variational problems on the unconfined space R3¢ and do not depend on the boundary conditions of the
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box A¢. Substituting p with
as p — 0, to be given by

\LW in Theorem | we therefore expect the second-order expansion of e(p),

e(p) =p3(ébM(V> +(y V) - uw) - fr(V>)p) +0pm0(p?).

This would be in contrast with the second-order expansion of a Bose gas with two-body interactions,
where in the celebrated Lee-Huang-Yang formula, see, for example, [14, 10] and [3] specifically for
the periodic torus A, a summation of Fourier coefficients in the Pontryagin dual (27Z)° of the locally
compact group A appears. It is, however, expected that there is a corresponding Lee-Huang-Yang term
for gases with three-body interactions, which should appear in a third-order expansion of the energy as
a term of the order Oy o (1).

Proof strategy of Theorem 1. Following the ideas in [23], respectively [2, 3, 10, 11], which have
been developed in the context of Bose gases with two-body interactions, we are going to unveil the
correlation structure of the ground state with the help of a suitable coordinate transformation. Based on
the strategy presented in [8], our initial coordinate transformation will be of algebraic nature, that is,
we introduce a new set of operators and observe that the many-body operator Hy is almost diagonal in
these new variables. The algebraic approach immediately allows us to find satisfactory lower bounds on
the ground state energy E . Furthermore, we show that this coordinate transformation can be realized
in terms of a unitary map, at least in an approximate sense, which yields the corresponding upper bound
on Epn.

In order to find a suitable transformation bringing H into a diagonal form, we observe that collisions
between at most three particles will occur much more frequently compared to collisions between four
or more particles, as we are in the dilute regime where the gas occupies only a volume of the magnitude
‘/Lﬁ. Consequently, we first look for a diagonalization of a gas with only three particles N = 3, which
will involve the three-particle correlation structure w, and subsequently lift it to a diagonalization of the
full many-body problem. As it turns out, including the three-particle correlation structure is enough to
identify the leading-order behavior of the ground state energy. To be more precise, utilizing the a priori
information in Eq. (14), we are able to show at this point

En = ébM(V)N+ON_m(\/N). (12)

We want to emphasize that the proof of Eq. (12) depends on our ability to neglect collisions between four
or more particles, and we note that the correlation structure involves mostly particles outside the state
with zero-momentum. It is therefore crucial to have strong a priori information regarding the number
of particles outside the state with zero momentum, which we will refer to as excited particles. In the
language of second quantization, the number of excited particles can naturally be expressed as

N :=N-Ny:=N -aay, (13)

where N is the total number of particles, Ay counts the number of particles with zero momentum and
ap is the annihilation operator corresponding to the zero-momentum state, see also Section 2 for a
more comprehensive introduction. The following result, which has been verified in [23], tells us that the
number of excited particles is indeed small compared to the total number of particles N, that is,

1

N(TN,N‘PN>=0N_>OO(1), (14)
for any sequence of states W satisfying (¥, Hy¥n) = En + On—o(1). Notably, the results in [23]
concern particles in R? subject to a confining external potential, which can be generalized to our setting

on the periodic torus without significant modifications as is explained in [25, Eq. (19)]. Using the a
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priori information in Eq. (14) then allows us to identify the leading-order asymptotics of the ground
state energy En in Eq. (12). In addition, we obtain at this point an improved (BEC) result

O NE) = ON%(VLN) (15)

for any sequence of states Wy satisfying (¥, Hv¥N) = EN + ON 500 (N%), see also the subsequent

Theorem 2 where we further improve this result up to a rate of the order N ‘%, which we believe to
be of independent interest. Based on the observation that our constructed unitary maps create an order
O N (1) amount of excited particles, we conjecture that the optimal rate of condensation is of the
magnitude ﬁ

Finally, we use an additional coordinate transformation, which implements the two-particle and four-
particle correlation structure ¢ and 7, together with the improved control on the number of excited
particles in Eq. (15), in order to identify the coefficient C in front of the VN term in the energy
asymptotics

C=y(V)=u(V) o).

Notably, collisions between four particles do contribute to the subleading term in the energy expansion
in Eq. (11); however, in analogy to Eq. (12) we can dismiss collisions between five or more particles.

Theorem 2. Let V satisfy the assumptions of Theorem | and let ¥ be a sequence of elements in
L3 (AN) satisfying |Wn |l = 1 and

(Wn,Hy¥y) < En + DN,

for some constant D > 0. Furthermore let N be the operator counting the number of excitations
introduced in Eq. (13). Then there exists a constant C > 0, such that

1
F (NN ) < CN~1.

Outline. In Subsection 1.1 we are first deriving the three-particle correlation structure for a model
where the total number of particlesis N = 3. Following the strategy proposed in [8], we are implementing
in a systematic way the correlation structures from Subsection 1.1 for gases with many particles N > 1
in Section 2. Using Bose-Einstein condensation of the ground state as an input, this allows us to
immediately recover the leading-order behavior of £ as alower bound and, in the subsequent Section 3,
also as an upper bound. Furthermore, we obtain at this point an improved version of (BEC) with a rate.
In Section 4, we are going to describe the two-particle and four-particle correlation structure, which
gives rise to the correction u(V) and the correction o (V) defined in Eq. (5) and Eq. (9) respectively.
It is the purpose of Subsection 4.2 to verify the lower bound in our main Theorem |, wherein we use
the improved (BEC) result, and the purpose of Section 5 to verify the corresponding upper bound. In
the following Section 6, we can then provide (BEC) with a rate of the order N ‘%, which concludes the
proof of Theorem 2. The sign of y(AV) — u(1V) — o (4V) is established in Section 7 for small 2 > 0,
alongside other useful properties of the scattering solutions that describe the correlation structure.
Finally Appendix A contains a collection of operator inequalities.

1.1. The three-body Problem

While naive first-order perturbation theory would tell us that the ground state energy E is to leading
order given by the energy of the uncorrelated wavefunction I'y(xy,...,xyN) ;=1
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-1 -2
o tintoy = M D [ iyany= 5 [ veeyadysonoo,

it is due to the presence of correlations in the ground state of the operator Hy, that the leading-order
coefficient b (V) in the energy asymptotics of E in Eq. (3) satisfies

bai(V) < /R 3 /]R Vix.y)dxdy.

In order to quantify the correlation energy fR3 fR3 V(x,y) dxdy—br(V), we are going to follow the frame
work developed in [8], and investigate first the corresponding three-particle operator H 3y := —A3 +Vy
acting on LZ(A3), where Az := A, +A,, + A, before we study the many particle operator Hy defined
in Eq. (2). It will be our goal to find a transformation

T:L*(N) — L*(AY)

that removes correlations between states with low momenta and states with high momenta, that is, we
want to bring H(3) into a block-diagonal form, which allows us to extract the correlation energy. It is
content of Section 2 to lift the block-diagonalization from the three-particle problem, described by the
transformation 7, to a block-diagonalization of the many-particle operator Hy, which will allow us to
identify the correlation energy for the many-particle problem.

Let us first specify the set of low momenta as either the set where all three particles occupy the
zero-momentum state

Lo = {(0,0,0)} € (272)° (16)
or the set where at most one of the three particles is allowed to have non-zero momentum

Lk = | ] {(k,0,0),(0,£,0),(0,0,k)} € (27Z)°,
|k|<K

where 0 < K < oo is a parameter that we are going to specify later. For the purpose of extracting
the correlation energy, it is enough to consider K := 0, however, for technical reasons it is going to
be convenient later to consider positive values K > 0 as well. Having the set Lx at hand, we can
define the projection mx onto states with low momenta as

ng (W) = Z (g iy, W)t g, g, (17
(kikaks) €Lk

where wui(x) = e** for k € (27Z)® and Uk, Uk,Uk, has to be understood as the function
Ug, (x1) U, (x2)ug, (x3). Let us furthermore introduce the projection Q acting on L>(A) as

0(9) = ) (k. pux. (18)

k+0

Following the strategy in [8], let R be the pseudoinverse of the operator Q®3 (A3 + Vy)Q®?, that is,
using the function A(7) := % for t # 0 and /(0) := 0 the operator R is given as

R = h(Q%(-As +Vi)0®),
and let us define the Feshbach-Schur like transformation

T:=1+RVynk. (19)
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Note that 7 would be a proper Feshbach-Schur map, in case we would exchange Q®* with the projection
1-rmg ; however, we prefer to work with Q®3 for technical reasons. Using the notation {A+H.c.} := A+A*
and the observation 7! = 1 — RVy 7k, yields

HT™' = Hisy - HayRVynx = Hiz) — Q% H3 RVy ik — (1 = Q%) H(3)RVy ik
=Hg) - 0%Vyrk — (1 - Q%)Vy RV,

and by taking the adjoint we furthermore obtain
(T™)'H@) = Hs) — 1k VN QP — ik VN RV (1 - %),
Combining both equations yields

(T H T = HyT™' = 2x VN O®® — nk VN RVN (1 — 0%°) + g Vv RV ik
= Hg) - 0% Vyng — nxVn0®® — (1 - %))V RV ik
— 7k VNRVN (1 = 0®) + nx VN RVN 7Tk
=-A3+Vy - 0% Vyrk — 1k VnQ® - (1 — 1k — 0®*)VN RV 7k
-k VNRVN (1 =g — 0®%) = g VN RVN K
=-A3+ng(Vn —VNRVN)ng + (1 —ng)VN (1 = 7k)

+{7rK(VN —VNRVN)(l — g —Q®3) +H.c.}, (20)
where we have used in the final identity Eq. (20) the decomposition
Vy =k Vnrk + (1 = 7g)Vn (1 = 7g) + {nx Vv (1 = g = Q%) + g Vv 0 + Hee ).
Defining the almost block-diagonal renormalized potential Vn as
Vn =1k (Vn = VwRVN)mg + (1 = g )V (1 = 7k )

N {(1 P Q®3)(VN VN RV )7k +H.c.}, 1)

and multiplying Eq. (20) from the left by 7" and from the right by T, therefore yields the algebraic
identity

H = TT(—A3 + VN)T. (22)
The presence of {(1 - g — Q®3)(VN —VNRVN)K + H.c.} in VN, which are the terms that violate
the block-diagonal structure, is due to the usage of Q®3 instead of 1 — mx; however, it turns out that
these terms do not contribute to the correlation energy to leading order. One therefore expects to read

off the leading-order coefficient b o((V) in the asymptotic expansion of the ground state energy E in
Eq. (3) from the matrix entries of the renormalized potential

(VN)OOO 00— (uouou, Vi tottotto) = {uououo, (Vv — Vv RV utottoito).

As we are going to verify in Lemma 16, we have indeed the asymptotic result

1
b (V) = N2<u0u0140, (Vv = VN RVN)uguoug) + ON_,OO(N).
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2. First-order lower bound

It is the goal of this Section to bring, in analogy to Eq. (22), the many-particle operator Hy in an
approximate block-diagonal form, which allows us to obtain an asymptotically correct lower bound on
the ground state energy En in Corollary 2. First, we are going to rewrite the operator Hy defined in
Eq. (2) in the language of second quantization. For this purpose let az denote the operator that creates

a particle in the mode uy, that is, for ®,, € Lfym(/\") we define aZan € L2, (A™!) as

sym
K L (ur ® @)
a, Py = ——=n1 (Ui n)s
k Vn+1
where 2, is the orthogonal projection onto L, (A™*!) ¢ L*(A"*'), and we write ay for its adjoint,

which annihilates a particle in the mode uy (x) := e!**. With creation and annihilation operators at
hand, we can write

1 .

2

Hy = Z |k| aZak + 3 Z (VN)ijk,{;mna:.raj'.aZagaman, (23)
ke(2nZ)3 ijk,tmne(2nZ)3

where (VN ); k. emn are the matrix elements of Viy w.r.t. to the basis u;ujuy defined below Eq. (17). If
not indicated otherwise, we will always assume that indices run in the set (27Z)3, which we will usually
neglect in our notation, and we write k # 0 in case the index runs in the set (27Z)3 \ {0}. Note that the
operator on the right hand side of Eq. (23) is naturally defined on the full Fock space

Fr2w) = é L2 (A",
n=0

while the left-hand side is only defined on L2, (AN) € F(L?(A)), and therefore Eq. (23) has to be un-

sym
derstood as being restricted to the subspace Lfym (AN). Furthermore, we observe that Vyy is a translation-
invariant multiplication operator, and therefore the matrix elements of Vy satisfy (Vn);jk ¢mn = 0 in
case i+ j + k # { + m + n and otherwise

Jom k_”). (24)

_2A
(VN ijk,emn = (VN) (=€) (j=m) (k=n),000 = N V(W N

Following the strategy proposed in [8], we are going to introduce a many-particle counterpart to the
three particle map 7 defined in Eq. (19), which is realized by the set of operators

1 -
Ckp =ag+ 5 ; (T - 1)ijk,fmn a!a}afamans (25)
ij,tmn
d/ijk = Z Tijk,l’mn ardmdn. (26)
tmn

Here T jk emn = (ujujug, Tueu,u,) denotes the matrix elements of T. The following Lemma 1 is the
many-particle counterpart to Eq. (22), in the sense that it provides an (approximate) block-diagonal
representation of the operator Hy in terms of the new variables cx and ;.

Lemma 1. Let Vyy be the operator defined in Eq. (21). Then we have

1 ~
Hy = > [k[ciep + = (v) T e — 27
N Ek]l Pefertg D) (W), binde 27)

ijk,{mn
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where the residual term £ is defined as

&=~ Z k12 (T = Dirjricermm (T = Dijeemn a gl al,

ijk,tmn;i’ j ,0'm'm’

i
X (ai»aj/aiaj - 6,‘{/(5jj/ - (5,~j/(5j,~r)agaman.

Proof. Using the permutation symmetry of 7, we first identify Y, |k|>(cx — ax)'(cx — ax) as

1 - . .
2 Pt ot
- Z |kI*(T = Dirjric,ernm (T = Djijietmn @0, @,,Q,,Q0G 7G4 G0Aman
ijk,tmni’ j',.0'm'm’

1 ¥ ¥t
=5 Z {(T- D" (=A (T - 1)}ijk’[mnaiaja2amman +&
ijk,{mn

Z {(T =D AT = D}y gl @afacaman + €,

ijk,{mn

N =

where Aj3 is the Laplace operator on L?(A)®3. Similarly

1
Z |k|>a’ (ck —ax) +H.c. = = Z {(—A3)(T -1 +H.c.} dlatalacaman,
k 6 ijk,{mn P77k
k ijk,tmn >
% ¥ _ I8V Tt t
Z (VN)ijk’[mn!ﬁijkl//emn = Z (T VNT)l_jk’fm”aiajakagaman.
ijk,tmn ijk,tmn
Since
(T - 1DTA3(T = 1) +{A3(T - 1) +H.c.} = TTA3T — A3
we obtain

74 il
Z (VN)ijk,fmnwijkwfmn

1
2
E |k| chk + 3
k ijk,fmn

1 _
= Z |k|2azak + 3 Z {TT(—A3 + VN)T + A3}l_jk [mnaia;azagaman +£&.
z ,

ijk,tmn

We observe that 77 (—A3 + VN ) T+A3 = Vy by Eq. (22), which concludes the proof by the representation
of Hy in second quantization, see Eq. (23). ]

Making use of the sign (1 — 7x)Vn (1 — k) > 0, we immediately obtain that

Z (1 =7mg)VN(1- ﬂK))ijk,[’mnlijkwé’mn > 0.
ijk,tmn

Therefore Lemma | allows us to bound Hpy from below by

1 —~
Hy > Y IkPejec+ o 0 (I = =mVi(l=m6)) 07 i = €
k

ijk,mn ijk,tmn

1 _
:Z|k|2czck+g Z (VN -(1-7g)Vn(1 —”K))_, a:.raj.azagaman - £, (28)
X ijk,emn ijk.mn
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where we have used the fact that ¢, ;x = a;a;a, in case one of the indices is zero, which is a direct
consequence of the observation that (T — 1);x ¢mn = 0 in case one of the indices in {i, j, k} is zero.
Note that we can write

Vn - (1-ng)Vy(1-ng)=A+B+B"
with A and B defined as

A :=ng (VN —VNRVN)TK,

B:= (1 ~ ik - Q®3)(VN — VNRVy)7k.

Using the sets L&) = {(z,0,0),(0,z,0), (0,0, z)}, let us first analyze the term involving A

1 T T
Z (A)l]k [mna a a K4e4mldn = — Z (VN - VNRVN)z]k tmnd; al j44edman

ljk tmn (ijk),(¢mn)eLk
N 1
= E(VN - VNRVN)000’000(00)3H(3) + Z - Z (VN - VNRVN)ijk,[mn a?a%alaz.
0<|z|<K (ijk),(Emn)eL(2)
Together with the definition of the coefficients
1
Ak,e = 1—8<uoufuk—f, (VN = VN RVN) (uouour + uou o + ugtouo)) (29)
we can write
1
E(VN = VN RVN 000,000 = 8(“0140140, (VN = VN RVN uououo) = 0,0,
and utilizing the permutation symmetry of Vjy — Vi RV we furthermore obtain for z # 0
1 1
6 Z (VN - VNRVN)ijk,[mn = 8< Z Ui ju, (VN - VNRVN) Z ugumun>
(ijk),(Emn)eL (ijk)eL® (Emn)eL
1
= §<u0uouz, (VN —VNRVYN) Z ugumun>
(tmn)eL )
= 9/11,().
Therefore,
1
3 Z (A)ijx, [mnala]akagaman =0, (ag)3 +9a21 2 /lk,anak. (30)
ijk,tmn 0 <|k|<K
To keep the notation light, we do not explicitly indicate the N dependence of A4 ¢. Similarly
1
3 Z (B)ijk’[mnaTajaZagaman =3al 0% Z/lo,g a;ai[ +9agaé Z /lk,gaZaL(,ak. (31
ijk,tmn £#0 £,0<|k|<K
Putting together Eq. (28), Eq. (30) and Eq. (31) yields
Hy > doo(a))’al +Z|k|2c'ck+QK+5 - &, (32)
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where we define the operator Qx and the error term £ as

Qg = 9a2f 2 Z Ak,0a; ak+3 al aO Ao.e azaif+H.c. s (33)
0<|k|sK 0<|C|<K
= (3 Z Ao.e a;a"__f agag +9 Z /lk,gal;az_[ak aga(z) +H.c.|]. (34)
|€|>K £,0<|k|<K

Let us furthermore introduce the particle number operator

N = Z aZak,

k#0

which counts the number of excited partlcles that is, the number of particles with momentum k # O.
Since we have the operator identity Y a/ «@ = N on the Hilbert space Lsym(AN ) € F(L*(N)), we

observe that aoao = N — N, see also Eq. (13), that is, the number of particles with momentum k = 0 is
given by the difference between the total number of particles N and the number of excited particles.

In order to control the terms arising in Eq. (32), it is imperative to understand the asymptotic behavior
of the coefficients Ax » and the matrix entries 7;k ¢mn defined below Eq. (26). Since we want to focus
our attention on the many-body analysis, we will postpone our study of the scattering coefficients to
Section 7. For the convenience of the reader, we are going to state the relevant results, which are proven
in Lemma 15 and Lemma 16 respectively,

el < S e 2} (35)
kel = 33 N
-2
Cl(i+j+k=2¢) li]> + 7] + | k|?
T - 1); < + , 36
= Vsl < Sy e \'* W i o
1
|6N2/10,() - bM(V)| < —, 37
Ak, e th’
6N222 — b (V)] < —=. (38)
‘ 6 VN

Furthermore, we need the following result, which is verified in Lemma A2, see Appendix A, and which
allows us to compare the new operators c; with the annihilation operators ay,

L1
D kP (e —ai) (e —an)’ s SN, (39)
k

Dk Noa s ) IkPTepN ey + %/\/“2 +NT(N +1)° (40)
k k

for0<7<1,0<0< i and integers s > 0. Utilizing Eq. (35)-(40), the following Lemma 2, Lemma
3 and Lemma 4, provide relevant bounds on the various terms appearing in Eq. (32), which will be
instrumental in order to establish that the ground state energy En of Hy is, to leading order, bounded
from below by 6b Mm(V)N, see Corollary 2. In our first Lemma 2 we provide a lower bound on

Aoola))al +Qk
for K large enough, which is an operator that is at most quadratic in the variables a; and az for k # 0.
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Lemma 2. Let b (V) be the modified scattering length defined in Eq. (4). Then there exists for all
7,a > 0, a constant Ky(t, @) and for all K > Ky(7, @) a constant Cx > 0, such that
1 NN
\3 3 27 %
/l(),o(ao) ay+Qg 2 ng(V)N - az |k| Takak - CK(I + A + \/_N)’
k
for K > Ko(7, ).
Proof. First of all we observe that we can write
(a})’a) = N* =3N* (N +3) + NGN? + 6N +2) - N = 3N? -2\
> N? - 3NN - N?D,
for a suitable D > 0. Defining

N> IZN— Z aZak,

0<|k[<K

we therefore obtain in combination with Eq. (37) and Eq. (38)

1
Aoo(al)ay + Qx — —ba(VIN

6
2,2 T3
1 (ay)a a,a _1
> ng(V) 9 (])Vz 0 Z azak+3 1(\)720 azaik+H.c. -3N-DN 2N} -D
0<|k|<K 0<|k|<K
2,2
1 (ay)a .
=6bM(V){(9 e 0 _3_pN-z Z alax
N 0<|k|<K
a'ad .
+3 020 Z aZa'_k+H.c. —3N>} - D,
0<|k|<K
for a suitable constant D > 0. Since
T3 3
ala ; n K
020 Z a/iaik+H.c.§3 (ZaZak+l) <6 Z al'(ak+3(—+l) ,
0<|kI<K 0<|k1<K 0<|k]<K T
and since we have
(a})?a? N2 N
9-0 _9_pnN: afap > 9~— -D—,
N2 N UV

we obtain

t 1 1 N2 N
Ao,0(ag)ay +Qk = ng(V)N - EbM(V)J\& - CK(l v W)

for a suitable, K-dependent, constant Ck. Finally, we choose Ky(7,@) large enough such that
%bM (V)Ko(7,@)™" < a, and therefore we have for all K > Ko (7, @)

1 1 =) 2 2
Fhm (V)N < Sbm(V)K Tzk: k*"a}ay < azk: k1?7 ay. -
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In the Lemma 3, we will provide estimates on the residual term £ defined in Lemma 1, which will
allow us to compare the size of £ with the kinetic energy >, |k|2czck in the variables c,. Before we
come to Lemma 3, we need the following Corollary 1, which is a consequence of Eq. (40) and allows us
to estimate monomials in the operators ay and az by the kinetic energy in the variables c; and powers
of the particle number operator .

Corollary 1. Let K. ; := Yi_ (—Ax,)". Given 0 < 7 < 1, and integers s,t > 1 and e, B > O, there exist
0 > 0and C > 0, such that for e > 0

Ko2GK A |IV-S XA

<¢

Jd 4
( Z Gl[ dgafle-ji @ e ajIX ai, ... 4 +H.c.

sy J1e-
X {Z |k|2cz (ENS+Q’—1 + E—INH,B—I)Ck + (N+NT)(€NS+Q—1 + E_INH"B_I)}’
k
where G : (ranQ)®* — (ranQ)® and X : ]-'(LZ(A)) N .7:(L2(A))_ In case s = 0
< C’IC G

X {e/\/’“ +e! Z |klzc£/\/’+ﬁ71ck +e!W+ NT)N”’B]}.
3

Z Gjl---ftaj‘t .. .a;lX + H.c. ’” _g N_%”

Proof. Let us define for s,7 > 1 the operator-valued vector and operator-valued matrix

1

(q)T»S)kl_..k, = (lkl |2T -+ |k |2T) Ak -+ - Ak 41

] @
Yi,igr = (IC G K ) N-EXN-E,
R T
which allow us to represent

@

B a
Z Gll g j1edi @ ] aj.lX ai, ...a;, = @:’INZ YN2D, .

wlss g1

Using the fact that ||Y|| < 2 3G ICT IV ~EXN-3 2|, we obtain by Cauchy-Schwarz
+ (@)Y, +He) < K36 Ko lIv-4x | (e0f NP, + 0] N
-1 -1 @ - .
= ’ K. G K% ||J\/J%XJ\/'77 Ifes Z |k|27a;( NSl 4 et IZ |k|27a,'< N'+ﬁlak).
3 3

Since A/ < N we furthermore have by Eq. (40)
Z |k|2Ta]i Ns+a—lak < Z |k|2CTkNS+(y—lck + (N+ 1)S+(l—1(NT +N) 0
k k

With Corollary | at hand, we can verify the subsequent Lemma 3.

Lemma 3. For K > 0, there exists a constant Cx > 0, such that

+S<CKZ|]C|2 T(A[+ZV 2)Ck+CK(-/%/’+[V )(N+l)
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Proof. Let us denote with Z C (27Z)> the index set

Z:={(0,0,0}u [ ] {(£0,0),(0,£0),(0,0,6)}

0<|€]<K
Then we define for I = (11, >, 13), 1" = (I{,1,1}) € T the operator K1) acting on L?(A) and the

operator G>1") acting on L>(A)®? as

K(I - =3 Z |kI*(T = Dy jie.rr (T = Dyjier + (T = Djinoa)s
Jjk

Gl(JI lIJ) Z |kI*(T = D jric. (T = Vgt
%

as well as K5 := (=Ax,)™ + (—=A,) acting on L?>(A)®2. Then we can write & as

ING 1.1
Z (ZKL([, )a ( Ilahalla[ agar; )al Z G[(J U),a a' ( 1,“2“2“1 agar; )a,/a]) 42)
1, I’eT\i,i ij,i'j’

-1 ool
By the weighted Schur test, the operator norm of K 22G(I ! )ICTZ2 is bounded by

||IC_% G(””)IC_% | < Vo100
7,2 T, 2! = ?

, feisii) .
where we define a1 = sup; ;» i W Let us furthermore introduce s := I} + I, + Iz and
2

s’ := 1] + I} + I;. Making use of Eq. (36), we obtain for the concrete choice 7 := 5

k12 (T = D jric e (T = Dyijacr |

6i’+j’+k s’6i+j+k =s

(1.I') -4
a < sup - - <N sup
v [P+ [ v iy PT+ PO (i + 117 + [P
<N
12427 S
i#0 |l|

_1 N1
Consequently ||[K_2GY-1V 2| < N~*. Furthermore, the operator
7,2 7,2
(I’I/) = %‘ T "- ’ ’ ’
X ‘=apapapaparar
satisfies || X /-I)|| < N3. Therefore we obtain by Corollary |

1.1 N N
Z Gl(/ l,/),a a. (allajzalal alzal )alfaj ZlklzczNC‘k'f‘(N‘l'NT)N.
ij,i'j’ k

Again by Lemma 15 we have ||[K"1)|| < N =3, which concludes the proof by Corollary 1, together with
the observation that the set Z in the definition of £ in Eq. (42) is finite. m|

The next Lemma 4 will give us sufficient bounds on the error term £’ defined in Eq. (34), which
will be responsible for the appearance of an order Oy, (\/ﬁ ) error in the main results of this Section

Theorem 3 and Corollary 2.
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Lemma 4. There exist constants C,Cg > 0 such that for K < YN, where K is as in the definition of
g below Eq. (17), and € > 0

N C N
/logaa @ +He |<e ) [€fc }Cg+EN+C—+—(\/N+ ), (43)
L Rl Rt R
2
+ Z /lkgaeak (9K 4 aO+HC. <€ Z|£’|ZCTC¢>+EAA[[ +CK'/L/+C—K(\/£_ %ﬂ) (44)
0<|k[<K,¢

Furthermore, we have

Z/logaa M+Hc <N
I¢[>K

ZW ‘cf+N)+N z/\/’l(/\/w/_) (45)

a3 AL,’: and the coefficients

Proof. Givenm € {0, 1}, let us define the operator X := ayagy;

/\E»",Z = (T = Dn-k) (k=) £.000 + (T = Dn—rk) (k-£)£,0n0 + (T = D) (n-k) (k=€) £,00n>

and observe that by Eq. (36) there exists a constant C > 0 such that

2 2\l
c |6 + K] ) | )

= NP+ |k|2)( TN

where we have assumed w.l.0.g. that [n| < VN, since At(,",z =0 in case |n| > K and K < VN. In order
to verify Eq. (43), respectively Eq. (45), let us write

Z/l()gaT i Z/lopca X - Z/lop(Cg—a[)kaTX

5K |€|>K [€|>K
= > dos c}aLx- Z docal (ce—an)’X= > Y doeAfyay alanX.  (47)
|¢]>K |€]>K |€]>K n#0

Regarding the first term in Eq. (47), note that we have for € > 0 the estimate

1 Ao.el? o /12
3 vl e 2 S P b 2 U8 3 bt

[€|>K [€|>K |€]>K

2
Using [Ax.¢] S N72(1 + ke ~ )\, see Eq. (35), we have Z|5|>K KI < N~7 and I/l;’;fl < m for

|€| > K, and therefore we obtaln for such K

1
+ Z /lo,gc;ai[XiH.c. < EZ|€|20205+WXT(K2+1 + VN )
|[€|>K l
N[N N
<€ CPcter + - —— +—,
;'l T ENT |\ K21 e
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where we have used XTX < N? J]\V/z: and [X, N] = 0. Regarding the second term in Eq. (47), let us use
—Liama 2 F N
2iesk €172 |N* o el a,ae < TR &S well as the fact that

Z Viel(ce = ar)(ce —ap) s N
7

by Eq. (39), to estimate for x > 0

1 1 N2m
+ /lo,g ai (ce —ag)TX +Hc. s ———N+ —XTNX < N+« N.
£’|Z>:K ‘ KVK +1 N* KVK + 1 NZm

Regarding the final term in Eq. (47) we have that ), |A(")| SN2 by Eq. (46), and hence

+ Z Z/lo A;,(; (Z)Ta a,X +Hc. <N IN.
|€]>K n#0

For m = 0, the choice « := e yields Eq. (43) and for m = 1 the choice x := VN and € := # yields
Eq. (45).

Regarding the proof of Eq. (44), let us define the operators di, = Ag¢N %aL[ak and write
a;dk,g = c;dk,g +die(ce - ar) + [(ce —ar)T, dr.¢]. We compute

1. 3 1
Z[(CZ’ —ap)',dic] = >N* (QST Z gl\é?zi/lk,f laja_i—¢.a)_,ar]

¢ ije
T2
af 4990
+aZT Z ZAM Arclalaianioe.a), gak])—og
Inl<K it N2
3T T2 2% T2 2 T2
P aga kaoao + 0 Z ulahara kaoao s ul) ataiax- [aoao
- n— i— ’
N% k N% N P k,n N; N l’[ ktf k—€ %
where we define the coefficients
(1) 3 (0)
=N 23/\ ) Akt
2
p =N AN A,
¢
3 k
Hete = NN g,
. . _2 ﬂ —1 . . . (1) < L (2) < L
Using again Eq (46) and |Ak¢| S (I + %)™, we immediately obtain |u, " < R |,u WS N

|u,((3t). SN 3 and i |,u]((33 B N, and therefore by Cauchy-Schwarz

T2

. a,a N
[(ce—ae), die] 52 +He. | s —.
Ze: N3 VN
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Consequently,
t 1 “3“5
+ Z /lk’[aé Ok Ay a0+Hc Zaé,dk’g + +Hec.
0<|k|<K,t N2
2
Z ( Z|f|CCg+—z|€|2dk()dk[+KSdegdk€
O<\k|<l(
31 T3
K3 0 40 Aoty N
+— Z (ce—ae)(ce—ar) +—=
2 N2
€ &4 N N VN
sey ltPeie K D od et Y died]
S eCtT |5|2 kTRl T 3 k% ¢
¢ 0<|k|<K,C 0<|k|<K,€
K3 Cl3TCZO T T '3 s N
+ ? N2 (C[ - a(i)(Cg - ag) N2 +K \/—_
0<|k|<K € N

Similar to the proof of Eq. (43), we observe that — K3 20<k|<K,¢ k [dk ;S N and, using Eq. (39),

3t 1.3 37 2 1,3 2

a, ap a,a a, ap N'* aya N

O —(ce—ar)(ce—an) =L s K32 - 00 < g3

N2 N2 N2 N N2 N
0<|k|<K.C

N

t s N 3 1 2 3 N
Z B Izdk[dkjSK \/_N+KN ZWMk’A a.a, t’ak car S K \/N+K N O
4

0<|k|<K,C

Having Lemma 2, Lemma 3 and Lemma 4 at hand, we can use the lower bound in Eq. (32) in order to
derive the following Theorem 3, which provides strong lower bounds on the quantity (¥, Hy ¥). Note,
however, that Theorem 3 is only applicable for states W which satisfy the strong condition that ¥ is in
the spectral subspace N < €N, that is,

LN <eN)Y =V, (48)

where the orthogonal projection 1T(A < eN) is defined by means of functional calculus. In the following
we will refer to the property in Eq. (48) as (BEC) in the spectral sense 1(N < eN)¥ = ¥. Furthermore,
we refer to a Hilbert space element W as a state, in case it satisfies ||| = 1.

Theorem 3. There exist constants 6,C, Ny > 0 and € > 0, such that
1
(¥, HNW) 2 =bpm(VIN +6(¥, Z k¢l ci¥) + (¥, N'¥) - CVN
k

Jor any state ¥ satisfying 1L(N < eN)¥ =¥ and N > Ny, where N := Y 1.4 azak.

Proof. By Eq. (32) together with the estimates in Lemma 2, Lemma 3 and Lemma 4 we have for
a, 7,6 >0and K > Ky(a, 1)

1 , N o
Hy 2 chm(VIN + (1= € )Zk] kPPcler — Ck.er Zk: |k|202(ﬁ +N Z)Ck 49)
N i C
—a Y |k*d! ak—(e'+C1<, '— +Ck, 'N_3+—)N—CK, "VN,
Z N ‘ VK +1 ‘
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where C,Ck ¢ and Ko(a,T) are suitable constants. In the following let ¥ be a state satisfying
L10,en)(N)Y = ¥ and define W := c,'P. By the definition of ¢ itis clear that L jo_¢ n+2) (N) P = Pk,
and therefore

N 1 N 1
<‘P, Ek: |k|2c;(ﬁ +N 2)Ck‘P> = Ek: |k|2<‘Pk, (ﬁ +N z)wk>

N 1 N+2 1
= Z |k|2<‘Pk, (W +N‘2)1[0,5N+2>(N)‘Pk> < Z |k|2<‘l’k, (E N+ +N_2)‘Pk>
k k

N+2
- (€ ~ +N—£) T,Z|k|2c;ckly . (50)
k
In a similar fashion we have

(P, N?W) < eN(¥, N'¥P). (51)

Furthermore, note that for a suitable constant D; > 0

27 % 2 .F N? 1

Zk:|k| alag splgm ¢pck+ D1+ DIN* (52)

by Eq. (40) for 7 < %, and by Eq. (39) we have
N(I—RN)SR Ek |k| Cka+R

for a suitable constant R > 0. Using 1(N < eN)¥ = ¥ with € small enough such that Re < 1, we
therefore obtain

(‘P,NT) <D, + D>, (53)

W, )" [k[Pcpox®
k

for a suitable constant D, > 0. Combining Eq. (49)-(53), therefore yields for suitable constants D and
Dk e'.a-and 0 < € < %,

(P,HyY) >

1—D(e'+a+ )—DK,E,,Q(HN-%)](\P,Z|k|2c;cklp>
k

D
€VK +1

1
+ ng(V)N - Dk .e.aVN.

We can now make our choice of parameters concrete. First we take choose 7 such that 0 < 7 < % and
a, €’ > 0 small enough, such that D(e’ + @) < %, and then we take K > Ky(«, 7) large enough, such that

1
D|e'+a+ < -.
(¢eo 2

)
1

Finally, we take 0 < € < & small enough and N large enough, such that

_1
DK,E’,(I(G"'N 3) < -, O

N —
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It has been verified in [23], for the more general setting of particles being confined by an additional
external potential, that any approximate ground state Wy of the operator Hy satisfies complete Bose-
Einstein condensation

<lPN,N\PN> =0N_,00(N). (54)

Adapting the localization procedure presented in [ 19, Theorem A.1] in the form stated in [ 16, Proposition
6.1] for the following Lemma 5 allows us to lift Bose-Einstein condensation in the sense of Eq. (54),
to Bose-Einstein condensation in the spectral sense, which is a crucial assumption of the previous
Theorem 3.

Lemma 5. Let V¥ satisfy (¥, HyWY) = En + 6 with 6 < N. Then there exists a constant C > 0, such
that there exists for all 1 < M < N states ® satisfying 1(N < M)® = ® and

2AP,NY \'(VYN N
Furthermore, there exists a state @ such that 1 (N > %)&) = ® and
CN N N
<T,NT>S<¢,N(D>+T—EN> £+—2"f'5 . (56)

Proof. In the following let f,g : R — [0, 1] be smooth functions satisfying 2 + gZ = 1 and f(x) = 1

forx < 4, as well as f(x) = 0 forx > 1, and let us define m := ||f(%)‘l’||2 and

Note that [|®]| = [|®|| = 1,0 < m < 1 and clearly we have T(N < M)® = ® and 1(N > £)d = @.
Making use of the algebraic identity

O R

with the residual term

[ o o P R

we obtain
m(®, Hy®) + (1 = m)(®, Hy®) = Ey +6 — (¥, EP).

In order to estimate (¥, EW), let 7 denote the projection onto the constant function in L?>(A) and
n! := 1 — 7% Then we can rewrite £ as

1
_ L L _I i Jo T Tt ot
E= 3 E E (" m2nB3Vy a2 3),~jk,gmnakajaiXI’Jagaman,

1,J€{0,1}3ijk,tmn
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with

e ) A o))

and #; counting the number of indices in / that are equal to 1. Using 0 < X; ; < X, where
X = (IVAIP + 9812 LV < M),

we obtain by the Cauchy-Schwarz inequality

1

n_nL_I LI i

+€ < YRy E E (7" 273 Vym ‘n2n3)ijk,gmnak ) lXagaman (57)
1€{0,13 ijk,Cmn

In the following we want to show that for any I € {0, 1}3, the ¥-expectation value of the corresponding
term appearing in the sum on the right side of Eq. (57) is of the order VN M +N. For I = (0, 0,0) we have

(Vv ooo, ooo(ao) Xay S N~ 2||X||(f10)3flo < (||Vf||2 +1|Vell )
Similarly,

Z(VN)om oo1(a))?al Xaral s M < N
i#0

inthe case I = (0,0, 1). Regarding the case I = (0, 1, 1), let us first observe that we have the upper bound
Z (VN )ojix, Omnao Xamanao <Cn Z |k|*a). i ZGTH Xajag |ak (58)
Jjk,mn#0 Jj#0

with the constant C being defined as

|(VN)Ojk,Omn|} _ 1 { |V(N‘5t)|}

Cn = sup { E — sup
2 2 2
m,n#0 j.k20 |k| N p’q#)t:pﬂio |P + t|

Due to our regularity assumptions on V we have |V(N Tit | < m and therefore

dx
Cy <N N—z/
) szH:#o |P+f|2(1+N W)~ Jes p+xP(L+ N )

dx v d :
<N~ _— = N_247r/ — T = 27T2N—%, (59
r3 |x]2(1+ N1 x|?) 0

where we have used the Hardy-Littlewood inequality in the first estimate of Eq. (59). Since

Tt
aoanajao S MN
j#0
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we obtain by Eq. (58)

_1
¥, Z (VN)Ojk,Omnagaza;XQmanao ‘P> <N 2M<‘I‘, Z Iklzazak ‘P>
Jk,mn#0 k

< N IM(¥,Hy¥) < NIM(Ey +N) < NI M,

where we have used the assumption 6 < N and the upper bound on E derived in Theorem 4. The only
distinguished case leftis 7 = (1, 1, 1). We start its analysis by defining

1

Vap:= M Z Z (7T117T127TI3VN7T11 ngnfs)Uk’gmnaza;a;Xl,Jagaman,
1,J€{0,1}3:ijk,tmn
#l=a,#J =

which allows us to estimate, using the Cauchy-Schwarz inequality,
1
V3,3 < Hy - (V273 + V3,2 + V1,3 + V3,1 +V0’3 + V3,0) <Hy+ §V3,3 + 6(V0,0 + Vl,l + Vz,z).
From the previous cases we know that

(¥, (Vo0 + Vi1 +V22)®) < N2M +N,
(V,HyY¥) < N,

and therefore (¥, V33¥) < N XM +N. Summarizing what we have so far yields the inequality

_ ~ VN N
@, HND) + (1 = m){(®, Hy®) < Ey +5+C|— + — |.
m(®, Hy®) + (1 —m){(®, Hy®) < En (M Ve

Using (E) Hy CT)) > En and the simple observation that m > 1 — %ﬂ
and using (®, Hy ®) > E we obtain for a suitable constant C > 0

VYN N

—+—+40
M M?

immediately yields Eq. (55),

C
l-m< ——— - N>
(O, Hy D

In order to derive Eq. (56), we note that N = f(%)]\ff(%) + g(%).f\/’g(%) and therefore
(P, E¥) = m(@,N®) + (1 — m)(®, N®) < (B, N®) + (1 - m)N. O

Before we come to the lower bound on the ground state energy En in the main result of this Section
Corollary 2, let us first state the corresponding upper bound in the subsequent Theorem 4, which has

essentially been verified in [23]. To be precise, it has been shown in [23] that E < éb MV)N+CN %,

and, as is explained in [25], the method in [23] can be improved to yield Exy < ébM(V)N +CN? as
well. However, since the computations in the proof of Theorem 4 are relevant for the proof of the upper
bound in Theorem 1, and for the sake of completeness, we are nevertheless going to verify Theorem 4
in detail in the subsequent Section 3.

Theorem 4. There exists a constant C > 0 such that the ground state energy E is bounded from above
by En < Lbam(V)N + CYN.

Using Bose-Einstein condensation in the spectral sense, Theorem 3 allows us to derive an asymptot-
ically correct lower bound on the ground state energy in Corollary 2 with an error of the order VN, see
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Eq. (62). In this context we call W an approximate ground state, in case ||V || = 1 and there exists a
constant C > 0 such that

(Pn,Hyv¥YN) < En +C. (60)

Note that the assumption in Eq. (60) is more restrictive compared to the one employed in [23], where
the authors call ¥ an approximate ground state in case | ¥y || = 1 and

1 1
lim —(¥n,HNyY¥N) = =b (V). 61
nglooN< ~N.HnY¥N) G Mm(V) (61)

The fact that Eq. (60) implies Eq. (61) follows immediately from the leading-order asymptotics in
Eq. (3), which has been verified in [23], together with the trivial lower bound (¥, Hy¥nN) > En.

Corollary 2. The ground state ‘Pgs of the operator Hy satisfies for a suitable C > 0

(PSS, NPSSy < CVN,

and we have the lower bound
1
En > ng(V)N—CVN. (62)

Furthermore there exists a constant C > 0 and states @, such that ®y is an approximate ground state
of Hy satisfying (BEC) in the spectral sense with rate ‘/Lﬁ that is,

(Dy,Hy®y) < Eny +C,

n(/\f < C\/N)cp,v -y,

and we have the estimate on the kinetic energy <<I>N, Dk |k|2c£ckfl)1v> < CVN.

Proof. From the results in [23] we know that the ground state ‘I’gs of Hy satisfies
(PSS, NPSS) = 05 Lo (N).

Consequently, we know by Lemma 5 that there exist states £ satisfying

1 1
(€N, HNEN) SEN+C(m+m) (63)

and T(N < eN)én = En, where we choose € > 0 as in Theorem 3. By Theorem 3 and Theorem 4 we
therefore obtain for a suitable constant C > 0

1
ng(V)N+6<§N, > |k|2c1ck§N> +0(En. NEN) - CVN < (én.HnéN)
k
1
<Ey+C< ng(V)N+c«/ﬁ. (64)
This immediately implies Ex > éb (V)N = CVN for a suitable constant C > 0 and

(En, Néy) = ONW(«/N), 65)
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as well as <§N,Zk |k|zc'£ck§N> = ON_)OO(\/N). Furthermore, there exist by Lemma 5 states ENn
satisfying 1 (N > %N)gN =&y and

(PSS, NWSS) < <§N,N§N>+£—EN>s\/ﬁ+ W O (66)

En,Hnén N, HyéN) - En

In the following we show by a contradiction argument, similar to the one employed in the proof of
[4, Theorem 1.1], that

liII}Vinf{<gN,HNgN>—EN} = 00. (67)

For this purpose let us assume that Eq. (67) is violated, that is, we assume that there exists a subsequence
N; and a constant C > 0 such that sup; i (5 N Hn; § N;) — En; < C. Letus complete this subsequence to

a proper sequence by defining £, := £y incase N = N; for some j and £}, := ‘PGS otherwise. Clearly
£, is a sequence of approximate ground states, see Eq. (60), and as such &y, satlsﬁes complete (BEC)
by the results in [23], that is, (£},, N&}) = 0N e (N). This is, however, a contradiction to

’ ’ = = €
<§NJ7N§NJ«> = <§Nj’N§:Nj> 2 EN’
which concludes the proof of Eq. (67). Combining Eq. (66) and Eq. (67) yields
(PSS NESS) < CVN,

for a suitable constant C > 0. Applying again Lemma 5 for the state ‘I‘](\},S and M := KN, we obtain
states @ satisfying 1(N < KVN)®y = &y and

¢ >SEN+ ¢

(On. Hy®n) < Ey + 2 GS GS 2C’
1_Wﬁ<‘PN’N‘IJN l_f

for a large enough C > 0. Consequently @ is a sequence of approximate ground states for K >
2C. Finally we notice that the states @, satisfy the chain of inequalities in Eq. (64) as well, and
therefore

<<I>N,Z IklchckCDN> - ON%,(\/N). 5

k

3. First-order upper bound

It is the goal of this section to introduce a trial state I', which simultaneously annihilates the variables
¢y for k # 0 and ¢y, in case (€, m, n) # 0, at least in an approximate sense, which allows us to verify
the upper bound on the ground state energy En in Theorem 4. For the rest of this Section we specify
the parameter K introduced above the definition of 7x in Eq. (17) as K := 0, which especially means
that with n; . = (T - l)ijk,OOO we have

1 f T3
cr =ap+ E,Zilnijk a;a;ay, (68)

Vijk = ajajag +n;jk 11(3)~ (69)
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In order to find a suitable state I', let n;jx := (T — 1);jx,000 and let us follow the strategy in [23],
respectively in the case of Bose gases with two-particle interactions see, for example, [3, 7, 13], by
defining the generator

1
G = 3 Z Nijk aja}azag (70)
ijk
of a unitary group Uy := 99 and U := U 1. The generator G is chosen, such that
ck = ax + [ak, G],

and in particular, as we show this section, the unitary U has the property U~'c; U ~ a; and U~'y; kU =~
a;ajay in a suitable sense. Denoting with

To(xy,...,xn) =1 71)

the constant function in Lgym (AN ), that is, axI'o = 0 for £k # 0, we observe that I := Ul is a suitable

trial state for the (approximate) annihilation of ¢y, given k # 0, and ¥ z,,,,, given (¢, m, n) # 0, where the
action of the unitary U introduces a three-particle correlation structure on the completely uncorrelated
wavefunction I'y. We note at this point, that the action of the unitary operator U only creates an O (1)
amount of particles, in the sense that

U_s N"Uyg < eCmIS[V + 1), (72)

as is proven in Appendix A, see Lemma Al.
For the purpose of verifying that U _ll//iij is approximately identical to a;ajay, we first apply
Duhamel’s formula, which yields

1 1
U_la,-ajakU =a;a;ay — / U_g [aiajak,g]US ds +/ U_g [aiajak,gT]US ds. (73)
0 0

Furthermore, note that we can write
(aia;ax, G| = nijeag + (610 )iji + (620 )ik

using the definition

1 .
(614)iyinis = 3 Z Zm(,li(,zj]l(lag =0) a;ag,

o€eSy J
1 , i3, 1 Pt 3
(024 )iyiniy = 3 Z Z Dig igyjLlioy #0) a;ai, ag+ 1 Z Z Nig, jk A1 4 iy, Qi G
oeSy J oEeS3 jk

Therefore we can identify the transformed operators U~y kU as

1
U1 U = azajag +/ U_s{|aiajar, G'| = (61¥)ijk — (629)ijk — mijkag}Usds +ni U™ agU
0
1

1 1
= a;a;ay +/ U_s|aiajar, GT|Usds —/ U_s(619)ijxUsds —/ U_s(629)ij1Usds
0 0 0

1 1
; / / Umiji|a3, G |Usdrds, (74)
0 Ky
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where we have used Duhamel’s formula to express U _lflijkagU -U_sn; jkaaUS. The following Lemma 6
demonstrates that we can treat the quantities 61y and ¢ in Eq. (74) as error terms. In order to formulate
Lemma 6, recall the set £y := {(0,0,0)} from Eq. (16) and let us define

A= 27x2)° \ Lo = 27Z2)° \ {(0,0,0)},

and the potential energy Ep of an operator-valued three particle vector ® as

i1izi3

&p(0) = Z (VN irigis.i1 1,07 1.1, O (75)

i1iai3
(i] i2i3),(i1 i;ig) €A
To keep the notation light, we will occasionally write Ep(0;,4,;,) for £p(®) with dummy indices i}ii3.

Lemma 6. There exists a constant C > 0, such that
Ep(61) < CNI(N +1), (76)
Ep(6a) < CN + )%, (77)
Furthermore, Ep(|a; aiai,, G'|) < CN‘%(N+ 1)°.

Proof. Let us define A; as the set of all s such that (—s, j —5,0) € A and

@ =9 Z Mes(s=) 1 (1= (VN )=s (j=5)0.~1 (j-1)0-

S,I‘GAJ'

Making use of the fact that Vy > 0, we obtain by the Cauchy-Schwarz inequality

(VW iisis i 1] o (01D < (ad)*ad > ajajal < N“( a,-)(N +1).

1824
(i1i213), (11 8575) €A J J

By Lemma 15 and the fact that |(Vn)_s(j-s)0,-t(j-n0l S #, we have N* 2@ S CN%, which

concludes the proof of Eq. (76). In order to verify Eq. (77), let us first define

s - Tt 3
(02,6¥)iyiniy = Z Nig, jk 410 iy, Aig, Ay
Jk

Then we obtain, using the sign Vy > 0 and a Cauchy-Schwarz estimate,

Ep(ow) 5 Y. Ep(Br.0t) +57>(62w 5> Es'z,aw) = 66p (52,00 ) + € (cw > Es'z,gw).

oEeS3 oeS3 oSy

Proceeding as in the proof of Eq. (76), we obtain

sp(ézw - % 2 5z,aw) SN+ D2

o€eS3

Regarding the term Ep (gz,idzp), let us define
(G)il-.i4,./'1-~j4 = (VN)iliz(—j3—j4),j1jz(—i3—i4)771'31'4(—i3—i4)'7j3j4(—j3—j4)
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for (i1,i2,—j3 — ja) € A and (j1, jo, —i3 — is) € A, and (G);, i, j,..;, = 0 otherwise. Then

s, — il T 3
SP((SZ,idW) = Z (G)ll 04, ]1- 14(“0) a,] lzaﬁaﬂal} 14a11a12a0
i1..i4,j1..j4
— 3 7T 3
= Z (Giy g ,4(a ) all 12a13a14a/’3¢/’4ai1ajzao+2
iy..04,]1.-J4
3 T T T 3
X Z (G )ll 03, ]1- ]3(a0) i 12 z;ajia‘ajla]éao
i1..03,]1..J3,k
” 3
+ (G i@ a) al ajaja), (78)
i1i2,]1J2
with (G/)i1..i3,j1..j3 = Zk Gil,,i3k,j1_,j3k and (G’,)iliz,j]jz = Zklkz Gilizklkz,jljzklkz' In the follow-

ing let us study the term involving G”/, which is responsible for the largest contribution. Since
(VN)iliz(—kl—kz),jljz(—kl—kz) = (VN)ir20,j: j>0- see Eq. (24), we obtain

3 _ 2 3
Z (G”)lltz Jljz(a()) al] Lzajlajzao = (Z |77k1k2(*k1*k2)| ) Z (VN)iizo, ]1]20(a0) Clll lzajlajzao

102, j1J2 kiky i1i2,j1J2

< N3 Z (VN)iyiro. 11120(‘10) al1 l2aj]aj2a(3) < N’3(a$)3(/\/'+ l)zag < (N +1)2

i1i2,j1J2

where we have used

2
Z (VN iiz0. ]1]20a11 l}zajlajZ SNV +1)7,

i1i2,j1J2

2 _ N3
g [Tk ks (~ki—ka) |7 S N7,
s

see Lemma 15. Proceeding similarly for the other terms in Eq. (78), concludes the proof of Eq. (77).
Regarding the bound on Ep ([a;,a,a;,, G'|), let us identify

' 3 ;
lai,aia:,, G| = {E]l(il = 0)(a})anai, A+31() =i = 0)aja;, A
+1(i1=ip=i3=0) A} + {Permutations},

where A := % 2ijk Mijkaiajay. Duetothe sign Vy > 0and the permutations symmetry of Vi , as well as
to the fact that there are 6 permutations of the set {1, 2, 3}, we can bound the operator Ep ( [a,- \ai,aiy, G T] )
from above by

3 .
65p(§]1(i1 = 0)(a})2aiai, A+3131 =i = 0)aja;, A+1(i) =ir = i3 = 0) A)

3 .
<18 5,)(511(1'1 = 0)(a})?as,a;, A) +18 gp(311(i1 = iy = O)alay, A)

+ 18 Ep(]l(il =ip=i3= 0) A)

In the following we focus on Ep (]l(i 1= O)(ag)zaizai3 A), the other terms can be treated in a similar
fashion. By Lemma 15 we have ATA < N3 (N + 1)3, and therefore
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Ep (]l(il = 0)(a) ana;, A) = AT Z (VN)Ojk,Omnaza;aé(ag)zamanA
(ij),(tm)eAY
< a}(a))?AT (N +1)%A = al(a))* (N + HATAWN +4) < ad(al)’ NPV +1)° < NTH N+ 1)3,
where A contains all pairs (jk) such that (0jk) € A. O

As a consequence of Lemma 6, we obtain that the trial state I" defined below Eq. (71) has a potential
energy Ep () of the order Oy o0 (\/N ), see the following Corollary 3.

Corollary 3. There exists a constant C > 0, such that (I', Ep (Y + 61y)I") < C and
(I, Ep(Y)T) < CVN.

Proof. Recall that we can express the transformed quantity U~'y; kU by Eq. (74) as

1 1 I
U'ijU = a;a;ax +/ U_s|aiajar, GT|Usds —/ U_s(014)ijrUsds —/ U_5(629)ijxUsds
0 0 0

1 pl
+/ / U_nijk [aé, QT]U,dtds,
0 s

where we have used Duhamel’s formula to express U‘lmjkaaU - U_Sr],-jkagUs. Using the sign Vy > 0
and Lemma 6, we estimate using the Cauchy-Schwarz inequality

1 1 1
Ep (/ U_s(élgl/),-ijsds) < / U_Ep(519)Uy ds < CN? / U_y(N +1)*Uyds < C'N2 (N + 1),
0 0 0

1 1 1
573(/ U_S((szl,//)iijsds) < / U_sEp(6y)Ugds < CN%/ U—S(N+ 1)4Usds < CI(N+ 1)4.
0 0 0
(79)

for suitable C, C’, where we utilize Eq. (72) in order to estimate U_s (N + 1)*Uy. Similarly
1 5 3
&:(/ U_s [aiajak,g‘]USds) <CNI(N+1)° (80)
0
follows from Lemma 6. Regarding the term in the last line of Eq. (74), we note that
(43,671 "[a3, 6] < N+ 1)°
follows from an analogous argument as we have seen in the proof of Lemma 6 and

Z (VN)ijk emnTijkNemn < N2
(ijk),(tmn)eA

by Eq. (36). Therefore

1 pl 1, ol
57:(/ / U_imijk [ag,gT]Utdtds) < 5‘/ / U,,Sp(mjk [ag,gT])U, drds < N_l(./\f+ 1)3,
0 s 0 s
(81)
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where we have used Eq. (72) again. Using a;ajaxI'yp = 0 in case (ijk) € A, we obtain by Eq. (74)
together with Eq. (79), Eq. (80) and Eq. (81) for a suitable constant C

(T, Ep(W)T) = <F0,€7>(U_1¢U)Fo> < CN3(Ty, (N +1)°Ty) = CN .

Analogously we obtain (I', Ep (y + 61¢)I") < C. O

Regarding the variable ¢ = ax + [ag, G] from Eq. (68), let us apply Duahmel’s formula
1 L pl .
UlerU = ag —/ U_s[ax,GlUsds + U ' [ax, GlU = ay +/ / U-|lak,G1.G"|U, dtds, (82)
0 0 K

where we have used [ax,G'| = 0 for k # 0 and [[a, G],G] = 0, which follows from the observation
that 7;;x = 0 in case one of the indices in {i, j, k} is zero. The following Lemma 7 provides useful
estimates on the quantity [[a 391, G T] . In order to formulate Lemma 7 let us define the kinetic energy of
an operator-valued one-particle vector O, written as Ex (@) or Ex (O ) with k being a dummy index, as

Exc(0) = Z k1?0 0. (83)
k

Lemma 7. For m > 0 there exists a constant C,, > 0, such that
Ec(N™[lax, G1,G7]) < Cul ™! (N + 132,
Proof. Let us write the double commutator as [[ax,G], G| = (61¢)k + (620) + (83¢), where
(010 = (03)30(3) Z nijk|2ax,
ij

(620)k = (08)30(3) Z nij’k’nijka}aj’ak’,
ij,j'k

((536‘)[( = [ag, (aé):;] (Z nl]kajla}() Z ni/j/kza,vaj/akz .
ij ik
By Eq. (36) it is clear that

1 1 1
12 < — <
Zij Imiikl” = 353 Z, (kP2 +12)2 ~ N4k’

and therefore

1 2 1
S;C(N'”é]c) = Z |k|2(51C)ZN2m(516)]< < FZQZ((Q$)3(IS) szak < m/\/’zmﬂ.
k

k+0

; o 2 7 o
USing Jp, pyps.pi py v}, = Zgq'k [k a7y pillap) kM prk Mg paps A0 I ps pr pt 5= 2y Ty paps.pi py
m \3 .3 2 Tor T 2m
Ec(N™o2e) = (@)’a) D" Tjpwpyw alabyal, (N +2%"apapar
jp'n.,pj'k

\3 .3 2 7 + ¥ om
+ ((a()) ao) Z Jprwjrke ap/an,(N+ 1) ajag.
p/n/’j/k/
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Utilizing the operator Xjx jxr = Xg |kIng kN1 acting on L*(A)®? and the permutation operator
(S¥)(x1,x2,x3) := ¥(x2,x1,x3) acting on L>(A)®3, we can write

J=(1eXNHs(1eX),
and J = X'X. Consequently
1711 < IS @ X|1* = [1X11* = [I7]]-
By Eq. (36) we have I7]l < CN % for a suitable constant C. Consequently
Ex(N™53¢) < CN™% ((agﬁag)zw +2)M < CNTE (N +2)32m,
Similarly one can show that Ex- (N"83¢) < N~ (N + 1)°*2", and therefore
Ex (/\fm[[ak, ql, g*]) = Ec(N™S, + N5, + N™53)
< 3E(N™61) +3E(N62) +3Ec(N™83) < CruN™ (N + 172, =

As a consequence of Lemma 7, we obtain that the trial state I" defined below Eq. (71) has a kinetic
energy Ex(c) of the order Oy, (1) in the subsequent Corollary 4. Since in the residual term £ defined

in Lemma | the term S;C(\//ch) < %E;c(c) + %E;c (N'c) appears, it will be convenient to estimate the

expectation value in the state I of Ex (N ™c) for m > 1 as well.

Corollary 4. Let " be the state defined below Eq. (71) and m > 0. Then there exists a constant C > 0,
such that (T, Ex (N™c)T) < SV—'"

Proof. By Eq. (72) we have
UT'NPU = (UTINTO) UTINTU < (N +1)?
and hence
U™ Ec(N™e)U = S;C(U‘U\/'mU Ule U) < e,c((J\/m + 1)U e U),
where we have used that for operators f; and A, B satisfying ATA < CB'B we have

Ex(Afi) < CEc(Bfr).

Proceeding as in the proof of Corollary 3, we obtain by Eq. (82) and Lemma 7
S,C((N’" + I)U‘lcU) < Ec((N™ + 1)a) +/01 5,C((Nm + DU [[ax. G, gT]U,)dr
= Ec(N™ + 1)a) +/01 Ui (U N + 1)U, [k, 61, 6] Uy
< Ec((N™ +1)a) + /01 U_,g,c((/\/m + 1)[[ak,g],gT])Utdt

1
sSK((NM+1)a)+N—1/ U_, (N + 1)U, dr
0

< Ec((N™ + 1)a) + NI + 1),
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where we have made use of Eq. (36) again. Using axI'y = 0 for k # 0, therefore yields

(T, Ec(N™)T) = (Lo, U Ec(N™c)UT)
1

< (To, Ec((N™ + Da)To) + N~ Ty, (N + 1)) = - 5

Having Corollary 3 and Corollary 4 at hand, we are in a position to verify the upper bound on the
ground state energy En in Theorem 4.
Proof of Theorem 4. Let A := (21Z)° \ {(0,0,0)}, and let I be the state defined below Eq. (71). Using
Eq. (27) and Eq. (21), and the fact that (VN) = (VN)ijk,emn for index triples (ijk), ({mn) € A,

ijk,{mn
we obtain

_ 1 .
Hy = Z k¢l er +do0(a))ad + - Z (VN)ijk.emn¥,ji ¥ emn
% (ijk),(Emn) €A

-&

i3 it
+ (3a0a0 Z Aocaza’, +H.c.
£+0

= Aoo(a))’ag + Exc(c) + Ep(v) + (3a3a3 Ddocalal, +He |- €.
t#0

By a symmetry argument it is clear that (I, aéa%a}alf) = 0. Applying Corollary 3 as well as
Corollary 4, with m = 0, yields for suitable constants C > 0

(T, Ep()T) < CVN, (T, Ec(c)T) < %

Furthermore, observe that N 3/10,0 < éb M(V)N + C’ by Eq. (37) for a suitable C’. In order to estimate
the final term (¥, £¥), note that we have by Eq. (72) form € N

(C,N™T) = (Lo, U N™UT) < (T, (N + 1)™Tg) = 1. (84)

Using Lemma 3 together with the estimate from Corollary 4 for m = 0 and m = 1, we therefore obtain
(W, E)] < N7, 0

4. Refined correlation structure

Utilizing the set of operators defined in Eq. (25) and Eq. (26), we were able to identify the ground state
energy Ey up to errors of the magnitude O v (VN) in the previous Sections 2 and 3. It is the purpose
of this Section to obtain a higher resolution of the energy, which especially captures the subleading
term proportional to VN in the asymptotic expansion of Ey, using a more refined correlation structure
compared to the one introduced in Subsection 1.1. On a technical level, the new correlation structure
is implemented by the new set of operators dy and &;x defined below in Eq. (89) and Eq. (90), which
constitute a refined version of the operators ¢ and i; i respectively. Writing the operator Hy in terms
of dy and &;;; will then allow us to verify the lower bound from Theorem 1 in Subsection 4.2 and the
corresponding upper bound in Section 5.

The approach presented in Sections 2 and 3 fails to capture the correct term of order VN for two
reasons: (I) The following expression appearing in Eq. (32)

(IT(I3
3 Z Nz/lo,ga;ﬁai[% (85)
[€|>K
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is expected to lower the ground state energy by an amount proportional to VN, to be precise naive
perturbation theory suggests that the term in Eq. (85) is giving rise to an energy correction proportional to

IN?20,¢|?

T O(VN), (86)

|¢]>K

see Eq. (35), and therefore consistent with our estimate in Lemma 4. (II) In the pursue of an upper bound
on En we expressed the unitary conjugated variables U ‘11,//,- jxU as a sum of a;ajay and various error
terms according to Eq. (74) as

1 1 1
U_ll/’iij=aiajak+/0 U—s[aiajak,gT]Usds_/o U—s(éll//)iijst—/O U_s(029)ijxUsds
1 pl
. /0 / Usrmiji|ad. G| Usdrds. (87)
N

While most of the terms appearing in Eq. (87) give a contribution of the order o _, (\/ﬁ ), the term 6y

is expected to increase the ground state energy by an amount proportional to VN, which is consistent
with our estimate in Eq. (76). In order to extract the energy shift due to the expression in Eq. (85), we
follow the strategy in Subsection 1.1 and introduce an additional two-particle correlation structure via
a map acting on the two-particle space

T, : L*(A?) — L*(A?)
in Eq. (88), which will give rise to the negative energy correction —u(V)VN from Theorem 1. To be
precise, we define the map 7, via its matrix elements as
Ao,
(T2 = De-),00 = (T2 = Doo,e(-¢) = 3NW, (88)

for |£] > K and (T2 — 1) jx mn := 0 otherwise, where Ay ¢ is defined below Eq. (32). Regarding the energy
shift associated with 81y, it is a natural idea to include this term in the definition of our new operators
&ijk, giving rise to the positive energy correction ¥(V)VN from Theorem |. However, a computation in
Eq. (93) demonstrates that the presence of d1¢ produces new four-particle correlation terms of the form

Z Ouijra, aTaj ZNz +H.c.,
uijk
with coefficients 6,,; ;1 proportional to N2Y (VN ik,0mnTmnu, Which behave like

N’%]l(i+j+k+u=0)

for momenta of the order VN, and decay fast for higher momenta. Therefore, the four-particle correlation
terms are expected to lower the ground state energy, similar to Eq. (86), by an amount of the order

_% . . — 2
Z INTZ1(i+j+ k +u=0)| =O(\/ﬁ).

i[>+ 17 + [k ]> + Jul?
Jl il 11, e <V

Again we extract the correlation energy by introducing a map, acting this time on the four-particle space
Ty : L*(AY) — L2 (A%
in Eq. (95), which gives rise to the negative energy correction —¢~(V)VN from Theorem 1.
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In the followinglet T : L>(A%) — L?(A®) be the map constructed in Eq. (19), and for now let us think
of T : L*(A?) — L*(A?) and Ty : L*(A*) — L*(A*) as generic bounded permutation-symmetric
operators modeling the two-particle and four-particle correlation structure respectively. Following the
approach in Section 2, we are implementing many-particle counterparts to the transformations 7, T3,

and T4 as
" 1 -

di = ag + Z (T2 = 1) jke,mn a}aman +5 Z (T = Dijk.tmn aga}amman (89)

Jj.mn ij,{mn

1 +
+ 3 Z (Ty - l)uijk,vt’mn a,;aja;avat’amam
uij,vémn

é:ijk = Z(T)ijk,fmn araman + (51(//)ijk + Z (Ty - 1)uijk,v[mn alavafaman' (90

fmn u,vfmn

Note that 75 is not included in the definition of &; i, as it would only give contributions of the order
OnN_«(1). Using the Laplace operator A acting on the space L?(A)®® and the coefficients

1 ) ..
OOir i s = 3 Z L(ji==ja=icy =000y ipis (€29)

oS3

let us furthermore define the operators X, := T; (=A2)T, + Ay and

X, = ({(—m +4(Vy ®@ 1)(Ty— 1) +4(Vy ® 1))(} +H.c.) (92)
+ (T =D (AN Ty = 1) + ((T ®1—1)4(Vy® ) (Ty -1+ y) +H.c.)
+ (T -1+ )4V @ D(Ty -1+ x).

A straightforward computation, similar to the one in Eq. (27), reveals that up to excess terms involving
X5, X4 and an error term £, we can write the operator Hy as a sum of squares in the variables dj and
&ijk according to

1
Z|k|2d;dk tg
k

1 1 ~
= HN + E Z (XZ)jk,mn aj'a;;aman + ﬁ Z (X4)uijk,v€mn alai a;azavat’aman + 5’ (93)

Jjk,mn uijk,vemn

Z (VN)ijk,fmnf"fk&mn

ijk,{mn

where the error £ contains all the non-fully contracted products appearing in the squares

1 _
Z k|*(di = ar)" (di — ax), 3 Z (VN)ijk’fmn(fijk — i) Eemn — Wijk)- (94)

k ijk,tmn

In this context we define the fully contracted part of a product of monomials

aT aTa- a; (lT CIT a;r a;g’
i Q... aj, li i;, VALY

T T, Wi o, ; ; ) ot i
as C]l__.h,li___l/r,ai1 ceea;aj...ag, with Cn---.h,li---l;, being the expectation of a;, ...a;, i .a; , in

the vacuum. For a term by term definition of £ see Eq. (111) in Subsection 4.1.
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In the following we want to choose Ty, such that the term 4(\71\/ ® 1) y is cancelled in the expression
{..} from Eq. (92), at least after symmetrization and projection onto the range of Q®*, that is, we define

Ty = 1 = RyllymQ®*4(Vy ® 1)y = 1 = RallymQ®*4(Vy ® 1)y, (95)
where Iy, is the orthogonal projection onto the subspace Lfym (A*) € L*(A*) and Ry is the pseudoin-
verse of

0% (A4 +4(Vy ® 1)) 0% = 0% (~As +4(Vy © 1))0%*. (96)
In order to obtain an improved representation of the operator X4 defined in Eq. (92), let us introduce the
constants
N ‘- ®4 ®4
on = (Vi @ Dxul, (1= Tug?), 97)
N4

= ﬁ((ﬂ = Dud*, (-Ay +4Vy ® 1)(Ty — Dud*),

N = N*
N = (U @ Dyug, xug)y = == (Vv @ Dxug™, xug™), (98)

4
which allow us to write yy —on = 27—4 (X4)0000.0000- Furthermore, we define the three-particle state ® as

Xy
Y oq

X
(®)Ojk = 6(Hsym2_:r[sym)

(Q)ijk = 4(H l_[sym) s (99)

0i jk,000

00, k,000

for {i, j, k} all different from zero and (®);jx := 0 otherwise. According to the definition of 74 we have
Q®4H5me4HsymP®4 = 0, and therefore

1 Pttt
51 (Xa)uijk,vemn aba,a’:a, ayaraman
24 i“j%
uijk,vfmn
= ! ot T T
- ﬁ (Hsme4Hsym)uijk,v€mn a,a; ajakavagaman

uijk,vfmn

= (ag)“ag N_4(yN —onN)+ Z (®)ijk aTa}aZ agag +H.c. |. (100)

i
ijk,{mn

In order to understand the size of the term in Eq. (100) better, we are going to rewrite it in terms of the
variables y; . defined in Eq. (26), respectively the variables

Yijk = aidjag +nijk ag (101)

defined in Eq. (26) for the concrete choice K := 0, see Eq. (69), with the corresponding operator
Tk=0 := 1 + RVnmg, see Eq. (17). Note that

(Tely) '@ =0 +2(an —yn)ud’,
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and therefore

1 4, N4 4
7 Z (Xa)uijk,vemn alaja;azavamman = N"*(a})*aj (on —Yn)
uijk,vemn

+ Z (®)ijk l,;jjk agag +H.c.|.
ijk,tmn
In order to address the correlation term in Eq. (85), we use the concrete choice for 7, from Eq. (88).
With
N2
UN = T(Xz)oo,oo, (102)

this choice for a transformation 7; yields

1 _
2 Z (X2)jk,mn a;aZaman =N 2(a(T))Za(% un + (3Na% Z Ao.e a;ait, +H.c.|.

Jjk.mn [£|>K

Summarizing what we have so far allows us to write the operator Hy in terms of the new variables dy
and &; 1 as

6

1 = + - -
Hy = 3 WPdidir g 30 (Vi) el o+ N ag) e (o = ow) = N(ag)a
k ijk,tmn ’

—(3Nag > Ao,ga}aiﬁH.c.)— D (@i ajag +He. |- E. (103)

|€|>K ijk,mn

Defining the error term
f f
Ei = S(az;ao - N)a(z) Z Ao a;a'_f + 9a$a(2) Z /lk,ga;ak_[ak, (104)
|€1>K £,0<|k|<K

we obtain as a consequence of Eq. (103) the following Corollary 5.

Corollary 5. Let di and ;i be as in Eq. (89) and Eq. (90), with T, defined in Eq. (88) and Ty defined
in Eq. (95), yn,onN, and un as in Eq. (98), Eq. (97) and Eq. (102), and let &, be as in Eq. (104), © as
in Eq. (99) and l;[jk as in Eq. (101). Furthermore, recall the definition of oo in Eq. (29) and Qg in
Eq. (33). Then

Hy > (a))*aidoo+ N~ (ah)al (yn = ow) = N (a) ag un + ) [kPdjde +Qx - (105)
k

_ Z (©)ijk ‘;ij ajag+Hee. |+ (6* + 51) -&.
ijk,tmn

Making use of the notation Exc(d) from Eq. (83) and Ep (&) from Eq. (75), we obtain in the case K = 0
the identity

Hy = A00(a)’al + (v — on)N~4(a)?af — iy N7 (a))?ad + Exc(d) + Ep (£)

| D @il aba+ e |+ (€. +£) - £ (106)
ijk,tmn
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Proof. Using Eq. (103) and the definition of VN in Eq. (21), as well as the identities in Eq. (30) and
Eq. (31), we obtain
Hy = doo(ap)’ay + (yn — on)N"(a))*ag — un N2 (a))?ag + > kPd]di +Qx
k

1
+ —

Z (1 -7mg)Vn(1 - ﬂK))ijk,é’mné::jk‘f[m"

ijk,{mn

- Z (@)ijklz;}:]-kagag‘FH.C. +(€*+S:)—g.

ijk,mn
Since Qp = 0 and
1 -
5 Z (I —mx)VN (1= ﬂK))ijk,fmnfgjkft’mn >0,
ijk,tmn
1
¢ 2, (U =m0)Vn (1= 70)ijk mnt] Eomn = Ep (&),
ijk,tmn
we immediately obtain Eq. (105), respectively Eq. (106). )

4.1. Analysis of the error terms

In the following we are providing an explicit representation of the error term & introduced in Eq. (93),
which we subsequently use in Lemma 8 in order to control £. For this purpose, we are going to utilize
the following estimates on the matrix elements of 7', 7> and T4

-
Cl(i+j+k=10) li|> + |71 + |k|?
T —1); < 1+ , 107
I = Dijecol < St = o) N+ {aon
-1
1 1(j+k=0) 11 + &
T - D)jk,00l < CN7! 1 : 108
[(T2 = 1)jk,00] < TERATE ( T (108)
-3

1 L(l+i+j+k=0) [€)2 + [i]> + /] + k|
Ty — 1)gij <CN™2 , 109
|(Ts = Deijk, 0000 ST EERE N (109)

which are verified in Lemma 15 and Lemma 18 respectively. Furthermore, it is useful to introduce the

3
two-particle state (¢pg)jk := N(T2 — 1)« o0, the three-particle states (gog)ijk = %(T = 1)ijk,000 and for
m € (27Z)3 \ {0}

3 3 3

N3 N3 N3
(@3)ijk = T(T = 1)ijk,moo + T(T = 1)ijk,0omo + T(T = 1) jk,00m>
and the four particle state (tpg)ui ik = NTZ(T4 — Duijk,0000 as well as

(@a)uijic = N*(Ts = 1+ X)uij.0000-

Additionally, let us introduce for ¢ € L?>(A®) and ¢ € L?>(A’) with s,7 > 0, and £ < min{s, ¢}, the
operator

Ge(p,¥) = Trie [(=A)x, 0y ] (110)
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acting on L>(A'™f) — L?(A*7%). In coordinates, the operator is given by

(G[(SD’ lp)) . . = Z |k1|290k1~~k€i1uJ.s—ZEkl...k[j]...jt,f‘

Ueeids—£5J1--J1- Kk

Finally let G := Tri—s [VN ® 1504901]. With this at hand we can write

T tys—1 -1
~ . am(ay)* " ag an
g: Z st[ Z (G[(tps, :l)) . . ) al.'s_[,...ajl—m Cljl...ajl%,
(s,0,6,mn) €S Qe Ueeds—€5]1---Jt-C N2
J1---Je-¢
\4 4
— T(ao) ag
+Z(G) af 202 70, 11
Vit N+ Y (1D
(s=1)1(1=1)!

where Cs ;¢ = TDG=0T=01 and the set of allowed configurations (s,t,¢,m,n) € S is defined by
the rules ¢ < min{s, ¢} and £ < max{s, ¢}, where 2 < 5,7 < 4 and |n|, |m| < K with m = 0, respectively
n =0, in case s # 3, respectively ¢ # 3. Note that the criterion £ < max~{s, t} makes sure that we only
include non-fully contracted parts of the first product in Eq. (94) and G is the kernel associated with
the non-fully contracted part of the second product in Eq. (94). Furthermore, C; ; ¢ counts the various
different ways to have an £ — 1 fold contraction between s — 1 many annihilation operators and ¢ — 1
many creation operators, that is, Cs ; , counts the number of partially defined injective functions

fAL...,s=1} —{1,...,t =1}
with #dom f = € — 1. Let us illustrate the derivation of Eq. (94), looking at the term

DNk (di = a)' (d = an),
k

from Eq. (94). According to the definition of di in Eq. (89), the term dyx — ax decomposes into three
terms, and in the following we focus only on the last one involving 7 — 1

T

1 . 1
Z |k|2 6 Z (T4 l)uljk vemn Ay al{a}avafaman 8 Z (T4 1)m]k vemn Ay al}aja aramdn
k

uij,vfmn uij,vtmn

—4 2 4 4 L C 4
=N k(i (o (@) *auaiajal,alal al
kouiju'i’ j’

-4 tot4 4
=N Z |k| (90 )ut;k(‘ﬂ())ut -lkal/a;!‘/a}/(a(‘)) apayuaidj
kouij,u'it'j’

+9N_4 Z |k| (Soo)ut]k(‘po)u/l/]ka Ay (Cl )4a0aual
Jkouiu'i’

+ 18N Z |kl? (Sao)uljk(SOO)u’t’J’ka a )4a0au
ijk,u,u’
-4 2 4 A 4
+ 6N P @Rk (@i () af
uijk
3 T\4 4
(ag)*a
G O, 0) al a2 V. . .a;
[Z_: 4.4.0 Z ( f(‘/’4 904) ittt i N4 Ji Ja-e
= if...la—¢
J1---Ja-¢

+ON Z |k|2(¢g)uijk (%‘)wiq/k (ag)4ag. a12)
uijk
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Notably, the final term in Eq. (112) is a fully contracted contribution and therefore part of the operator
X4 defined in Eq. (92) and not of the error term £.

Estimating the various terms appearing in Eq. (111) individually allows us to prove the following
Lemma 8.

Lemma 8. There exists a constant C > 0 and a function € : [0,00) — (0,C) satisfying
limg 0 €(K) = 0, such that we have for K as in the definition of ng below Eq. (17)

2
+£<C N‘ZZ|k|2 T(\/ﬁﬁ+l) ¢k +CN73 (%+1) (N+\/N)+E(K)N.

aj(ah)*af " ay

Proof. In the following let 7 < % Using the fact that || T || < 1, there exists by Corollary 1
2
a constant C > O such thatfor§ > O and s, > £+ 1

a;q(a’f)sflat—lan

T 0 0 . .
£ 2 (Geoned) L @ T @ndi s e
jlmjt%
K:Tzs fG[((p;n, -,-t[ (Z|k|2 F(NS(’1+61NtZ])
+ (/\/+ x/ﬁ) (cws—f‘l +5—1N’+1)). (113)

For 7 = o = 0, we have the improved bound on the left-hand side of Eq. (113)
CllGe(er, enll(oa~ + 57N ). (114)

In the case that either s or ¢ is equal to ¢, for example, t = £ we obtain by Corollary |

T, Tys=1 -1
ay,(a))ytal~a
m n T miT( 0 n
+ (“ E (GK,U,T(SDS , ¥y ))il...is,p(q)(r’S)i"“is‘f —NS;I + H.C.)

1. ds—¢

_1
<C K:T’zs_gG(’(‘pgl’ ‘10?

(61 +6 ) kPN T og + 5(/\/+ \/N)N”"). (115)
k

’C_z G(,’(QDS )’C

) , observe that we
o,s—{

In order to obtain good estimates on the operator norms it

obtain by a Cauchy-Schwarz argument

that is, it is enough to control the norm of the symmetric ones. In the following we choose o = 7 =
except for the case s = ¢ = 2 where we choose o = 7 = 0. By Eq. (107) and Eq. (109) we obtain for a
suitable C > 0

Ko—z’s [Gf(sos 9§0t )ICTt l

2

A

_1
ICT’Zt_th’(‘Pt > )K

:T:S KG[(SDV > Ps )Ka' s—C

T,t—C

I\)I'—‘
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-3 0 O\ 3 _3 1 1 »
’C%SG‘W“"@’%Z <N, K 4G oK < N,
_1 1
GZ(‘p“"p )K <CN, ”’C121G2(<p3m,<p§’)16121 <CN?,
2> 7»
G3(‘P4,‘P4)’Cl <CN7!, HG3(90§",90§")|| <CN.
2 2>

Furthermore by Eq. (108), HG1 (<pg, 90(2))” < € in case K is large enough and ||G2(gog, <p3)“ < CVN, as
well as H(~; ” < CN~! by Eq. (109). Choosing § := N 7, and combining the estimates on the operator
norms with Eq. (113), respectively Eq. (114), and Eq. (115) concludes the proof by Eq. (111). O

Following the ideas in the proof of Lemma 8, we can furthermore compare the operator ;. |k IZTaZak

with the corresponding operator }’; |k|27d}: dy in the variables dy defined in Eq. (89). This is the content
of the subsequent Lemma 9.

Lemma9. Let0 < 7 < }1. Then there exists Ko, C > 0 such that for K > Ky, with K as in the definition
of mg below Eq. (17),

D IkPTalax < € Y |kPddi + CNTIN® + CNT.
k k

Proof. By Eq. (40), there exists a constant C > 0 such that

Z IkIZTazak < CZ |k|2Tc£ck +CN'N?+CN".
3 3

Furthermore, we have by Cauchy-Schwarz the estimate
DUIkPTeper <23 kP dydic +2 ) KT (di - cx) (dic - c).
k k k

Similar to the definition of G, in Eq. (110) let us introduce

Gé =Ty [(_A)xl 99(2)(90(2))1—]’
Gz;l = Tr1—>t’ [(_A)xl ‘Pg(éog)T] .

A similar computation as in Eq. (111) together with a Cauchy-Schwarz estimate yields

242
Z |kI*7 (di — cx)T(dk — k) < CG2 2 +CZ(G )i.ja; T( )

4 4
. (a )*a
77 T T 0 0 . .
+C E E (G[)_ i T g
. B eelld—psJ1---Ja—¢
=1 I...l4—¢
Ji--Ja-e

for a suitable constant C > 0. Utilizing the estimates in Eq. (108) and Eq. (109) we obtain that |G}| < 1
IG5l < KZ’ [EHBS N™7 < 1and G/l < NT™2 < N3 for £ < 3. Consequently there exists a C > 0
such that

DT (d = ) (d =) < C+ %N+ CN IV +1)°.
k
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Using N < 3 |k|27a2ak and X, |k|27d£dk <2k |k|2d;;dk we therefore obtain

A

c ; ;
D kFTajar < =5 D IkFTaja + € ) IkPdyd + CNIN?+CNT+CN™'N?
k k k

IA

c . :
= D IkPTalax+C ) [kPPdjdi +2CN NP +2CNT.
k k

Choosing K large enough such that % < 1 concludes the proof. O

Before we come to the proof of the lower bound in Theorem | in the following Subsection 4.2, we
are going to derive sufficient estimates on

Z (G))ijk lZlTjk az)ag +H.c.
ijk,{mn
in the following Lemma 10. In order to verify Lemma 10, we require the estimate

D kP e < C(Z kPPcler + N + 1) (116)

k k

for ¢y == ay + % 2ij (T = Dijx, oogczjajI (3), which is verified in Appendix A, see Lemma A3.

Lemma 10. Let 0 < y < 711. Then there exists a C > O such that

+ Z (@),Jkt//uk ajag+H.. <N*ZZ|k|2c1ck+N PN +CNi.

ijk,fmn

Proof. Let us define forijk # 0

1
k1= o7 (Mmd(Vy @ D(Ta = 1+ 1) — (Mymd(Vy @ (T4 - 1 ) . (117
Lijk 24( symd (Vv @ D(Ty = 1+ ) 0ijk.0000 24 \sym W) (Ty-1+y) 1K.0000 (117)
1
= o (Mymd (T © 1)(T1 - 14 1) ,
é’k 24( Sym ( N ® )( 4 +/\/) 00K (=k),0000
where y is defined in Eq. (91). Then we have the decomposition
Z (®)ijk l;ij a$a3+H.C.
ijk,tmn
=4 Z Gijr(ab)*ao g +Hee. +6(Zg_k(ag)4a§ ara_x +H.c.|. (118)
ijk#0 k#0
=L _ . .
Note that £ = 5 (Hsym4(VN ® 1) (Ty -1 +/\/))00k( £0.0000 for |k| > K. Using the regularity of V and

the bounds derived in Eq. (107) and Eq. (109), we observe that we have |N3§k| < Nz (1 + IkP ) , and
therefore

Ll Ll
< eZlklhaZak +e'NITT g eZlklzTczck +eN +eNT+€e 'N277,
k#0 k#0

i(z {_k(ag)“a(z)aka_k +H.c.

k#0

https://doi.org/10.1017/fms.2025.10113 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10113

42 M. Brooks

where we have used Eq. (40). Choosing € of the order N~ fand T = concludes the analysis of the
second term in Eq. (11 8) Regarding the first term, we use the deﬁnltlon of ¢x below Eq. (116), in order

to identify thk é’l‘]k(a()) Yijkao as

Z(i_ﬂc(ag)4aiaj5kao - Z m(ag)4aiaj(5k —ag)ap + Z {ijk(a8)4a3(T = D)ijk,000

ijk ijk ijk
I N 0N AT SR 1 o ot 4t 4
= Z Siji(ag) aiajérag — 3 Z Giji(T = D jric.oo0a;, @), dy dgaia;
ijk ijkij
o T4t 4
-2 Z Cijk (T = V)i jk,000a;,a, agai. (119)
TR

In the following we are going to verify that the most significant term 3 m(ag)“a,-aj CrapinEq. (119)
satisfies the desired bound. By Cauchy-Schwarz, we have for € > 0

2~ ~ —] 4 7
Z(uk(ao) a;ajCrap+Hec. | < EZ |k| C' Ck Z e Zé’ukafaoa
ijk

= EZ |k| ETE e'GOx +e! Z(G(l))l ra; Tap X +e! Z (G© ))U ija; aTXa i

ij,i'j’
: i"l2 1 i +4i i 2 Gijkdi !
with GO := N3 Z”k |§|1£|k2 , G( ) = N36ii i |f’<‘|k—|1k§fk and Gz(/)l'/' = NSy, Jlkklzj Gkl oo g

X =N ‘Sa aoaoao Using again the regularity of V and Eq. (107), as well as the bounds on 74 in
Eq. (109), ylelds

S22 2\ 3
_7 i+ + |k
|Zijx| < CN 26i+j+k=0(1+w ,

and therefore |G| < 1 and ||G(V|| < N~3. The choice € := N-1 then yields

e'GOX 4! ZG(I),aTa,/X <Ni4NIN.

i,i’
Finally |G| < N~3, and therefore

Z G, ,a}a iXajpap < NTN2 < NIN.

ij,i'j
i

This concludes the proof together with Eq. (116). O

4.2. Proof of the lower bound in Theorem |

In this subsection, we are going to verify the lower bound in Theorem | making use of the sequence of
states @ constructed in Corollary 2, which simultaneously satisfies

]l(N < CW)‘I’N = by,
(P, HyPn) < Eny +C,

<q)N, Z |k|2C£Ck‘DN> < CVN.
k
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Starting point for our investigations is then the lower bound

Hy 2 ) |kPdjdy + (a})*a3do o+ N4 (a))*al (yn - on) = N"2(a))%ad un +Qx
k

_ Z (©)ijk @jk ajag+H.c. +(€*+51) - &,

ijk,fmn

see Eq. (105). As is proven in Section 7, the coefficients yy, un and o converge to the corresponding
constants y(V), u(V) and o (V) introduced in Eq. (10), Eq. (5) and Eq. (9)

yn =y(V)VN + ON%(N‘%), (120)
iy = u(V)VN + Oy Seo(1), (121
oy = o (V)VN + ON%(N%), (122)

see Lemma 17. Given € > 0, assume that K is large enough such that the function €(K) from Lemma 8
satisfies €(K) < e. Making use of the fact that

]l(J\f < C\W)@N - Oy,

<<1>N, Z |k|2c1ck<DN> < VN,
x

we immediately obtain for C and Cc large enough

Dy, EDN)| < CN—1<<I>N, > IkIZCchCI)N> +€(@y, NOy) + CN < CNi + (D, NOy).
k
Similarly we obtain by Lemma 10 and Lemma 4 for suitable C, C>0

(@, Z (@)ijk&jjkagaé'f'H.C. D)

ijk,tmn

<CN? <‘I’N’Z |k|2c;ckq>N> +\/ﬁ) +CN7# < CN1,
k

(@, (€. +&l)on)| < oN.

By Lemma 2 we furthermore obtain for 7, ¢ > 0 and K large enough, and a suitable C > 0,
1
(@ (@) addo.0+ Qi )On) = =bra(VIN - e<d>N, D |k|2fazakd>N> -C.
k

Moreover we note that we have by Eq. (120)-(122)
(@, N4 (@) af (o = yn)®N) < (on = yw) +low = ywl(@n, (1= N4 (@) ad)on)

<Son—YN *lon _')’N|<q)N, %/(DN> < (o(V) - V(V))\/N‘FON—mo(N%),
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and similarly (@, N‘Z(ag)2a(2) UNDN) < u(V)VN + 0N e (1). Finally by Lemma 9
(N, NOy) < (On, ) |k|27azak<DN> < c<<1>N,Z |k|2d1qu>N> +CN™. (123)
k k

Choosing 7 < 3 and €< 2c concludes the proof, since
1
En +C 2 (On, Hy®y) 2 chbp(VIN+ (y -0 - w)VN

~CN# +(1 - 2Ce)<®N,Z |k|2d£dkd>N>.
k

5. Second-order upper bound

It is the goal of this Section to introduce a trial state @, which simultaneously annihilates the variables
dy for k # 0 and &gy, in case (€, m,m) # 0, at least in an approximate sense. We are then going to
use this trial state ® to verify the upper bound in Theorem 1. For the rest of this Section we specify the
parameter K introduced above the definition of mx in Eq. (17) as K := 0. In order to find ®, we define
ajk = (Tr = 1)jk,00 and Buijr = (Ta — Duijk,0000, and the generator

1
_ Py
Gy = Ezajkajakao,

Gi = 53 Zﬁm,kauala]a,;g (124)
uijk

of a unitary group Wy := ¢* (G2+G4)"=5(92+G4) and W := W,. We note at this point, that the action of the
unitary operator W only creates an O (1) amount of particles, in the sense that

W_g N™W, < eCnIS(N + D™, (125)

as is proven in Appendix A, see Lemma Al. Applying Duhamel’s formula, we can express
Wla; ai,a;,W as

1 1
Wla; anai,W = aj,aa;, - / W_slai ai,az,, Gs]Wsds +/ W_sla, aiai,, G + Gl — Go]Wids.
0 0
(126)

Furthermore, note that we can write

lai,ai,ai,, Ga] = Zﬁuilizgazaé + (681, inis» (127)

where we define the error term

— 4
(56)1'11'21'3 = Z Z,Bl(r21¢,3/ka i Qi a() Z Zﬁl(r3l]ka akalglal(rza()'

O'€S3 Jjk (T€S3 ijk
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Therefore we can write the transformed operators W™1&; ;,;, W as
1 1 K
W nn W = (0 + 61, —/ Wi (68)s, 1,1, W ds +/ W_slaiajax, G5 + G} — Go]Wids
0 0

1 K
+/ / Wt_l lz lguiﬂzisalag’ g;r + gz -Gy — Q4lW, drds
0 0 m
1
+/ W_s[€iiriy — aiyaiaiy, Gy + G — Ga — GalWy ds. (128)
0

Recall the definition of £p defined in Eq. (75). The following Lemma 11 provides sufficient bounds on
the various error terms appearing in Eq. (128).

Lemma 11. There exists a constant C > 0, such that

Ep(68) < C(N +1)S. (129)

Furthermore, we have 6‘7:([51,4I ai,ais, Qg + gj - gz]) < C(N +1)%and

5P<[§i|izi3 —a;a;,a;, ng + gl -Gy~ 94]) <CNV+1)°, (130
gp(

1 4
(618)i1ini = 1 Zﬁizigjka;azailao,
I

<CNV+1)°. (131)

> Buiiisahag, G+ G5 - G - Ga

Proof. Let us define

Cn = sup Z |(VN)i1i2i3 i;i;i;ﬂlzlajkﬁlzlzlk|
W ik,igis, ii5i]

where we have used Eq. (109) to estimate C . Applying Cauchy-Schwarz yields

(VN irisis ity (618);;

111213
(i1i2i3), (i} i}5) €A

(018)irizi, < Cn(a )4610(2 ajldn)(/\/+ 2. (132)

i

Using the fact that Cp (aé)“aé (Zil ajlail) < CnN? < 1, we observe that the quantity in Eq. (132) is
bounded by the right-hand side of Eq. (129). Let us furthermore define

o 4
(62810005 = T E ﬁm,kalajazanalzao
ijk

In the following we want to distinguish between the cases A’ := {(ijizi3) € A : i1,ip # 0} and
A" := A\ A’, leading to the definition

5
C]’V = Sup Z ((117127 l’i) (li é g) € A ’(VN)i]iziz l‘;l‘éléﬁl},ljkﬁt tjk| < N

N2 ik iz, i %

Cy = sup Z L((i1, 02, 13), (i1131%) € A”)

i ijk,i3, 0115}

1

o>

=
“’zb
<
=
e
L
2.
)

’
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where we have again used Eq. (109). Applying Cauchy-Schwarz leads to the estimate

(VN)ilizig,i;i;i;((Szf)T (628)iririr < CyN* N +1)° + CRNO(N +1)3,

i1i203 1h2t3
(i]izij;),(ii iéi;)EA

which is bounded by the right-hand side of Eq. (129). Finally we use that Vi is permutation-symmetric
and non-negative, and therefore the left-hand side of Eq. (129) is bounded by

6 Z (VN Vivinis iy 57 (016 + 626)] . . (1€ + 626)ir iy,
(iﬂzl}),(i{iéié)eA
<12 Z (VN iriais, ity (515),:I;i2i3(51§)i;i5i§ +12 Z (VN )i1i2i3,i;i§i§(525)3;1-213
(iriai) (7, i5) €A (iriain) (7, i5) €A

(02851

Regarding the term Ep([ailaiza,-3, gg + QI - gz]), let us analyze the term involving the commutator

with G,, the terms involving g;' + QI can be analyzed in a similar fashion as has been done in Lemma 6.
We compute

[ai,aiyaiy, G2] = ai2i3a,~la% + Z aui3alai2ai3 + {Permutations}. (133)
u
In order to analyze the first term on the right-hand side of Eq. (133), let us define Dy :=
sup;, Diris, il "|(VN)i1i2i3,iiiéi;ai2i3aiéig‘ and note that Dy < N3 by Eq. (108). Hence

1203,111515

+
2 2 3
(VN iriais ity (ai2i3ai1a()) appajpay < DyN® < 1.

L=
(i1i283), (i18515) €A

Regarding the second term on the right-hand side of Eq. (133), we use again the split A = A’ U A” and

define
5
’ L. N ’ _3
DYy :=sup Z L((i1, 02, i3), (i}i5i5) € A )’(VN)ilizig,iiiéiga'uiga'uié SN2,
BTN R 44
, o . . . Ry Y] ” -4
D)y = sup 1((i1, 82, 13), (i1i33) € A”) (VN Diizin,if iyt Quiy @uiy | S N7,
TR R 44

where we have used Eq. (108). Consequently
i
-1
(VN Diriis, i i34 (Z a’ui3a;ai2ai3) (Z aui3alaizai3) SNITWNV+1) +1,
(i|i2i3),(iii£i§)€A u u

and therefore Ep([ai]aizaiS,Qg]) < 128p(ai2i3a,-] a%) + 1257;(2” aui3alai2ai3) < (N + 1)3. The
inequalities in Eq. (130) and Eq. (131) can be verified similarly. O

With Lemma 11 at hand, we show in the subsequent Corollary 6 that after conjugation with the
unitary W, the potential energy of the operators &; jx is comparable to the potential energy of (¢ +61); k-

Corollary 6. There exists a constant C > 0, such that

WER(EW < CEp (Y +614) +C (N +1)S.
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Proof. Using the sign Vy > 0, we obtain by the Cauchy-Schwarz inequality and the representation of
W1 1,i,W in Eq. (128) the estimate

1
WER(EW = &p (W leW) < Sep(u+o) +5 [ W, lep (o6 Wds
0
1
+5/ W—AYEP([aiajak,gg + QI - gz])dSWs
0

5 1 K _
ST W,lgp(

1
+ 5'/0 W_Sgp([§51[2i3 —a; a;,d;,, Q; + g:[ -G - g4])Wrds

Zﬂuilizljalaés g; + gi - gz - g4l)WtdtdS
u

1 1 s
sgp(w+5,)+/ W,S(J\/+1)6wsds+/ / W_ (N + D)W, deds < Ep(y +61) + (N +1)°,
0 0 0

where we have first used Lemma 11 and subsequently Eq. (125) in the last line. O

Regarding the variable di, Duhamel’s formula yields for k # 0

1 s 1
W’lde=ck+/ / W_,[[ak,G2+G4],g§+gj]w,dtds+/ W] dic - ax, G} + G | wyas.
0 0 0
(134)

Recall the kinetic energy of an operator-valued one-particle vector ®; defined in Eq. (83). Then the
following Lemma 12 provides sufficient bounds on the various error terms appearing in Eq. (134).

Lemma 12. There exists a constant C > 0, such that for m € N
C

5]C(Nm[dk — ak,G; +Gl]) < N(N-’- 1)5+2m’
C

&C(Nm[[ak, Gy + G;;],g;L + g:{]) < N(N-’- 1)5+2m.

Proof. Let us compute as an example for £ # 0

1
[[ak, G4] g4] 24 Z ﬂklﬂzl} [Clj] aqaj;ag, gj;:l

i1i203

24 Z ﬁklllzla i 12[ gT]aO Z ﬂkmm ”[ g4]a

i1i203 111213

i PR 4 i
+ A Z Bklllzlg[ ,G ]alz i 4 Z ﬁkl]lzl3allalzal3 [ao,g ]

1112’3 111213

and let us focus on the term

i — raan Tal
Zﬁkilizi% i1 %, [a g] - Z IBklllm:BlleJzJ%(ao) aOazl 4N pajs-

111203 i10203,]1J2J3

N =

Defining

2
Cvi= Y kP <N 7,

k,itiz, j1j2J3

Z IBkutzls:Blm J2J3
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where we have used Eq. (109), we obtain

EIC(Z ﬂkilizlaNm ;1 12[ L,g};]aé

i10213

< N (@) ad) s 13 < NV 1y,

The other estimates in Lemma 12 can be verified similarly. O

Similar to Corollary 6, we show in the following Corollary 7 that, after conjugation with the unitary
W, the kinetic energy of the operators dy is comparable to the one of c.

Corollary 7. There exists a constant C > 0, such that for m € N
C
WEK (N™d)W < CEk (c) + CEK (N™¢) + SN+ 1)7+m,
Proof. By Eq. (125) we have (W= N"W)*"W-IN"W = W-IN?"W < N?" + 1, hence
WIS W = Ec(WINTW WA W) < Ec(WdW) + Ec(N"W W),
Following the ideas in Corollary 6, we estimate using Eq. (134)
Ex(N"WdW) <3 Ec(Ne)
/ / W—t&c [ak, G2 + G4], 92 + g4])WzdS
+ 3/ W_sEic (N |di - ax, G} + G| wids
0
1 1 N 1 1
< Ec(N™e) + — / / W_ (N + D)7 W,ds + — / W_s(N +1)°W,ds
N Jo Jo N Jo
1
S Ec W™+ SN+ 1>+,

where we have first used Lemma 12 and subsequently Eq. (125) in the last line. O

Before we come to the proof of the upper bound in Theorem 1, we are showing in the following
Lemma 13 that even without a unitary conjugation, the kinetic energy of cj is comparable with the one

of dy. The price for dropping the unitary W is that we obtain an order O o0 (\/ﬁ ) prefactor in front

of the excess term (N +3)3*2" instead of a prefactor of the order Oy o0 (1).

Lemma 13. There exists a constant C > 0, such that for m € N
Exk(N¢) < CEL(N™d) + CYN(N + 1)>2m,

Proof. Note that we can write c as

4
Ck—dk—zz(ljk(xjka a0—4Zﬁu”kau 'ao,

uij

and therefore

51((,/\/""0)S35K(de)+lzgk(zajk,/\/ma a0)+485K(Z,BMUkN aJr T T g
J

uij
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Defining the constant Cn := 3. jx |k|2|01jk|2 < N‘%, which follows from Eq. (108), we obtain
Ex (Z @jk Nma;a%) <Cpn (ag)zaé(./\/+ D™ < VNNV + 1)
J
Similarly we obtain

< VNV +3)3 s VNV +1)°. o

Ex (Z Buijk Nmal Tqt “0

uij
Proof of the upper bound in Theorem 1. Let us define the trial state @ := WI', where I is the state
defined below Eq. (71), and recall the representation of Hy in Eq. (106)
(@, Hy @) = 490N (@, N7 (@)’ ad®) + (yn = on )(®, N~ (ag)*ag®) — pn (@, N7 (af) ai@)
+(®,EC (D)D) + (@, Ep(£)D) + 2Re(®, £,D) - (@, E0)

_<cp,( DL (@i, ala +H.c.)<b>.

ijk,tmn
By Eq. (125) and the fact that i(zv—m(ag)magn - 1) < N\, we obtain that

)<q>, N3 (af)Pai) - 1| < N"HON®) = NI, W NWT) < N, (W + D) < N7,
see Eq. (84) for the last estimate. Making use of Lemma 8, Lemma 4 and Lemma 10 yields

(@D, E£.D)| < N7 (D, Ec(c)D) + Ni (D, N D),

((cp,( > (@),,kwl]ka0a0+Hc)q>>(sN—i<q>,5,c(c)q>>+N-i<q>,/\/q>>+1vi,
ijk,tmn

(<q>, 5<1>>( < Nl<q>, 54(\% + l)c)(l)> + Nl<q>, (% + 1)2(N+ «/N)q>> + (D, ND).

Observe that (®, N ®) < 1 and furthermore we have by Lemma 13 and Corollary 7

(@, Ex (N™0)D) < (@, Ex (N d)®) + VN = (I, W Eg (N d)WT') + VN
< (T, Ex ()T + (T, Ex (N™)T) + VN < VN,

where we used Corollary 4 in the last estimate. Putting together what we have so far, and utilizing Eq.
(120)-(122) again, yields

(@, Hy®) = —bM(vw + (y(V) = 0 (V) = (V) VN + (@, Ex () D) + (@, Ep()) + O[N],

Using Corollary 6, Corollary 7, Corollary 3 and Corollary 4, we further have

0 < (D, Ep(6)D) = (T, W Ep(E)WD) s (T, Ep (Y + 1Y) + 1 5
1

0 < (@, Ex(d)@) = (T, W' Ex (d)WT) 5 (T, Exc(e)T) +% SN o
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6. Proof of Theorem 2

In the following, we want to verify Theorem 2, claiming that any sequence of states ¥y with
(In,HyY) < Eny + 0N—>OO(N%)7

3
satisfies complete Bose-Einstein condensation with a rate of the order N™%. Together with Theorem 1,
the statement follows immediately once we can show that

Hy(a) = Hy — aN > ébM(V)N + (y(V) —u(v) - a(V))\/ﬁ — CN¥, (135)

for some constant C. In order to prove Eq. (135), we observe that by the results in [23, Section 7], see also
the comment below [25, Theorem 4], the modified operators Hy (2«) satisfy the asymptotic identity

.1 a
1\}12100 N inf o (Hy 2e)) = Egp(u),

inf
ueL?(A):||ull=1
where the modified Gross-Pitaevskii functional is defined as

b (V)
6

EGp(u) = (u, (=A)u) + '/A lu(x)|0dx + 2¢||Pul]® - 2a

using the projection P = 1 — Q, with Q being introduced in Eq. (18). Note that in the notation of [25]
the operator Hy (2a) reads
N
Hy(2a) = Hy +2a Z Py, —2aN.

Jj=1
Furthermore, for @ < 272, we have that
(u, (=A)u) = 4> (| Qull* = 2al|ull® - 2a||Pull®,

and by Holder’s inequality we have

(o] < ] [ ot

for any u € L?(A) with ||u|| = 1, leading to the lower bound

bM(V)‘

1
A}iinooﬁinfa(HN(Za)) > G

Therefore, the ground state ¥, of Hy (@) satisfies
(YN ,a» HN (@)PN o) = (IN.a» HN 20) PN o) + (PN, a- NN, o)

b (V
> M6( )N+CZ<\PN’Q,./\/'IPN,Q,>—ONHoo(N),

and by Theorem | we obtain the matching upper bound

(YN ,a» Hv ()N o) =inf o (Hy (@) < info(Hy) < bM6(V)N+0N_m(N).
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As a consequence, the states Wy _, satisfy complete Bose-Einstein condensation
<lPN,alePN,(x> = 0N—>oc(N),

and we can proceed exactly as in Corollary 2, as long as the additional condition @ < § holds with ¢
being the constant in Eq. (64). In particular, there exist states @, such that

<¢N’Q,HN(Q')(DN’Q> < infa'(HN(a/)) +C,
]1(./\[ < C\/N)(DN,Q = (I)N,a;

and we have the estimate on the kinetic energy <<1>N,a, Dk |k|2czck<DN,d> < CVN. Note that the

localization results in Lemma 5 hold without any modification for the operator Hy (@), since N
commutes with the localization functions 1 (A < M). Following Subsection 4.2, we therefore arrive at
the lower bound

1
inf o (Hy (2)) + C 2 (.0, Hy () PN o) > chm(VIN+(y - = WVN
— PN, N o) — CN¥ + (1 - 2C6)<(I)N, > |k|2d2dkd>N>.
k

1

Using again Eq. (123), for 7 < g, we obtain for a large enough constant C

inf o (Hy (@) > ébM(V)N+ (y —o —u)VN - CN3
+(1-2Ce- Ca)<(I>N,Z |k|2dj;qu>N>.
k

Choosing @ and € small enough such that 2e + @ < % concludes the proof of Eq. (135).

7. Analysis of the scattering coefficients

This Section is devoted to the study of the variational problems in the definition of b (V) in Eq. (4)
and the definition of o (V) in Eq. (9) as well as the study of their corresponding minimizers w and 7.
Especially we want to compare y(V), u(V), and o (V) defined in Eq. (10), Eq. (5) and Eq. (9) with
YN, UN,and o defined in Eq. (97), Eq. (102) and Eq. (98), see Lemma 17. The proof will be based on
the observation that the N-dependent quantities can be seen as a counterpart on the three-dimensional
torus A to the N-independent quantities defined in terms of variational problems on the full space R>.
Similarly we will compare in Lemma 16 the modified scattering length b o4 (V), which can be expressed
in terms of the minimizer w as

b (V) = / (1 - w)Vdx,
R6
see [23], with its counterpart on the torus A defined in Eq. (29) as

640,0 = (uououo, (Vv =V RVN)uouoto) = (Vv — VRV ) 000.000-

The proof of Lemma 16 is based on the observation that (1 —w)V =V —wV is the full space counterpart
to the renormalized potential Viy — Vy RV .
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In the following Lemma 14 we want to derive properties of Q defined in Eq. (8) as

2
dx
and its minimizers. For this purpose it will be useful to introduce for a given cut-off parameter £ and

a smooth function y : R® — R function with y(x) = 1 for |x|e < % and y(x) = 0 for |x|e > %, the
modified function

f(x)
V(x)

o= | 9{2|M*V¢(x)|2+wx> -4

fe(x1,x2,x3) 1= V(x1,x2) x (€ x2, €71 x3) (X2, x3).

Furthermore, we define the corresponding functional, acting on H! (R9), as
2
}dx’

Lemma 14. There exists a unique minimizer n of the functional Q in H'(R®), and 1 satisfies the point-

wise bounds 0 < n < —2A1M* fand o (V) = /R9 f)n(x)dx, as well as

fe(x)
V(x)

o) = [ 9{2|M*w<x>|2+wx) - o)

and o, (V) := Q,(0) — inf e g1 (o) Qs ().

(2Am. +V)n=f

in the sense of distributions. Furthermore, Qg has a unique minimizer n¢, and n¢ satisfyies 0 < ny <
mﬁ» and o¢(V) = /Rg Je()ne(x)dx, as well as (=2A p, + V)ne = fr and

o(V) = 511_)1130 o (V).

Proof. Following the proof of [23], we observe that since Q(0) < oo, there exists a minimizing
V(4 )
exists by Banach-Alaoglu a subsequence ¢, and elements X,Y € L*(R°) such that Vg, — X and
A% (% - gon) — Y converge weakly in L? (Rg). By [17, Theorem 8.6], we obtain that there exists an

sequence ¢, € H'(R%) for Q with sup,, || Vg, || < co and sup,, < o0, and therefore there

element 7 € H'(R?) such that X = Vn and ¢, |4 converges (strongly) to 57| 4 in L?(A) for any set A C R°
of finite measure. Since VV is a bounded function, we further have the convergence of VV (% - go,,) la

to \/\_/(é - r]) |a, and in particular ¥ = \/\7(% - r]). In summary we have

weakly in L?(R?), and therefore we observe that 7 is a minimizer of Q

Q(n) = 2| M.Vn|I% + HW(% - n)”2 < limninf{leM*anHZ + ”N(% - gon) 2} = liminf Q(g).

Computing 0 = (% Q(n +typ) for p € Cy° (R%) immediately gives in the sense of distributions

(=2, + V) = f,
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and computing 0 = d% Q(n+1n) yields o (V) = /Rg f(x)n(x)dx. Regarding the uniqueness, we note that
@ > ||IM.Vel|? is strictly convex on H'(R?), and therefore Q is strictly convex too. Consequently the
minimizer 7 is unique. Using that % > 0, we have

S f(x)
V(x) V(x)

pAS))
V(x)

—le ()I' ‘

. |¢<x>|‘ < —sO(x)’,

and using furthermore the fact that ¢ — ng |V (x)|?dx is a Dirichlet form yields
2 2 2
[ mTtpofar = el [ [9,le(ManPar < ldeuat] [ [9ap(onfas
- / M. V().
RY

Therefore, Q(|¢|) < Q(y) for all ¢ € H'(R?) and by the uniqueness of the minimizer we obtain
1 = |n| = 0. For the purpose of obtaining an upper bound on 7, we observe that ML*V f € L>(R%) and
define the functional

3= | {2|M*w<x> el +V(x)|go<x>|2}

ZMV

Since é((p) = Q(p) + Q(O) — Q(0), we observe that 7 is the unique minimizer of 0. It is furthermore

clear that
IRE
RY

and utilizing again that ¢ — fR9 |Ve(x)|?dx is a Dirichlet form yields

J.
-/

RY
<
RY

= / |M*V¢(X) +
RO

2
min{yp,

=YY I}

ar < [ velptoPar,

fH+

1
28000 T oM, Vf(x))

1
fr+

2A

1 2
M*V(min{go, A f(x))| dx

1 2
f(x),O})| dv
M.

(mm{go + A

1 2
M*V(¢+ . f(x>)| dx

2M, Vf(x)|

In particular, @(min{tp, ﬁ fH < @(go), and therefore we obtain by the uniqueness of minimizer
for @

1 1
= i < .
n mln{n, =YY f} S A b

The properties of Q, can be verified analogously.
In order to compare o (V) with o, (V), let us first verify the point-wise bounds

1
A (f = Jo. (136)

<n<ne+
ne<n<ne+ —
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For this purpose we introduce the additional functionals Qz, and Qz)’ as

=

2 2
fel +V1e = el }dx

2 (9) :=/ {Z‘M Vo - M. Vn| +V’¢ 7]+f Jfe

1
f= 2M,V

7 . _ 1
Q' () = /RQ{Z‘M*W M. Vne + Y

By a straightforward computation, we observe that Q;(¢) = Q¢(¢) + Q;(0) — Q,(0) and similarly
Q7 (¢) = Q(¢) + Q7 (0) — Q(0). Therefore 1, is the unique minimizer of Q;, and since f(x) > f¢(x)
we further have

Q;(min{p,n}) < Q;(¢).

Consequently , < n. The second inequality in Eq. (136) follows analogously, utilizing that 7 is the
unique minimizer of Q' and that

1
Qz)/(min{(p, ne + oA (f - fl’)}) < Q}’(QO)
M,

1(IX|> )

Using the fact that | f(x) — fp(x)| , see [23], the fundamental solution

F(%) 1

2872 det[M,] IMZ (x = )7

{1 < M|
|IMI v V]

r(3) £O) = fey) I
= dy < -
2873 det[ M. ] /R9 M=) y</y|> P
|7dy,

1 1 1
s [ ey =0 [
0 (C+]yD*x =yl o (C+1yD*yl o (L+yD¥y

for the differential operator —2A o4, and the observation , we obtain

Where we have used symmetric rearrangement. Since /R9 dy < oo is finite, we obtain that

(1+]y I)4 Iy’
= AM (f — fe) converges point-wise to zero and consequently 77, converges point-wise to r7 by Eq. (136).

Using Fatou’s Lemma and fp(x)n¢(x) > 0, as well as the fact that f; converges point-wise to f, therefore
yields

o(V) = / f)n(x)dx < liminf/ fe(xX)ne(x)dx = liminf o (V) < limsup oy (V) < o(V),
RO {—0 RY {—o0 {—0

where we have used in the last inequality that fyn, < fn by Eq. (136). m]

Before we can compare the modified scattering length b (V) with its counterpart on the torus in
Lemma 16, we need the following auxiliary result Lemma 15.

Lemma 15. Recall the definition of the coefficients Ay ¢ in Eq. (29) and the definition of T in Eq. (19).

2y -1
Then there exists a constant C > 0 such that | ¢| < ~ (1 + 140 ) and

|(T = Dijk.c00| < (137)

Cl(i+j+k=20) lil? + 1712 + &2\
+
N2([i]2 + [71? + |k]?) N +1¢)?
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Proof. In order to verify Eq. (137), we observe that for || < K and n > 2
V(T - 1)e'™ = V' RVy '™
can be written as the sum of terms of the form
093k (V)03 ... 03V (V)03 VAR Q@3 Yy it (138)
where the coefficients satisfy kj + - - - + k,,, + 2m + a + 2b = n and either (I) that » = 1, (II) that b = 0

and a = 1 or (Il) that » = 0, a = 0 and m > 1. We are going to verify Eq. (138) by induction, using the
resolvent identity

—AR = Q®3 _ Q®3VNQ®3Ro
We start with the case n = 2
V2RVNei[x — _(_A)RVNeifx — Q®3VNQ®3RVN61'€X _ Q®3VN6‘MX, (139)

and observe that the first term in Eq. (139) is of the type (III) and the second one is of type (I). For the
inductive argument, let

T = Q®3Vk1 (VN)Q®3 o Q®3vkm (VN)Q®3 ValebQ®3VNeit’x

be of type X with X being (I), (I) or (III), and let us compute

VT — (Q®3Vkl+1 (VN)Q®3 . Q®3Vkm(vN)Q®3 FE Q®3vk1 (VN)Q®3 . Q®3Vkm+1(VN)Q®3)
+ Q®3Vkl (VN)Q®3 . Q®3Vkm (VN)Q®3 Va+1R1_bQ®3VN€i[x. (141)
The terms in the first two lines, see Eq. (140), are clearly of type X again. Regarding the term in the

third line, see Eq. (141), we obtain that VT is type I in case T itself is type 1. In case T is type III we
obtain that VT is type II, and finally in case T is type II, we have a = 1 and use Eq. (139) again

Q®3vk1 (VN)Q®3 o Q®3vkm(VN)Q®3 Va+1Rl—bQ®3VNeifX
= Q¥VH(VN)Q® ... 0V (Vi) Q® VN O RV ! (142)
+ 0PV (VN)Q® ... 0V (V) QP Vy e, (143)

The right-hand side of Eq. (143) is clearly a sum of a type I and type III term, which concludes the
inductive proof of Eq. (138).

In the following we are going to verify individually for the three cases (I)-(III) that the Fourier
transform of the expression in Eq. (138) has an L* bound of the order N-2(VN + |¢])"2 for n > 2,
which immediately implies Eq. (137). Let us first of all state the useful bounds

[Vemvr e < Viem i o=l < Vi, (144)
H1Q®3vk(vmg®3l S VN (145)

v v
[VOFVE A )0F e | < V(e F X TE W)oK %) < VN (146)
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for k > 0. Regarding the case (I), we obtain immediately by Eq. (144) and Eq. (146)
|<e[K-X’ Q®3Vk] (VN)Q®3 . Q®3Vkm(VN)Q®3 VaVNei€x>|
Ky++ -tk +2m—4
< VN TN 4+ 16) < NT(YN + [6)" 2

Since the case (II) is similar to the case (III), let us directly have a look at the case (III), where we use
the fact that by Eq. (145)

INO®3VK (Va) Q3 RY|? = [NQ®3VE (Vi) Q93 RVERYOS3VK (V) 03|
1
< INQEVA(VN)QBRVQSVE (Vi) Q| < VOV (Vi) QP — NS VK (Vi) 0|

1 1 k
= lIg2% v (vmeP Sl s VN,

to obtain
(8%, 0% VF (V)0 ... QB VR 1 (V) 0% 0% Vy 0% RVy /™)) (147)
km ) 1 )
< \/ﬁ 2 \/Q®3Vkm(VN)Q®3 Q®3vkm_1 (VN)Q®3 o Q®3vk1 (VN)Q®3 elK»XH €Q®3VNelfx .

As a consequence of Eq. (144) and Eq. (146) we have
“‘/Q®3VNQ®3 Q®3Vkm71 (VN)Q®3 o Q®3Vk1 (VN)Q®3 eiK~XH < \/ﬁk1+"‘+k'n+2(m_l)_2. (148)

. -2
This yields the desired estimate for the term in Eq. (147), since ||%Q®3VN e’f"” < VN ~. The bounds
on Ag, ¢ can be verified similarly. O

In the following Lemma 16, we show that the renormalized potential N*(Vy — Vy RVy) converges
to ba(V)é(x — y,x — 7) in a suitable sense. The analogous result for Bose gases with two-particle
interactions has been verified in [8, Lemma 1].

Lemma 16. Let b o((V) be the modified scattering length introduced in Eq. (4). Then

1
IN?*(Viv = Vv RV )oo0,000 = bt (V)| < I
Furthermore, (Vi — VNRVN )ijk,emn = 0 in case i + j + k # € +m + n and otherwise

Cijk,emn
N*(Vy = VNRVN)ijk.emn — ba(V)| £ ===
i tj ’ \/N
for suitable constants C;ji ¢mn-

Proof. Let w be the unique minimizer to the variational problem in Eq. (4), which exists according
to [23] and satisfies in the sense of distributions

(—ZAM + V)a) =V.

Furthermore, let y be a smooth function with y(x) = 1 for |x|e < % and y(x) = 0 for |x|e > %,

and let us denote for a function f the rescaled version with fL(x) := f(Lx). Then we define for
n=(n,n,n3) € (2nZ)>3 and 0 < € < VN

Un(x, y,2) 1= €M%V el T (x — y, x = 2w N (x = y,x - 2). (149)
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In the following we want to show that i,, is an approximation of RV e ei"2Y ¢"32 For this purpose
we observe that the function y,, satisfies the differential equation

(=8 + Vi = €5 ™3 (Vy = £, (x = y,x = 7)), (150)
where we define &, : T> — R as
& = e X TRy pTHIZ [A, e’"”‘e‘”zye”“z/\/TN(x -y, x - z)]wm(x -y, X—2) (151)
N N
= (Vi T (= yx =0 =T - yx - A )0V (- y,x - 2)
i
= (A()(él’v(x -y, x - z)) +2V( - (x=—y,x— z))V (n1 +n2 +n3))( f (x—y,x—72)
N N
+2in(V(X7N(x -y, x - z)) +)(7N(x -y, x - z)V))w‘/ﬁ(x - y,x=2)
Z2A (TN +4M2V()( z )Vw — @+ T (152)
N
+4i(m1 =) (Vi ()0 4 V4 (@) #4101 = 1) (Ve (P )0V 4 TV (@),

In order to verify that &, can be treated as an error term, we first note that we have

4

AM)( (‘/__ ) Apx ™V,

Y, —1\d _t
M2V = (\/JT/ €) M2V N
and utilizing the density p := —2A yqw we obtain

N (K) = VN G (K) = x/ﬁ‘f’—ﬁ(‘m_lm - \/ﬁ_“ﬁ—(‘m_lm,
VN KP? K|
W—4ﬁ(‘/ﬁ_1K)K

K2

s

VoVN (K) =

Furthermore, we observe that we can write the Fourier transform of &, as

S

3

.f —AM)(Q wm+2M2V)(T*Vw‘/ﬁ—(n%+n§+n§)/\/7 * wVN
+4i(ng _HZ)(Vxl(X ¢ )*‘Ur @ *Vxl(w\/ﬁ))
+4t<n1—n3>( W) e 4 v, <<W>)

Since p € L'(R®), see [23], we have p € L*(R®), and distinguishing between the cases |K| < ‘F and
|K| > r, yields the estimate

— -1 2
W Ay (VN €P)] 4 |[VN
Apx 7 * w (K)| («/_ f) /RG TEVE dP < VN min 7K

(153)
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Using that p has compact support as a consequence of the scattering equation, we obtain that
xVp(x) € L' (R®) and therefore

=1 1
|K1,0(\/N K1) - K:p(VN K»)| < IKi1 - Kal.

Since M2V y is reflection antisymmetric, we furthermore have

—_ —— _ 1 \S 2V (N
M2V VW] < VN 4(\/ﬁ 15) | M2V x (VN Pk + Py - (K - P)[dP
R6 |K+P|2

+\/N_4(\/171€)5/ )/\TV)((\/N_IKP)‘)(K—P)ﬁ(\/N_I(K—P)
R6

2

)’ 1 B 1
K+ P> |K-PJ?

Summarizing what we have so far, we can estimate the Fourier coefficients of &, by

2

€0(K)| < N2 min 14 (154)

(K|

Proceeding similarly for general n # 0 we observe the slightly weaker estimate

€. (K)| < N7 min{%, 1}. (155)

In the following let R denote the resolvent of the operator Q®3(—~A + Vi )Q®3 on the torus, and note
that we obtain as a consequence of the differential equation Eq. (150)

RVye™¥eim2Y¢i™2 =y 4 RE, (x — v, x — 2)e™* ™Y ™7 4 (RVy — 1)(1 = 0®)y,,. (156)

Using the fact that V has compact support, there exists a £y > 0 such that )(% (x) =1 for x € supp(V)
and £ > {y, and therefore we obtain for n = (ny, ny, n3) and m = (my, mp, msz)

imix imyy i On=m Ik ik
(VN = (Vive!™ e ™2 et™, y,) = = /68 W e W TV (x,y) (1 - w(x, y))dxdy
R
f -
= L ban(V) + Oy (N3, (157)

where 71 := n1 +n,+n3 and we have used that we can express the minimum in Eq. (4) according to [23] as

bm(V) = /Rs V(x,y)(1 - w(x,y))dxdy.
We observe that in the case m = 0 and n = 0, we even have the exact identity

N2 (VN )ooo,000 = N*(Var, o) = baq (V).

Consequently we obtain

N2 (VN = VN RVN)oo0,000 = b (V) = N3 RV, &) — 3N? Z(VN, (RVy = 1)e® )y (e* =9 Ly oy
%
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Using Lemma 15 and the fact that (RV); k000 = (T — 1)ijk,000 = Oin case i # —(j + k), we can estimate

N2[(RViy, €0) = N2 > (RVN) (e i E0(=(j + k), /. k)
jk

<sz( M)2min( \/N

1712+ |&]? C(171+ |kT)

3
1+ 9555) (e \))2 1
N C(1j]+]k
<N7? < —.
2 P+ kP e

Again by Lemma 15 we have that

)

and following the proof of Eq. (153) we obtain that | (¢’**=) yq) | < N2 1+\k\2 Therefore
| | (1e%)
N? Zk]|<vN, (RVy = Delk ) (k=) gy < N2 zk] S SV
Choosing ¢ of the order VN yields
IN*(Viy = Vv RV Jooo.000 = b (V)] < % (158)

For general n = (ny,ny,n3) and m = (my, mp, m3) with ny + np + n3 = my + mp + m3 the estimates in
Eq. (155) and Eq. (157) yield in a similar fashion the desired estimate. O

In Eq. (156) we saw that RV}, an object defined on the torus A, is approximated by

W(x_y’

YN
tl/n(x,y,z) =x ¢ (X—y,x—z)w )C—Z),

which involves the corresponding object w defined on the full space. In the following Lemma 17 we
make use of this correspondence again, to compare yy, tny and on with y, y and o

Lemma 17. Let yn, un and oy be as in Eq. (97), Eq. (102) and Eq. (98), and o-(V), u(V) and y(V)
asin Eq. (10), Eq. (5) and Eq. (9). Then

yn = 7(VVN + 0N N7H),
pn = p(V)VN + 0N (1),
o = (V)VN +On V),
and there exists a constant A(V) > 0 such that for 0 < 1 < A(V)
y(AV) = u(AV) — o (V) < 0. (159)

Furthermore, on and yn are independent of the parameter K from the definition of nx below Egq. (17),
and the limit u(V) = limy £ \F is independent of K as well.
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Proof. In order to analyze yy, let us denote with L; : L? (A4) — L2 (A4) the linear map that exchanges
the fist factor in the tensor product L2 (A4) = L*(A) ®4 with the i-th factor and observe that

N\\n

3
-1
VN yn = Z (Li1® (RVN), (Vy ® 1)L; 1 ® (RVy)).
Furthermore, recall the definition of ¢ from Eq. (149) in the proof of Lemma 16 and define

) ? 1 1] 1 2
Y= /Rg V(x,y)()(f(x, D, 2)x? (v, 2wy, z) + EX‘(y,Z)w(y,z)| )dxdydz

o~| Z
I

i,j=1

3
2. (Liteyo. (Vn @ DL; 1@ yo),
y=

where the second identity holds by a scaling argument for all 0 < £ < N. We observe that by the
permutation symmetry of Vy we have L;Vy ® 1L; = Vy ® 1 and therefore

N3

(Lil®yo, (VN ®1)L; 1 ®¢0>| < sup (Li 1@y, (Vy @ 1)L; 1 @ Yyp)
ie{1,2,3}

7 1 2
- NET 8 g0, (y © D1 @ v) = [ Vinylet (w0 dwdyds < 1.

Using L;Vy ® 1L; = Vy ® 1 again, together with the identity in Eq. (156) and the Cauchy-Schwarz
inequality yields

VN =7 0] s N8 (Ré(x - vox =), (T © D1 @ (Rég(x—y.x—2)  (160)

+NE (1@ (RVy — 1)(1 - 0%, (Vy ® D1 @ (RVy — 1)(1 - 0%)).
Regarding the analysis of the term on the right side of Eq. (160), we observe that
p==2Apw=V(l -w)

satisfies VKp € L! due to the regularity assumptions on V. Proceeding as in Eq. (153) we obtain the
improved version of Eq. (154)

—~ K|$ .
’é‘o() N~"min 7K

2 K2\
.1 (1+%) , (161)

Similar to Eq. (138) we can write V*R&y, where & is introduced in Eq. (151), as the sum of terms of
the form

0 VR (V)% ... 0 VEn (V) 0% VAR P, (162)

where the coefficients satisfy k| + - - - + k,,, + 2m + a + 2b = n and either (I) that b = 1, (I) that b = 0
anda = 1or (Il) that b =0,a = 0and m > 1 as well as k,, = 0. In the following we are going to verify
individually for the three cases (I)—(III) that the Fourier transform of the expression in Eq. (162) has an

L bound of the order IN"

~N3zz for n > 4, and consequently

N K2\
|R§°(K)) €2N2|K|2 |K|2(1+T) ‘ (163)
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Regarding the case (I), we obtain using Eq. (161) and our regularity assumptions on V by a direct
computation in Fourier space, for n > 4

\/ﬁkl*ﬂ . ‘+km+a+2m ~ WVL
N2 - N3

|<€iK'X, Q®3Vk1 (VN)Q®3 o Q®3Vkm(VN)Q®3 Vu§0>| <

Since the case (II) is similar to the case (III), let us directly have a look at the case (III), where we use

the fact that ||[vO®3 VN O®3RV|| < 1 to obtain
|<eiK-X, Q®3Vk] (VN)Q®3 o Q®3vkm71 (VN)Q®3 Q®3VNQ®3 R§0>| (164)

s [Vosvn 0% 053 vhmt (V)0 .. %374 (vy )0 K | %Q@&)H.

Since we have | $0®3&|| <

b \/ﬁk1+~~+km+2(m—]) 2
y N2 N3 2>

ﬁ, we obtain together with Eq. (148) that the term in Eq. (164) is bounded

which concludes the proof of Eq. (163). Consequently
1
N1 ® (Ré(x — y.x = 2)), (Vi ® D1 ® (Rég(x — y.x = 2))) < 7 (165)

Using N2 (1 ® (RVy — Deiki=x) (Vy @ 1)1 ® (RVy — 1)K i=x)y < N2(1+ le-kep ) by
Lemma 15 for i # j, we further have

N3(1® (RVy — 1)(1 - Q®3>wo, (Vy ® D1® (RVy — 1)(1 = 0%)o) (166)

< ZNz(l MLl Ik k | ) |< ik(x—y)’w0>||<eik’(x—y)’w0>|

k,k’
Z |k k |2 1 1 _3
SN2,
= L+ k> 1+|k)?

N\J\

By Eq. (160) we consequently obtain ‘\/N_lyN - y(‘))| < €72 for € < VN. Note that for €1, > 0 we

can always pick an arbitrary N > max{{;, £>}? yielding

@ -y s — L
min{¢;, {,}2

that is, y© is convergent with rate -5, and by monotone convergence the limit is given by y (V).
2

In order to establish the convergence of oy, let us define fy » = (Vn ® 1)1 ® ¥, where we keep
track of the N and ¢ dependence in our notation, and

7
on,e = NZ{fn., Rafn )

for £ < VN and let R4 be defined above Eq. (96). As a consequence of the operator inequality

1
Vy @ DRM (Vy ®1) < (Vy ® D (el sVyel
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we obtain by Eq. (165) and Eq. (166)

1
N%<1 ® Réo, (Vv ® DRN (Vy @ 1)1 ®R§0> < N} (1® Rép, (Vy ® 1)1 ® REy) < 5

N3(1® (RVy - 1)(1 - 0%)o, (Vy ® DR (Vv @ D1 ® (RVy — 1) (1 = 0%*)uso)
< NZ(1® (RVy — 1)(1 - 0®)yo, (Vy ® D1 ® (RVy — 1)(1 — 0% )yo) < N2

Using the identity Eq. (156), this immediately implies for £ < VN
VN 'on — o < €3 (167)
To understand the dependence of o ¢ on the parameter N, recall the function
Fe(x1,x2,x3) 1= V(x1,22) (62, %3)0 (%2, %3)

and n, : R® — R from Lemma 14, which solves in the sense of distributions

(—ZAM* +V)T][ = fg. (168)

By Lemma 14 we have the point-wise bound 0 < n, < n; with

np(x) =

| r(3) / Fe(y)dy
R

Je(x) = :
20" 2873 det[M,] Jr0 IMI(x = y)|7

In the following let us write x| g for the function x + x;g(x). By Eq. (168) we obtain that p, := —2A ¢, 7¢
satisfies the (uniform in €) bounds

loellLrrey < Nfellpreey + IVI Nl ey < 1, (169)

Ixipell i moy < i fell oy + 11VximgllLme) S 1, (170)

where we have used in the second estimates that fp(x) is compactly supported in the variables

x1 and xp, and satisfies SUpPy, , fe(x) m, see the estimates on w in [23], and therefore

(1 + [x1]) fell i goy < 1. as well as the fact that x ﬁV(x) e L'(R?) and hence

)

dy
Vsl o) < NPl < sup / <
(=) PR s Tl + 2Dl

and similarly we obtain ||Vn;||;1rey < 1. Using Eq. (168), we obtain the analogue estimates on the
derivatives of pg

Hvkp[”L](RQ) + ||xlvkp€HL](R9) s 1 (171)

Having n, at hand, we use a smooth function y. with y..(x) = 1 for |x|e < % and y.(x) = 0for |x|ec > %
in order to define

N
W=y (xn — X2, X1 — x3,X1 — X4) ﬂ}ﬁ()ﬁ = X2,X] = X3,X] = Xg).
Notably, the state ¥ allows us to express

Rafnv.e =Y +Rsl +(RyVy — 1)(1 - Q%9 ¥, (172)
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with ¢ = [28 0, xdm)™ = 28, ()™ +4M2V (1) V)Y and
Vv (x1,x2,x3,x4) 1= NV(‘/N(M —x2), VN (x1 = x3), VN (x —x4))-

Proceeding as in the proof of Eq. (154), we have by Eq. (171)

= o)1 K>\ "
|(K)| s N2 mln{|K|2, 1}(1 N ) (173)
Using the fact that ||[vQ®*V N Q®* R4V|| < 1 we furthermore obtain
T 00 - (k. InRa)| [T+ UK VNEO (2, 50) _ max(VLIK 2}
R4Z(K)| = < <
IK|? K2 Ni|K|2
Using furthermore Eq. (162), we can utilize Eq. (173) to improve this result to
— max{N~%,|K|"! K2\
R (K)] < —{ - }( + KL ) (174)
|K|2 N

In analogy to Eq. (161), one can show that X@w‘m(k) < N2

|k|2 (1 + Ikp ) , and therefore we

—~ -m
have )fN’[(K)‘ < N3 (1 + %) , which yields together with Eq. (174)

N3 [(fn.es Rad)| s N2 (175)

Furthermore, in analogy to Eq. (174), we have the estimate

’T(K)) N2|K|2(1 + %)

Denoting with I the set of all indices K = (ky, ..., k4) such that k| +- - - + k4 = 0 and at least one of the
indices satisfies k, = 0, we obtain

N[, RV = 1= Q)W) = NE 5 FR)(VwRa = 1) fiv . X)

K el
3 -3
Ni K|?
sN—%Z—4 LI IV (176)
o IKP N

where we used

I

) ) ) 1
(VN Rafw.en €KX < (KX Vel KX (fy —Afo)% < NING,
Applying Eq. (172), Eq. (175) and Eq. (176) therefore yields for £ < @

7 7 1 1
on,e=N2{(fn,e. Rafne) = N2 (fn¢, ) + 0N—>oo(N 4) ={fe.ne) +ONooo (N 4)

= (V) +0NW,(N-%).
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In combination W1th Eq. (167) and the fact that (V) = limy o¢(V), see Lemma 14, we obtain that
o (V) — (V)| 5 and conclude

‘\/ﬁilow - O’(V)) < N-i

To establish the convergence of VYN ! U, let us recall the effective potential
R* >R,
Veﬁ‘ .
X = A{} V(x’ y)(] - w(x’ y)) dy’

and let 0 solve —2A0 = Vg with 6(x) — 0. Then

|x|—00

b = [ Vo ar.
R,
Applying the techniques developed in this proof so far, yields furthermore
VN = 1)) < —
HUN — H S =
VN
Finally, in order to establish Eq. (159) let us denote with w, the minimizer in Eq. (4) for the rescaled

potential AV, which satisfies 0 < w; < 1 and w,(x,y) < %, for a V dependent, constant

C(V) > 0. Consequently lim,—,0(1 — w,) = 1, and hence we obtain by dominated convergence

VWV (y,v)(1 —wailx,u)(1 - wa(y,v))
8xlx -yl

hm —p(/lV) = lim / dudvdxdy
RI12

A—-0

Vix,u)V(y,

- / VOV 4 dvdrdy € (0, 00).
RI2 87'r|x - y|

This concludes the proof, since (V) > 0 and

3C(V)? V(x,y)
2 ro (1+|y[* +z]*)?

1
—y(AV) < dxdydz < co. O

Making use of Eq. (172) again, we can furthermore verify decay properties for the matrix entries of
T, — 1 in momentum space in the subsequent Lemma 18.

Lemma 18. Recall the definition of the linear map T, in Eq. (88) and Ty in Eq. (95). Then there exists
1n<j+k:0>(1 N m2+|k|2)‘1
N ’

L71%+1k12

a constant C > 0 such that |(T> — 1)jx,00] < CN~

-3
L A(+i+j+k=0) [P + 1 + 11 + kI
Ty — 1) <CN™2

(T2 = Detgiool | N

Proof. For the purpose of verifying the bound on
(Ts = Duijr,0000 = (€F %, Ra(Vy ® 1)1 ® RVy)

with K = (uijk), let us choose ¢ := \/: and recall the elements ¢ and ¥ from Eq. (172), and the set I

above Eq. (176), in the proof of Lemma 17. With these elements at hand, we can write
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(@ X Ra(Vy ® D1 @ RVN) = (KX Ry + (X, W) + ) (Vv Rye™ X, K X)X )
K’el
+ ("X Ry(Vn @ 1)1 ® {RVN -y }). (177)

el )

. 1 K2 -
(KX Wy < — (1 | ')
NI|K|? N

In the proof of Lemma 17 we have established

(e™® X Rad)| = |RaZ(K)| 5

Regarding the sum over I we have

Z <VNR4eiK-X’ eiK’-X><eiK'<X’ ¥)| =
K'’el

DUV = VN RV ) KX oIK ) (oKX )
K€l

1 (VN = Vi RsV e KX oK XI)( |K'|2)‘3 _ 1
T NKP S K2 N T NIk

IKI2

Regarding the final term in Eq. (177), we observe that we have the estimate

[(e® X, Ra(Vn ® D1 ® {RVN —y})| = —RyVN)e X, (Vy @ D1 ® {RVy —u})|

V@ {RVy -y}, (v @ D1 @ {RVy —u})
IKP?

\/((1 = RyVN)e KX Vy @ 1(1 = R4V )e'KX),

By Eq. (165) and Eq. (166) we know that (1 ® {RVx -y}, (Vy @ )1 ® {RVy —y}) S N7,
(1= RVN)eEX Vy @ 1(1 = RyVn)e® XY <2(eK X vy @ 175 X)

. . 1 . .
+2{RyVn e X Vy ® IRV e®X) < vt (Ve ®X RyVye®X)
1 iK-X K -X 1
—2+<€l ,VN@I >Sm

Finally we note that the bound on 73 is an immediate consequence of the regularity of V and the bounds
on RVy established in Lemma 15. m]

A. Appendix A

In the following we establish comparability results between transformed and nontransformed quantities.
The first result in this direction, Lemma A1, establishes that the unitarily transformed powers of the
particle number operator A/, w.r.t. the transformations Uy and Wy, are again of the same order as the
bare powers in AV.

Lemma A1l. Let U be the unitary map defined below Eq. (70) and W the one defined below Eq. (124).
Then there exists for all m € N constants C,, > 0, such that

U_s N™U, < €SBV + 1)™, (A1)

W_g N™W, < eCnSIN + )™, (A.2)
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Proof. Let us recall the definition of the generator Gt — G with

1
g = 6 Z Nijk aja;azag,
ijk
Nijk = (T = D)ijk,000
of the unitary group U, from Eq. (70). As a consequence of the bounds on 7 from Lemma 15, we have

;
1 + o+ A2
i(g+gT) < EZ ala; + ijk a}akaa) (Z Nijk a}aiag) <N+ ~ <N +1.

i jk Jjk
Together with 0 < (x +n+3)% — (x + n)k < Cox(x+ 3)k=1 for a suitable C,, x > 0, we obtain

[G, N +3)"]+H.c. = —((N+3)" -—N")G+H.c.
= —\/(NV +3)m —Nm(g+ QT)\/(N+6)”‘ —(N+3)m+He s (N+3)™

Applying Duhamel’s formula then yields

t 1
Uy (N +3)"U, — (N +3)" = / U_s[G, (N +3)"]Uyds +H.c. < / U_s(N +3)"U, ds.
0 0

Consequently Gronwall’s inequality gives us
U (N +3)"U, < eCMI NV +3)™
for a suitable constant C > 0, which concludes the proof of Eq. (A.1). The proof of Eq. (A.2) follows

analogously from J_r(gz + Q; ) < N +1and

i(g4 +gj) < N‘3(N(J\f+ 3 +/\/%) <N +1,
where we have used Lemma 18 in order to control the coeflicients of 7> and Tj. ]
In the subsequent Lemma A2 we are going to compare the kinetic energy > ; |k|27a2a x in the

operators a; with a fractional Laplace (—A)7, with the corresponding expression in the variables cy.

Lemma A2. Let 0 < 7 < land 0 < 0 < % Then Y k|7 (ck — ax)(cx —ax)' < ﬁ/\/z, and

furthermore we have for integers s > 0

1 v
DUkFTap Noa s 7 kP epN e + SN ENTV S (A3)
k k
Proof. Let us define (G(,”"))l_j = B PTT =D (T = Dy for

LI'eT:={(0,0,0)} U U {(£,0,0), (0,£,0), (0,0,0)}
0<|l|<K
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as well as for 0 < y < 1 the operator-valued vector and matrix

1
. 2
@)k = (1P + KP7) ajar,

(Y(’ )

| |
(ot amanNSa ot at
T )jk s (’C7,2GT ’C%2 a11a12a13N aptnin,

Jkjk

with Ky 5 1= (=Ax)Y + (=A,)?. With these definitions at hand we obtain

Z k1> (ck — ar)N* (ck —ay)' = Z @’ (Yﬂ;’,) + H.c.)d%,.

II’

Fory > 7 — % we have by the estimates from Lemma 15 that
Lr -
Ik Aex: >/c72|| <N
Together with
H(./\/+ 1)_%alfa12'a]3'/\/sa;a};a2 N+ 1)_%” < N3

on the N particle sector, we obtain (nyl,;l,) + H.C.) < %(./\/ +1)*fory > 71— % and a suitable constant

C. Using Cauchy-Schwarz we therefore have

s+1

T s 1 TN
D P (ex = a)N* (ex —an)' < NN+, = 20 ) |k a,
k k

ag.

Applying this result for 7’ := o, ¥’ := 0 and s’ := 0, yields the first claim of the Lemma

SRR (e - an) (e - ap)’ < TA”.

k

Concerning Eq. (A.3), we have
DUlkPTap Noax <23 kPTef Noex +2 3" 12 (cx = ar) ' N (cx = an),
k k k
and furthermore we can express

’ 1
FUX 4 Y e a Xt a5 0L (Y + He o,
k+0

STIPT(ex - an) NP ek —ar) = Y.
k

1,1’
(A4)

with

LIttt
Xy =aypapay

(NS + 25N s(s — l)NS_Z)all/alz'alg,

xbl = g

! (2/\/" +4sNS 4 45(s — DN*72 +2s(s — 1) (s — 2)/\/573)611;6112/&15,

T T T
I I I
X5 = }L j }L (./\/" +4sN>~ l+6S(S 1)N‘Y_2+4S(S— 1)(S_2)Ns—3

+5(s—1)(s-2)(s - 3)/\/3_4)6111'1112'6113',
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1.0 1.r 1.r
=yl (6R) o+ (6h) ],
f Z[( T Jijij T Jij.ji

tj

1,1’ 1,1 Lr
D [ (58 R (SR I
8 Z[( ©ijij T Jijji

L

AL P B L
Y = (/cysz, /cyfz) Xo.
KK

Following the proof of the first part of the Lemma, we obtain for y > 7 — %

1 s (= (LT Ns+1
3 ZCDV(Y;’T ) +H.c.)d>7 < Z |k|27az N ar.
1,1’ k

Using Lemma 15 again, yields | f| < N7~ and lg;jl < Nmax{r-3.0} _ 4, and consequently

o , , LA
fI,I Xé’l +Zgll{,1 aZXII,I ar < NN +Nmax{7— 3,0} ~ < NTNE.
k#0

Summarizing what we have so far we obtain for y > 7 — %

. . 1 N
27 27 7 2y 1
§k kI*Tal Noay < §k kPT N ex+ §k kI al N ag + NT(N +1)°.

Choosing y := max{t — %, 0} and iterating this equation at most two times with 7/ := max{r — %, 0}
and y’ := max{y — %, 0}, and using N < N, yields the desired statement. O

Similar to Lemma A2, the following Lemma A3 allows us to compare the operators
. 1 7_1 Poto3
Cr :=dai+ 5 Z( - )ijk’oooaiajao
iy

with the operators cy.
Lemma A3. Then there exists a C > 0, such that
D kP e < C(Z kPcer + N + 1).
k k
Proof. Similar to Eq. (A.4), we can write

Dk ex—en (e - = )
k

1,I'+0

s

’ ’ ’ ’ 1 ~ ’
11 1,1 1,1 1,1
X"+ e alx, ak+§(DJ{(Yf,l )+H.c.)d>1
k+0

where f1-1", gi’l/, Yf’l’”, Xé’l' and XII’II are defined below Eq. (A.4) for the concrete choice s := 0 and

D=

(@05 1= (177 + k1) aja.
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Using I, I’ # 0, we obtain the improved estimates J_rXé " < N2 and inI I < N2 Consequently

+ (fx)" +He) SN,
(Z gi’lla'};XlI’I'ak +Hc) g NINZ <.

k#0
Furthermore,
+l<I)T Y L He o, < Z |k|2aT A—[a < Z |k|ZCTC + N +1
T\t il Rt B Ky Gk kCk ’
k k
where we have used Eq. (40) in the last estimate. ]
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