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Note on the Complete Jacobian Elliptic Integrals.
By F. Bowman, M.A., M.Sc.Tech.

(Read 13th December 1918. Received 26th December 1918.)

The complete elliptic integrals X and E are functions of their
modulus & which satisfy the equations

dK

2 —F .k

kk A E-k*K
dE.
k-(—ﬁc-=E—K

respectively.
If we write 11 for I (X, a; k) where

v k% sna cna dna sn®u

IT (u, a,;lc)sj.o

is the elliptic integral of the third kind, then II is a function of

1-Fsnasn’u

oIl
a and £, andi has a meaning only when a and £ are connected
by a functional relation. In this note the value of the

. dil . . . .
derivate —-- is found in certain cases, on the assumption that such

dk
a relation does exist. On account of their simplicity, the results
appear to be worth recording. They arose in discussing the
geodesics on an ellipseid of revolution.

Write z=asinfcos¢
y=asin #sin ¢
z=ccos

23 o 22
vy +— =1, and suppose c>a

to define a point on the ellipsoid pr =

and ¢*¢* = ¢* - a* (prolate spheroid).
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Consider the geodesic which touches the parallels of latitude
0= +o. The first integral of geodesics on a surface of revolution
is known to be rsin % =const, where 7 is the angle between the
curve and the meridian. Expressing this fact for the above
surface, we obtain for the equation of the geodesic in question

. ¢ sine ~1—ecos’d do
a sinf Jeos o — cos® @
and the difference in longitude between a turning point of the
geodesic and the point where it crosses the equator is

¢ (% sine A/l ~e‘cos?d ¢ (% c
j : 1080 go= (% £(6, a)d8 =" I, say.
o 810 0 Jcos®o — cos? @ )a a

Now let us find d—I We have
da
of . VT ¢*cos 0

~—=coso sin 0
do. (cos® o. — cos® §)3/2

and notice that it contains an infinity of order 3 at the lower limit
of integration. We can write, however, in this case (¢/. Hardy :
Quarterly Journal, Vol. 32, 1901)

2L [y

Now transform to the notation of the Jacobian elliptic functions
by writing

cnw
cos 0=cosa..sn(u+K)=cosa.Tl—, where k=ecosa;
7nu

we get
1 dnru 1

coso.” smu /1 +cot*a(l - &*)en’u

]‘Qf 1 .\'du _ 1 |' cnudnu_E(u)]

S0, «)=

do coso)sn’ u cos a.L smu
d _1-ecos’ark du
an " sine j 1+cot?a(l — e*)sn®u
d without ditficult; al K-E
and without ditticulty —- = —OTL ( ).
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Substituting for « in terms of £ throughout this equation we
arrive at the result

d  ek® j‘x du_ _e(E-K) (1)
dk Jeg ko 0 l + k2 ;:2 nzu ]C \/e_—‘l — k2 ......
in which we can remove the restriction that ¢ should be less than
the unity.
But we can write
1-6 -
» ck" X k28—3_ k,sn‘u
\/ k2 o —€ Q
1+ & k2sn u
ke JT - ¢
e (3 K —'-’_—'-’_8/_2—
S G KvivToe| Tk B
Ne — K 0 o) 2
l+k E snu
ke JEI(Kask
R +iJi—e (K, a; k)
1-¢
where sna= — pomy b

Taking 7 in this form and differentiating again with respect to
k and equating the result to the right side of (1), we finally obtain

d11 k ¥

— = AL 2
% =fmacna dna. = (2)

.. dIl .. . 1-¢
This is the value Offk— under the condition sn*a= -~ oy o

which is easily seen to be equivalent to

cnta
dn’a
or sn(a+ K, k)=const.

1
=sn*(a + K) ——-—const

Now if we carry out the same work for the case of the oblate
spheroid, using the transformation given by Forsyth (Differential
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Geometry, p. 139), we arrive at the result

d e jx dn*u d e E-k K 3)
_—— U= — e
dk Jé -k °I+k’.-—1—ezsn2u JE-F kk'®

et — k2

corresponding to (1) above.

After dividing by e, subtract (1) from (3) and get

d 1 J‘K dnu — k" d 1 k £
e - AU = k)
CATRD e VTR
which easily reduces to
k* en®u
i X Je'—kﬂ.? d_"ﬁudu— 1 iE
dk)o Benu h ~/e3—lc'l' k?
1-2%
¢! dnu
. enwu
or, since m(u+K)—dnu
and sn (2K -~u)=snu
2—
&’ Ve kz.—l—.mzu
dJ‘K e e i 1 k 5 .
— U= —  F. ...
dkJo l—k’.i,.am’u Ve — T k? )
¢
Put ana=?,and after multiplying by ¢na we get
AL _emaens ko, (5)

dk dna k%

This then is the value of % under the condition sn a = const.

E
We may notice in passing that the values of %— and ((li—k may

be derived as special cases of the equations (1), (3) or (4). For

example, putting e=1 in (1) we get kk”% =E-Fk*K, ande=

gives k% =K —K.
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The results (2) and (5) could have been obtained in a more
straightforward manner as follows, though one could hardly have
predicted that they would turn out to be as simple as they are.

The expression of II(u, a; k) in terms of the Jacobian ©
function is Il (u, a; k)=4% log g—-((:i—;-g% +u.Z(a)
and on writing % = X it becomes

K, a; k)=K.Z(a)=K. E(a)-a.E. ... (6)

And since E(a) = J-a dn® u du,
0 4

dE (a) . da ([°0 0
7% =dn*a. lﬁc+,‘.o% (dn*w) du,
we obtain on differentiating

d1l dK dE - da (o0 .
W=E(a)'ﬁ— —EE+(Kdna~E)—IE+]1 sz(dnu)du. ("N

#nd therefore

Now, from the equation »= I __it___
NO-&(1-Ef

it is easy to prove that, while « remains constant
fsmu _enu dnu
ok kK"
and hence that
2
ok £
and after a little reduction we obtain

[E( )~ % BB

snu.cnu]
dnu

[sﬂucnndnu{E’(u) k. u}am’udnu] «.(9)

j:é% (dnu)du =~ zg[ma enadna-cnia. B(a) - k2. a.m*a :, (10)
Substituting in (7 )

k
=(Kdn*a - E) dk kk"{E(a) k’a}]+snacnadna ek K

dl'I

11
T when a and % are con-
nected by any relation of the form f(a, %)= const., provided we

This equation gives the value of

introduce the appropriate value of :—g .
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For example, if we make the assumptions
sn a=const., sn(a+ K)=const.,

and evaluate the right side of (11) in each case, we arrive at the
results (5) and (2) respectively.
Again, since we are led to define

“ 2
H(u,a;k):J. Ksnacnadnasn udu
0

1-Fsnfasn’u

2
from a consideration of the integral ?i@;u du, it is natural to
1+ysn®u
. a1l . .
discuss the value of v when y [ = - A*sn’a] remains constant;

that is, when dn a is constant.

Making use of (9) to differentiate dn’ a = const., we get

. da _ e snadna
k& dk—E(a) -k -
and substituting in (11), we have
dll snadna dX
(_&-k—)dna=conlt. = cna : E]:. """"" (12)
Finally, when du(a+ X, k) = const., we obtain
da cnadna
2 .y % ] .
kk A E(a)-k*.a+ ——
and in this case
(dﬂ) __ cnadna 1l d-g,' ()
dk /an(a+E)=oconst. sma kT dk° T

Collecting the results (11), (8), (2), (12), and (13), we may
summarise the foregoing work in the following table :—

https://doi.org/10.1017/50013091500035379 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500035379

32

an
Relation between a and k. Value of ;[ .
a = const. (E—-dn®a.K) ,
o= E@-#.0)
k
+snacnadna e K
sn (a . k) = const. snacna k E

dna K

sn (a+ K, k) = const. snacnadna.%’f—,.K

dn (a . k) = const. smadna dK
ecna dk
dn (a + K, k) = const. cnadna 1 dE

sna K dk
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