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Note on the Complete J&cobian Elliptic Integrals.

By F. BOWMAN, M.A., M.Sc.Tech.

(Bead 13th December 1918. Received 26th December 1918.)

The complete elliptic integrals K and E are functions of their
modulus k which satisfy the equations

kk^~=E~k^K
dk

k~=E-K
dk

respectively.

If we write II for II (A', a ; k) where

_ . , Cukisnacnadnasriiu
n (u, a; k) = 1 — - — : -„ du

Jo 1 - r w o svr u

is the elliptic integral of the third kind, then II is a function of

a and k, and—— has a meaning only when a and k are connected

by a functional relation. In this note the value of the

derivate -rr- is found in certain cases, on the assumption that such
die

a relation does exist. On account of their simplicity, the results

appear to be worth recording. They arose in discussing the

geodesies on an ellipsoid of revolution.

Write x = a sin 6 cos <j>

y = a sin 6 s in <f>

z = c cos 6

str + y2 •£
to define a point on the ellipsoid 2 " + ~3 = li a n (^ suppose c>a

and <?e? = c2 - o2 (prolate spheroid).
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Consider the geodesic which touches the parallels of latitude
9 = ± a.. The first integral of geodesies on a surface of revolution
is known to be r sin i) = const, where r\ is the angle between the
curve and the meridian. Expressing this fact for the above
surface, we obtain for the equation of the geodesic in question

,, c sin <x s/l - e2 cos2 8
a sin u

do

and the difference in longitude between a turning point of the
geodesic and the point where it crosses the equator is

since v W c o s ^ : ^ = o_&Ae a.)d6-±.I, say.^ ^ = A e a.)d6-±
sin 6 Jcos*a. - cos2 6 «Ja ' a

Now let us find —. We have
da.

3 / . a V 1 - e2 cos
— = cos a. sin 6
da.and notice that it contains an infinity of order •§ at the lower limit

of integration. We can write, however, in this case (cf. Hardy :
Quarterly Journal, Vol. 32, 1901)

Now transform to the notation of the Jacobian elliptic functions
by writing

cos 9 = cos a.. sn(u + K) = cos a. —-— , where k = e cos a.:
Jnu

we get

cos a. snu
f 3/ 7/1 1 C du 1 r cnu dnu _. 1
\J-dO = I —r—= u E(u)
J 3a. cos a. J sn u cos a.|_ 8n tt J

_ 1 - e2 cos5 a. f' du
and / |Jo 1sin a. J o 1 + cot2 a.(l - e2)«n2 u

and without difficulty -p- = . ( # - ^) .
' flto. COBOL v '
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Substituting for a. in terms of k throughout this equation we
arrive at the result

d ekn f * du ̂  _e(E-K)

e2 — k2

in which we can remove the restriction that e should be less than
the unity.

But we can write
,A-e- „

j e 2 - /fcOo r
1 + A;2 —

e*
e' - kr

ik'2ejl -e'
ek'~ '• • r " f f ^ - • » ; - d w

o

where
1 - e 2

Taking / in this form and differentiating again with respect to
k and equating the result to the r ight side of (1), we finally obtain

—j- = sna cna dua .— . K (2)

This is the value of—— under the condition sn" a = - —— • U i i U C l VliV> VVUU1U1UH alb I* ~~ o i ^ •

dk er-ir
which is easily seen to be equivalent to

= sn'(a + K) = — = const.
dn-a

or sn (a + K, k) = const.

Now if we carry out the same work for the case of the oblate
spheroid, using the transformation given by Forsyth (Differential
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Geometry, p. 139), we arrive at the result

d e f* dn*u , e E-k'\K

corresponding to (1) above.

After dividing by e, subtract (1) from (3) and get

d 1 f* drfu-k" , 1 k „
Tk-j^Twl —> • A - - 7 = = = - I ? 3 . *

9
which easily reduces to

, k" en2

. _, en it
or. since an (« + K) = ——

' v dnu
and «n (2K -u) = sn u

, t Je* - A2 1 ,
dCK e e

i
Put sna = — , and after multiplying by en a we get

dH snaena k „

m

This then is the value of —=- under the condition sna = const.
dk

dK dE

We may notice in passing that the values of —JJ- and -jr may

be derived as special cases of the equations (1), (3) or (4). For

example, putting e = 1 in (1) we get ^>2-rr = E ~ h'2 K, and e = ao
dE

~dk
gives k —— = E — K.
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The results (2) and (5) could have been obtained in a more
straightforward manner as follows, though one could hardly have
predicted that they would turn out to be as simple as they are.

The expression of II (u, a; k) in terms of the Jacobian 0

function is II (u, a ; k) «= i log ;j-~ f +u. Z (a)
o (u + as)

and on writing u = K it becomes
U(K, a; k) = K.Z(a) = K.E(a)-a.E. (6)

f°
And since E(a) = I dn- u du,

Jo '
• ., . dE(a) da f«3
and therefore 7— = an- a . -= + I —- (on u) du,

dk dk Jo dk.
we obtain on differentiating

Now, from the equation w = I
Jo
I .
o J(l-<«)(1-*•«•)

it is easy to prove that, while u remains constant

=

8* kk
and hence that

dn^r u^snu.Cnul
- L dnu J v '

T^ wit en 11 dnu{E(u) -k"'. w} ^m'udn'u I, ...(9)

and after a little reduction we obtain

I — {dri*u)du = — I m a cnadna-cn*a. E(a) - k'*. a.sri'al (10)

Substituting in (7)

(11)

This equation gives the value of —rr- when a and k are con-
CtrC

nected by any relation of the form /(a, k) = const., provided we
da

introduce the appropriate value of — .
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For example, if we make the assumptions

sna — const., sn(a + .AT) = const.,

and evaluate the right side of (11) in each case, we arrive at the
results (5) and (2) respectively.

Again, since we are led to define

_ . , . Cu k?snacna dn a sn? u .
II (u, a ; k) = I —j du

Jo 1 -krsnrasnru

from a consideration of the integral I-———— du, it is natural to
J 1 + y «n! u

discuss the value of —JJ- when y [ = -k-sn?a] remains constant;
UK

that is, when dn a is constant.

Making use of (9) to differentiate dn- a = const., we get

,,,i da snadna
kk- — = E(a) -kr.a

dk x ' en a

and substituting in (11), we have

/dll\ snadna dK

\dk)dna=aln,t.~ cna ' dk

Finally, when dn(a + K, k) = const., we obtain

, . . . da _ . . . . . cnadna
kk'3 — = E(a)-k'\a+ ,

dk sna

and in this case

/dIT\ cnadna I dE

\dk )dn(a+jr>=oon»t. ««» k* ' dk

Collecting the results (11), (5), (2), (12), and (13), we may
summarise the foregoing work in the following table :—
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Relation between a and k.

a = const.

sn (a . k) = const.

sn (a + K, k) — const.

dn {a. k) = const.

dn (a + K, k) = const.

dn
Value of — .

dk

(E-dri>a.K)

k
+ sna en a dna -r^. K

sna en a k _
dn a k'1

sna cna dn a . p^ . K

sna dna dK
cna dk

en a dn a 1 dE
sna ' k'° ' dk
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