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Free-stream turbulence (FST) and its effect on boundary-layer transition is an intricate
problem. Elongated unsteady streamwise streaks of low and high speed are created
inside the boundary layer and their amplitude and spanwise wavelength are believed
to be important for the onset of transition. The transitional Reynolds number is often
simply correlated with the turbulence intensity (Tu), and the characteristic length scales
of the FST are often considered to have a small to negligible influence on the transition
location. Here, we present new results from a large experimental measurement campaign,
where both the Tu and the integral length scale (Λx ) are varied (1.8 % < Tu < 6.2 %;
16 mm < Λx < 26 mm). In the current experiments it has been noted that on the one
hand, for small Tu, an increase in Λx advances transition, which is in agreement with
established results. On the other hand, for large Tu, an increase in Λx postpones transition.
This trend can be explained by the fact that an optimal ratio between FST length scale and
boundary-layer thickness at transition onset exists. Furthermore, our results strengthen the
fact that the streaks play a key role in the transition process by showing a clear dependence
of the FST characteristics on their spanwise scale. Our measurements show that the aspect
ratio of the streaky structures correlates with an FST Reynolds number and that the aspect
ratio can change by a factor of two at the location of transition. Finally, we derive a
semi-empirical transition prediction model, which is able to predict the influence of Λx

for both small and high values of Tu.

Key words: boundary layer receptivity, boundary layer structure, transition to turbulence

1. Introduction

Today, we cannot honestly say that we are capable of accurately predicting the transition
location in a boundary layer subject to free-stream turbulence (FST). Not even in
the simplest boundary-layer flow, namely the one developing over a flat plate under
a zero-pressure gradient condition, are we successful. There are numerous empirical
relations for predicting the transition location in the presence of FST, mostly only based
on the turbulence intensity (Tu) as input, but none with an accuracy better than typically

† Email address for correspondence: jensf@kth.se

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

44
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3251-8328
mailto:jensf@kth.se
https://doi.org/10.1017/jfm.2020.444


899 A23-2 J. H. M. Fransson and S. Shahinfar

65 % for all Tu. Thus, in a sense, we have failed in delivering a simple and reliable
transition prediction model for engineering predictions, which takes both Tu and the FST
characteristic length scale into account in a physically correct way.

When a two-dimensional boundary-layer flow undergoes laminar to turbulent transition
under the presence of FST, the transition scenario is different from the condition with
a low background disturbance level. Under the latter condition, the initial phase of
velocity disturbance growth is characterized by small-amplitude exponentially growing
Tollmien–Schlichting (T–S) waves described by modal stability theory (Tollmien 1929;
Schlichting 1933). Under the former condition, the disturbance growth is instead
characterized by algebraically growing unsteady streamwise velocity streaks, and is
described by non-modal stability theory (Ellingsen & Palm 1975; Landahl 1980;
Gustavsson 1991). The designation ‘bypass transition’ is still often used when referring
to FST induced boundary-layer transition, although somewhat incorrectly. The term
bypass transition was according to Morkovin coined by himself (cf. Morkovin 1985)
in Morkovin (1969) and was introduced to denote any transition process that bypassed
common knowledge or existing theories, which at the time was limited to the T–S wave
transition scenario described by modal theory. Bypass as a stand-alone term, without
transition, is however encountered before the introduction of the term by Morkovin, then
referring to artificially forced high amplitude T–S waves, which through nonlinearity
advanced the known secondary instability and breakdown to turbulence and, hence,
completely bypassed the linear range of the T–S wave (Klebanoff, Tidstrom & Sargent
1962). Going back to the meaning of bypass transition by Morkovin, it was originally used
for surface roughness induced transition but became a common notation for FST induced
transition. However, after the distinguished amount of work on non-modal theory and FST
transition over the last decades, both experimentally and numerically, it is inappropriate to
continue terming this transition scenario bypass transition since the basic mechanism for
energy growth today is known. This even though there are minor insights missing on the
receptivity process and actual triggering of the breakdown to turbulence.

Free-stream turbulence gives, undoubtedly, rise to the most complicated boundary-layer
transition scenario. The reason for the complexity is that the boundary-layer thickness
grows with the downstream distance at the same time as the turbulence intensity (Tu) of the
FST decays and the FST characteristic length scales grow. The FST is present everywhere
in the free stream but changes characteristics with the downstream distance. This implies
that the actual forcing by the FST on the boundary layer changes gradually, which makes
it an intricate receptivity problem. Inside the boundary layer, the disturbance growth and
structure are physically described by the lift-up effect (Landahl 1980), which is a vertical
exchange of momentum. Here, described by high momentum fluid being pushed towards
the wall by the FST-forcing, and low momentum fluid being lifted from the wall as a
consequence of continuity. This creates a weak cross-sectional fluid motion, which induces
unsteady elongated streamwise streaks of alternating high and low speeds. Unsteady, since
the continuous forcing is turbulent and hence random.

The streamwise turbulence intensity, defined as the ratio between the root-mean-square
value of the velocity (urms) and the free-stream velocity (U∞), i.e. Tu = urms/U∞, is a
simple measure to quantify the level of FST. As Tu is increased, there is a gradual shift
from the T–S to the FST transition scenario. Arnal & Juillen (1978) noted that, for Tu �
1 %, the FST transition scenario with unsteady streamwise streaks dominates the transition
process over the T–S wave scenario.

The early experimental studies on FST induced transition originates from before 1940
(see, e.g., Hall & Hislop 1938; Taylor 1939; Hislop 1940), but were mostly carried
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out using Pitot tubes inside the boundary layer and, hence, mostly mean velocity
profiles and transition locations were reported. The first significant time-resolved velocity
measurements inside the boundary layer subject to FST were reported by Philip S.
Klebanoff, and is often considered to be the pioneering work bringing the very first
physical insight of this transition scenario. Klebanoff (1971) is a key reference among
the FST induced boundary-layer transition works that have been produced ever since.
However, the scarce content from the 124 word abstract is often expanded in references
to include more information than what it really contains. Very few publications came
out from Klebanoff’s observations and it was instead James M. Kendall, who made
Klebanoff’s observations available to the transition community, see Kendall (1998).

Klebanoff (1971) reported the presence of three-dimensional large fluctuations of low
frequency inside the boundary layer involving fluctuations of the laminar boundary-layer
thickness in space and time. This thickening/thinning oscillation of the boundary layer was
denoted the breathing mode by Klebanoff (cf. Kendall 1985), a description which goes
along with the two-dimensional theoretical work by Taylor (1939), where a supposedly
thickening/thinning of the boundary-layer edge gives rise to a disturbance velocity profile
which predicts well the shape measured experimentally. Kendall (1985) measured the
spanwise scale of the streamwise streaks and later called them the K-mode after Klebanoff
(Kendall 1991), a name which has only partly been accepted since it is not a mode in a strict
sense considering that the disturbance growth is described by non-modal theory. Instead,
this type of unsteady streamwise structures is often simply called streamwise streaks.

In the review article by Kendall (1998) the experimental results by Klebanoff, both
spanwise boundary-layer scales and disturbance growth in the streamwise direction,
were reported. Arnal & Juillen (1978) had long before this review article reported
boundary-layer disturbance growth in the streamwise direction of several per cent of the
free-stream velocity before the breakdown to turbulence occurred. Their measurements
showed that the maximum disturbance inside the boundary layer was around the middle
of the boundary layer, i.e. much further away from the wall (more than 2.5 times) with
respect to the inner peak of the wall-normal T–S wave disturbance profile. The energy
spectrum revealed a significant low-frequency energy content inside the boundary layer,
which was absent in the turbulent free stream. Klebanoff’s measurements, reported in
Kendall (1998), show that the maximum urms inside the boundary layer grows as the
square root of the downstream distance. Westin et al. (1994) reported that urms has a linear
increase with the Reynolds number based on the boundary-layer scale and free-stream
velocity. They also reported disturbance levels up to 10 % of the free-stream velocity
inside the boundary layer with only a minor modulation of the normal mean velocity
profile prior to turbulence breakdown. Furthermore, it was emphasized that the growth
in the streamwise direction has different rates depending on the free-stream turbulence
generating grid. Matsubara & Alfredsson (2001) give insightful information about the
flow structures, i.e. the streamwise streaks. Their data indicate that the spanwise size of
the structures adapts to the boundary-layer thickness giving an aspect ratio of one far
downstream of the leading edge. The aspect ratio corresponding to the height of the streak
in the wall-normal direction to its spanwise extent. They also showed that the streamwise
extent of the structures is proportional to the boundary-layer displacement thickness. In
Fransson, Matsubara & Alfredsson (2005) several turbulence-generating grids were used
and a wide range of FST intensities and length scales were studied. The data suggest
that there is an initial region near the leading edge where the receptivity process takes
place, which is indicated by a slower disturbance growth than further downstream. After
the initial region, the disturbance energy increases in proportion to both the FST energy
and the flat plate Reynolds number, and the transitional Reynolds number is inversely
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proportional to the FST energy (in agreement with Andersson, Berggren & Henningson
(1999)). They also conclude that, for Tu > 2.5 %, the relative length of the transitional
zone increases with increasing Tu.

The algebraic disturbance growth observed in experiments was confirmed theoretically
by Andersson et al. (1999), Luchini (2000) by considering the spatial disturbance growth
from an initial perturbation calculated using optimal perturbation theory (Butler &
Farrell 1992). Theoretically, the optimal perturbation in a shear layer that maximises
the disturbance energy at some downstream location takes the form of counter-rotating
vortices in the cross-sectional plane (Schmid & Henningson 2001). The energy in the
optimal perturbation is concentrated to the cross-flow components, which are fed to
the streamwise component as they move downstream leading to passively convected
high and low velocity streaks. These streamwise streaks die out in the downstream
direction unless they are nonlinearly triggered by some secondary instability. Smoke
flow visualizations by Matsubara & Alfredsson show the existence of both sinusoidal
and varicose secondary instabilities acting on unsteady streamwise streaks originating
from FST (partly published in Matsubara & Alfredsson (2001)). Andersson et al. (2001)
calculated streamwise streaks from the optimal initial condition (Andersson et al. 1999)
using direct numerical simulations (DNS). They performed inviscid secondary instability
calculations using Floquet theory on the obtained streaky base flow and showed that the
sinuous mode sets in on the low-speed region at a lower streak amplitude than the varicose
mode (26 % and 37 %, respectively). In a later paper, the flow structures associated with the
sinuous breakdown were reported (Brandt & Henningson 2002). However, even though the
non-modal perturbation theory predicts the generation of streamwise streaks and energy
growth, the optimal perturbation as such has never been observed in an experiment. The
streak spacing does, however, seem to approach the optimal spanwise wavenumber as Tu
is increased (cf. Fransson & Corbett 2003).

In the present brief review we have to mention the work by Jacobs & Durbin (2001), who
also performed a DNS of FST induced transition but presents an alternative breakdown
process. They found boundary-layer streaks, generated nonlinearly by the penetration of
FST, with a spacing that was in agreement with the results by Andersson et al. (1999),
Luchini (2000). However, they concluded that the streaks were not undergoing a secondary
instability since they did not find any evidence of streak instability. The onset of transition
was instead argued to originate from the direct penetration of free-stream disturbances
and that the low-speed streak simply provides a receptivity path between the FST and the
boundary layer. Similar conclusions on FST induced transition has lately been published
by Wu et al. (2017).

Other important works in this context are Nagarajan, Lele & Ferziger (2007) and
Ovchinnikov, Choudhari & Piomelli (2008), who both report on a different transition
scenario if the turbulence intensity or the length scale exceeds a certain threshold. This
scenario is dominated by the growth and breakdown of wavepacket-like disturbances close
to the leading edge. Streamwise streaks appear downstream of this region and hence
are argued not to be responsible for the transition onset. From here their results differ,
the primary disturbance is, for instance, reported to originate from streamwise vorticity
through vortex stretching around the leading edge by Nagarajan et al. (2007), while it is
reported to originate from spanwise vorticity by Ovchinnikov et al. (2008).

1.1. Effect of FST integral length scale on the transition
The shear sheltering concept described by Hunt & Durbin (1999) explains the ability
of low-frequency free-stream disturbances to penetrate the boundary layer, while
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FIGURE 1. Transitional Reynolds number versus turbulence intensity for three different
turbulence generating grids with increasing mesh width (M), from M = 0.5 to 1.5 in.
Experimental data by Hislop (1940).

high-frequency disturbances do not. It has been shown using DNS (Zaki & Durbin 2005)
that transition to turbulence via streamwise streaks and secondary instabilities can be
simulated by only including one high-frequency and one low-frequency mode in the
free stream. The latter penetrating the boundary layer, giving rise to streamwise streaks
and the former triggering the secondary instability on the streaks leading to breakdown
to turbulence. This suggests that the low-frequency disturbances associated with large
spatial scales are important for the boundary-layer streaks, being the primary disturbance,
and the eventual breakdown to turbulence (see also Wang, Mao & Zaki 2019). A similar
conclusion was reached in the analysis by Leib, Wundrow & Goldstein (1999), where the
boundary-region equations were solved. They concluded that the streamwise streaks were
primarily generated by low-frequency transverse velocity fluctuations and that nonlinear
effects played an important role (see also Ricco & Wu (2007), who included the effect of
compressibility in their analysis).

Already in the doctoral thesis by Hislop (1940) an effect of different FST integral length
scales on the laminar-to-turbulent transition location can be pointed out. The transitional
Reynolds number for three different turbulence generating grids are tabulated in the thesis
of Hislop, and this data is plotted here in a log-log plot in figure 1. Generally, the integral
length scale (Λx ) produced by a turbulence generating grid scales with the mesh width
of the grid, i.e. the larger the mesh width the larger the turbulence integral length scale
(see, e.g., Kurian & Fransson 2009). From figure 1, using the data from 1940, we may
conclude that Hislop was the first one to report that an increase in Λx moves the transition
location farther downstream. The trend is modest, but clearly notable, in particular with
the added straight lines in the log-log plot. Note that, the added lines are not curve fits
to the data, they are simply added to illustrate the movement of the transition location
with the mesh width. More recent investigations have also shown that the level of Tu
is not the only dependent variable. An increase in Λx has shown, both in experiments
and numerical simulations (Jonáš, Mazur & Uruba 2000; Brandt, Schlatter & Henningson
2004; Ovchinnikov, Piomelli & Choudhari 2004), to advance the transition location. These
results contradict the reported results by Hislop since the opposite effect with respect to
the movement of the transition location with increasing Λx is observed.
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1.2. Spanwise length scale of the boundary-layer streaks
The mean velocity gradients play a direct role in the production of disturbance kinetic
energy, but also for the onset of secondary instabilities. Steady streaks act stabilizing on
modal disturbances and can even be used to obtain transition delay; see, e.g., Fransson
et al. (2006), Shahinfar et al. (2012), Downs & Fransson (2014), Siconolfi, Camarri &
Fransson (2015), Sattarzadeh & Fransson (2016) giving five examples of different ways to
set up steady streaks for successful transition delay. Depending on the time scale, even
unsteady streaks and their local velocity gradients are likely to influence the stability.
Unsteady streaks generated by FST are known to damp the growth of T–S waves (see,
e.g., Westin et al. 1994; Liu, Zaki & Durbin 2008) even though an advancement of the
transition location has so far only been reported. Apart from T–S waves, the spanwise
spreading rate of turbulent spots in an unsteady streaky base flow is also known to
be damped (Fransson 2010). Both numerically and experimentally it is known that
secondary instabilities are associated with mean velocity gradients, with the spanwise and
wall-normal gradient triggering the sinuous and varicose type of secondary instability,
respectively (see Andersson et al. (2001), and references therein). Hence, the spanwise
scale of the streaks induced by FST is likely to be important for the breakdown to
turbulence, since, for a given spanwise scale, the maximum spanwise velocity gradient
increases in proportion with urms in the downstream direction, i.e. with the square root
of the downstream distance. If in turn, the spanwise scale depends on the FST condition,
the maximum spanwise velocity gradient will change at a constant downstream location
and affect the streak instability if the FST condition changes. On the one hand, the
spanwise scale of the streaks is often said to adapt to the boundary-layer thickness, giving
boundary-layer structures of an aspect ratio of one, after some initial mismatch close to
the leading edge (cf. Matsubara & Alfredsson 2001). On the other hand, in Brandt et al.
(2004) the authors state that the spanwise streak spacing is only slightly dependent on the
FST characteristic. However, in the study by Fransson & Alfredsson (2003) it was shown
that by reducing the boundary-layer thickness by a factor of two by means of creating
an asymptotic suction boundary layer, the spanwise scale remained the same, giving
structures an aspect ratio of two. Besides, it was shown that the spanwise boundary-layer
scale of the streaks essentially stays constant for a given FST condition and that the scale
is set already in the leading-edge receptivity process. Furthermore, they showed that the
spanwise scale of the streaks changed by 60 % between the two grids they used (grids
B and E), i.e. that the spanwise boundary-layer scale depends on the FST condition.
Referring to these experiments and the experiments by Roach & Brierley (1992) along
with their DNS results, Ovchinnikov et al. (2008) suggested that there is no universal value
for streak separation in the perturbed boundary layer. Instead, it is rather determined by the
FST length scale. A possible reason why many investigators conclude that the spanwise
length scale of the streaks is not varying or only slightly varying could be that the spanwise
length scale is determined by the FST condition, i.e. both the turbulence intensity and a
characteristic length scale in the FST.

The present paper is outlined as follows. In § 2 we present the experimental
set-up, measurement technique and base flow. In addition, the new active and old
passive turbulence generating grids are characterized and presented, and the transition
determination method is outlined. In § 3 we present the experimental results on
boundary-layer transition and the streamwise streaks. A new semi-empirical transition
prediction model is derived with the usage of a scale-matching hypothesis in § 4. In § 5 we
give both quantitative and qualitative comparisons between the experimental data and the
new model. In § 6 we conclude the paper.
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2. Experimental set-up and procedures

Fransson et al. (2005) used several turbulence-generating grids that gave a wide range
of both Tu and Λx . Besides, their experiments were carried out at different free-stream
velocities. The advantage of that reported data is that all data were collected in the same
experimental set-up and campaign and that the same transition criterion was applied to the
data. Several important conclusions were made, but the influence of Λx on the transition
location remained unclear. The variation discussed in the present § 1.1 was hidden in all
other parameters being varied at the same time in that study. One suspected parameter
of importance, according to the present authors, is the wall-normal boundary-layer scale,
which is inversely proportional to the square root of U∞.

The data presented here has been reported in the licentiate thesis, Shahinfar (2011),
and presented at the conferences Shahinfar & Fransson (2011) and Fransson (2017).
Various passive and active turbulence generating grids were used here to create
different FST conditions. In total 42 unique FST conditions were created and thorough
boundary-layer measurements were performed throughout the transitional region. Unlike
many other extensive FST induced transition measurements (e.g., Fransson et al. 2005),
the free-stream velocity here was kept constant for all cases (U∞ = 6 m s−1), implying
that the boundary-layer scale is locked up to transition onset.

2.1. Experimental facility and measurement technique
The measurement campaign was performed in the minimum turbulence level (MTL)
wind tunnel located at the Royal Institute of Technology (KTH) in Stockholm. Minimum
turbulence level is a closed-circuit wind tunnel with a 7 m test section and 0.8 m × 1.2 m
(height × width) cross-sectional area. An axial fan (DC 85 kW) can produce airflow in the
empty test section with a speed up to 69 m s−1. The cooling system of the wind tunnel is
capable of maintaining a constant temperature in the test section within ±0.05 ◦C. At the
nominal speed of 25 m s−1, the streamwise velocity fluctuation level is less than 0.025 %
(Lindgren & Johansson 2002). The experiments were carried out over a 5 m flat plate. To
minimize the effect of the leading edge an asymmetric leading edge was used (same as
used in Westin et al. (1994), cf. their figure 2). With the installation of a trailing flap along
with the adjustable ceiling of the test section, a zero-pressure gradient boundary-layer flow
was obtained with a relatively short negative pressure gradient or accelerating flow around
the leading-edge region.

Hot-wire anemometry was employed throughout the measurement campaign to measure
velocity signals both in the free stream, at the leading edge and along the plate to
characterize the inflow condition and the continuous forcing by the decaying turbulence,
and inside the boundary layer. All probes were manufactured in-house of Wollaston wire
composed of a platinum core. All wires were fully etched before soldered to the hot-wire
prongs. Single-wire sensors, used for boundary-layer measurements, had a wire diameter
and length of 2.54 μm and 0.7 mm, respectively. All boundary-layer measurements were
performed with two single-wire probes located at the same distance above the wall, one
being fixed at a spanwise location while the other one being traversable in the spanwise
direction to determine the spanwise scale of the streaky structures through two-point
correlation measurements. A dual-wire sensor in the shape of an X was used to measure
the cross-flow velocity-fluctuation components in the free stream and had a wire diameter
and length of 5.08 μm and 1.4 mm, respectively. All probes were calibrated against the
dynamic pressure using a Prandtl tube, connected to a differential manometer (Furness
FC0510), in the free stream. The manometer used external probes for registering the
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FIGURE 2. Base flow over the flat plate boundary layer. (a) Wall-normal mean velocity profiles
at different x-locations. (b) Streamwise skin-friction (◦) and free-stream velocity (�) evolution.
(c) Integral boundary-layer parameters: shape factor H12 (Δ), displacement thickness δ1 (♦) and
momentum thickness δ2 (∇). Solid and dashed lines correspond to the Blasius boundary-layer
solution.

temperature and the total pressure inside the test section for accurate determination of
the density. For the single-wire probes, the modified King’s law (Johansson & Alfredsson
1982) was used as a calibration function, which has an extra term compensating for natural
heat convection from the wire (important at low velocities). A typical calibration consisted
of 15 calibration points in the range 0–7 m s−1. The X-probe was calibrated at different
angles to the flow direction between −30◦ and +30◦ with a step of 5◦ and different speeds
in the range 5 to 7 m s−1. A two-dimensional fifth-order polynomial was fitted to the data
and used as a calibration function.

The anemometer system was a DANTEC Dynamics StreamLine 90N10 Frame
anemometer at CTA mode and the data acquisition was done with a National Instruments
converter board (NI PCI-6259, 16-Bit) at a sampling frequency of 10 kHz.

2.2. Zero-pressure gradient boundary-layer base flow
Here we study the effect of FST on the laminar-turbulent transition in a boundary layer
developing under a close to zero-pressure gradient flow. In figure 2 the adjusted base flow
over the flat plate is compared with the Blasius boundary-layer solution (solid and dashed
lines). In the comparison, a virtual origin has been introduced 25 mm downstream of the
leading-edge nose, which compensates for the favourable leading-edge pressure gradient
region.

2.3. Free-stream turbulence conditions
Free-stream turbulence can be characterized by its intensity (Tu) and length scales, such
as the integral (Λ), Taylor (λx ) and Kolmogrorov length scales. Each combination of these
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parameters constitutes a unique FST condition, which will be used from here on when
referring to variations of these parameters. The Tu and the length scales are independent
of U∞, but the transition location is a function of all parameters. Non-dimensional
parameters will be defined later using the integral length scale, U∞ and urms, namely ReFST
and ReΛ, which together with Tu can be used to characterize the FST condition. These
non-dimensional parameters are related to each other leaving one of the three (ReFST,
ReΛ, Tu) redundant (cf. (3.3)). The integral length scale is the most energetic, the Taylor
length scale is the smallest energetic length scale and the Kolmogorov length scale
is the smallest viscous scale in a turbulent flow. Both the longitudinal and transverse
integral length scales, respectively denoted by Λx and Λz, are here determined through
direct integration of their corresponding correlation functions f (auto-correlation) and g
(cross-correlation). All scales were determined using the same techniques as described
in Kurian & Fransson (2009), that is, all time scales are converted to spatial scales using
Taylor’s hypothesis of frozen turbulence. According to the analysis on transition prediction
in the present paper, it is shown that the central quantities to characterize the FST at the
leading edge are Tu and Λx and are therefore properly defined below:

Λx = U∞

∫ ∞

0
f (τ ) dτ, (2.1)

where f (τ ) is the autocorrelation function of the velocity-time signal at the position of the
leading edge of the flat plate, and

Tu = urms

U∞
. (2.2)

The free-stream turbulence was generated using turbulence generating grids. Different
leading-edge FST characteristics can be obtained by changing the relative distance
between the grid and the leading edge (Xgrid) of a particular grid or by changing the
solidity of the grid, i.e. the ratio between the solid to the total area. Placing the grid further
upstream from the leading edge gives a lower turbulence intensity and a longer integral
length scale at the leading edge, and vice versa. The turbulence intensity is proportional
to the pressure drop over the grid, which is given by its solidity (σ ). In general, the higher
the solidity the higher the turbulence intensity at the leading edge for a given Xgrid. The
FST length scales are functions of the mesh width (M) and bar diameter (d) of the grid.

Another way to increase the pressure drop and in turn the Tu is to inject a secondary
counter-flow, relative to the free stream, using upstream pointing air jets from the grid.
This idea was first presented by Gad-El-Hak & Corrsin (1974) and has since been applied
successfully in other experiments (Fransson & Alfredsson 2003; Yoshioka, Fransson &
Alfredsson 2004; Fransson, Matsubara & Alfredsson 2005). To broaden the range of FST
characteristics in the present experiments, six new active turbulence generating grids,
similar to the one described and used in Fransson et al. (2005), were manufactured. The
new grids were manufactured using copper tubes as grid bars, and the secondary airflow
was obtained by pressurized air carried by eight hoses to each grid. This secondary air
is injected upstream through small orifices of diameter 1.5 mm. A regulating valve was
employed to adjust the pressure inside the grids leading to controlled injection speeds
in the range 0–40 m s−1. In the experiments three injection rates were typically applied,
namely, zero- (0), intermediate- (Mid) and full (Max) injection rate.

In total eight different grids were used. In table 1 the grids G1–G6 are the new active
grids, while grids G7 and G8 are regular passive grids used in previous experiments.
Four of the grids (G1–G3 and G8) have the same solidity, but different bar diameters and
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d (mm) M (mm) σ Bar geometry Type Mesh Symbol

G1 8 40 0.360 Circle Active Dual-plane ◦
G2 10 50 0.360 Circle Active Dual-plane �
G3 12 60 0.360 Circle Active Dual-plane �
G4 12 50 0.422 Circle Active Dual-plane Δ

G5 8 50 0.294 Circle Active Dual-plane ∇
G6 12 70 0.313 Circle Active Dual-plane �
G7 3.5 23.5 0.276 Circle Passive Interwowen �
G8 10 50 0.360 Square Passive Mono-plane �

TABLE 1. Geometrical data of all grids. Here d, M and σ are the bar diameter, the mesh width
and the solidity, respectively. The symbols are only used for figure 3.

mesh widths, and four have the same mesh width (G2, G4, G5, and G8), but different bar
diameters and hence different solidities. Grid G6 is designed to generate low Tu, but with
larger length scales with respect to G1–G4. Note that, G5 has almost the same solidity as
G6 but with the aim to generate smaller scales.

All the generated FST conditions, numbered by its test case (C1–C42), are summarized
in table 2. The extensive database contains FST conditions with ranges of Tu: 1.81–
6.19 (%), Λx : 16.05–25.61 (mm) and λx : 11.97–15.02 (mm). The Kolmogorov length
scale is in the range 1.2–3.4 mm at the leading edge but is not shown in the table since
it is not believed to be an important scale for the boundary-layer transition process.
To assess the spanwise length scales of the unsteady streaks inside the boundary layer,
two-point correlation measurements need to be carried out and hence two hot-wire probes
are needed. Indexes 1 and 2 in table 2 correspond to the fixed and traversable hot-wire
probes, respectively. The root-mean-square value of the mean velocity difference can be
calculated, giving a reading difference between the probes of ΔU ≤ ±0.029 m s−1, i.e.
with an absolute difference of less than 1 % between the two probes. This difference leads
to an absolute difference in the measured turbulence intensities of about 0.2 percentage
units. In table 3 more non-dimensional leading-edge FST parameters are given, among
them the turbulence anisotropy being quantified in terms of fluctuation ratios at the leading
edge. As for most grid generated turbulence, the streamwise component has a higher
fluctuation level with respect to the cross-flow components, which in turn are about the
same. Grid G4, with the highest solidity, is the grid that generates the lowest level of
anisotropy and case C24 is the closest to isotropic free-stream turbulence.

2.4. Method of transition location determination
The transition location is determined as the position where the intermittency factor
(γ ) of the velocity signal is 0.5, which is halfway through the transition region. An
intermittency factor of 0 and 1 correspond to a completely laminar and fully turbulent
flow. The intermittency factor was calculated using the velocity-time signal acquired at the
wall-normal location corresponding to the disturbance velocity peak inside the boundary
layer (i.e. around y ≈ 1.3δ1), using the method presented in Fransson et al. (2005). In
figure 4, γ -distributions of grid G1 are shown for both increasing injection rate (a) and
decreasing Xgrid (b). In both cases, Tu is increasing while Λx is slightly decreasing. Dashed
and dotted lines indicate the values of γ = (0.1, 0.5, 0.9) and their intersection values with
the γ -distribution where γ = 0.5, respectively. The latter being indicated with big square
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Case Grid Xgrid Injection U∞1 U∞2 Tu1 Tu2 Λx1 Λx2 Λz λx1 λx2
(m) (m s−1) (m s−1) (%) (%) (mm) (mm) (mm) (mm) (mm)

C1 G1 0.80 0 5.93 5.93 3.14 3.36 17.79 17.42 8.59 12.12 12.07
C2 G1 0.80 Mid 5.96 5.86 3.51 3.57 16.58 16.05 9.17 12.48 12.02
C3 G1 0.80 Max 5.88 5.81 4.29 4.23 20.21 19.05 10.17 13.49 12.74
C4 G1 1.10 0 5.91 6.00 2.45 2.66 18.27 18.39 9.66 12.54 12.81
C5 G1 1.10 Max 5.90 6.01 3.36 3.39 20.36 20.03 10.85 13.40 13.21
C6 G1 1.40 0 5.91 5.89 2.12 2.22 19.60 19.55 11.15 13.23 13.20
C7 G1 1.40 Mid 5.89 6.00 2.51 2.56 19.72 20.22 11.17 13.35 13.37
C8 G1 1.40 Max 5.93 6.02 2.87 2.91 21.95 21.91 12.29 13.93 13.77

C9 G2 1.00 0 5.91 5.97 3.15 3.34 19.04 19.44 9.65 12.58 12.68
C10 G2 1.00 Mid 5.92 5.87 3.77 3.93 20.26 19.70 10.04 13.38 13.16
C11 G2 1.00 Max 5.94 5.82 4.26 4.42 22.62 21.70 11.31 14.11 13.73
C12 G2 1.20 0 5.89 5.89 2.70 2.84 21.20 20.82 10.45 13.18 13.03
C13 G2 1.20 Max 5.94 5.85 3.79 4.03 23.39 23.08 12.18 14.48 14.33
C14 G2 1.40 0 5.92 5.92 2.47 2.59 21.24 21.21 10.70 13.46 13.32
C15 G2 1.40 Mid 5.98 5.90 2.83 2.96 21.73 20.93 11.19 14.25 13.90
C16 G2 1.40 Max 5.96 5.87 3.44 3.64 24.67 24.46 13.48 15.02 14.89

C17 G3 1.30 0 5.89 5.89 2.98 3.11 22.71 21.82 12.02 13.58 13.45
C18 G3 1.30 Mid 5.95 5.90 3.11 3.22 21.84 21.06 11.68 13.73 13.35

C19 G3 1.30 Max 5.93 5.87 3.25 3.35 22.79 22.03 12.12 13.90 13.55
C20 G4 1.00 0 5.92 5.93 3.36 3.61 20.02 19.67 11.05 13.07 13.17
C21 G4 1.00 Mid 5.94 5.94 3.65 3.84 21.43 20.01 10.59 13.42 13.16
C22 G4 1.00 Max 5.90 5.96 3.83 4.02 22.14 20.95 11.31 13.56 13.40
C23 G4 1.20 0 5.89 5.89 3.09 3.42 21.00 20.45 11.09 13.30 13.27
C24 G4 1.20 Max 5.89 5.91 3.39 3.72 21.81 20.97 10.47 13.51 13.43
C25 G4 1.40 0 5.97 5.90 2.81 3.04 22.61 22.08 12.91 14.15 14.04
C26 G4 1.40 Mid 5.91 5.85 2.96 3.14 23.33 22.26 12.84 14.29 13.95
C27 G4 1.40 Max 5.92 5.85 3.09 3.26 24.15 22.51 12.25 14.48 14.03

C28 G5 1.00 0 5.90 5.88 2.93 3.28 18.49 19.45 7.38 12.24 12.32
C29 G5 1.00 Mid 5.89 5.95 3.22 3.39 16.29 16.29 7.57 12.07 11.97
C30 G5 1.00 Max 5.92 5.93 3.38 3.59 17.69 17.75 8.96 12.51 12.36
C31 G5 1.20 0 5.90 5.90 2.40 2.67 20.70 19.99 8.82 12.82 12.71
C32 G5 1.20 Max 5.88 5.90 2.82 3.03 19.30 18.95 9.93 12.94 12.80
C33 G5 1.40 0 5.95 5.91 2.20 2.51 22.01 22.75 10.93 13.30 13.39
C34 G5 1.40 Mid 5.90 5.91 2.44 2.62 20.00 19.63 10.50 13.24 13.01
C35 G5 1.40 Max 5.91 5.91 2.50 2.68 20.60 20.10 10.95 13.40 13.10

C36 G6 1.40 0 5.92 5.94 2.88 3.11 22.27 22.82 10.88 13.53 13.51
C37 G6 1.40 Mid 5.93 5.99 3.10 3.34 20.81 20.54 10.17 13.35 13.25

C38 G6 1.40 Max 5.88 5.93 3.25 3.46 21.90 21.48 10.71 13.64 13.41

C39 G7 1.71 0 5.93 5.96 1.84 1.81 18.46 18.86 8.60 13.43 13.12

C40 G8 1.00 0 5.92 5.89 5.87 6.19 24.23 22.85 11.98 14.60 14.16
C41 G8 1.20 0 5.89 5.91 5.33 5.51 25.36 23.89 12.58 14.87 14.47
C42 G8 1.40 0 5.88 5.90 4.68 4.83 25.61 24.32 12.69 14.94 14.57

TABLE 2. Free-stream conditions at the leading edge for cases C1–C42. Indexes 1 and 2
represent hot-wire probes 1 and 2, respectively.
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Case
vrms

urms

wrms

urms
ReFST1 ReFST2 ReΛ1 ReΛ2 Retr1 Retr2 xtr1 xtr2 λ

γ=0.5
z λ

γ=0.1
z

×10−5 ×10−5 (mm) (mm) (mm) (mm)

C1 0.81 0.89 221 231 7032 6882 1.9370 1.9029 490 482 12.76 12.02
C2 0.81 0.86 231 224 6586 6270 1.4801 1.4360 373 368 — —
C3 0.79 0.86 340 312 7921 7378 1.1591 1.1474 296 296 11.62 11.12
C4 0.82 0.89 176 195 7198 7356 2.7146 2.7003 689 675 — —
C5 0.80 0.86 269 272 8008 8024 1.6533 1.6688 420 417 — —
C6 0.83 0.91 164 170 7722 7672 3.8984 3.8218 989 974 14.48 14.70
C7 0.82 0.88 195 207 7743 8091 2.6999 2.7112 688 678 — —
C8 0.81 0.86 249 256 8689 8790 2.1215 2.1543 536 537 13.46 12.98

C9 0.92 0.88 236 259 7498 7739 1.8261 1.8205 464 457 13.08 12.52
C10 0.88 0.92 301 303 7993 7709 1.3197 1.3138 335 336 — —
C11 0.86 0.90 382 372 8960 8423 1.3076 1.2845 330 331 12.06 12.28
C12 0.92 0.90 225 232 8328 8177 2.2708 2.2485 578 573 — —
C13 0.86 0.90 351 363 9261 9003 1.6232 1.6101 410 413 — —
C14 0.92 0.90 207 217 8386 8377 2.8512 2.8303 722 717 15.16 14.44
C15 0.91 0.92 245 244 8668 8235 2.1539 2.1254 540 540 — —
C16 0.87 0.93 337 348 9797 9564 1.7173 1.6943 432 433 13.74 13.18

C17 0.92 0.95 266 267 8921 8567 2.0411 2.0444 520 521 14.14 13.24
C18 0.93 0.93 270 267 8668 8286 1.7088 1.7109 431 435 — —
C19 0.92 0.94 292 289 9012 8624 1.5965 1.5882 404 406 13.60 12.78

C20 0.89 0.95 266 281 7899 7778 1.5888 1.5809 403 400 13.12 12.26
C21 0.92 0.96 310 304 8484 7928 1.3990 1.4110 353 356 — —
C22 0.93 0.96 334 335 8709 8317 1.3399 1.3649 341 344 12.92 12.24
C23 0.91 0.96 255 274 8249 8033 1.8634 1.8483 474 471 — —
C24 0.95 0.97 290 308 8559 8269 1.6759 1.6726 427 424 — —
C25 0.92 0.96 253 264 9000 8684 2.3819 2.3550 598 599 13.38 13.46
C26 0.95 0.96 272 272 9200 8675 1.8323 1.8224 465 468 — —
C27 0.95 0.96 295 286 9531 8778 2.0748 2.0580 526 528 13.76 13.6

C28 0.87 0.88 213 250 7277 7626 1.9027 1.8549 484 473 12.94 11.96
C29 0.89 0.85 206 219 6399 6458 1.4768 1.4805 376 373 — —
C30 0.87 0.86 236 252 6985 7024 1.3657 1.364 346 345 11.90 11.42
C31 0.88 0.88 195 210 8140 7865 2.2753 2.2396 579 569 — —
C32 0.88 0.87 213 226 7568 7456 1.6538 1.6401 422 417 — —
C33 0.89 0.89 192 225 8722 8961 2.4455 2.3892 617 607 12.70 12.92
C34 0.91 0.88 192 203 7871 7736 1.8147 1.8337 461 465 — —
C35 0.90 0.88 203 212 8123 7914 1.7230 1.7216 437 437 12.42 12.64

C36 0.91 0.91 254 281 8796 9036 2.0691 2.068 524 522 13.32 12.86
C37 0.89 0.86 255 274 8224 8199 1.5513 1.5509 393 388 — —
C38 0.90 0.88 279 294 8579 8494 1.4796 1.4955 378 378 12.40 11.64

C39 0.86 0.83 135 136 7296 7501 5.5424 5.5531 1403 1397 15.3 16.38

C40 0.85 0.82 561 555 9556 8969 0.7126 0.7134 181 182 11.76 11.12
C41 0.86 0.85 531 518 9960 9408 0.8880 0.8853 226 225 — —
C42 0.86 0.85 470 462 10 031 9563 1.0464 1.0404 267 265 11.68 11.74

TABLE 3. Boundary-layer transition location (xtr) and averaged spanwise wavelength of the
unsteady streamwise streaks (λz) for cases C1–C42. Here vrms/urms and wrms/urms are
anisotropy measures and ReFST and ReΛ are free stream Reynolds numbers, all corresponding to
leading-edge data. Indexes 1 and 2 represent hot-wire probes 1 and 2, respectively.
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FIGURE 3. Free-stream turbulence intensity decay (a), and longitudinal integral length scale (b)
in the streamwise direction for cases C1–C42 in table 2. Here Xgrid corresponds to the distance
between the grid and the leading edge for each case, with the origin at the grid location. For
symbol definitions, see table 1. The different streamwise evolution curves have been generated
by changing Xgrid and the injection rate for the active grids.
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FIGURE 4. Streamwise intermittency factor distribution of grid G1. (a) Effect of increasing the
injection rate: (0, Mid, Max) as increased darkness of the symbols, which correspond to (C6,
C7, C8), respectively. (b) Effect of reducing Xgrid: (140, 110, 80) mm as increased darkness of
the symbols, which correspond to (C6, C4, C1), respectively. See running text for lines and other
symbols.
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symbols and give locations of transition xtr ≡ xγ=0.5, from which the transitional Reynolds
number (Retr) is calculated according to

Retr = U∞xtr

ν
, (2.3)

where U∞ is measured at the leading edge. From these distributions, the transition region
is defined for each case as Δxtr = xγ=0.9 − xγ=0.1. For improved accuracy of all x-location
determinations (xγ=0.1, xγ=0.5, xγ=0.9), a sigmoid curve was first fitted to the data in the
least-square fit sense and then used as an analytical function to determine the x-locations.
The curve fits are shown with solid lines in figure 4 and the (+)-symbols in (b) are simply
added to differentiate the symbols between injection and Xgrid changes.

3. Boundary-layer streaks and laminar-turbulent transition

A well-cited result by Matsubara & Alfredsson (2001) is that the averaged spanwise
scale of the streaks asymptotes, with the downstream distance, to the value λz/2 ≈ 3δ1.
Even if the result is right, it is unfortunate, since it often leads to the conclusion that
no matter what the FST condition is, the same spanwise scale is eventually obtained.
This is a puzzling result if one believes that the streaks are important for the transition
and breakdown to the turbulence process. In this case, the FST characteristics should
have an influence on the spanwise scale, since both Tu and Λx have an influence on the
transition location. In this section new boundary-layer transition results are presented with
a particular focus on a twofold effect of Λx on the transition location (§ 3.1). It is also
shown that the spanwise scale of the streaks is constant throughout the transition process
and that the scale correlates with the FST condition (§ 3.2).

3.1. Transition region and location
The intermittency distribution derived by Johnson & Fashifar (1994) has previously shown
to agree well with experimental boundary-layer FST data (see, e.g., Fransson et al. 2005).
Their γ -function, given as

γ (ξ) = 1 − exp[−A1(ξ + A2)
m], (3.1)

with m = 3 from the derivation can be seen as a universal distribution since the
experimental data closely falls on this curve independent of Tu and Λx . Here, the
dimensionless streamwise coordinate ξ is defined as

ξ = x − xtr

Δxtr
, (3.2)

where ‘tr’, in turn, was defined in § 2.4. Note also, that (3.1) is only valid in the range
−A2 ≤ ξ < ∞. For ξ < −A2, the intermittency is per definition equal to zero since
the flow is laminar upstream of the transition zone. In figure 5 all 84 intermittency
distributions (from hotwires 1 and 2) are plotted versus ξ and they all fall close to the
dashed line corresponding to the universal γ -function, where the coefficients in (3.1) are
the ones determined in the least square sense to the data in Fransson et al. (2005), i.e.
(A1,A2) = (0.60, 1.05). The inset of figure 5 shows the same data in the dimensional
streamwise coordinate x . This strengthens the universality of the distribution and serves
as a consistency check between different data sets taken during different campaigns in
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FIGURE 5. All 84 intermittency distributions from hot-wires 1 and 2 are shown in the scaled
streamwise coordinate ξ . Dashed and solid lines correspond to the Johnson & Fashifar (1994)
distribution and the best sigmoid curve fit to the data, respectively. The inset shows all
intermittency distributions unscaled, filled and open symbols correspond to hot-wire probes 1
and 2, respectively.

different experimental set-ups. However, it is clear from the figure that the experimental
distributions rises and flattens somewhat sharper than (3.1) (which also was the case in
Fransson et al. 2005), suggesting that the exponent m is actually greater than 3 as derived
by Johnson & Fashifar (1994). Performing a straight forward unphysical least-square
fit of (3.1) to the present data, by the inclusion of the exponent, gives (A1,A2, m) =
(0.023, 1.87, 5.47), which corresponds to the solid line in figure 5.

In figure 6 the experimental intermittency distributions versus ξ are plotted for all
different grids at 20 different spanwise locations, additionally confirming the universality
of (3.1). To make the data accessible all boundary-layer transition results are collected for
all FST conditions and summarized in table 3.

The classical way to plot Retr is versus Tu, which is known to have a strong influence
on the transition location. However, as shown by Jonáš et al. (2000), Retr can change by
a factor of 20 by changing the integral length scale of the FST while keeping Tu constant
at 3 %. Their result suggests that the integral length scale is of equal importance as Tu
when it comes to FST induced transition and, hence, the primary variable should be an
FST parameter including both the velocity disturbance level and the integral length scale
at the leading edge. Here, we will show that this parameter is an FST Reynolds number
defined as

ReFST = urmsΛx

ν
= Tu · ReΛ, (3.3)

where

ReΛ = U∞Λx

ν
. (3.4)

In figure 7(a) and (b) the transitional Reynolds number is plotted versus both Tu and ReFST,
respectively. Using the physical reasoning by Andersson et al. (1999), we can argue that
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FIGURE 6. Streamwise intermittency distributions for all different grids spanning an averaged
length of about 9δ1 in the spanwise direction. For symbols, see table 1.
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FIGURE 7. Transitional Reynolds number, for all cases C1–C42 (HW1 and HW2), plotted
versus Tu and ReFST in (a) and (b), respectively.

the curve in figure 7(a) should have the form

(Retr)
Tu
cf = B1 · Tu−2 + B2, (3.5)

where B1 and B2 are constants and become (B1,B2) = (148, 31 956) when least-square
fitted to the data. Here B2 has been added, with the motivation of an existing minimum
Reynolds number for self-sustained turbulence. The subscript ‘cf’ in (3.5) stands for an
empirical curve fit to the present data and will be used throughout this paper. The same
physical reasoning, based on input energy, as in Andersson et al. (1999), can be used for
the variable ReFST and, hence, the curve in figure 7(b) corresponds to

(Retr)cf = C1 · Re−2
FST + C2, (3.6)

where C1 and C2 are determined to (C1, C2) = (7.6961 × 109, 62 538). At first glance,
the choice of Tu seems to be the better option, since it collects the data points closer to the
curve fitted line. However, plotting the data versus the primary variable ReFST reorders the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

44
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.444


On the effect of FST on boundary-layer transition 899 A23-17

17 18 19 20 21 22 23
Λx (mm)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

17 18 19 20 21 22 23
Λx (mm)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Retr

×105 ×105

Tu ≈ 2.16 %

Tu ≈ 2.45 %
Tu ≈ 2.82 %

Tu ≈ 3.37 %

Tu ≈ 4.28 %

C6

C33

C34

C4

C32

C15

C25

C24C5

C20

C30

C11

C3

(a) (b)

FIGURE 8. Twofold effect on Retr by increasing Λx , while keeping Tu close to constant. (a) For
low Tu (≈ 2.16 % and 2.45 %), transition moves upstream (i.e. Retr is reduced) for increasing
Λx . (b) For high Tu (≈ 2.82 %, 3.37 % and 4.28 %), transition moves downstream (i.e. Retr is
increased) for increasing Λx . For symbols and cases, see tables 1 and 2, respectively. Here open
symbols correspond to experimental data (from hot-wire 1) and filled grey symbols to predicted
values.

set of data in a favourable way, such that one can relate the deviation from the curve to
the integral length scale through a scale-matching model, which will be introduced later.
When comparing the values B2 with C2 one surprisingly realizes that they differ by a factor
of 2 even though they should represent the same physical asymptotic value, i.e. a minimum
Retr below which natural transition cannot take place. It becomes clear that B2 and C2 will
only correspond to each other if additional data at much higher Tu and ReFST values are
included in the fits.

The present data were collected with the mind of creating a large data set, which was
done by changing both Tu and Λx at the leading edge of the plate, without the effort in
trying to change one of them independent of the other. However, there is enough data
to group cases together with about the same Tu but with different Λx . If one does that
for different Tu levels our data show that, for low turbulence intensities, the transition
location moves upstream with increasing Λx and downstream with increasing Λx for high
turbulence intensities. That is, there is a twofold effect of Λx on the transition location,
which confirms the findings reported both by Jonáš et al. (2000), Brandt et al. (2004),
Ovchinnikov et al. (2004) (of transition advancement) and Hislop (1940) (of transition
delay). The grouped cases are plotted in figure 8 with open symbols corresponding to
the experiments and filled grey symbols to the corresponding predicted values that will be
introduced and discussed later. The two trends will be explained by the fact that an optimal
ratio between FST length scale and boundary-layer thickness at transition onset exists.
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3.2. Streamwise streaks inside the boundary layer
The asymptotic value of the spanwise length scale of the streamwise streaks is here argued
not to be important for the transition process, in figure 11 of Matsubara & Alfredsson
(2001) the transition takes place farther upstream than the asymptotic limit in most cases,
which makes the region where the data differs from each other the most interesting. This
means that the cross-sectional aspect ratio of the streamwise structures at transition is
such that the streaks are ovally shaped with the major axis being parallel with the surface.
Now, the unsteady streamwise boundary-layer streaks, induced by the FST, can only be
important for the transition location if their characteristic length scale correlates with the
FST leading-edge parameters. The study by Fransson & Alfredsson (2003) supports the
idea that the spanwise scale is set by the FST condition. In that study it was shown that
by reducing the boundary-layer thickness by a factor of two, by means of creating an
asymptotic suction boundary layer, the spanwise scale in the boundary layer remained
the same, giving structures of an aspect ratio of two instead of one as suggested by the
asymptotic limit λz/2 ≈ 3δ1 from Matsubara & Alfredsson (2001).

In the present measurement campaign, two-point spanwise correlation measurements
were performed at five different streamwise distances from the leading edge and at the
location above the wall of maximum urms. These measurements were carried out at
minimum and maximum injection when the grid was located at the closest and farthest
downstream distances from the leading edge, resulting in 23 of the total 42 cases from
tables 2 and 3. In figure 9 all measured spanwise correlation functions are plotted,
where increasing darkness of the curves corresponds to increasing intermittency value.
The spanwise distance (Δz) between the two hot-wires where a negative minimum in
Ruu(Δz) appears can be interpreted as the averaged half spanwise wavelength of the
streaky structures (λz/2). For each function, this minimum is consistently determined by
a third-order polynomial fit to the data, and to obtain λz for a specific intermittency value
simple linear interpolation using the five streamwise locations is applied. Figure 10(a)
shows λz unscaled for γ = 0.5 versus its corresponding Tu & Λx and it shows that the
data is scattered and uncorrelated with Tu and Λx , it appears to be a range of possible λz

values for each Tu and Λx . However, when scaled with the leading-edge FST condition
using both Λx and Tu, and plotted versus the primary variable ReFST as in figure 10(b),
the data fall close to a single curve. Here, the spanwise wavelength for γ = 0.1 has
been added with filled square symbols, showing that the spanwise wavelength is constant
throughout the transition region. The curve in figure 10(b) has been fitted to the data in the
least-square fit sense, and implies that the averaged spanwise wavelength can be estimated
from leading-edge FST parameters according to

L = Λx · Tu
(
D1 · Re−1/

√
2

FST + D2

)2
, (3.7)

with (D1,D2) = (186, 0.8). That is, λz is concluded to be correlated with the leading-edge
FST parameters and, hence, to be an important length scale in the breakdown process to
turbulence. From figure 10(c), it is clear that the estimated λz using (3.7) stays within
±10 % of the measured value.

Another evaluated quantity is the longitudinal integral length scale inside the boundary
layer (ΛBL

x , where ‘BL’ denotes boundary layer), which is a measure of how long the
structures are in the streamwise direction. Here ΛBL

x is calculated at the position above the
wall corresponding to maximum urms. Figure 11(a) shows streamwise ΛBL

x distributions
for all cases (see table 1 for symbols). The downstream distance is shown in ξ and the
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FIGURE 9. Two-point spanwise correlation functions for all measured distributions at different
intermittency values. The colour bar shows the intermittency γ .

colour brightness corresponds to the turbulence intensity at the leading edge, the darker the
higher. A direct conclusion from this figure is that ΛBL

x asymptotes to a constant value (just
below 10 mm) in the turbulent region, i.e. for ξ > 2. It is noteworthy that, regardless of the
FST characteristics, the streamwise length scale will eventually be the same, i.e. there is
no memory of the initial FST condition in the turbulent region. From the location where
the unsteady streaks are created, they will grow in the streamwise direction becoming
longer until around ξ = −0.5, i.e. around the onset of transition where γ is close to 0.10.
After this location, the streaks become shorter due to the appearance of turbulent spots
and asymptotes to the constant value. The maximum value of ΛBL

x (around ξ = −0.5) is
plotted in figure 11(b). No satisfactory correlation function was found with ReFST as the
primary variable as was found for a dimensionless λz (cf. figure 10b), but there is a clear
trend of shorter streaks as ReFST is increased. Instead, in figure 11(c) ΛBL

x,max is normalized
with L (3.7) and Tu, which makes the data points fall close to a straight line when plotted
against Retr. The length scale ratio (ΛBL

x,max/L) corresponds to the streamwise/spanwise
aspect ratio at the maximum streak length and can be estimated from known inlet FST
conditions as (

ΛBL
x,max

L
)

= Tu · (E1 Retr + E2) , (3.8)

where (E1, E2) = (5.293 × 10−4,−15.75) corresponding to the straight line in figure 11(c).
The missing parameter to assess the aspect ratio is the parameter Retr, which can be
predicted for the given leading-edge FST parameters ReFST and ReΛ, as will be shown
in § 4.

4. A semi-empirical transition prediction model

Recent results have shown a clear dependence of Λx on the transition location, moving
the transition location upstream with increasing Λx . The present results confirm this
result but also show that the transition location can move downstream with increasing
Λx , in agreement with earlier results by Hislop (1940). That is, the effect of Λx can be
twofold. There are numerous simple empirical correlation functions available that have
been published over the years, based on different experimental data sets, but none of
them includes Λx in a way such that the twofold effect can be predicted. The existing
experimental data, taken in the same experimental set-up under the same conditions, using
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FIGURE 10. Averaged spanwise wavelength of the streamwise streaks. Panels (a) and (b) show
unscaled and scaled wavelengths versus Tu and Λx and ReFST, respectively. Panel (c) indicates
the accuracy in estimating λz using (3.7) for different transitional Reynolds numbers. The solid
lines correspond to deviations of ±10 % from the dashed line. Circular and square symbols
correspond to streamwise locations of γ = 0.5 and 0.1, respectively.

the same transition determination method, has so far been too scarce and not enough to
find the appropriate behaviour of Λx when other parameters such as Tu and the vertical
boundary-layer scale (i.e. U∞) are varied.

Apart from the leading-edge FST parameters Λx (2.1), ReFST (3.3) and ReΛ (3.4), where
the latter two are related to each other via Tu (2.2), there is another important parameter
that provides the missing link to the boundary layer, namely the vertical boundary-layer
length scale,

δtr =
√

νxtr

U∞
, (4.1)

at transition. The only shortcoming is that this parameter includes xtr, which is the one
that is in demand.

4.1. Scale-matching model
The present experimental data indicates that there is a change of trend of the influence of
Λx on the transitional Reynolds number. This information suggests that a scale matching
between the FST and the boundary layer has to take place at the trend change. The local
integral length scale of the FST, which grows with the square root of the downstream
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FIGURE 11. (a) Streamwise distribution of the integral length scale inside the boundary layer
(ΛBL

x ) versus the non-dimensional transition coordinate ξ . The brightness of the symbols
illustrates the turbulence intensity, with darker colours corresponding to higher Tu. (b) Maximum
values of ΛBL

x for each distribution in (a) versus its corresponding ReFST. Panel (c) indicates a
linear correlation between appropriately scaled ΛBL

x,max and the transitional Reynolds number.

distance, is proportional to the integral length scale at the leading edge (see, e.g., Kurian &
Fransson (2009), or the present figure 3b) which in turn suggests that the ratio Λx/δtr is
important for where the transition happens. Here, the following hypothesis is formulated.
HYPOTHESIS. For a given Tu, there is an optimal scale ratio (Λx/δtr)opt that promotes
transition. The transitional Reynolds number versus the scale ratio has a minimum at the
optimal scale ratio. A mismatch from the optimal value will give a negative derivative of
Retr, with respect to the scale ratio, if the scale ratio is lower than the optimal, and a
positive derivative if it is larger.

This hypothesis was first formulated in Fransson (2017), but there with the scale ratio
inverted. A sketch is shown in figure 12, where the curves correspond to a specific Tu value.
The higher the Tu, the closer the curve is to the abscissa. To confirm the hypothesis new
experiments at constant Tu with varying Λx need to be carried out, the present database is
not sufficient since both Tu and Λx were varied. However, the present data seem to indicate
that (Λx/δtr)opt is close to 15, which would imply that the change of trend appears where
Λx is about three times the boundary-layer thickness, i.e. δ99, at transition. This means that
if Λx < 3 δ99 at transition, the transition location is expected to move upstream, and vice
versa, with increasing Λx .
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+−

FIGURE 12. Sketch shows the scale-matching model, based on the hypothesis that, for each Tu,
there exists an optimal Λx/δtr that promotes transition to a lowest possible Retr.

4.2. The equation for the transitional Reynolds number
The effect of Λx/δtr on Retr is assumed to enter as a correction to (3.6) and, hence, we
make the following ansatz:

Retr = (Retr)cf + ΔRetr, (4.2)

where

ΔRetr = ΔRetr(Λx/δtr), (4.3)

i.e. we assume that the correction term ΔRetr can be written as a function of the scale ratio,
as derived below. If the scale ratio is matched with the one corresponding to the curve of
(3.6), ΔRetr will give a zero contribution. On the other hand, the more the scale ratio
deviates from the one corresponding to the curve (3.6), the larger the correction becomes.
To amplify the sensitivity of the scale ratio, the square of this ratio is introduced in the
correction as

ΔRetr = κ

[(
Λx

δtr

)2

−
(

Λx

δtr

)2

cf

]
, (4.4)

where (
Λx

δtr

)2

≡
(

ReFST

Tu

)2 1
Retr

, (4.5)

and κ is a weighting function. Furthermore, by making the above choice of introducing
the correction with the square of the scale ratio will simplify the final equation. In analogy
with (4.5) we then introduce (Λx/δtr)

2
cf in (4.4) as

(
Λx

δtr

)2

cf

=
(

ReFST

Tu

)2 1
(Retr)cf

. (4.6)

Now, by combining (4.2) and (4.4)–(4.6), and multiplying with Retr the following
second-order equation of Retr can readily be derived:

Re2
tr +

[
κ Re2

Λ

1
(Retr)cf

− (Retr)cf

]
︸ ︷︷ ︸

= α

Retr − κ Re2
Λ︸ ︷︷ ︸

= β

= 0, (4.7)
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with the solution

Retr = −α

2
±

√(α

2

)2
+ β. (4.8)

When the scale ratio (Λx/δtr)
2 corresponds to (4.6), the Reynolds number correction (4.4)

is zero and the solution is a double root corresponding to Retr = (Retr)cf (cf. 3.6). If there
is a mismatch of the scale ratio with respect to (4.6), there will be two different roots,
namely (3.6) and (4.2), which is given by (4.8). Finally, we note that both α and β depend
on the parameter ReΛ and the weighting function κ . While ReΛ is considered known from
the FST condition at the leading edge, κ requires further analysis.

4.3. Weighting function
The weighting function κ is introduced in (4.4) and corresponds to

κ = ΔRetr[
(Λx/δtr)

2 − (Λx/δtr)
2
cf

] , (4.9)

which may be rewritten using (4.5), (4.6) and (3.3) to

κ = −Re−2
Λ Retr · (Retr)cf < 0. (4.10)

This expression of κ needs to be modelled since it includes Retr and renders a trivial
solution when inserted to (4.7). Besides, it is noted that κ is always negative. For the
modelling, κ is plotted versus ReFST in figure 13(a) using the experimental data and
(3.6). The model function should have two constraints for an accurate representation,
in the limits of ReFST → 0 and ReFST → ∞ the function should approach zero. The
physical reasoning behind this is that ΔRetr should approach zero in these two limits.
For ReFST → ∞, the transitional Reynolds number will approach the minimum Reynolds
number for self-sustained turbulence (cf. B1 in (3.6)) and the dependence of Λx will
diminish. For ReFST → 0, the FST transition scenario will eventually be replaced by the
T–S wave transition scenario and the effect of Λx is expected to disappear. However, it
is worth pointing out that independent of an accurate representation of κ the transition
prediction model described by (4.7) is only valid for the transition scenario dominated by
FST. Here, the κ function is created in order to fulfil the above constraints with a good fit
to the data according to

κ = −103 ×

⎡
⎢⎢⎢⎣ G · ReFST

a + | (ReFST − a)b |︸ ︷︷ ︸
=f1

+ c · exp{−d(ReFST − e)2}︸ ︷︷ ︸
=f2

⎤
⎥⎥⎥⎦

2

. (4.11)

The five coefficients (a–e) are determined in the least-square fit to the data and G is set
to G = 25, which is the gain to f1 and chosen such that the turnaround of κ to fulfil the
constraint in the limit for ReFST → 0 is around ReFST = 73. This value of ReFST corresponds
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FIGURE 13. Weighting function κ versus ReFST. (a) Close up of the κ-function according to
(4.10), symbols correspond to experimental data. (b) Full κ-function produced by (4.10) for the
range ReFST = 0–700. Grey regions correspond to ReFST ≤ 73, which by combining (3.5) and
(3.6) leads to Tu ≤ 1 %.

to Tu = 1 %, which is obtained through the relation

ReFST =
(B1 · Tu−2 + B2 − C2

C1

)−1/2

, (4.12)

derived by combining (3.5) and (3.6). The value of Tu ≈ 1 % is often used as a threshold
from where the transition scenario is dominated by the growth and breakdown of unsteady
streamwise streaks (see, e.g., Arnal & Juillen 1978). The five coefficients in (4.11) are
determined to be

a = 7.2279 × 101; b = 1.7574 × 100; c = 3.9519 × 10−2;
d = 5.6340 × 10−5; e = 3.1987 × 102.

(4.13)

In figure 13(a) both parts, f1 and f2, in (4.11) are plotted and it is clear that the sum of the
two gives a satisfactory fit to the data. Figure 13(b) shows the full κ function. The grey
areas in figure 13 indicate ReFST values being lower than Tu = 1 %. On the one hand, there
are too few data points at low ReFST to comment on the behaviour of κ in the lower range
of ReFST, on the other hand, the data do indicate that the effect of Λx on Retr only becomes
greater as ReFST is reduced. The physical constraint that the effect of Λx eventually has to
diminish as Retr → 0 gives rise to the sharp turnaround of the function.

5. Validation of the model

Figure 14 shows a direct comparison between the experimental and predicted Retr as a
function of ReΛ and Tu. Noteworthy is that the only input to the model is leading-edge
data with two out of the following three FST parameters: ReΛ, Tu and ReFST (which are
related to each other in (3.3)). Practically, the model requires a single-point time-resolved
velocity measurement in the free stream at the leading edge. Quantitatively, the agreement
is satisfactory between figures 14(a) and 14(b). The circular symbols correspond to the
actual input FST data, where the corresponding measured or predicted Retr are used to
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FIGURE 14. Contour plots of the transitional Reynolds number. (a) Experimental data.
(b) Predicted data by (4.7). Circular symbols indicate measured cases in the ReΛ–Tu plane.

produce the contour plots. Even though figure 14(a) shows a quite complex behaviour of
Retr with a clear dependence on both Tu and Λx , our semi-empirical model clearly captures
the essential physics with the introduced scale-matching model, which links the FST to the
boundary layer.

In figure 15 a qualitative comparison between experimental and predicted Retr values is
made. From figure 15(a), it is clear that (4.7) performs very well for ReFST > 325, while
in the range below 325 one may foresee improvements given more experimental data in
the future to tune the model. However, one may conclude that the model does significantly
better than simple empirical correlations based on only ReFST or Tu, which completely
excludes the effect of Λx on Retr. Figure 15(b) quantifies this statement, by showing that
the predicted value using the scale-matching model (4.7) is significantly improved with
respect to the usage of (3.6). Using (4.7) for predicting the transitional Reynolds number
gives 65 % of the values within ±10 % of the experimental data, while (3.6) gives 40 %
within ±10 %. Less than 10 % of the data is outside ±20 % using (4.7), while (3.6) gives
31 % of the data worse than ±20 %. Figure 16 shows a classical scatter plot of the same
data as shown in figure 15(b) with the corresponding R2 coefficients given in the caption.

At last, we turn our attention back to figure 8, where the effect of Λx on Retr was
illustrated for five different Tu levels. The grey symbols in this figure correspond to the
predicted Retr using (4.7) and again a qualitative comparison is made but with the specific
cases denoted in the figure. From this comparison, it is confirmed that the prediction is
better for higher ReFST values (i.e. in general for higher Tu), as shown in figure 8(b).
However, it is also clear that the twofold effect of Λx on Retr is captured by the model,
even though the influence of Λx is slightly underpredicted for low Tu values (cf. figure 8a).
Going back to the scale-matching hypothesis (figure 12) it is also clear that if one does
not accurately capture (Λx/δtr)opt from the data when tuning the model it is easy to
underpredict or overpredict the influence of Λx . From figure 8, it seems that the behaviour
for low Tu levels would be predicted even better if the curve in the sketch (cf. figure 12) was
shifted to the right. Now, with this information at hand, having data taken under constant
Tu levels while varying Λx instead of scattered data in the (ReΛ, Tu) plane (as the present
data), would be valuable for future tuning of the model.

In figure 17 the semi-empirical model (4.7) has been used to produce the contour plots
of Retr in (a) and (b), where contour lines have been added of constant ReFST and Tu,
respectively. While figure 17(a) is similar to figure 14 but plotted for a somewhat extended
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FIGURE 15. (a) Qualitative comparison between the measured transitional Reynolds number
(open circles) and the corresponding predicted values (black circles) versus ReFST. The solid
line corresponds to (3.6). (b) Predicted values with respect to the measured values, from (4.7)
and (3.6) with black square symbols and open squares, respectively.

range of ReΛ and Tu, figure 17(b) shows Retr predicted in the ReΛ–ReFST plane. Since
the behaviour of Λx on Retr has so far not been known, except for the Λx variation for a
particular Tu level that has been published (see, e.g., Jonáš et al. 2000), the figures 17(a)
and 17(b) are the first ones ever produced for a larger variable range showing how Retr is
affected by the FST condition based on the present experimental data.

6. Conclusion

Ideally, we would like to be able to predict the transition location in a boundary layer
with the only knowledge being the leading-edge FST condition. However, today no simple
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FIGURE 16. Scatter plot of the data shown in figure 15(b). Predicted values with respect to the
measured values, from (4.7) and (3.6) with black square symbols and open squares, respectively.
The corresponding R2 coefficients are 0.90 and 0.77, respectively.
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FIGURE 17. Contour plots of predicted transitional Reynolds numbers by (4.7). (a)
ReΛ–Tu plane, with contour lines corresponding to ReFST = 100:100:700, from left to right.
(b) ReΛ–ReFST plane, with contour lines corresponding to Tu = 0.01:0.01:0.07, from left to right.

correlation function exists that includes the effect of FST length scales on transition in
a physically correct way. The underlying problem is that none of the existing prediction
functions, so far, links the FST condition to the boundary layer. Reviewing the existing
literature on the effect of FST length scales one finds that the FST integral length scale
has a twofold effect on transition, i.e. an increase of Λx can both lead to advancement
and delay in transition. It is obvious that empirical correlation functions only including
the turbulence intensity, as most past empirical relations, and that relations with a linear
Λx dependence, as more recent published relations, will do a poor job in predicting the
transition.

Here, we present data from a large wind tunnel campaign aimed at bringing further
insights to the FST induced boundary-layer transition scenario. It is a zero-pressure
gradient boundary layer subject to different FST conditions at the leading edge that is
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in focus. The FST was varied by means of eight different turbulence generating grids
of different mesh and bar widths. Six of these grids were active in the sense of having
upstream injected jets of high speed to increase the pressure drop over the grids, which
in turn increases Tu. In total, data from 42 unique FST conditions have been acquired
and documented in the present paper (cf. tables 2 and 3). The FST is known to create
unsteady elongated streamwise streaks of alternating high- and low-speed regions inside
the boundary layer, via some receptivity mechanism which takes place already at the
leading edge. The averaged spanwise wavelength of these structures is likely to be set
already in the leading-edge region and to be critical for the breakdown to turbulence
process.

Our data confirm the previously reported universal intermittency distribution when the
non-dimensional streamwise coordinate ξ is used (cf. figure 5). This distribution as a
function of the dimensional streamwise coordinate, x , is used to determine the transition
location for each case. Here, xtr is consistently determined as to where the intermittency
factor of the velocity signal is equal to 0.5 (measured around the urms peak above the plate).

The present dataset is the first one indicating the twofold effect of Λx in the same
experimental set-up and campaign. On the one hand, it is shown that by increasing Λx by
12 % the transitional Reynolds number is reduced by 38 % at Tu ≈ 2.16 % (from case C6
to C33). On the other hand, an 18 % increase of Λx at Tu ≈ 2.82 % results in an increase
of Retr by 45 % (from case C32 to C25).

To characterize the FST condition we establish three FST parameters, namely ReFST,
ReΛ and Tu, which are all related to each other (cf. (3.3)). By introducing a scale-matching
model the physically correct behaviour of Λx on Retr can be obtained. In this analysis
the primary variable in predicting Retr turns out to be ReFST and not Tu, as used in most
correlation functions. Dealing with the data as a function of ReFST completely reorders the
data and allows for the introduction of a ΔRetr (4.2)–(4.4), which is a function of the scale
ratio Λx/δtr that links the FST length scale with the boundary layer. A similar analysis
with Tu as the primary variable was carried out, but without success. The key ingredient
in being able to predict Retr is the scale-matching model, which leads to a second-order
equation of Retr with ReFST being the primary variable and ReΛ being a parameter in the
equation (cf. (4.7)). This equation captures the twofold behaviour of Λx on Retr, and gives
a significantly improved prediction of Retr with respect to a single variable prediction, be
it ReFST or Tu. The scale-matching hypothesis leads to the threshold of (Λx/δtr)opt and the
data suggest that this value is close to 15, which in turn leads to the conclusion that when
Λx < 3δ99 at transition, the transition location will move upstream, and vice versa, with
increasing Λx .

The data also indicate that both the averaged spanwise wavelength of the streaks, λz, as
well as the maximum streamwise length of the unsteady streaks, ΛBL

x,max, correlate with the
FST parameters. This finding is important since quite often the streak spacing is said to
adapt to the boundary-layer thickness giving structures of an aspect ratio of one inside the
boundary layer (after Matsubara & Alfredsson 2001), which can be used to diminish the
role of the streaks in the transition process. Here, we argue that the asymptotic aspect ratio
of the streaks, after the adaptation, is not important for the transition, since for most cases
(moderate to high Tu levels) transition occurs upstream of this asymptotic state.

Our data show that λz is proportional to both Λx and Tu, with the correlation function
being a function of ReFST (cf. (3.7)). The maximum streamwise extent of the streaks
(around γ = 0.1), ΛBL

x,max, is proportional to Λx , Tu2 and Retr, which implies that the
transition location needs to be estimated before the streamwise length of the streaks can
be estimated (cf. (3.8)). These length scales are believed to be important for the streak
instability. In particular, the former length scale, which together with the streak amplitude
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gives a measure of the spanwise velocity gradient that drives the sinusoidal secondary
instability. Here, believed to be the most common precursor to the local breakdown into
turbulent spots inside the boundary layer. With this in mind, it is also likely that a universal
transitional number based on local flow properties inside the boundary layer exists, which
so far has not been recognized.

Finally, the semi-empirical transition prediction model presented herein captures the
twofold effect of Λx on Retr in a correct way, and we can, for the first time, get the full
behaviour of Retr in the Tu–ReΛ and ReFST–ReΛ planes based on the model. Theoretically,
one would only need to perform a single-point time-resolved velocity measurement in the
free stream at the leading edge in order to predict the transition location using the new
model. From this velocity signal, U∞, urms and Λx can be obtained, which are required
for calculating the non-dimensional FST parameters ReFST, ReΛ and Tu. In reality, there
is primarily one additional parameter that plays a role for the transition location, namely
the leading-edge pressure gradient, which apart from the leading-edge geometry is given
by the leading-edge stagnation line. However, with increasing turbulence intensity the
leading-edge pressure gradient effect is expected to diminish. Other parameters related
to the wind tunnel set-up, such as plate joints and background acoustic noise are not
expected to play a significant role as long as joints are kept smooth without steps. Acoustic
noise can interact with the leading edge and two-dimensional plate joints to generate
T–S waves but is only expected to play a role when the turbulence intensity is very low
(i.e. Tu 
 1 %). For moderate to high turbulence intensities, the T–S waves are likely
to be damped by the unsteady streamwise streaks and can be considered harmless for
the transition since the scenario is dominated by the growth of streamwise streaks. The
present authors believe that the two most important reasons for the large discrepancy of
experimental data acquired in different facilities, when it comes to Retr = Retr(Tu), are as
follows: (1) different methods in determining the transition location; and (2) past lack of
knowledge regarding the significance of Λx on the transition location.
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