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Noncommutative Symmetric
Bessel Functions

Jean-Christophe Novelli and Jean-Yves Thibon

Abstract. The consideration of tensor products of 0-Hecke algebra modules leads to natural analogs of

the Bessel J-functions in the algebra of noncommutative symmetric functions. This provides a simple

explanation of various combinatorial properties of Bessel functions.

1 Introduction

It is known that the theory of noncommutative symmetric functions and quasi-
symmetric functions is related to 0-Hecke algebras in the same way as ordinary sym-

metric functions are related to symmetric groups. Thus, one may expect that nat-
ural questions about representations of 0-Hecke algebras lead to the introduction
of interesting families of noncommutative symmetric functions. By interesting, one
may mean “noncommutative analogs” of the Frobenius characteristics of represen-

tations of symmetric groups based on combinatorial objects, which may themselves
give back various identities for the ordinary, exponential, or q-exponential generating
functions of these objects. This amounts to specializing the complete noncommuta-
tive symmetric functions Sn(A) to hn(X), 1, 1

n!
or 1

(q)n
, respectively.

Examples of this situation can be found in [18], where the analysis of the rep-
resentation of Hn(0) on parking functions leads naturally to the combinatorics of

the noncommutative Lagrange inversion formula, and to the introduction of non-
commutative analogs of various special functions, such as the Abel polynomials, the
Lambert binomial series or the Eisenstein exponential, and allows one to recover in a
straightforward and unified way a number of enumerative formulas.

The present paper addresses the following question. The 0-Hecke algebra is the

algebra of a monoid, hence admits a natural coproduct for which the monoid ele-
ments are grouplike. This allows one to define the tensor product of 0-Hecke mod-
ules, which induces on quasi-symmetric functions an analog of the internal product
of symmetric functions. What are the properties of this operation, and of the dual

coproduct on noncommutative symmetric functions?

It turns out that the second part of the question is the most interesting. Basically,
the answer is: the dual coproduct governs the combinatorics of Bessel functions. In-
deed, making this more explicit leads to the introduction of noncommutative analogs
Jn(A, B) of the J-functions of integer index, of which a few basic properties are readily

established. Then the above mentioned specializations (and other more complicated
ones) give back various classical enumerative formulas.
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2 Background

2.1 Notations

Our notations for noncommutative symmetric functions are as in [12, 14]. The
Hopf algebra of noncommutative symmetric functions is denoted by Sym, or by
Sym(A) if we consider the realization in terms of an auxiliary alphabet. Bases of

the homogeneous component Symn are labelled by compositions I = (i1, . . . , ir)
of n. The noncommutative complete and elementary functions are denoted by Sn

and Λn, and the notation SI means Si1
· · · Sir

. The ribbon basis is denoted by RI .
The notation I � n means that I is a composition of n. The conjugate composi-

tion is denoted by I∼, the mirror image composition by I. The descent set of I is
Des(I) = {i1, i1 + i2, . . . , i1 + · · · + ir−1}.

The graded dual of Sym is QSym (quasi-symmetric functions). The dual basis of
(SI) is (MI) (monomial), and that of (RI) is (FI).

We denote by FQSym the algebra of free quasi-symmetric functions [8].
The Hecke algebra Hn(q) (q ∈ C) associated with the symmetric group Sn is the

C-algebra generated by n − 1 elements T1, . . . , Tn−1 satisfying the braid relations
and (Ti − 1)(Ti + q) = 0. We are interested in the case q = 0, whose representation

theory can be described in terms of quasi-symmetric functions and noncommutative
symmetric functions [8, 15].

The Hopf structures on Sym and QSym allow one to extend the λ-ring notation of
ordinary symmetric functions (see [14, 16] for background on the original commu-

tative version). If A and X are totally ordered sets of noncommuting and commuting
variables respectively, the noncommutative symmetric functions of XA are defined
by

σt (XA) =

∑

n≥0

tnSn(XA) =

→
∏

x∈X

σtx(A) =

∑

I

t |I|MI(X)SI (A) .

Thanks to the commutative image homomorphism Sym → Sym, noncommutative
symmetric functions can be evaluated on any element x of a λ-ring, Sn(x) being Sn(x),
the n-th symmetric power. Recall that x is said to be of rank one (resp. binomial) if
σt (x) = (1 − tx)−1 (resp. σt (x) = (1 − t)−x). The scalar x = 1 is the only element

having both properties. We usually consider that our auxiliary variable t is of rank
one, so that σt (A) = σ1(tA).

The argument A of the noncommutative symmetric functions can be a virtual

alphabet. This means that being algebraically independent, the Sn can be specialized

to any sequence αn ∈ A of elements of any associative algebra A. Writing αn =

Sn(A) defines all the symmetric functions of A, and allows one to use the powerful
notations F(nA), F((1 − q)A), etc., for more or less complicated transformations of
the specialized functions.

The (commutative) specializations A = E, defined by Sn(E) =
1
n!

and A =
1

1−q
,

for which

Sn

( 1

1 − q

)

=
1

(q)n

=

n
∏

i=1

1

1 − qi
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are of special importance.

2.2 Noncommutative Analogs of Special Functions

Since the discovery by D. André of a combinatorial interpretation of tangent and se-
cant numbers, several classical generating functions have been lifted to the algebra of

symmetric functions, and more recently, to noncommutative symmetric functions.
The general idea is as follows. Given the exponential generating function

f (t) =

∑

n≥0

cn
tn

n!

of a combinatorial sequence cn ∈ N, one looks for a noncommutative symmetric
function F(A) such that F(tE) = f (t). The noncommutative analog is interesting
when Fn(A) can be directly interpreted as the formal sum of the combinatorial objects

counted by cn under the embedding of Sym into some larger algebra. For example,
in the case of tangent and secant numbers, the series

(

∑

n≥0

(−1)nS2n(A)
)−1(

1 +
∑

n≥0

(−1)nS2n+1(A)
)

becomes the formal sum of the alternating permutations (shapes (2n) and (2n1))

under the embedding Sn 7→ F12...n of Sym in FQSym [12]. One can also find the
noncommutative Eulerian polynomials [12], and analogs of the Abel polynomials
and of the Lambert and Eisenstein functions [18].

In general, Fn turns out to be the characteristic of some projective 0-Hecke mod-

ule. Projective modules are always specializations of generic modules, thus also rep-
resentations of the symmetric group, whose Frobenius characteristics are then the
commutative images Fn(X). In general, setting X =

t
1−q

gives back an interesting

q-analog of f (t).
In this note, we shall show that the consideration of 0-Hecke modules obtained

from a natural notion of tensor products leads immediately to noncommutative ana-
logs of the Bessel J (or I) functions. Here, we need two alphabets A and B, and we

are led to the combinatorics of bi-exponential generating functions.

3 Tensor Products of 0-Hecke Modules

3.1 The 0-Hecke Algebra as a Monoid Algebra

The 0-Hecke algebra Hn(0) is the algebra C[Πn], where the monoid Πn is generated

by elements π1, . . . , πn−1 (πi = −Ti) satifying the braid relations

πiπ j = π jπi |i − j| > 1

πiπi+1πi = πi+1πiπi+1

and the idempotency condition π2
i = πi . This algebra has 2n−1 simple modules SI ,

which are one-dimensional and labelled by compositions I of n. The action of Hn(0)
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on SI = C ·v is given by

πiv =

{

v if i ∈ Des(I),

0 otherwise.

There is a canonical coproduct on Hn(0) defined by δ∧π = π ⊗ π for π ∈ Πn.
Hence, tensor products of Hn(0)-modules can be defined, and it is obvious from the
definition of the simple module SI that, for H, K, I compositions of n, SH ⊗ SK = SI

where Des(I) = Des(H) ∩ Des(K). This induces an internal product ∧ on QSymn =

G0(Hn(0)), similar to the internal product of symmetric functions, such that

FH ∧ FK = FI

where I = H ∧ K, that is, Des(I) = Des(H) ∩ Des(K). By duality, this defines a

coproduct on Symn, given by

γ∧RI =

∑

Des(I)=Des(H)∩Des(K)

RH ⊗ RK .

3.2 Another Interpretation of the Coproduct

There is a canonical involution ι on Hn(0), defined by ι(πi) = π̄i = 1 − πi , so
that we can regard Hn(0) as C[Π̄n] as well. Hence, we have another tensor product,
defined from the coproduct δ∨π̄ = π̄ ⊗ π̄ for π ∈ Πn, which induces a second
internal product ∨ on QSym, FH ∨ FK = FI where I = H ∨ K, that is, Des(I) =

Des(H) ∪ Des(K). It is of course sufficient to study one of them. Indeed, it can
be shown that the involution ι maps the simple module SI and the indecomposable
projective module PI to SĪ∼ and PĪ∼ , respectively.

However, it is interesting to observe that this second product appears in another

guise in [8], in the process of calculating a basis of primitive elements of FQSym. Let
us recall this construction. For a composition I = (i1, . . . , ir), we denote by pI the
endomorphism of FQSym defined by pI(Fσ) = Fα1

Fα2
· · · Fαr

, where α j = Std(u j),
and σ = u1u2 · · · ur is the factorization of the word σ into r factors of respective

lengths |u j | = i j . This is the special case q = 0 of the q-convolution defined in [8]:
pI = pi1

⊙0 · · · ⊙0 pir
. It is proved in [8] that the pI are mutually commuting

projectors, and more precisely that

pI ◦ p J =

{

0 if |I| 6= | J|.
pI∨ J otherwise.

Hence, j : FI 7→ pI defines an embedding of (QSym,∨) in the composition algebra
of graded endomorphisms of FQSym. Moreover,

π =

∑

|I|≥1

(−1)l(I)−1 pI ,
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which is a projector onto the primitive Lie algebra of FQSym, is the image of the
primitive element

∑

n Mn of QSym under j, and it is easy to see that more generally,

for any f ∈ QSym ( j ⊗ j)(∆QSym f ) = ∆FQSym ◦ j( f ). However, j does not map the
usual (external) product of QSym to the ordinary convolution of endomorphisms. It
is nevertheless interesting to pull back the 0-convolution to QSym, by defining

FI ⊙0 F J = FI· J,

where I· J means as usual concatenation of the compositions. Then we have a splitting
formula

( f1 ⊙0 f2 ⊙0 · · · ⊙0 fr) ∨ g = µ0[( f1 ⊗ · · · ⊗ fr) ∨r ∆
r
QSym(g)]

analogous to the one satisfied in Sym.

3.3 The Main Result

Identifying as usual a tensor product F ⊗ G with F(A)G(B), where A and B are two
mutually commuting alphabets, we have

σ1(XA) ∧ σ1(XB) =

∑

K

FK (X)γ∧(RK ) = γ∧σ1(XA),

which may be compared with the following identity relating the internal product ∗
of Sym and its dual coproduct δF = F(XY ) on QSym:

σ1(XA) ∗ σ1(YA) = σ1(XYA) = δσ1(XA).

Theorem 3.1 The coproduct γ∧ is a morphism for the ordinary (outer) product of

noncommutative symmetric functions, that is, for F, G ∈ Sym, γ∧(FG) = γ∧(F)γ∧(G).

In particular, it is completely determined by the images of the elementary functions,

γ∧Λn = Λn ⊗ Λn, which implies the combinatorial inversion formula

(

∑

n≥0

(−1)n
Λn ⊗ Λn

)−1

=

∑

Des(H)∩Des(K)=∅

RH ⊗ RK .

Proof This is equivalent to Theorem 4.1 below.

As we will see, this simple identity has many interesting enumerative corollaries.
Applying the involution ω on the second factor gives the inverse of

(

∑

n≥0

(−1)n
Λn ⊗ Sn

)−1

=

∑

Des(H)∩Des(K)=∅

RH ⊗ RK∼ .

The right-hand side of this equality occurs in [13], where it is interpreted as the
decomposition of a certain algebra HSn as a bimodule over itself. The inverse of
the left-hand side legitimately can be considered as a noncommutative analog of the
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Bessel function J0, as when we specialize both sides to xE, we recover J0(2x). More-
over, specializing A to x/(1−q) gives a classical q-analog of J0, and the other ones are

obtained by simple transformations. This first step being granted, it is not difficult to
guess the correct definition of the noncommutative analogues of the other Jν . This
will be done in the forthcoming section.

4 Noncommutative Bessel Functions

Let A and B be two mutually commuting alphabets. Recall that σz =
∑

Snzn and
λz =

∑

Λnzn
= 1/σ−z. The noncommutative Bessel functions Jn(A, B) are defined

by the generating series
∑

n∈Z
znJn(A, B) = λ−1/z(A)σz(B), that is,

Jn(A, B) =

∑

m≥0

(−1)m
Λm−n(A)Sm(B).

For A = B = xE, this is the usual Bessel function Jn(2x). In particular,

J0(A, B) =

∑

m≥0

(−1)m
Λm(A)Sm(B)

can be regarded as λ−1(J), for the virtual alphabet J = (A, B) such that

Λn(J) = Λn(A)Sn(B).

This defines an embedding of algebras

j : Sym → Sym(A, B) = Sym ⊗ Sym

Λn(A) 7→ Λn(J) = Λn ⊗ Sn.

It is not difficult to describe the image of the ribbon basis under this embedding.
We need the following piece of notation. For two compositions I and J of the same
integer n, we define the composition K = I\ J of n by the condition

Des(K) = Des(I)\Des( J) (set difference).

Then we can state the following.

Theorem 4.1 The image of RK by j is RK (J) =
∑

I\ J=K RI(A)R J(B).

Proof The formula is true for K = (1n) by definition. The general case follows by

induction on l(K∼), the number of columns of the ribbon diagram of K. Indeed,
it suffices to prove that RK(J)R1m (J) = RK·1m (J) + RK⊲1m (J), where as usual, for
K = (k1, . . . , kr) and L = (l1, . . . , ls), K · L = (k1, . . . , kr, l1, . . . , ls) and K ⊲ L =

(k1, . . . , kr−1, kr + l1, l2, . . . , ls). This follows easily from the usual multiplication rule

of ribbon functions.

https://doi.org/10.4153/CMB-2008-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-043-3


430 J.-C. Novelli and J.-Y. Thibon

Corollary 4.2 ([3]) Let an be defined by

1

J0(2
√

t)
=

∑

n≥0

an
tn

(n!)2
.

Then an is equal to the number of pairs of permutations (σ, τ ) ∈ Sn × Sn such that

Des(σ) ⊆ Des(τ ).

Indeed, λ−1(A)−1
= σ1(A) and it is well known that n!RI(E) is the number of

permutations with descent composition I.

Let
←

∂ be the linear operator on Sym (acting on the right) defined by

(4.1) S(i1,...,ir)
←

∂ = S(i1,...,ir−1).

It has the following properties (see [14, Proposition 9.1]): (FG)
←

∂ = F·(G
←

∂)+(F
←

∂)·G0 ,
where G0 denotes the constant term of G, and

RI

←

∂ =

{

Ri1,...,ir−1 if ir > 1,

0 if ir = 1.

In particular, if G0 = 0, (1−G)−1
←

∂ = (1−G)−1(G
←

∂). Let us apply this with
←

∂ =
←

∂B

acting only on Sym(B) to

J0(A, B)−1
=

(

1 −
∑

n≥1

(−1)n−1
Λn(B)Sn(A)

)−1

=

∑

I

SI(A)RI(B).

We obtain J0(A, B)−1J−1(A, B) =
∑

I SI(A)(RI

←

∂(B)).

Corollary 4.3 ([3]) The coefficient cn in

J1(2x)

J0(2x)
=

∑

n≥1

cn
x2n−1

(n − 1)!n!

is equal to the number of pairs of permutations (α, β) ∈ Sn × Sn such that Des(α) ⊆
Des(β) and β(n) = n.

4.1 Bessel-Carlitz Functors

In the same way as series of symmetric functions with coefficients in N on the Schur
basis correspond to polynomial or analytic functors (see [17]), series of noncommu-
tative symmetric functions with coefficients in N on the ribbon basis correspond to

functors (actually, on the category of filtered vector spaces), and yield in particular
analytic functors in the usual sense if one forgets about filtrations. As we shall see, the
functors associated to noncommutative Bessel functions produce quadratic algebras
from pairs of vector spaces.
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Let F be the functor which associates with a pair of vector spaces (V,W ) the graded
subalgebra of the exterior algebra Λ(V ⊕W )

F(V,W ) =
⊕

n≥0

Λn(V ) ⊗ Λn(W ).

This is a quadratic algebra (see [19]). If (vi), (w j) are bases of V and of W , the
relations are as follows. For i < k and j < l,

[

i k

j l

]

+

[

k i

j l

]

= 0,

[

i k

j l

]

+

[

i k

l j

]

= 0,

[

i i

j l

]

= 0,

[

i k

j j

]

= 0,

where

[

i

k

]

= vi ⊗ wk.

Hence, the Koszul dual G(V,W ) = F(V,W )! is the quadratic algebra on V ∗⊗W ∗

presented by

[

i k

j l

]

=

[

k i

j l

]

=

[

i k

l j

]

for i < k and j < l.

The combinatorial investigation of Bessel functions has been initiated by Car-

litz [2]. Hence, the polynomial bi-functors defined by F and G can appropriately
be called Bessel–Carlitz functors. One or two occurrences of Λ can be replaced by S

in the definition of F. In the mixed case Λ ⊗ S, the best interpretation is probably as
functors defined on super (i.e., Z2-graded) vector spaces V = V0 ⊕ V1. It is likely

that these functors will play a role in the representation theory of degenerate versions
quantum supergroups extending the quantum groups investigated in [15].

5 The θ-Specialization

This section is devoted to the interpretation of a few formulas [4, 10, 11] in terms of
noncommutative symmetric functions.

5.1 Carlitz–Koszul Duality and θ-Alphabets

Let θ ⊆ A × A be any binary relation. We denote by θ the complement of θ in A × A

and set

X = X(A; θ) = {w = a1 · · · an ∈ A∗ | a1θa2θ · · · θan}, Y = Y (A; θ) = X(A; θ),

where we write aθb for (a, b) ∈ θ. Note that the empty word 1 and the letters belong
to both X and Y .

The θ-specialization Sym(A; θ) is then defined by specifying the elementary sym-
metric functions Λn(A; θ) =

∑

w∈X∩An w. The following basic lemma, implicit in
[4], generalizes the case θ = {(a, b) | a > b}.
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Lemma 5.1 (Carlitz–Koszul duality for alphabets) The complete symmetric func-

tions Sn(A; θ) are given by Sn(A; θ) = Λn(A; θ). More generally, if one denotes by

θAdj(w) = {i | aiθai+1} the θ-adjacency set of w = a1a2 · · · an, and by Cθ(w) the

associated composition of n, one has RI(A; θ) =
∑

Cθ(w)=I w.

Proof We need to prove that
∑n

k=0(−1)k
Λk(A, θ)Λn−k(A, θ̄) = 0 for n > 0. Let

w = uv be such that u ∈ Λk(A, θ) and v ∈ Λn−k(A, θ̄). Then if last(u)θ first(v), w

appears in Λk+1(A, θ)Λn−k−1(A, θ̄), and similarly, if last(u)θ̄ first(v), then w appears
in Λk−1(A, θ)Λn−k+1(A, θ̄). Moreover, w cannot appear in any other product, so that
its coefficient in the sum is 0.

5.2 The θ-Eulerian Polynomials

Recall from [12] that the noncommutative Eulerian polynomials

An(t ; A) =

∑

I�n

t l(I)RI(A)

admit the generating function

A(t ; A) =

∑

n≥0

An(t ; A) =
1 − t

1 − tσ1−t (A)

(see [7] for the commutative version of this identity), and since

l(Cθ(w)) = θadj(w) + 1,

we have immediately

∑

w∈A∗

tθadj(w)+1w =
1 − t

1 − tσ1−t (A; θ)
,

where θadj(w) = |tAd j(w)|. Note that θadj(w) + θ adj(w) = n − 1. Replacing θ by
θ, A by t−1A, then t by t−1, and simplifying by (1 − t) the resulting expression, we

obtain

(5.1)
∑

w∈A∗

tθadj(w)w =
1

1 −
∑

w∈X(A;θ)+ (t − 1)l(w)−1w
,

which is [11, Theorem 2].
For a letter c ∈ A, denote by

←

∂c the linear operator defined by

w
←

∂c =

{

u if w = uc for some u,

0 otherwise.

Then as in (4.1), for any series F without constant term,

(1 − F)−1
←

∂c = (1 − F)−1 · (F
←

∂c).
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The same is true for the operators DC =
∑

c∈C

←

∂c ·c where C is a subset of A. Applying

this to (5.1), we obtain, setting for short X = X(A; θ),

∑

w∈A∗C

tθadj(w)w =
−∑

w∈XC (t − 1)l(w)−1w

1 − ∑

w∈X+ (t − 1)l(w)−1w
,

which is [11, Theorem 3].

5.3 The θ-Major Index

If one defines the θ-Major index by θmaj(w) =
∑

i∈θAdj(w) i one has clearly from
[14, (125)],

∑

w∈An

qθmaj(w)w =

∑

I⊢n

qmaj(I)RI(A; θ) = (q)nSn

( A

1 − q
; θ

)

,

where as usual

σz

( A

1 − q
; θ

)

=

→
∏

n≥0

σzqn (A; θ).

6 Double Eulerian Polynomials and Bessel Functions

The noncommutative Bessel function J0(A, B) can now be properly interpreted as a
generating series of θ elementary symmetric functions, if we interpret J as the prod-
uct alphabet A × B, endowed with the relation (a, b)θ(a ′, b ′) ⇔ a > a ′ and b ≤ b ′.

As is customary, we denote words over A × B by biwords

w = [u, v] =

[

u

v

]

u ∈ An, v ∈ Bn.

Observing that

θAdj

([

u

v

])

= Des(u) ∩ Des(v) = Des(u)\Des(v),

we can now write the following.

Theorem 6.1 One has

∑

w=(u,v)∈(A×B)∗

tθadj(w)zl(w)w =
1 − t

J0((1 − t)z; A, B) − t

=

∑

K

z|K|t l(K)−1RK(A, B; θ)

(6.1)

where from now on we shall use the notation

J0(x; A, B) = λ−x(J) = λ−x(A, B; θ).
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The coefficient of zn is the n-th double θ-Eulerian polynomial, denoted by
An(t ; A, B; θ). Setting A = B = E, we recover the enumeration of pairs of permu-

tations (α, β) ∈ Sn × Sn by the cardinality of Des(α) ∩ Des(β) (cf. [3]).

7 The Fédou–Rawlings Polynomials

By considering simultaneously the specializations of (6.1) to all positive q- and p-inte-
gers, Ai = [i + 1]q and B j = [ j + 1]p , one arrives at the five parameter generalizations
of the double Eulerian polynomials introduced by Fédou and Rawlings [11].

For w ∈ An, where A is the infinite chain A = {a1 < a2 < · · · }, let qw be the

image of w by the multiplicative homomorphism ai 7→ qi−1. For a composition I of
n, write RI(A) =

∑

C(σ)=I

∑

Std(w)=σ w, where C(σ) is the descent composition of σ
and Std(w) is the standardized word of w. Taking into account the identity

∑

Std(w)=σ

xmax(w)qw
=

xdes(σ−1)qcoimaj(σ)

(xq; q)n

where coimaj(σ) denotes the co-major index of σ−1,

coimaj(σ) =

∑

d∈Des(σ−1)

(n − d),

(indeed, it is easily checked that the minimal word v for the lexicographic order such
that Std(v) = σ satisfies qv

= qcoimaj(σ)), we find

∑

i≥0

xiRI(1, q, . . . , qi) =
1

1 − x

∑

C(w)=I

xmax(w)qw
=

1

(x; q)n+1

∑

C(σ)=I

xdes(σ−1)qcoimaj(σ)

so that, from Theorem 6.1 we recover the double generating series of [11]

(7.1)
∑

i, j≥0

xi y j 1 − t

J0((1 − t)z; Ai , B j) − t

=

∑

n≥0

zn

(x; q)n+1(y; p)n+1

∑

α,β∈Sn

tdesris(α,β)xdes(α−1) ydes(β−1)qcoimaj(α) pcoimaj(β),

where desris(α, β) = |Des(α)\Des(β)|.
The second generating series of [11] is recovered in the same way. If we denote

by b j the greatest letter of B j , then, on the one hand, Sn(B j)
←

∂b j
= Sn−1(B j). On the

other hand,

∑

j≥0

y jR J(B j)
←

∂b j
· b j =

1

1 − y

∑

C(σ)= J
max(v)=last(v)

ymax(v)v

=
1

1 − y

∑

C(σ)= J
σ(n)=n

∑

Std(v)=σ

ymax(v)v,
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so that, applying the operator
←

∂b j
· b j to the coefficient of xi y j in (7.1), we obtain

∑

K

z|K|
∑

I\ J=K

t l(K)−1
∑

i, j≥0

xi y jRI(Ai)R J(B j) ·
←

∂b j
· b j

=

∑

i, j≥0

xi y j
(

1 −
∑

n≥1

zn(t − 1)n−1
Λn(Ai)Sn(B j)

)−1

·
←

∂b j
· b j

=

∑

i, j≥0

xi y j

(

−∑

n≥1 zn(t − 1)n−1
Λn(Ai)Sn−1(B j)b j

)

(1 − t)

J0(z(1 − t); Ai , B j) − t

=

∑

i, j≥0

xi y j J−1((1 − t)z; Ai , B j)b j

J0(z(1 − t); Ai, B j) − t
.

Specializing Ai = [i + 1]q, B j = [ j + 1]p, this becomes, in the notation of [11],

∑

i, j≥0

xi(py) j J
(i, j)
1 ((1 − t)z; q, p)

J
(i, j)
0 ((1 − t)z; q, p) − t

=

∑

n≥0

zn

(x; q)n+1(y; p)n

∑

α,β∈Sn

β(n)=n

tdesris(α,β)xdes(α−1) ydes(β−1)qcoimaj(α) pcoimaj(β)

which is equivalent to [11, (3)]. Here, J
(i, j)
ν (z; q, p) := (−1)νJν(z[i + 1]q, [ j + 1]p).

The other results of [11, §8] can be rederived in the same way by changing the special-
izations of (Ai , B j) to ([i]q, [ j + 1]p), ([i + 1]q,−[ j + 1]p), and (−[i + 1]q,−[ j + 1]p).

8 Heaps of Segments and Polyominos

Bessel functions and their multiparameter analogs play a crucial role in the enumer-
ative theory of polyominos [1, 6]. Elegant combinatorial proofs of such enumerative

results can be achieved by means of Viennot’s theory of heaps of segments [1,20]. As
we shall see, this can also be conveniently formulated in terms of θ-noncommutative
symmetric functions.

8.1 Staircase Polyominos

A parallelogram (or staircase) polyomino P, which is also the same as a connected skew
Young diagram, can be encoded as a biword

w = ai1 j1
· · · ain jn

=

[

i1 · · · in

j1 · · · jn

]

=

[

u

v

]

,

where jk is the height of the k-th column Ck, and ik is the number of common rows
between Ck and Ck+1 (with a conventional value in = 1 for the last column). For
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example, the following polyomino

is encoded by the biword

[

2122111
2323212

]

The biwords corresponding to polyominos are the words over the alphabet

A = {ai j | i ≤ j}

satisfying the θ-adjacency conditions

(8.1) aik jk
θ aik+1 jk+1

⇐⇒ ik ≤ jk+1

and the ending condition

(8.2) in = 1.

Hence, the generating series (by length) of all biwords satisfying (8.1) is

λt (A, θ) = [λ−t (A, θ̄)]−1
=

(

1 −
∑

n≥1

(−1)n−1tn
∑

ik> jk+1

[

i1 · · · in

j1 · · · jn

])−1

,

and restriction of the series to the biwords satisfying (8.2) is achieved as above by

applying the operator D =
∑

j≥1

←

∂a1 j
ai j , which yields the following.

Theorem 8.1 The generating series of the biwords satisfying (8.1) and (8.2) is

(

1 −
∑

n≥1

(−1)n−1tn
∑

ik> jk+1

[

i1 · · · in

j1 · · · jn

])−1
∑

n≥1

(−1)n−1tn
∑

ik> jk+1 ;in=1

[

i1 · · · in

j1 · · · jn

]

.

Again, it acquires the structure J1/ J0 once A is specialized to ai j = xy j−iq j , which
gives the generating series by width, height, and area.
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8.2 Comparison with Viennot’s Formalism

This can, of course, be interpreted in terms of heaps of segments. A segment is an
interval [i, j] of N

∗. To each segment, we associate a variable

ai j =

[

i

j

]

,

in our A = {ai j | i ≤ j}. The monoid of heaps is the quotient of the free monoid A∗

by the commutation relations ai jakl ≡ aklai j if j < k which means that the segments
do not overlap and can be vertically slid independently of each other.

The first basic lemma of Viennot’s theory [20] (which is also a special case of

the Cartier–Foata formula for the Moebius functions of free partially commutative
monoids [5]) amounts to the calculation of Sn(A, θ) for the relation defined by

ai j θ akl ⇐⇒ i ≤ l.

Indeed, with this choice, Λn(A, θ̄) is the formal sum of trivial heaps (products of mu-

tually commuting segments arranged in decreasing order), and Sn(A, θ) = Λn(A, θ)
is the sum of all biwords

w = ai1 j1
· · · ain jn

=

[

i1 · · · in

j1 · · · jn

]

such that ik ≤ jk+1 for all k, those encoding polyominos. This is precisely Viennot’s

lemma. Hence, the discussion in Section 8.1 proves in particular that each heap, or,
equivalently, each element of A∗/ ≡ has a unique representative of this form.
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[13] F. Hivert and N. M. Thiéry, Representation theories of some towers of algebras related to the

symmetric groups and their Hecke algebras. Proc. FPSAC’06, San-Diego (eletronic),
http://fpsac-sfca.org/FPSAC06/SITE06/papers/75.pdf.

https://doi.org/10.4153/CMB-2008-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-043-3


438 J.-C. Novelli and J.-Y. Thibon

[14] D. Krob, B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions. II. Transformations of
alphabets. Internat. J. Algebra Comput. 7(1997), no. 2, 181–264.

[15] D. Krob and J.-Y. Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and
Hecke algebras at q = 0. J. Algebraic Combin. 6(1997), no. 4, 339–376.

[16] A. Lascoux, Symmetric functions and combinatorial operators on polynomials. CBMS Regional
Conference Series in Mathematics 99, American Mathematical Socoety, Providence, RI, 2003

[17] I. G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University
Press, New York, 1995.

[18] J.-C Novelli and J.-Y. Thibon, Noncommutative symmetric functions and Lagrange inversion. Adv. in
Appl. Math. 40(2008), no. 1, 8–35.

[19] S. B. Priddy, Koszul resolutions. Trans. Amer. Math. Soc. 152(1970), 39–60.
[20] X. G. Viennot, Heaps of pieces I: Basic definitions and combinatorial lemmas. In: Combinatoire
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