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Abstract

A subspace of a Banach space is called an operator range if it is the continuous linear image of a Banach
space. Operator ranges and operator ideals with fixed range space are investigated. Properties of strictly
singular, strictly cosingular, weakly sequentially precompact, and other classes of operators are derived.
Perturbation theory and closed semi-Fredholm operators are discussed in the final section.

1980 Mathematics subject classification (Amer. Math. Soc.): Primary 47 A 05; secondary 47 A 53,
47 A 55, 47 D 30, 47 D 40, 46 B 25.

1. Introduction

We call a subset R of a Banach space Y an operator range if there exists a Banach
space X and a bounded linear operator T defined on X whose range is R. If there
exists Te [7] such that R(T) = R, we call R an emdomorphism range. Throughout
this paper X, Y and Z will denote infinite dimensional Banach spaces.

Which subspaces of a Banach space are operator ranges, and which are
endomorphism ranges? We have the following characterization : A subspace R of a
Banach space is an operator range if and only if there exists a stronger norm on R
under which R is complete (Proposition 2.1). Obviously every closed subspace is an
operator range. However, there exist closed subspaces which are not endomorphism
ranges (except in certain Banach spaces like /1 (S) and Hilbert space). For example, let
£ be a separable irreflexive closed subspace of m. Then E is not an endomorphism
range, since every bounded linear operator from m into a separable space is weakly
compact (Grothendieck (1953)). There exist in every infinite dimensional Banach
space, subspaces which are not operator ranges; for example, the null space of a
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discontinuous linear functional (for further examples see the remark after Corollary
2.5). We do not know of a characterization of endomorphism ranges.

Every operator range is the image of an /[(S) space; this is because every Banach
space is a quotient of such a space. It is moreover clear that there is an /,(S) space
which simultaneously maps onto each member of any given finite collection of
operator ranges.

UR is an operator range in Y, then Y can be embedded in another Banach space in
which R becomes an endomorphism range : Let Te\_X, y] satisfy R(T) = R and
define U(x, y) = (0, Tx); then 0 x R is an endomorphism range in X x Y.

What happens if the topology ofR varies? It can be shown, using the closed graph
theorem, that if Te [X, Y] and R(T) = R, then R is an operator range in any Banach
space Z containing, R whenever Y and Z induce comparable Vopo\o%\es> on R.

Many of the results of this paper contain as special cases known properties of
endomorphism ranges in Hilbert space; these latter are called 'operator ranges' by
Fillmore and Williams (1971), 'Julia varieties' by Dixmier (1949) and 'semi-closed
subspace' by Foias (cf. Fillmore and Williams (1971)). The results of the first three
sections of this paper were previously announced without proof in Cross (1977).

In Section 2 below we develop some of the basic properties of operator ranges;
these include properties of sums and intersections, complementation and
isomorphism. Section 3 studies operator ideals with fixed range space and variable
domain space and includes a result on strictly cosingular operators (Theorem 3.5—
the proof depends on a result of Vladimirskii (1967)). Consideration of the ideal of
weakly sequentially precompact operators shows that if an operator T factors
through an almost reflexive space then R(T) is the range of a strictly singular
operator. Section 4 discusses perturbation theory and includes applications of the
preceding theory.

2. Operator ranges

2.1. PROPOSITION. Let Rbe a linear subspace of the Banach space Y. The following
properties are equivalent:

(i) R is an operator range;
(ii) R is the domain of a closed operator defined in Y;

(iii) there is a norm || • 1̂  on R such that (R, || • ||,) is a Banach space and || y ||t ^ || y ||
for yeR.

PROOF. Assume (i). There exists a Banach space X and Te [X, Y~\ such that
R(T) = R. Then f~l satisfies (ii). Next, assume (ii) and let TeC(Y,X) where
D(T) = R. Define ||>>||i = | |y| | + || 7>|| (yeR). Then (K,||-||i) is clearly a Banach
space and (iii) follows. Finally, assume (iii). Put X = (/?,||-||,) and let Tbe the
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injection map of R into Y defined by Ty = y. Then Te [X, 7 ] and R(T) = R. Since X
is complete, (i) follows.

2.2 PROPOSITION. Let R, and R2 be operator ranges in Y. Then R1+R2 and
Rit~\ R2 are operator ranges.

PROOF. Let T, e [A",, y,] and T2 e [X2, 72] satisfy R(T,) = R1; R(T2) = R2. Define

Te[XxxX2, Y] by T(x,,x2) = T.XJ + TJXJ. Then R(T) = R[ + R2.

By proposition 2.1 there exist stronger norms || • ||, and || • ||2 defined on 7?! and R2

respectively, making (R^H-||,) and (/?2, || • ||2) complete. OnRl n R2 define the norm
1Mb = II y Hi + IMb- T n e n M 3̂  113 5= l|y|| (^e^i nR2), and it is easily checked that
(/?! n R2, || • ||3) is complete. Hence by Proposition 2.1, Ri n R2 is an operator range.

2.3 COROLLARY. IfXxX is isomorphic to X, then the endomorphism ranges in X
have the lattice property of Proposition 2.2.

Part (b) of the following theorem was established for endomorphisms in Hilbert
space by Dixmier (1949); see Fillmore and Williams (1971), p. 263.

2.4 THEOREM. Let i?, and R2 be operator ranges in Ysuch that Rl+R2 is closed.
Then

(a) if Rln R2 is closed then Rl and R2 are closed;
(b) if Ri and R2 are dense then Rt n R2 is dense.

PROOF, (a) Let T, e {X,, Y], T2 e (X2, Y] and Te [X, x X2, y] be defined as in the
proof of Proposition 2.2. Let P be the projection of Xl x X2 onto Xlx0 with null
space 0 x I 2 . Then TP = (x1;x2) = Tj x, and T(/-P)(x!,x2) = T2x2. Now
T-1(/?j) is closed, since T is continuous, R1nR2 is closed, and
T~1(^i) = (7'(/-i3))^1(R1nR2). Observing that T has closed range and that
T~1(Rl) contains N(T), it follows that Rx is closed. Similarly R2 is closed.

(b) With Tu T2 as above, let 7\ t e [X, x 0, 7] and T2} e [0 x X2, T\ be defined by
Tn(x,,0) = ^ x , and T21(0,x2) = T2x2. Then T= TxlP+T2l{I-P) is bounded
linear map of Xx x X2 onto R, +R2. Since Rl+R2is closed, T is an open map, and
since R, is assumed dense in Y, it follows by Jameson (1974), p. 38, that T~1(Ri)
is dense in XxxX2. We have T'\Ri) = {(xux2): ^x^R^ nR2}. Also
T2i{I-P){T~l{Rl) is dense in R2 by the continuity of T21(/-P). But

T21(I-P){(xux2): T2x2eR1nR2} = T21{(0,x2): T2x2eRinR2}
= T 2 {X 2 GX 2 : T j X j e ^ n ^ } c J } , n R 2 .

Therefore RlnR2 is dense in R2 and hence in Y.
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2.5 COROLLARY. IfR, and R2 are disjoint complementary operator ranges in Y, then
Ri and R2 are closed.

This result yields a construction of subspaces which are not operator ranges : Let
E be closed non-complemented subspace of Y, and let P be a linear projection of Y
onto E. Then N(P) is not an operator range (otherwise by Corollary 2.5, P would be
bounded).

A special case of Corollary 2.5 is the following well-known property : If the range
of a closed operator is complemented, then it is closed (since there is a bounded
operator with the same range) (compare Goldberg (1966), Theorem IV.1.12).

Observe that the condition that R, + R2 be closed is essential in Theorem 2.4. This
is obvious in the case of (a), and in the case of (b) follows from the next proposition.

2.6 PROPOSITION. Let Y be separable. There exists a pair of dense operator ranges
Ri and R2 such that R1nR2 = 0.

PROOF. There exist endomorphisms Su S2 of l2 such that /?(St) n R(S2) = 0 with
R(Si) and R(S2) dense in l2 (Fillmore and Williams (1971), p. 273). Let J be a
(compact) one-to-one map of l2 into Fwith dense range (cf. Goldberg and Kruse
(1962)), and consider Tr = JSU T2 = JS2.

A closed operator T is called semi-Fredholm if it has closed range and if either the
dimension of N(T) or the codimension of R(T) is finite.

2.7 PROPOSITION. Let Te [X, Y]. If there exists a bounded semi-Fredholm operator
U defined either on X or on X/N(T) with range contained in R(T), then R(T) is the sum
of R(U) and another closed subspace.

PROOF. Let Ue[X, Y] be semi-Fredholm and let R(T) => R(U). If codim
R(U) < oo then codimR(T) < oo, and the assertion follows. Suppose, on the other
hand, that dim N( U) < oo, i.e. that U is a <f> + -operator. The set of <p + -operators is an
open subset of [X, 7 ] (Brown and Page (1970), p. 328), and therefore T+ k U e cp + for
sufficiently large X. Then

R(T) = R(T+XU) c R(T + XU) + R(U) c R(T)

whence R(T) = R(T+XU) + R(U), as required. For the second case consider the

operator f: X/N(T) -- Yinduced by T.

2.8 COROLLARY. Let R be an endomorphism range in X. IfR contains a subspace
isomorphic to X then R is the sum of two closed subspaces.
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Of particular interest is the case X = l2. In this case it follows immediately that R
is the orthogonal sum of two subspaces (compare with Fillmore and Williams (1971),
Theorem 2.6).

A Banach space X which maps onto R a Yunder a continuous one-to-one linear
map is called the pre-image space of R; it is isomorphic to space (R, \\-\\ x) of
Proposition 2.1.

2.9 COROLLARY. Let R be an operator range. IfR contains a copy of its pre-image
space then R is the sum of two closed subspaces.

2.10 COROLLARY. Let R be an operator range in lt with separable pre-image space.
IfR contains an infinite dimensional closed subspace then R is the sum of two closed
subspaces.

PROOF. If X is the pre-image space, there exists a bounded linear map of /, onto X
(Jameson (1974), p. 215). Now apply Corollary 2.8, using the fact the R contains a
copy of l2 (loc. cit., p. 336).

2.11 THEOREM. Let Rx and R2 be operator ranges in Y such that R1nR2 has a
closed complementary subspace. Then Rt+R2 = Yif an only if there exist disjoint
closed subspaces Mx and M2 with M, c Rt and M2 c R2 such that Ml@ M2 = Y.

PROOF. Suppose that Rl+R2 = Y and let £ be a closed subspace such that
K, n R2® E — Y. Since ^ n ^ i s a n operator range (Proposition 2.2), it is a closed
subspace, by Corollary 2.5. Hence there exists a bounded projection P of 7onto E
along /?,nK2. Let Te\_XuY^, T2e\_X2,7] satisfy Rt = R^), R2 = R(T2).
Define A = TJT^\E) and B = T2/Ty\E). We clearly have R(A)nR(B) = 0. If

T,)) then

Hence P(R(Ti)) <= R{Tt) and P(R(T2)) c R(T2). Next we have

R(A) = En R(Tt) = P(En R(Tt)) c En P(i?(7\)) = P(/?(Tt)) c En £(7,).

Consequently

R(A) = PWTJ) and R(B) = P(R(T2)).

It follows that

R(A)®R(B) = P(/?(r,) + /?(T2)) = P(Y) = E.

Let My = R(A),M2 = R(B) + Rt r*R2. Clearly Ml+M1 = Y. A straightforward
check shows that Mr n M2 = 0. Hence Y= MY® M2. The converse is trivial.

https://doi.org/10.1017/S1446788700021200 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021200


224 R. W. Cross M

The above theorem fails unless R{ n R2 is at least closed; as a counterexample,
take Rt as the range of an infinite dimensional compact operator and R2 = Y.

2.12 THEOREM. Let X = c0 or lp(l < p < oo) and fer E be a linear subspace of X.
Then E contains no closed infinite dimensional subspace if and only if every
endomorphism of X with range in E is compact.

PROOF. Let E contain no closed infinite dimensional subspace and let Tbe an
endomorphism of X satisfying R(T) <= E. Then Tis clearly strictly singular. Since the
only two-sided closed ideal in [X] consists of the compact operators by Goldberg,
Marcus and Feldman (1967), Tis compact. Conversely, suppose E contains an
infinite dimensional closed subspace. Then E contains a subspace G isomorphic to X
by Whitley (1964), and any isomorphism Tof X into G satisfies R(T)c E and is not
compact.

Theorem 2.12 is a generalization of Theorem 2.5 of Fillmore and Williams (1971).
Two operators U, T are called equivalent if there exist invertible operators A and

Bsuch that T = AUB.

2.13 PROPOSITION. The operator ranges /?, and R2 in the Banach space Y are
isomorphic if and only if there exist equivalent operators 7~i and T2 such that
jR(T,) = /?! and R(T2) = R2.

PROOF. Let Rt and R2 be isomorphic. Choose injective bounded operators Tx and
T2 such that /?(T,) = Ri and R(T2) = R2. Let J e [R, F] be an isomorphism such that
J(Rt) = R2. Then R(JTt) = R(T2). The linear map (JT^'1 T2 is a closed injective
operator mapping D(T2) onto />(Ti), and is therefore an invertible isomorphism.
Viewing J as an invertible isomorphism of R\ onto R2, the factorization
T2 = JT^JT,)"1 T2 shows that T, and T2 are equivalent. The converse is trivial.

Two operator ranges Rj and R2 (not necessarily situated in the same Banach
space) are called similar if they are continuous linear images of each other. Similarity
is an equivalence relation on the class of operator ranges. The following result is a
consequence of the closed graph theorem.

2.14 PROPOSITION. Similar operator ranges have similar pre-image spaces.

2.15 PROPOSITION. A Banach space Yis the range of a strictly singular operator if
and only if Ycontains no subspace isomorphic to lx.

PROOF. Suppose Te IX, 7] is a strictly singular operator with R{T) = Y. If there
exists an injective isomorphism U : /, -» Y, then by the lifting property of l{ there
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exists U : /, -> X such that TU = U. But then U would be strictly singular which is
impossible.

Conversely, suppose that ^contains no subspace isomorphic to /t. There exists a
set S of suitable cardinality and a quotient map h of ^(S) onto Y. Let M be a closed
subspace of/,(S) such that h/M is an isomorphism. Since every infinite dimensional
closed subspace of l^S) contains a subspace isomorphic to /, (cf. Lacey and Whitley
(1965), p. 2), M must be finite dimensional. Hence h is strictly singular as required.

2.16 COROLLARY. There is no strictly singular operator whose range is an L^/z)
space.

For a given operator range R let |||| j be any norm making (R, \\ • || t) complete
(compare with Proposition 2.1).

2.17 COROLLARY. Let R be an operator range in Y which is not the range of any
strictly singular operator. Then {R, || • || t) contains a subspace isomorphic to lt.

PROOF. If (R, \\-\\ j) contains no copy of /, then there exists a bounded strictly
singular map T of X onto (R, || • || J , by the theorem. But then T is clearly a bounded
strictly singular map of X into Y with range R.

The converse of Corollary 3.7 is false; consider the natural injection of ^ into c0.

3. Ideals of operators

In this section we introduce the concept of a BR-ideal. It differs from the more
usual definitions of ideal in that the range space is kept fixed.

Let BR(Y) denote the class of bounded linear maps with range contained in Y. A
subclass J of BR{ Y) is called a left BR-ideal if it satisfies the following two conditions

(i) for each Banach space X, the set J n [X, Y] is either empty, or is a linear
subspace of [X, y ] ;

(ii) for each TeJ and each operator V satisfying R(V) c D(7) we have TVeJ.
The subclass J of BR(Y) is called a BR-ideal if it satisfies (i) and (ii) and the

following:
(iii) for each TeJ, if Ue\_T\ then UTeJ.
A left semi-ideal in BR(Y) is any subclass J satisfying (ii) above.
Let S be a subclass of BR( Y). We call a subspace R of Y an operator range of type S

(respectively, of type S) if it is the range of an operator (respectively, an injective
operator) belonging to S. Clearly, if S is a class of operators satisfying (iii) and Rt and
R2 are similar operator ranges, then Rt is of type S if and only if R2 is of type S.
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Examples of B/?-ideals are: compact, strictly singular, strictly cosingular,
completely continuous and weakly compact operators. A further example is given
below.

If J is a BR-ide&\ in BR(Y) then J n [7] is a two-sided ideal in [7] in the usual
Banach-algebra sense (unless empty). Conversely, every ideal in [7] is a BR-ideal.

3.1 THEOREM. Let J be a BR-ideal and let Ri and R2 be operator ranges of type J.
Then Rl + R2 and R , n R 2 are operator ranges of type J. A similar result holds for left
BR-ideals.

PROOF. Let T^IX^ Y~\; T2e[X2, 7], Tand P be defined as in the proof of
Theorem 2.4, and suppose that 7\ and T2 are members of J. Define i e {_XU Xx x X2~\
by i(Xl) = (xu0). Then T, = TPi and TP = {TPi)(i~l P)eJ. Similarly, T{I-P)eJ,
and therefore T= TP + T{I-P) is in J. Since Ri + R2 = R{T), it is an operator
range of type J.

Let To = T/T~\R, n R2) and let X be the linear space T~\Rin R2) normed by
||(xi,*2)||x = | |*i | | + ||*a|| + ||ro(xi,x2)||1 where the norm ||-||, is any norm
making Ri n R2 complete (compare with Proposition 2.1).

To show that X is complete, let (x", xn
2) be a cauchy sequence in X. Then x\-*xx

and x\ -* x2 for some x,6Xj, x2eX2. Hence

T(x\,x2) = Tt x\ + T2x2^ Tt x, + T2x2 = T(xux2).

Since R, n R2 is complete in the norm || • || t which is stronger than the 7-norm, there
exists yeRlr\R2 such that || Trx\ + T2x"2 — y|| t -»0 which implies
y = Tj xj + T2 x2. Hence (xu x2)e X as required. Obviously To e [X, 7].

It only remains to show that To e J. Let; : X -> X x x X2 be the injection map. It is
clearly continuous, and since To = Tj, it follows that To e J.

3.2 PROPOSITION. Let J be a left semi-ideal in BR( Y) and let R be an operator range
of type J. If TeBR(Y) and satisfies R(T)cR then TeJ.

PROOF. Let Ae[X, 7] be injective and such that AeJ and R(A) = R. Let
Te[Z, 7] satisfy R(T) <= R. The operator A'1 T is an everywhere defined closed
operator and hence A'1 Te[Z,X\ Therefore T=AA~1TeJ.

3.3 REMARKS, (a) Let J consist of either the compact operators, the weakly
compact operators, or the strictly cosingular operators. It is easily verified that TeJ
if and only if f e J. Thus an operator range is of type J if and only if it is of type / .
Consequently, in view of Proposition 3.2, if the range of an operator T is contained
in the range of an operator belonging to the class J, then T is itself in the class J. For
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example, if the range of T is contained in the range of a strictly cosingular operator
then T is strictly cosingular.

(b) Let J be the BR-ideal of completely continous operators in BR(Y) and let R be
an operator range in Y. Then R is the image of /,(S), since l^S) maps onto any pre-
image of/?. Since every operator denned on l^S) is completely continuous, it follows
that every operator range R is of type J in this case.

A Banach space Y is called an h-space (compare Whitley (1964)) if every closed
infinite dimensional subspace of Y contains a subspace isomorphic to Y and
complemented in Y. Examples are c0 and lp (1 ^ p < oo). It is shown in Whitley
(1964) that if X is an /i-space then the greatest ideal in [X~\ is the ideal of strictly
singular operators. This is a consequence of the following result:

3.4 PROPOSITION. Let Ybe an h-space. Then the largest proper BR-ideal in BR( Y)
consists of the strictly singular operators.

PROOF. The proof is a modification of that of (Whitley (1964), Theorem 6.2); we
omit the details.

3.5 THEOREM. Let Rt and R2 be operator ranges satisfying Rt+R2 = Y.IfR2 is
the range of a strictly cosingular operator, then Rt is of finite codimension in Y.

PROOF. Let T, e[Xur} and T2 e \_X2, 7 ] satisfy /?(T,) = Ru R(T2) = R2, where
T2 is strictly cosingular. Let Te[X 1 x X2, 7] be denned by T(x1?x2) = T^Xi + T2x2,
and let P be the projection denned by P{xux2) = (x1;0). Then T(l-P) is strictly
cosingular since R(T(I — P)) = R(T2) (Remarks 3.3(a)). Since T is a <p .-operator, and
since <p_ is stable under the addition of a strictly cosingular operator by
Vladimirskii (1967), it follows that TP = T-T(I-P) is a <p_-operator, that is,
Rt == R(TP) is of finite codimension.

A special case of Theorem 3.5, for compact endomorphisms in Hilbert space, is
given in Fillmore and Williams (1971), p. 263.

The property of Theorem 3.5 fails for strictly singular operators—consider any
map of /j onto l2.

An operator Te[X, 7] is said to be weakly sequentially precompact (WSP) if
whenever xn is a bounded sequence in X, Txn has a weak cauchy subsequence. For
example, if either X or Yis almost reflexive (cf. Lacey and Whitley (1965)) then T is
WSP. The class of WSP operators in BR(Y) is a BR-ideal. It is easily verified that T is
WSP if and only if f is WSP. Hence, by Proposition 3.2, if the range of an operator T
is contained in the range of a WSP operator then T is WSP. For example, let A be
defined on c0 and let R{T) c R(A). Then T is WSP.
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3.6 PROPOSITION. Let Te [X, Y] be WSP but not strictly singular. Then both X
and Y contain almost reflexive infinite dimensional subspaces.

3.7 PROPOSITION (Lacy and Whitley (1965)). IfTe [X, Y] is completely continuous
but not strictly singular then both X and Y contain an infinitive dimensional closed
subspace in which weak and norm sequential convergence coincide.

Propositions 3.6 and 3.7 together show that if an operator is both completely
continuous and WSP then it is strictly singular. Hence if an operator range is of
WSP type then it is of strictly singular type (cf. Remarks 3.3(b)). In particular, if an
operator T factors through an almost reflexive space then R(T) is of strictly singular
type.

4. Perturbation theory

We denote by L(X, Y) the set of linear transformations T defined on a linear
subspace D(T) of AT with range R(T) contained in Y. The closed operators in L(X, Y)
are denoted by C(X, Y) and the bounded (everywhere defined) operators by [X, Y].
If TeL(X,Y), we write *D(T) for the subspace D(T) equipped with the norm
|| x || +1| Tx ||. The class BR(Y) contains all the closed operators with range in y in
the following sense : if Te C(X, Y) then *D(T) is a Banach space and Te [*£>(T), y] .

A subset E of L (X, Y) is called uniformly open if for each Te E there exists 8 > 0
such that T+UeE whenever U is a bounded operator in [X, Y] satisfying
|| U || < 5. E is called uniformly closed if its complement is uniformly open. The
uniformly open sets define a topology on L(X, Y) which induces the norm topology
on IX, Y].

An operator Te L(X, Y) is called strictly singular if there is no infinite dimensional
subspace M of D(T) such that the restriction T/M of T to M is an isomorphism
(into). It is called strictly cosingular if there is no infinite dimensional Banach space Z
such that UT is surjective for some surjective U e[Y,Z~\. (These definitions are
generalizations of those of Pelczynski (1965) for bounded operators.) A normally
solvable operator is a closed operator whose range is closed.

In C(X,Y) we define the classes q>f(X,Y), abbreviated <pf, i = 1,2,3,4,5, as
follows :

, Y) <=> <x(T) < oo and 0(T) < oo,
Tecp^X, Y) <=> Teq>c

+(X, Y) and R(T) is complemented,
Te<pi(X, Y) <=> Teyi (X, Y) and N{T) is complemented in*D(T),
Tecpc

A(X, Y) <=> Tecpc
+(X, l)\{q»?(X, Y)u<pc

2{X, Y)},
Te<pc

5(X, Y) <=> Tecp<L(X, YUvftX, Y) u </>%X, Y)},
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where (pc+(X, Y) (<pc-(X, Y)) consists of normally solvable operators with <x(T) < oo
(respectively, /?(T) < oo). Observe that if R(T) is complemented, in particular if
P(T) < oo, then R(T) is closed (Corollary 2.5).

In IX, Y] we define the corresponding classes q>lX, Y) (abbreviated <p;) by setting
q>i = <pf n [X, Y]. For notational convenience we write

(tfvcpiHX, Y), ((p^vtucp^x, Y),...
for the unions

(f>c,(X, Y) u <pc
2(X, Y), <pAX, Y) U cp2(X, 11 u <p3(X, Y),...,

and these will be abbreviated <pf u<p2, <Pi^(p2 u<p3,.... We also write cp^X) and
(jp^X) for < î(X, X) and <pf(Ar, X) respectively. The sets (p,{(pf) form a disjoint partition
of the bounded (respectively, closed) semi-Fredholm operators. Observe that if
U, Tecpi then UTe<pt whenever t/Tis defined (1 ^ r ^ 5). We also have for each i

Te<pi(X,Y)<=>Teq>C(*D(T),Y).

Hence using the results of Nieto (1968) for bounded operators we obtain :

4.1 PROPOSITION. Let TeC(X,Y). Then Te (f>c
x u <pf (Te cp^ u <pf) if and only if

there exists Fe[Y,X] such that R(V) c D(T), amd TV=I+F (respectively,
VT= I + F on D(T)), where F is an everywhere defined bounded operator of finite
dimensional range.

4.2 PROPOSITION. The classes cpi, (p%, <pf, <pf u <P$ and q>% u q>c
5 are uniformly open

sets.

PROOF. First we show that q>l u <p2 is open. Let Te<p± u <j»2. By Proposition 4.1
there exists Fe[Y,X] such that VT= I + F where F has finite dimensional range.
But <pt is open by Brown and Page (1970), p. 331. Hence for Ue\_X, Y] with || U \\
sufficiently small, V(T+U) = I + F + VUey^X). But then F,e[A:] exists with
Vx V{T+ (/) = / + F j where F t has finite dimensional range, and this implies (cf. 4.1)
that T+Uecpl<u(p2as required. Since q>2 KJ <p4 is open (loc. cit, p. 328), it follows
that (p2 is open. A similar argument shows that q>3 and (p3v(ps are open.

To show that <rf u ep̂  is uniformly open, let Te<p^ u cpj. Then

Te(«»1u«»2)(«D(7j,n

Consequently, by the first part, there exists a (5-neighbourhood of T contained
i n ^ u ^ M ' Z X T X Y ) . Let l /e [X,Y] satisfy || 1/1| < <5. Since Ht/lfi^T)^ \\U\\ < 6,
it follows that

whence T+Uecp^*uq)2 as required. The remaining verifications are similar.
An interesting (and apparently unsolved) problem is whether or not the sets (pA(X)

and <Ps(X) are open.
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Let S be an arbitrary subset of L{X, Y). The set P(X) of admissible perturbations of
S is defined as

P(S) = {AeL(X, Y): A + TeS whenever TeS and D(T) c D(A)}.

If M is a subset of P(S) we say that S is stab/e under perturbation by operators in M.
The condition D(T) <= D(A) cannot be meaningfully relaxed in the definition of

P(S). For example suppose T is a semi-Fredholm operator (bounded or unbounded)
with a(T) = oo. Let D{T) = N(T) and let A e [N(T), Y] be compact with non-closed
range. Then T+A does not have closed range, and in particular is not semi-
Fredholm.

The following are some easily proved facts concerning P(S): P(S) is closed under
finite sums and is topologically closed if S is uniformly open. If S is stable under
perturbation of given type (for example, compact perturbation) then so is the
uniform closure S; in particular P(S) c P(S). If S' is complement of S, then
P(S) = P(S'). If S is non-empty and closed under scalar multiplication, then
5 => P(S), making P(S) a subset of the boundary of S, and S n [X, y] is a subspace of
IX, y ] if and only if S n [X, 7] = P(S) n IX, 7 ] .

A subset S of L(X, Y) is called automorphism invariant if for each TeS, we have
TU eS and VTeS whenever U and Fare automorphisms of X and yrespectively.

4.3 PROPOSITION. Let S be an automorphism invariant subset of L(X,Y). Then
[ y ] 0 P(S) c P(S) and P(S)0[Z] cz P(S).

PROOF. We show first that P(S) is automorphism invariant. Let A e P(S) and let U
be an automorphism of X. If T e S and D(T) <= D(AU), we have A + TU~x e S since
D ( r i / " 1 ) = UD(T)cz D(A), and therefore AlZ + TeS since S is automorphism
invariant. A similar argument shows that if V is an automorphism of Y then
VA e P(S). Thus P(S) is automorphism invariant. In particular, if c is a non-zero
scalar then cA e P(S), while if c = 0, c/1 e P(S) trivially.

Now let A e P(S) and B e [7 ] . Since the set of automorphisms of a Banach space is
open (cf. Jameson (1974), p. 175) there exists A ^ O such that I + XB is an
automorphism. Then by the properties established above, (7 + 2B) A e P(S) and
therefore R4eP(S). Thus \_T\0 P(S) <= P{S). Similarly P(S)0[AT] <= P(S).

4.4 COROLLARY. A subset o/[X] is an automorphism invariant subspace if and only
if it is an ideal.

4.5 COROLLARY. The classes P(cpf(X)) n [X~\ and P((p,{X)) are ideals.

4.6 PROPOSITION. Let S c L(X, Y) be either uniformly open or uniformly closed and
consist of normally solvable operators. IfS is stable under perturbation by bounded
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operators of finite dimensional range then S consists entirely of semi-Fredholm
operators.

PROOF. The result can be deduced from the proof of Goldberg (1966), V. 2.6.

4.7 PROPOSITION. Let A be a closed operator. Then AeP(q>c_) => AeP((pc_).

PROOF. Let A e P((pc-(X, Y)). Then A e [*D(>4), Y] and A = Ah where h is surjective.
Then h is in (pc-, since A is closed. Suppose A 0 P(q>c-). Then there exists
Te<pc_(X/N(A),Y) such that D{T)cD(A) and T+A<£(pc_. However Thecpc_ and

fl(r))cD(4 and therefore {T + A)h = Th + Aecp.. But
K(T+i), which implies T + z l e ^ . This contradiction shows that

4.8 THEOREM, (a) The classes <p^, <p\, <p% and q>1 are stable under perturbation by
closed strictly singular operators.

(b) The classes (pc
u <p%, (pf and <pf are stable under perturbation by closed strictly

cosingular operators.

PROOF, (a) The stability of the classes <p, under bounded strictly singular
perturbation for i = 1,2,3,4 follows from known results. Indeed, <pt and <p + are
stable (Goldberg (1966), V.2.1), the stability of q>t u p 2 follows from Lin (1974),
Theorem 1, and taking the complement of q> t u q>2 in q> + shows that <pA is stable. The
stability of (p, u cp3 (and hence of q>3) follows again from Lin (1974), Theorem 2.

We complete the proof of (a) by showing that <pf is stable under closed strictly
singular perturbation for those values of i for which <p; is stable under bounded
strictly singular perturbation.

Let Te<pf (i = 1,2,3,4) and let A e C(X, Y) be strictly singular with D{T) <= D(A).
Let E be D(T) with the norm || x || E = || x \\ + \\ Tx \\ + \\ Ax \\. Then because Tand A
are closed, E is complete. It follows that E and {D(T) are isomorphic. Accordingly
Te(pf(*D(T), Y) = <pt{E, Y). But A e [£, 7] and it is clear that A is strictly singular in
[£, 7] . Consequently T+Aecp^E, Y) which implies that T+Aeq>f as required.

(b) The stability of q> _ under bounded strictly cosingular perturbation is proved in
Pelczynski (1965). Since P(cp_) c P(<p,) (Gohberg, Marcus and Feldman (1967), p.
69), the stability of q>t follows.

To show that cps is stable, let Te<p5 and let A be a bounded strictly cosingular
operator. Suppose T + A 0 <p5. Then, because <p _ is stable, we have T + A e q ^ u c p j ,
and consequently there exists U e [7, X] and a bounded operator F e [ Y ] of finite
dimensional range such that (T+A)U — I + F (Proposition 4.1). Thus
TU = I + F—AU. But I + Feq)^ since <pt is stable under finite dimensional
perturbation. Also AU is strictly cosingular by Pelczynski (1965), p. 32. Hence
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TU = / + F -4 [ / e<p , , by an earlier remark. But TUe<pt implies TUV = I+Fl for
some F e [ y ] where Fl has finite dimensional range, and hence (Proposition 4.1)
Te<pl u<p3, a contradiction. Therefore q>5 is stable. The stability of <p3 follows by
complementation in <pt.

To show that <p2 is stable, let Te cp2. Then ST = I + F, where S e [ Y, JV] and i7 has
finite dimensional range. Let A e [X, y] be strictly cosingular. Then by Pelczynski
(1965) SA is strictly cosingular, and since I + Fetpu we have
S(T+A) = I + F + SAe<pl. It now follows by an argument similar to the previous
that T+Ae<p2.

The stability of the classes <pf (i = 1,2,3,5) can now be proved by using the same
technique as in (a).

4.9 REMARKS. (1) The stability of <pf under bounded strictly cosingular
perturbation, for the case when D(T) is dense in A", has been proved in Israel (1974).
Our arguments show that the results therein remain valid without any restriction on
D(T).

(2) In general q>5 is not stable under strictly singular perturbation. Let Te [lt /2] be
surjective. Then Tis strictly singular and is easily seen to have no right inverse.
Therefore Teq>5. But then T- T= 0 which is not in <p5.

(3) The following example shows that in general q>A is not stable under strictly
cosingular perturbation : With T as in (2) above, T* is an injective isomorphism of l2

into m. Then T* is weakly compact by Goldberg (1966), p. 88, and since m has the
Dunford—Pettis property, T* is strictly cosingular by Pelczynski (1965), p. 244.
Then T* e<p4, while T* - T* = 0.

Let TeC(X, Y). If there exists t / e [ X * ] such that TU = I + F, where F is a
bounded operator of finite dimensional range, then U is called a bounded right-
regularizer of T(cf. Lin (1974)).

4.10 THEOREM. The set of closed operators in L(X,Y) having a bounded right-
regularizer with closed range is stable under bounded strictly singular and bounded
strictly cosingular perturbation.

PROOF. The strictly singular case is treated in Lin (1974). Here we deal with the
strictly cosingular case. Let Te C(X, Y), let U be a bounded right-regularizer of T
with closed range, let TU = I + F, and let Ae\_X, Y~\ be strictly cosingular. Then
(T+A)U = I + F+AUe(pCi by Theorem 4.8. Therefore by Proposition 4.1 there
exists l/ ,e(p1(y)suchthat(r+y4)[/l/1 = I + Ft where F, is bounded and of finite
dimensional range. Obviously UUX has closed range. Therefore UUX is the required
right-regularizer of T+A.
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Theorems 4.8 and 4.10 together show that the results of Lin (1974) are also valid
for bounded strictly cosingular operators in place of (bounded) strictly singular
operators.

4.11 PROPOSITION. Let J be a left ideal in [X] and let R be the range of an injective
operator in J. If the operator Te[X~\ satisfies R(T) c R then TeJ.

PROOF. Similar to the proof of Proposition 3.2.

4.12 THEOREM. Let X x X be isomorphic to X, and let S be an automorphism
invariant subset of [X] containing the surjectice endomorphisms. Suppose that Rl and
R2 are endomorphism ranges satisfying Rt+R2 = X. IfR2 is contained in the range of
an injective operator in the class P(S) then Rt is of type S.

PROOF. By Proposition 4.3, P(S) is an ideal in [X]. Let Tu T2e\_X~\ satisfy
R(Tt) = Ri and R(T2) = R2. By Proposition 4.11, T2eP(S). Let; be an isomorphism
of X x X onto X and let Te [AT] be defined by Tj(xux2) = Tlxl + T2x2. Let P be
defined by P(x,,x2) = (x,,0). Then R(T2) = R(Tj(I-P);"1), and hence by
Proposition 4.11, Tj(l-P)j~l eP{S). Since T is surjective, TeS and therefore
TjPj'1 = T-Tjil-Py-'eS. Since RiTjPj'1) = R^) the result follows.

4.13 COROLLARY. Let XxX be isomorphic to X and let Rx and R2 be

endomorphism ranges satsifying Rl+R2 = X. If R2 is contained in the range of an
injective strictly singular endomorphism then Rt has finite codimension in X.

PROOF. Take S = cpl(X) in the theorem.
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