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FIXED POINT THEOREMS FOR LIPSPCHITZIAN SEMIGROUPS 

BY 

HAJIME ISHIHARA 

ABSTRACT. Let U be a nonempty subset of a Banach space, S a left 
reversible semitopological semigroup, S = {Tt : t (E S} a continuous 
representation of S as lipschitzian mappings on U into itself, that is for 
each s G S, there exists ks > 0 such that ||r5(x) — Ts(y)\\ ^ ^ | | JC— y\\ for 
x,y € £/. We first show that if there exists a closed subset C of U such 
that rv=??{7>jc : t ^ 5} Ç C for all x G U then 5 with limsup5 ks < y/l 
has a common fixed point in a Hilbert space. Next, we prove that the 
theorem is valid in a Banach space E if limsup^ ks < N{E)~XI2. 

1. Introduction. Let S be a semitopoligical semigroup, i.e., S is a semigroup with 
a Hausdorff topology such that for each a G S the mappings s —+ a • s and s —-> s • a 
from S to S are continuous. Let U be a nonempty subset of a Banach space E. Then 
a family 5 = {Tt : t € S} of mappings from U into itself is said to be a lipschitzian 
semigroup on U if S satisfies the following: 

(1) Tts{x) — TtTs(x) for t,s G S and x G U ; 
(2) the mapping (s,x) —• Ts(x) from S x U into U is continuous when S x U has 

the product topology; 
(3) for each s G S, there exists ks > 0 such that \\Ts(x) — Ts(y)\\ ^ ks\\x — y\\ for 

x,yeU. 

A semitopological semigroup S is left reversible if any two closed right ideals of 
S have nonvoid intersection. In this case, (S, ^ ) is a directed system when the binary 
relation " ^ " on S is defined by a ^ b if and only if {a}Ua~S D {b}Ub~S. A lipschitzian 
semigroup on U is said to be a uniformly k- lipschitzian if ks — k for all s G 5. Fixed 
point theorems for uniformly /:-lipschitzian semigroups were first studied by Goebel 
and Kirk [6] and Goebel, Kirk and Thele [7]. Lifschitz [10], Downing and Ray [4] and 
Ishihara and Takahashi [8] proved that in a Hilbert space a uniformly k- lipschitzian 
semi-group with k < y/l has a common fixed point. Also Casini and Maluta [3] 
and Ishihara and Takahashi [9] proved that a uniformly ^-lipschitzian semigroup in 
a Banach space E has a common fixed point if k < N{E)~XI2, where N(E) is the 
constant of uniformity of normal structure. In these results, except [7], domain U of 
semigroups were assumed to be closed and convex. 

In this paper, we first show that if S is left reversible and if there exists a closed 
subset C of U such that C\sc~o{Ttx : t ^ s} Ç C for all x G U then a lipschitzian 
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semigroup on nonconvex domain in a Hilbert space with limsup5/:5 < \fl has a 
common fixed point. Next, we prove that the theorem is valid in a Banach space E if 
limsupj ks < N(E)~XI2. These results are the generalization of [5], [8], [9]. 

2. Fixed point theorems. Let {Ba : a G A } be a decreasing net of bounded 
subsets of a Banach space E. For a nonempty subset C of E define, 

r({Ba},x) = inf sup{||x - y \ \ :yeBa}: 
a 

r({Ba},C) = mf{r({Ba},x) :x£C}; 

A({Ba},C) = {xeC: r({Ba},x) = r({Ba},C)}. 

We know that r({Ba}, •) is a continuous convex function on E which satisfies the 
following: 

\r({Ba},x)-r({Ba},y)\ £ \\x -y\\ £ r({Ba},x) + r({Ba},y) 

for each x,y G E. It is easy to see that if E is reflexive and if C is closed convex then 
A({Ba},C) is nonempty and moreover, if E is uniformly convex then it consists of 
a single point, cf. [11]. For a subset C, we denote by coC the closure of the convex 
hull of C, by d(C) the diameter of C and by R(C) the Chebyshev radius of C, i.e. 
R(C) — inf supxeCyeC \\x—y\\. The uniformity N(E) of normal structure of E is defined 
by 

: C is a nonempty bounded convex subset of E with d(C) > 0 > . 
d(C) J 

It is known that if N(E) < 1 then E is reflexive, cf. [1], [9]. [12]. We start with 
proving a fixed point theorem in a Hilbert space. The following lemma which was 
proved in [8] plays a crucial role in the proof of the theorem. 

LEMMA 1. Let C be a nonempty closed convex subset of a Hilbert space H. Let 
{Ba : a G A} be a decreasing net of nonempty bounded subsets of H and let 
{a} = M{BahC).Then 

r({Ba},C)2 + \\a -x\\2 é r({Ba},x)2 

for every I E C . 

We also know the following: 

LEMMA 2. Let C be a nonempty closed convex subset of a Hilbert space H and 
let {Ba : a G A } be a decreasing net of nonempty bounded subset of C. Then the 
asymptotic center a of {Ba : a G A } in C is an element ofnacbBa. 
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PROOF. Let zp be the nearest point to a in coBp. Then we have \\y — zp\\ ^ ||v — a\\ 
for all y G cbBp. So we have 

r({Ba}, zp) ^ sup{\\y - zp\\ :yEBp}^ sup{\\y - a\\ : y G ^ } . 

Let {zfa} be a subnet of {zp} which converges weakly to ZQ. Then we obtain 

r({fia},z0)^liminfr({fia},z^) 

^ liminfsup{| |v-a| | : v G % } = r({5a},a). 

Hence we have z0 = tf. Since {z^} is arbitrary, we obtain {zp} converges weakly to 
a. Therefore a G nac~oBa. 

THEOREM 1. Let U be a nonempty subset of a Hilbert space H and let S be a 
left reversible semitopological semigroup. Let S = {Tt : t G S} be a lipschitzian 
semigroup on U with l i m s u p ^ < y/l. Suppose that {Tty : t G S} is bounded for 
some y G U and there exists a closed subset CofU such that nscb{Ttx : t ^ s} Ç C 
for all x G U. Then there exists a z G C such that Tsz = z for all s ES. 

PROOF. Let Bs(x) = {Ttx : t ^ s} for s G S and x € U. Define {xn : n ^ 0} by 

induction as follows: 

*o = y, 

{xn} = SKiBsQcn-^coU) for n^ 1. 

By Lemma 2, we have xn G nsco{Ttx : t ^ s} Ç C Ç U and hence {xn} is well 
defined. Let rn(x) = r({Z?5(jc„_i)},jt) and rn = r({Bs(xn-\)},cbU) for « ^ 1. Then 
by Lemma 1, we have ||JCW — u\\2 Û rn(x)2 — r2 for all u G cbU and n ^ 1. Putting 
« = 7V*„, we have 

M r-ri | |2 (T \ 2 2 

= (lim sup \\Ttxn^x - Tsxn\\f - r2
n 

= (lim sup \\TsTtxn-\ - Tsxn\\)
2 - r2 

S / :^limsup| |r^_i — xn\\)
2 r2 

= {k2-\)r2
n. 

Let 77 = lim sup9 k
2 — 1. Then we obtain 

r2
+l ^ rn+i(xn)

2 = lim sup H ^ -x n \ \ 2 

^ (lim s u p ^ - l)r2 = rjr2 ^ r]nr2 

s 

for all n ^ 1. Since 

||*/i+1 - * J 2 = 2\\*n+\ -Ttxn\\
2 + 2\\Ttxn -xn\\

2 
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for all t G S and n ^ 0, we have 

\\xn+\ — xn\\
2 ^ 21imsup||r/jcrt — JCW+I||2+ 21imsup||r?xrt — JC„||2 

^ 2 r 2
+ 1 + 2 r n + 1 U n ) 2 ^ V r 2 . 

Therefore since 77 < 1, {xn} is a Cauchy sequence of C. Let JC„ —• z. Then for s G S, 

||z - Tsz\\2 ^ 3||z - Jt„||2 + 3||jt„ - Tsxn\\
2 + 3\\Tsxn - Tsz\\2 

^3(l+/ : 2) | |z- jc r t | |
2 + 3 | | ^ - r , j c / T | | 2 - . 0 

as n —» 00. Therefore Tsz — z for all s G S. 
As a direct consequence, we have the following: 

COROLLARY 1. Let U be a nonempty subset of a Hilbert space H and let T be a 
mapping from U into itself such that 

\\Tnx-Tny\\ûkn\\x-y\\ 

for all x,y e U and n ^ 1, where {k„} is a positive sequence with lim sup„ k„ < 
Suppose that {Tny : n ^ 1} is bounded for some y G U and there exists a closed 
subset C of U such that nncb{Tkx : k ^ n} Ç C for all x G U. Then there exists a 
z G C swc/z f to Tz = z. 

If we confine ourselves to nonexpansive or asymptotically nonexpansive semi­
groups, we have the following result. 

THEOREM 2. Let U be a nonempty subset of a Hilbert space H and let S be a 
left reversible semitopological semigroup. Let S = {Tt : t G S} be a lipschitzian 
semigroup on U with l i m s u p ^ ^ 1. Suppose that {Ttx : t G S} is bounded and 
nscb{Ttx : t ^ s} Ç U for some x G U. Then there exists a z G U such that Tsz = z 
/or a// 5 G 5. 

PROOF. Let Bs — {Ttx : t ^ s} for s G S and let a be the asymptotic center of 
{Bs} in coU. Then by Lemma 1, we have 

r({Bs},coU)2 + \\a-Tta\\2 ^ r ( {£ ,} ,7» 2 ^ £2r({£,}, a)2 

for alW G S. Hence we have 

l imsup| | t f-7>| |2 ^ (\\msupk2)r({Bs},œU)2 - r({Bs},coU)2 = 0. 

Therefore we obtain 

\\a — Tsa\\ ^ lim sup \\a — Tta\\ + lim sup \\Tta — Tsa\\ 

^ lim sup | \a — Tta\\ + ks limsup||r,tf — a\\ = 0 
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for all SES. 
Next, by a method similar to that of the proof of Theorem 1, we prove a fixed 

point theorem in a Banach space. An important lemma is a result proved in [9], which 
we state here as: 

LEMMA 3. Let C be a closed convex subset of a reflexive Banach space E. Let 
{Ba : a G A } be a decreasing net of nonempty bounded closed convex subsets of C 
and let B = Ç]aBa. Then 

r({Ba},B)^N(E)Md(Ba). 
a 

THEOREM 3. Let U be a nonempty subset of a Banach space E with N(E) < 1 
and let S be a left reversible semitopological semigroup. Let S = {Tt : t G S} be a 
lipschitzian semigroup on U with \imsupsks < N(E)~ll2. Suppose that {Tt : t G S} 
is bounded for some y G U and there exists a closed subset C of U such that 
nscb{Ttx : t ^ s} Ç C for all x G U. Then there exists a z G C such that Tsz = z 
for all s G S. 

PROOF. Without loss of generality we may assume that lim sup5 ks ^ 1. Let Bs(x) = 
co{Ttx :t^s} and let B(x) = nsBs(x) for s G S and x EU. Define {xn : n à 0} by 
induction as follows: 

xo = y\ 

xn e A({Bs(xn^)},B(xn^)) for n^l. 

Well-definedness of {xn} follows from that B(x) Ç C Ç U for all x G U. Let 
rn(x) = r({Bs(xn-{)},x) and rn = r({Bs(xn-\)},B(xn-i)) for n ^ 1. Then from xn G 
B(xn-\) = ntBt(xn-i) for n ^ 1, we have 

rn+i(xn) = limsup||7,xn - xn\\ ^ lim sup(lim sup \\Ttxn-\ - Tsxn\\)) 
s s t 

û (limsup^)limsup||rrjcn_i — JCW|| = (lim sup Â^)^ 
s î s 

^ (lim sup*,)#(£) infd(B,0r,,_i)) 
S S 

and 
mïd(Bs(xn-i)) = inf sup{||7>„_i - Tbxn-i\\ :a,b^ s} 

s s 

^ lim sup(lim sup ||7Vr„_i — Ttxn-\ II) 
t s 

= \imsuprn(Ttxn-i) ^ (lim^sup£,>„(*„_i). 

Let T] = (lim sup5 ks)
2N(E). Then we have 

rn+{(x„) ^ (limsup/:,)r„ ^ (lim sup kt)
2N(E)rn(xn-{) 

= 7)rn(xn-\) S rinri(x0) 
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and 
\\xn+\ -xn\\£ r({Bs(xn)},xn+i) + r({Bs(xn)},xn) = rn+l + rn+\{xn) 

^ Ota sup Jfcfr
1if+1n(^) + ffrifo) 

^ 27/VKxo) 

for all n == 1. So, {xn} is a Cauchy sequence of C and hence {JCW} converges to a 
point z G C. Therefore we have 

| | z - r , z | | lim ll-Kn-r^ll ^ \im(rn+l(xn) + rn+{(Tsxn)) 
n—+oo n—KO 

^ lim(l+^)77V,(x0) = 0 
n—Kx> 

for all s ES. 
We know that if E is uniformly convex then N(E) < 1, cf. [2]. Hence the following 

corollary which is a direct consequence of Theorem 2 is generalization of the result 
of Goebel and Kirk [6], 

COROLLARY 2. Let U be a nonempty subset of a Banach space E with N(E) < 1 
and let T be a mapping from U into itself such that 

\\T"x-T"y\\^kn\\x-y\\ 

for all x^y E U and n ^ 1, where {kn} is a positive sequence with limsupn/:n < 
N(E)~]'2. Suppose that {Tny : n =t 1} is bounded for some y G U and there exists 
a closed subset C of U such that nncb{Tkx : k ^ n) Ç C for all x G U. Then there 
exists a z G C such that Tz = z. 

REMARK 1. Casini and Maluta [3] showed that the condition N(E) < 1 is weaker 
than eo(£) < 1 of [7]. Goebel, Kirk and Thele employed the condition that there 
exist a bounded closed convex subset C of U such that for each x G U and e > 
0, dist(Ttx,C) < e(t ^ s) for some s G S. This condition implies that there exists a 
closed subset C of U such that Piscb{Ttx : t ^ s} Ç C for all x G £/ and {7,)> : f G S} 
is bounded for some y £ U. In fact, it is easy to see that {Tty : t G S} is bounded 
for all y £ U. Let z G n5<%>{7> : / ^ s}. Then for each e > 0, there exist s E S such 
that dist(Ttx,C) < e/3 for every t ^ s. Also there exist 0 ^ À, ^ U l X i A/ = 1) 
and ti == ^ with \\z — Y^i=\ Af-ZVf.jc|| < e/3. For each 1 =5 z ̂ £ AÏ, choose w, G C so that 
||rr.jc — ui\\ < (2/3)e. Then we have 

n n n 

dist(z,C)^ \\z- Y, Ai«iII ^ H z - ^ A / V H + ^ A / I I V - i i / l l 
/=i /=i i=i 

^ 6 / 3 + ^ ( 2 / 3 ) 6 = 6. 
i=\ 

Since 6 is arbitrary, we have z EC. Therefore nsc~o{Ttx : t ^ s} Ç C for all x G £/. 
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The following example, due to Goebel and Kirk [5], shows that there exists a 
lipschitzian mapping which is not uniformly ^-lipschitzian. 

EXAMPLE. Let B denote the unit ball in the Hilbert space I2 and let T be defined as 
follows: 

T : (xux2,x3,--) —>(0,x2,a2x2,a3x3,---) 

where at is a sequence of numbers such that 0 ^ ai Û 1 and Y\^2
 ai < l /v^- Then 

||TJC — 7>|| ^ 2 | | J C - J | | for;c,j G B and moreover \\Tnx-Tny\\ ^ 2U"=2ai\\x-y\\ 
for n ^ 2. Thus 

2 /i 

lim2TTtf/ = 21imTT«/ < A/2. 
1=2 1=2 

Clearly the mapping T is not uniformly ^-lipschitzian with k < y/l. 
REMARK 2. Let 7 be a positive real number and let S = {Tt : t G S} be a lipschitzian 

semigroup with limsup^ &v < 7. Then, putting k's = sup,^v kt, we have 

| |7> - Tsy\\ ^ *,||* - j | | ^ sup*,||* -y\\ = k's\\x -y\\ 

and limy k's = limsupv ks. Hence 5 is a lipschitzian semigroup with \\ms k's < 7. 
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