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Abstract

We introduce Poisson boundaries of II1 factors with respect to density operators that
give the traces. The Poisson boundary is a von Neumann algebra that contains the
II1 factor and is a particular example of the boundary of a unital completely positive
map as introduced by Izumi. Studying the inclusion of the II1 factor into its boundary,
we develop a number of notions, such as double ergodicity and entropy, that can be
seen as natural analogues of results regarding the Poisson boundaries introduced by
Furstenberg. We use the techniques developed to answer a problem of Popa by showing
that all finite factors satisfy his MV property. We also extend a result of Nevo by
showing that property (T) factors give rise to an entropy gap.

1. Introduction

Given a locally compact group G and a probability measure μ ∈ Prob(G), the associated (left)
random walk on G is the Markov chain on G whose transition probabilities are given by the
measures μ ∗ δx. The Markov operator associated to this random walk is given by

Pμ(f)(x) =
∫
f(gx) dμ(g),

where f is a continuous function on G with compact support. The Markov operator extends to
a contraction on L∞(G), which is unital and (completely) positive. A function f ∈ L∞(G) is μ-
harmonic if Pμ(f) = f . We let Har(G,μ) denote the Banach space of μ-harmonic functions. The
Furstenberg–Poisson boundary [Fur63b] of G with respect to μ is a certain G-probability space
(B, ζ), such that we have a natural positivity-preserving isometric G-equivariant identification
of L∞(B, ζ) with Har(G,μ) via a Poisson transform.

An actual construction of the Poisson boundary (B, ζ), which is often described as a quotient
of the path space corresponding to the stationary σ-algebra, is less important to us here than
its existence, and indeed, up to isomorphisms of G-spaces, it is the unique G-probability space
such that L∞(B, ζ) is isomorphic, as an operator G-space, to Har(G,μ).

Under natural conditions on the measure μ, the boundary (B, ζ) possesses a number of
remarkable properties. It is an amenable G-space [Zim78], it is doubly ergodic with isomet-
ric coefficients [Kai92, GW16], and it is strongly asymptotically transitive [Jaw94, Jaw95].
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Poisson boundaries of II1 factors

The boundary has therefore become a powerful tool for studying rigidity properties for groups
and their probability-measure-preserving actions [Mar75, Zim80, BS06, BM02, BF20].

In light of the successful application of the Poisson boundary to rigidity properties in group
theory, Alain Connes suggested (see [Jon00]) that developing a theory of the Poisson boundary
in the setting of operator algebras would be the first step toward studying his rigidity conjecture
[Con82], which states that two property (T) ICC (that is, every nontrivial element has infinite
conjugacy class) groups have isomorphic group von Neumann algebras if and only if the groups
themselves are isomorphic. Further evidence for this can be seen by the significant role that
Poisson boundaries play in [CP13, CP17, Pet15], where a related rigidity conjecture of Connes
was investigated.

Poisson boundaries can more generally be defined using any Markov operator associated to
a random walk. Markov operators are particular examples of normal unital completely positive
(u.c.p.) maps on von Neumann algebras, and motivated by defining Poisson boundaries for
discrete quantum groups, Izumi in [Izu02, Izu04] was able to define a noncommutative Poisson
boundary associated to any normal u.c.p. map on a general von Neumann algebra. Specifically,
if M is a von Neumann algebra and φ : M → M is a normal u.c.p. map, then we let Har(φ) =
{x ∈ M | φ(x) = x} denote the space of φ-harmonic operators. Izumi showed that there exists a
(unique up to isomorphism) von Neumann algebra Bφ such that, as operator systems, Har(φ) and
Bφ can be identified via a Poisson transform P : Bφ → Har(φ). The existence of this boundary
follows by showing that Har(φ) can be realized as the range of a u.c.p. idempotent on M and
then applying a theorem of Choi and Effros. Alternatively, the existence of the boundary follows
by considering the minimal dilation of φ [Izu12]. We include in the appendix to this paper an
elementary proof based on this perspective.

There is a well-known dictionary between many analytic notions in group theory and those
in von Neumann algebras. For example, states on B(L2(M)) correspond to states on �∞Γ, nor-
mal Hilbert M -bimodules correspond to unitary representations, etc. ([Con76b, § 2], [Con80]).
This allows one to develop notions such as amenability and property (T) in the setting of
finite von Neumann algebras. While Izumi’s boundary gives a satisfactory noncommutative ana-
logue of the Poisson boundary associated to a general random walk, an appropriate notion of a
noncommutative Poisson boundary analogous to the group setting is still missing.

The main goal of this paper is to introduce a theory of Poisson boundaries for finite von
Neumann algebras that we believe will fill the role envisioned by Connes. If M is a finite von
Neumann algebra with a normal faithful trace τ , and if ϕ ∈ B(L2(M, τ))∗ is a normal state
such that ϕ|M = τ , then we will view ϕ as the distribution of a ‘noncommutative random walk’
on M . To each distribution we associate a corresponding ‘convolution operator’, which is a
normal u.c.p. map Pϕ : B(L2(M, τ)) → B(L2(M, τ)), such that M ⊂ Har(Pϕ). We then define
the Poisson boundary of M with respect to ϕ to be Izumi’s noncommutative boundary Bϕ
associated to Pϕ; more precisely, the boundary is really the inclusion of von Neumann algebras
M ⊂ Bϕ, together with the Poisson transform P : Bϕ → Har(Pϕ).

Poisson boundaries of groups give rise to natural Poisson boundaries of group von Neumann
algebras. Indeed, as already noticed by Izumi in [Izu12], if Γ is a countable discrete group
and μ ∈ Prob(Γ), then the noncommutative boundary of the u.c.p. map φμ : B(�2Γ) → B(�2Γ)
given by φμ(T ) =

∫
ργTρ

∗
γ dμ(γ) is naturally isomorphic to the von Neumann crossed product

L∞(B, ζ) � Γ where (B, ζ) is the Poisson boundary of (Γ, μ). Thus, many of the results we obtain
are not merely analogues, but are actually generalizations of results from the theory of random
walks on groups.

If M is a finite factor, then under natural conditions on the distribution ϕ, for example
that its ‘support’ should generate M , we show that the boundary Bϕ is amenable/injective
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(Proposition 2.4), and that the inclusion M ⊂ Bϕ is ‘ergodic’, that is, M ′ ∩ Bϕ = C

(Proposition 2.7). We use techniques of Foguel [Fog75] to obtain equivalent characterizations
for when the boundary is trivial (Theorem 2.10). The double ergodicity result of Kaimanovich
[Kai92] is more subtle, as, unlike in the case for groups, there is no natural ‘diagonal’ inclusion
of M into Bϕ⊗Bϕ. There are, however, natural notions of left and right convolution operators,
so that we may naturally associate with ϕ a second u.c.p. map Po

ϕ which commutes with Pϕ (see
§ 3 for the precise definition of Po

ϕ). We may then show that bi-harmonic operators are constant,
a result which is equivalent to double ergodicity in the group setting.

Theorem A (Theorem 3.1 below). Let M be a finite factor and suppose ϕ is as above. Then
we have

Har(B(L2(M, τ)),Pϕ) ∩ Har(B(L2(M, τ)),Po
ϕ) = C.

Motivated by the question of determining whether or not LF∞ is finitely generated, Popa
studied in [Pop21a] the class of separable II1 factors M that are tight, that is, M contains two
hyperfinite subfactors L,R ⊂M such that L and Rop together generate B(L2(M)). He conjec-
tures in Conjecture 5.1 of [Pop21a] that if a factor M has the property that all amplifications
M t are singly generated, then M is tight. He also notes that a tight factor M satisfies the MV
property, which states that for any operator T ∈ B(L2(M)) the weak closure of the convex hull
of {u(JvJ)T (Jv∗J)u∗ | u, v ∈ U(M)} intersects the scalars. Popa then asks in Problem 7.4 of
[Pop21b] and Problem 6.3 in [Pop21c] if free group factors, or perhaps all finite factors, have the
MV property. As a consequence of double ergodicity we are able to answer Popa’s problem.

Theorem B (Theorem 3.3 below). All finite factors have the MV property.

Other consequences of double ergodicity are that it allows us to show vanishing cohomology
for subbimodules of the Poisson boundary (Theorem 3.5), to generalize rigidity results from
[CP13] (Theorem 4.1), and to extend results of Bader and Shalom [BS06] identifying the Poisson
boundary of a tensor product with the tensor product of the Poisson boundaries (Corollary 4.5).

We also introduce analogues of Avez’s asymptotic entropy and Furstenberg’s μ-entropy in
the setting of von Neumann algebras (see § 5 for these definitions). We show that the triviality of
the Poisson boundary is equivalent to the vanishing of the Furstenberg entropy (Corollary 5.15).
We also use entropy to extend a result of Nevo [Nev03] to the setting of von Neumann algebras,
which shows that property (T) factors give rise to an ‘entropy gap’.

Theorem C (Theorem 6.2 below). Let M be a II1 factor with property (T) generated by uni-
taries u1, . . . , un. Define the state ϕ ∈ B(L2M)∗ by ϕ(T ) = (1/n)

∑n
k=1〈T ûk, ûk〉. There exists

c > 0 such that if M � A is an irreducible inclusion of von Neumann algebras and ζ ∈ A∗ is any
faithful normal state such that ζ|M = τ , then hϕ(M ⊂ A, ζ) ≥ c.

We end with an appendix where we construct Izumi’s boundary of a u.c.p. map. Our
approach is elementary, and has the advantage that it applies for general C∗-algebras. This
level of generality has no doubt been known by experts, but we could not find it in the current
literature.

2. Boundaries

2.1 Hyperstates and bimodular u.c.p. maps
Fix a tracial von Neumann algebra (M, τ), and suppose we have an embedding M ⊂ A where A
is a C∗-algebra. We say that a state ϕ ∈ A∗ is a τ -hyperstate (or just a hyperstate if τ is fixed) if
it extends τ . We denote by Sτ (A) the convex set of all hyperstates on A. For each hyperstate ϕ
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we obtain a natural inclusion L2(M, τ) ⊂ L2(A, ϕ) induced from the map x1̂ �→ x1ϕ for x ∈M .
We let eM ∈ B(L2(A, ϕ)) denote the orthogonal projection onto L2(M, τ). We may then consider
the u.c.p. map Pϕ : A → B(L2(M, τ)), defined by

Pϕ(T ) = eMTeM , T ∈ A. (1)

Note that if x ∈M ⊂ A, then we have Pϕ(x) = x. We call the map Pϕ the Poisson transform
(with respect to ϕ) of the inclusion M ⊂ A.

The following proposition is inspired by [Con76b, § 2.2].

Proposition 2.1. The correspondence ϕ �→ Pϕ defined by (1) gives a bijective correspondence
between hyperstates on A, and u.c.p., M -bimodular maps from A to B(L2(M, τ)). Moreover, if
A is a von Neumann algebra, then Pϕ is normal if and only if ϕ is normal.

Also, this correspondence is a homeomorphism where the space of hyperstates is endowed
with the weak∗ topology, and the space of u.c.p., M -bimodular maps with the topology of
pointwise weak operator topology convergence.

Proof. First note that if ϕ is a hyperstate on A, then for all T ∈ A we have

ϕ(T ) = 〈T, 1̂〉ϕ = 〈Pϕ(T )1̂, 1̂〉τ .
From this it follows that the correspondence ϕ �→ Pϕ is one-to-one. To see that it is onto, suppose
that P : A → B(L2(M, τ)) is u.c.p. and M -bimodular. We define a state ϕ on A by ϕ(T ) =
〈P(T )1̂, 1̂〉τ . For all y ∈M we then have ϕ(y) = 〈P(y)1̂, 1̂〉τ = τ(y), hence ϕ is a hyperstate.
Moreover, if y, z ∈M , and T ∈ A, then we have

〈Pϕ(T )ŷ, ẑ〉τ = 〈Pϕ(z∗Ty)1̂, 1̂〉τ
= ϕ(z∗Ty) = 〈P(T )ŷ, ẑ〉τ , (2)

hence, Pϕ = P.
It is also easy to check that Pϕ is normal if and only if ϕ is.
To see that this correspondence is a homeomorphism when given the topologies above, sup-

pose that ϕ is a hyperstate, and ϕα is a net of hyperstates. From (2) and the fact that u.c.p.
maps are contractions in norm we see that Pϕα converges in the pointwise ultraweak topology to
Pϕ if ϕα converges weak∗ to ϕ. Conversely, setting y = z = 1 in (2) shows that if Pϕα converges
in the pointwise ultraweak topology to Pϕ, then ϕα converges weak∗ to ϕ. �

Considering the case A = B(L2(M, τ)), we see that for each hyperstate ϕ on B(L2(M, τ)) we
obtain a u.c.p. M -bimodular map Pϕ on B(L2(M, τ)). In particular, composing such maps gives
a type of convolution operation on the space of hyperstates. More generally, if A is a C∗-algebra,
with M ⊂ A, then for hyperstates ψ ∈ A∗ and ϕ ∈ B(L2(M, τ))∗ we define the convolution ϕ ∗ ψ
to be the unique hyperstate on A such that

Pϕ∗ψ = Pϕ ◦ Pψ. (3)

We say that ψ is ϕ-stationary if we have ϕ ∗ ψ = ψ, or equivalently, if Pψ maps into the space
of Pϕ-harmonic operators

Har(Pϕ) = Har(B(L2(M, τ)),Pϕ) = {T ∈ B(L2(M, τ)) | Pϕ(T ) = T}.
Lemma 2.2. For a fixed ψ ∈ Sτ (A) the mapping

Sτ (B(L2(M, τ))) 
 ϕ �→ ϕ ∗ ψ ∈ Sτ (A)

is continuous in the weak∗ topology.
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Moreover, if ϕ ∈ B(L2(M, τ))∗ is a fixed normal hyperstate, then the mapping

Sτ (A) 
 ψ �→ ϕ ∗ ψ ∈ Sτ (A)
is also weak∗ continuous.

Proof. By Proposition 2.1 the correspondence ϕ �→ Pϕ is a homeomorphism from the weak∗

topology to the topology of pointwise ultraweak convergence. This lemma then follows easily
from (3). �

2.2 Poisson boundaries of II1 factors
Definition 2.3. Let ϕ ∈ Sτ (B(L2(M, τ))) be a hyperstate. We define the Poisson boundary Bϕ
of M with respect to ϕ to be the noncommutative Poisson boundary of the u.c.p. map Pϕ as
defined by Izumi [Izu02], that is, the Poisson boundary Bϕ is a C∗-algebra (a von Neumann
algebra when ϕ is normal) that is isomorphic, as an operator system, to the space of harmonic
operators Har(B(L2(M, τ)),Pϕ).

Since M is in the multiplicative domain of Pϕ, we see that Bϕ contains M as a subal-
gebra. Moreover, note that if we have a C∗-algebra B, an inclusion M ⊆ B together with a
completely positive isometric surjection from B to Har(B(L2(M, τ)),Pϕ), then this induces a
completely positive isometric surjection from B to Bϕ which restricts to the identity on M . It is
a well-known result of Choi [Cho72] that a completely positive surjective isometry between two
C∗-algebras is a ∗-isomorphism. Thus, the Poisson boundary contains M as a subalgebra, and
the inclusion (M ⊂ Bϕ) is determined up to isomorphism by the property that there exists a
completely positive isometric surjection P : Bϕ → Har(B(L2(M, τ)),Pϕ) which restricts to the
identity map on M . We will always assume that P is fixed and we also call P the Poisson
transform.

Given any initial hyperstate ϕ0 ∈ Sτ (B(L2(M, τ))), we may consider the hyperstate given
by ϕ0 ◦ P on Bϕ. Of particular interest is the state η on Bϕ arising from the initial hyperstate
ϕ0(x) ∈ Sτ (B(L2(M, τ))) given by ϕ0(x) = 〈x1̂, 1̂〉, which we call the stationary state on Bϕ. In
this case, using (2) above, it is easy to see that we have Pη = P, and hence ϕ ∗ η = η.

Proposition 2.4. Let (M, τ) be a tracial von Neumann algebra and let ϕ be a fixed hyperstate
on B(L2(M, τ)). Then the Poisson boundary Bϕ is injective.

Proof. If we take any accumulation point E of
{
(1/N)

∑N
n=1 Pn

ϕ

}
N∈N

in the topology of pointwise
ultraweak convergence, then E : B(L2(M, τ)) → Har(B(L2(M, τ)),Pϕ) gives a u.c.p. projection.
As Bϕ is isomorphic to Har(B(L2(M, τ)),Pϕ) as an operator system, it then follows that Bϕ is
injective [CE77, § 3]. �

The trivial case is when ϕe(x) = 〈x1̂, 1̂〉τ , in which case we have that Pϕe = id, and the Pois-
son boundary is simply B(L2(M, τ)). Note that ϕe gives an identity with respect to convolution.
Also note that if ϕ ∈ B(L2(M, τ))∗ is a hyperstate, then we have a description of the space of
harmonic operators as

Har(B(L2(M, τ)),Pϕ) = {T ∈ B(L2(M, τ)) | ϕ(aTb) = ϕe(aTb) for all a, b ∈M}.
Since Pϕ is M -bimodular it follows that Pϕ(M ′) ⊂M ′. We say that ϕ is regular if the

restriction of Pϕ to M ′ preserves the canonical trace on M ′, and we say that ϕ is generating if
M is the largest ∗-subalgebra of B(L2(M, τ)) which is contained in Har(B(L2(M, τ)),Pϕ). If ϕ
is regular, then the conjugate of ϕ, which is given by ϕ∗(T ) = ϕ(JT ∗J), is again a hyperstate.
We will say that ϕ is symmetric if it is regular and we have ϕ∗ = ϕ.
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Regular, generating, symmetric hyperstates are easy to find. Suppose (M, τ) is a separable
finite von Neumann algebra with a faithful normal trace τ . We consider the unit ball (M)1 of
M as a Polish space endowed with the strong operator topology, and suppose we have a σ-finite
measure μ on (M)1 such that

∫
x∗x dμ(x) = 1. We obtain a normal hyperstate as

ϕ(T ) =
∫
〈T x̂∗, x̂∗〉 dμ(x) (4)

and, using (2), we may explicitly compute the Poisson transform Pϕ on B(L2(M, τ)) as

Pϕ(T ) =
∫

(Jx∗J)T (JxJ) dμ(x).

Proposition 2.5. Consider ϕ as given by (4). Then the following assertions hold.

(i) ϕ is generating if and only if the support of μ generates M as a von Neumann algebra.
(ii) ϕ is regular if and only if

∫
xx∗ dμ(x) = 1. In this case ϕ∗ is a normal hyperstate.

(iii) If ϕ is regular, then Pϕ∗(T ) =
∫

(JxJ)T (Jx∗J) dμ(x) and ϕ is symmetric if J∗μ = μ, where
J is the adjoint operation.

Proof. If the support of μ generates von Neumann algebra M0 ⊂M such that M0 �= M ,
then we have [JxJ, eM0 ] = [Jx∗J, eM0 ] = 0 for each x in the support of μ. Hence, Pϕ(T ) =∫

(JxJ)T (Jx∗J) dμ(x) = T , for each T in the ∗-algebra generated by M and eM0 . Therefore,
ϕ is not generating. On the other hand, if T ∈ Har(B(L2(M, τ)),Pϕ) is such that we also have
T ∗T, TT ∗ ∈ Har(B(L2(M, τ)),Pϕ), then for each a ∈M we have∫

‖((JxJ)T − T (JxJ))â‖2
2 dμ(x)

= 〈(T ∗Pϕ(1)T − Pϕ(T ∗)T − T ∗Pϕ(T ) + Pϕ(T ∗T ))â, â〉 = 0,

and by symmetry we also have
∫ ‖((JxJ)T ∗ − T ∗(JxJ))â‖2

2 dμ(x) = 0. Hence, [JxJ, T ] =
[Jx∗J, T ] = 0 for μ-almost every x ∈ (M)1. Therefore, if the support of μ generates M as a
von Neumann algebra, then T ∈ JMJ ′ = M , showing that ϕ is generating, thereby proving (i).

If y ∈M , then we have Pϕ(JyJ) =
∫
Jx∗yxJ dμ(x). Hence, we see that ϕ is regular if and

only if for all y ∈M we have τ(y) =
∫
τ(x∗yx) dμ(x) =

∫
τ(xx∗y) dμ(x), which is if and only if∫

xx∗ dμ(x) = 1, thereby proving (ii).
If ϕ is regular, then

ϕ∗(T ) = ϕ(JT ∗J) =
∫
〈JT ∗Jx̂∗, x̂∗〉 dμ(x)

=
∫
〈x̂, T ∗x̂〉 dμ(x) =

∫
〈T x̂∗, x̂∗〉 dJ∗μ(x).

Therefore, if J∗μ = μ, then ϕ is symmetric, thereby proving (iii). �
Given a unital C∗-algebra A, and a u.c.p. map P : A→ A, we denote the set of fixed points of

P by Har(A,P). That is, Har(A,P) = {a ∈ A : P(a) = a}. The following lemma is well known;
see, for example, [FNW94], [BJKW00, Lemma 3.4], or [CD20, Lemma 3.1] . We include a proof
for the convenience of the reader.

Lemma 2.6. Suppose A is a unital C∗-algebra with a faithful state ϕ. If P : A→ A is a u.c.p.
map such that ϕ ◦ P = ϕ, then Har(A,P) ⊂ A is a C∗-subalgebra.

Proof. Har(A,P) is clearly a self-adjoint closed subspace, thus we must show that Har(A,P)
is an algebra. By the polarization identity it is enough to show that x∗x ∈ Har(A,P)
whenever x ∈ Har(A,P). Suppose x ∈ Har(A,P). By Kadison’s inequality we have
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P(x∗x) − x∗x = P(x∗x) − P(x∗)P(x) ≥ 0. Also, ϕ(P(x∗x) − x∗x) = 0 so that by faithfulness of
ϕ we have P(x∗x) = x∗x. �

Proposition 2.7. Let M be a finite von Neumann algebra with a normal faithful trace τ . Let
ϕ ∈ B(L2(M, τ))∗ be a regular generating hyperstate, and let Bϕ be the corresponding Poisson
boundary. Then M ′ ∩ Bϕ = Z(M). In particular, if ϕ is also normal and M is a factor, then Bϕ
is also a von Neumann factor.

Proof. Let P : Bϕ → Har(B(L2(M, τ)),Pϕ) denote the Poisson transform. If x ∈M ′ ∩ Bϕ, then
P(x) ∈M ′ ∩ B(L2(M, τ)) = JMJ . Since ϕ is regular, Pϕ preserves the trace when restricted
to JMJ . Thus, Har(JMJ,Pϕ) is a von Neumann subalgebra of JMJ by Lemma 2.6.
Since ϕ is generating, M is the largest von Neumann subalgebra of Har(B(L2(M, τ))),
and hence Har(JMJ,Pϕ) ⊆M , implying that Har(JMJ,Pϕ) = Z(M). Therefore, P(x) ∈
Har(JMJ,Pϕ) = Z(M), and hence x ∈ Z(M) since P is injective. �

If ϕ is a normal hyperstate in Sτ (B(L2(M, τ))), then Pϕ : B(L2(M, τ)) → B(L2(M, τ)) is a
normal map, and hence the dual map P∗

ϕ preserves the predual of B(L2(M, τ)) which we identify
with the space of trace-class operators.

We let Aϕ ∈ B(L2(M, τ)) denote the density operator associated with ϕ, that is, Aϕ is the
unique trace-class operator so that ϕ(T ) = Tr(AϕT ) for all T ∈ B(L2(M, τ)). Since ϕ is positive
we have that Aϕ is a positive operator. If P1̂ denotes the rank-one orthogonal projection onto
C1̂, then we have ϕ(T ) = 〈Pϕ(T )1̂, 1̂〉 = Tr(Pϕ(T )P1̂), and hence we see that Aϕ = P∗

ϕ(P1̂). In
particular, we have that Aϕ∗n = (Pn

ϕ)∗(P1̂) for n ≥ 1.

Proposition 2.8. Let (M, τ) be a tracial von Neumann algebra and let ϕ ∈ Sτ (B(L2(M, τ)))
be a normal hyperstate. Then there exists a τ -orthogonal family {zn}n which gives a partition
of the identity as 1 =

∑
n z

∗
nzn so that

Pϕ(T ) =
∑
n

(Jz∗nJ)T (JznJ)

for all T ∈ B(L2(M, τ)).
Moreover, if {z̃m}m is a τ -orthogonal family which gives a partition of the identity as

1 =
∑

n z̃
∗
nz̃n, then the map

∑
m(Jz̃∗mJ)T (Jz̃mJ) agrees with Pϕ if and only if for each t > 0

we have

sp{zn | ‖zn‖2 = t} = sp{z̃m | ‖z̃m‖2 = t}.
Proof. Since Aϕ is a positive trace-class operator we may write Aϕ =

∑
n anPyn , where a1, a2, . . .

are positive and {yn}n is an orthonormal family with Pyn denoting the rank-one projection onto
Cyn. For T ∈ B(L2(M, τ)) we then have

Tr(TAϕ) =
∑
n

an〈Tyn, yn〉.

Taking T = x∗x ∈M , we have an‖xyn‖2
2 ≤ Tr(x∗xAϕ) = ‖x‖2

2, so that yn ∈M ⊂ L2(M, τ) for
each n. Hence, for T ∈ B(L2(M, τ)) we have

Tr(Pϕ(T )P1̂) = Tr(TAϕ) =
〈 ∑

n

an(JynJ)T (Jy∗nJ)1̂, 1̂
〉

= Tr
(( ∑

n

an(JynJ)T (Jy∗nJ)
)
P1̂

)
.
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Since Pϕ is M -bimodular and since JynJ ∈M ′, it follows that for all x, y ∈M we have

Tr(Pϕ(T )xP1̂y) = Tr
(( ∑

n

an(JynJ)T (Jy∗nJ)
)
xP1̂y

)
.

In particular, setting T = y = 1, we have

τ(x) =
∑
n

anτ(y∗nynx),

which shows that
∑

n any
∗
nyn = 1.

Since the span of operators of the form xP1̂y is dense in the space of trace-class operators, it
then follows that Pϕ(T ) =

∑
n an(JynJ)T (Jy∗nJ) for all T ∈ B(L2(M, τ)). Setting zn =

√
any

∗
n

then finishes the existence part of the proposition.
Suppose now that {z̃m}m is a τ -orthogonal family which gives a partition of the identity

1 =
∑

n z̃
∗
nz̃n, and set ϕ̃(T ) = Tr((

∑
n(Jz̃

∗
nJ)T (Jz̃nJ))P1̂). Then, the density matrix Aϕ̃, corre-

sponding to ϕ̃, is given by Aϕ̃ =
∑

n z̃
∗
nP1̂z̃n. Since {z̃n}n forms a τ -orthogonal family it then

follows easily that z̃∗n is an eigenvector for Aϕ̃, and the corresponding eigenvalue is ‖z̃∗n‖2
2 = ‖z̃n‖2

2.
Using our notation from the first part of the proof of the proposition, we have that Aϕ =∑

n z
∗
nP1̂zn. By the same argument as above, we get that z∗n is an eigenvector for Aϕ, and the

corresponding eigenvalue is ‖z∗n‖2
2 = ‖zn‖2

2. Note that Pϕ = Pϕ̃ if and only if Aϕ = Aϕ̃. Since
the corresponding density matrices are positive trace class operators, the moreover part of the
proposition follow easily from the spectral theorem. �

We say that the form Pϕ(T ) =
∑

n(Jz
∗
nJ)T (JznJ) (respectively, ϕ(T ) =

∑
n〈T ẑ∗n, ẑ∗n〉) is a

standard form for Pϕ (respectively, ϕ). It follows from Proposition 2.5 that ϕ is generating
if and only if {zn}n generates M as a von Neumann algebra. We say that ϕ is strongly gen-
erating if the unital algebra (rather than the unital ∗-algebra) generated by {zn}n is already
weakly dense in M . This is the case, for example, if ϕ is generating and symmetric, since then
we have that {zn}n = {z∗n}n, and hence the unital algebra generated by {zn}n is already a
∗-algebra.

Proposition 2.9. Let (M, τ) be a tracial von Neumann algebra and suppose ϕ is a normal
strongly generating hyperstate. Then the stationary state ζ = ϕ ◦ P gives a normal faithful state
on the Poisson boundary Bϕ such that ζ|M = τ .

Proof. By considering the Poisson transform P, it suffices to show that ϕ is normal and faithful
on the operator system Har(Pϕ). Note that here the stationary state is a vector state and hence
normality follows. To see that the state is faithful fix T ∈ Har(Pϕ), with T ≥ 0 and 〈T 1̂, 1̂〉 = 0.
Let Pϕ(S) =

∑
n(Jz

∗
nJ)S(JznJ) be the standard form of Pϕ. Since T ∈ Har(Pϕ), we have that

Pk
ϕ(T ) = T for each k ∈ N. Expanding the standard form gives

0 = 〈T 1̂, 1̂〉 = 〈P kϕ(T )1̂, 1̂〉 =
∑

n1,n2,...,nk

〈Tzn1zn2 · · · znk
1̂, zn1zn2 · · · znk

1̂〉.

We then have Tm̂ = 0 for all m in the unital algebra generated by {zn}, and as ϕ is strongly
generating it then follows that T = 0. �

We end this section by giving a condition for the boundary to be trivial. We denote the
space of trace-class operators on L2(M, τ) by TC(L2(M, τ)). We also denote the trace-class
norm on TC(L2(M, τ)) by ‖ · ‖TC. We identify B(L2(M, τ)) with TC(L2(M, τ))∗ via the pairing
(A, T ) �→ Tr(AT ), where A ∈ TC(L2(M, τ)) and T ∈ B(L2(M, τ)).
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Theorem 2.10. Let (M, τ) be a tracial von Neumann algebra and let ψ be a normal hyperstate.
Set ϕ = 1

2ψ + 1
2〈·1̂, 1̂〉 and let An ∈ TC(L2(M, τ)) denote the density matrix corresponding to

the normal, u.c.p. M -bimodular map Pn
ϕ . Then the following conditions are equivalent.

(i) For all x ∈M we have ‖xAn −Anx‖TC → 0.
(ii) For all x ∈M we have xAn −Anx→ 0 weakly.
(iii) Har(Pϕ) = M .

Proof. The first condition trivially implies the second. To see that the second implies the third,
suppose for each x ∈M that we have xAn −Anx→ 0 weakly as n→ ∞. Let T ∈ Har(Pϕ). Let
x, a, b ∈M . Then, taking inner products in L2(M, τ), we have

|〈(TJxJ − JxJT )a1̂, b1̂〉| = |〈(b∗Tax∗ − x∗b∗Ta)1̂, 1̂〉|
= |〈Pn

ϕ(b∗Tax∗ − x∗b∗Ta)1̂, 1̂〉| = |Tr(An(b∗Tax∗ − x∗b∗Ta))|
= |Tr((x∗An −Anx

∗)b∗Ta)| → 0.

Hence T ∈ JMJ ′ = M .
To see that the third condition implies the first we adapt the approach of Foguel from

[Fog75]. Suppose Har(Pϕ) = M . Set A0 = {A ∈ TC(L2(M, τ)) | ‖(Pn
ϕ)∗(A)‖TC → 0}. Note that

since (Pn
ϕ)∗ is a contraction in the trace-class norm we have that A0 is a closed subspace.

Since ϕ = 1
2ψ + 1

2〈·1̂, 1̂〉, we have P∗
ϕ = 1

2 id + 1
2P∗

ψ and we compute

(Pn
ϕ)∗(id − P∗

ϕ) = 2−(n+1)

( n∑
k=0

(
n

k

)
(Pk

ψ)∗
)

(id − P∗
ψ)

= 2−(n+1)
n∑
k=1

((
n

k − 1

)
−

(
n

k

))
P∗
ψ.

We have limn→∞ 2−(n+1)
∑n

k=1 |
(
n
k−1

) − (
n
k

)| = 0 (see (1.8) in [OS70]) hence ‖(Pn
ϕ)∗(P1̂ −

P∗
ϕ(P1̂))‖TC → 0. Thus P1̂ − P∗

ϕ(P1̂) ∈ A0.
Since P∗

ϕ is M -bimodular we then have that aP1̂b− P∗
ϕ(aP1̂b) ∈ A0 for each a, b ∈M and

hence B − P∗
ϕ(B) ∈ A0 for all B ∈ TC(L2(M, τ)). If T ∈ B(L2(M, τ)) is such that Tr(AT ) = 0 for

all A ∈ A0, then for all B ∈ TC(L2(M, τ)) we have 〈B − P∗
ϕ(B), T 〉 = 0 so that T ∈ Har(Pϕ) =

M . Hence the annihilator of A0 is contained in M. So the pre-annihilator of M must be contained
in A0. Thus A ∈ A0 whenever Tr(Ax) = 0 for all x ∈M . In particular, we have xP1̂ − P1̂x ∈ A0

for all x ∈M , which is equivalent to the fact that ‖xAn −Anx‖TC → 0 for each x ∈M . �

3. Biharmonic operators

If ϕ ∈ Sτ (B(L2(M, τ))) is regular and normal, then we define Po
ϕ to be the u.c.p. map given by

Po
ϕ = Ad(J) ◦ Pϕ∗ ◦ Ad(J). Note that Po

ϕ and Pη commute for any normal hyperstate η. Indeed,
if we have standard forms Pϕ(T ) =

∑
n(Jz

∗
nJ)T (JznJ) and Pη(T ) =

∑
m(Jy∗mJ)T (JymJ), then

by Proposition 2.5 we have Po
ϕ(T ) =

∑
n znTz

∗
n and hence

Po
ϕ ◦ Pη(T ) = Pη ◦ Po

ϕ(T ) =
∑
n,m

zn(Jy∗mJ)T (JymJ)z∗n.

The following is a noncommutative analogue of double ergodicity which was established in
[Kai92].
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Theorem 3.1. Let (M, τ) be a tracial von Neumann algebra and let ϕ be a normal regular
strongly generating hyperstate. Then

Har(B(L2(M, τ)),Pϕ) ∩ Har(B(L2(M, τ)),Po
ϕ) = Z(M).

Proof. We fix a standard form Pϕ(T ) =
∑

n(Jz
∗
nJ)T (JznJ), so that we also have Po

ϕ(T ) =∑
m zmTz

∗
m. We identify the Poisson boundary Bϕ with Har(B(L2(M, τ)),Pϕ), and let ζ denote

the stationary state on Bϕ, which is faithful by Proposition 2.9. For T ∈ Bϕ we have

ζ(Po
ϕ(T )) = 〈Po

ϕ(T )1̂, 1̂〉 = 〈Pϕ(T )1̂, 1̂〉 = ζ(Pϕ(T )) = ζ(T ).

By Lemma 2.6 we then have that B0 = Har(Bϕ,Po
ϕ | Bϕ

) is a von Neumann subalgebra of Bϕ.
If p ∈ B0 is a projection and ξ ∈ L2(Bϕ, ζ), then∑

n

‖pz∗np⊥ξ‖2
2 =

∑
n

〈znpz∗np⊥ξ, p⊥ξ〉 = 0.

We must therefore have ‖pz∗np⊥ξ‖2 = 0 for each n, and hence pz∗n = pz∗np, for each n. Repeating
this argument with roles of p and p⊥ reversed shows that z∗np = pz∗np, so that p ∈M ′ ∩ Bϕ.
Since p was an arbitrary projection we then have B0 ⊂M ′ ∩ Bϕ and by Proposition 2.7 we have
B0 = Z(M). �

The previous result allows us to give an analogue of the classical Choquet–Deny theorem
[CD60], which states that if Γ is an abelian group and μ ∈ Prob(Γ) has support generating Γ,
then every bounded μ-harmonic function is constant.

Corollary 3.2 (Choquet–Deny theorem). Suppose M is an abelian von Neumann algebra and
ϕ is a normal regular strongly generating hyperstate. Then

Har(B(L2(M, τ)),Pϕ) = Z(M) = M.

We will now describe how Theorem 3.1 leads to a positive answer to a recent question by
Popa ([Pop21b, Problem 7.4], [Pop21c, Problem 6.3]).

Theorem 3.3. Let M be a finite von Neumann algebra with a normal faithful trace τ and let
G ⊂ U(M) be a group which generates M as a von Neumann algebra. Then for any operator
T ∈ B(L2(M, τ)) the weak closure of the convex hull of {u(JvJ)T (Jv∗J)u∗ | u, v ∈ G} intersects
Z(M).

Proof. We first consider the case when G is countable. Let μ ∈ Prob(G) be symmet-
ric with full support and define a normal regular symmetric generating hyperstate ϕ by
ϕ(T ) =

∫ 〈T û, û〉 dμ(u). The corresponding Poisson transform is then given by Pϕ(T ) =∫
(JuJ)T (Ju∗J) dμ(u), and we may also compute Po

ϕ as Po
ϕ(T ) =

∫
u∗Tu dμ(u).

Fix T ∈ B(L2(M, τ)) and let C = cowk{u(JvJ)T (Jv∗J)u∗ | u, v ∈ G}. Then C is preserved
by both Pϕ and Po

ϕ and hence C is preserved by any point-ultraweak limit points E and Eo

of
{
(1/N)

∑N
n=1 Pn

ϕ

}∞
N=1

and
{
(1/N)

∑N
n=1(Po

ϕ)n
}∞
N=1

, respectively. Since Pϕ and Po
ϕ com-

mute we have that E and Eo commute. Moreover, as
∥∥(1/N)

∑N
n=1 Pn

ϕ − (1/N)
∑N

n=1 Pn+1
ϕ

∥∥ ≤
2/N it follows that E : B(L2(M, τ)) → Har(Pϕ) and similarly Eo : B(L2(M, τ)) → Har(Po

ϕ). By
Theorem 3.1 we then have Eo ◦ E : B(L2(M, τ)) → Z(M). Hence

Eo ◦ E(T ) ∈ C ∩ Z(M).

In the general case, if G < G is a countable subgroup, then let N ⊂M be the von Neumann
subalgebra generated by G and let eN : L2(M, τ) → L2(N, τ) be the orthogonal projection.
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If we define ϕ as above and set TG = Eo ◦ E(T ), then we have TG ∈ C, eNTGeN = Eo ◦ E(eNTeN )
and, viewing eNTeN as an operator in B(L2(N, τ)), we may apply Theorem 3.1 as above to con-
clude that eNTGeN ∈ Z(N) ⊂ B(L2(N, τ)). If we consider the net {TG}G ⊂ B(L2(M, τ)) where
G varies over all countable subgroups of G, ordered by inclusion, then, letting T0 be any weak
limit point of this net, we have that T0 ∈ C.

Fix u ∈ G. Then for any countable subgroup G < G, setting N = G′′ and Ñ = 〈G, u〉′′, we
have eÑ [u, T0]eÑ = [u, eÑT0eÑ ] = 0 and hence eN [u, T0]eN = 0. If we consider the net of all
countable subgroups G < G ordered by inclusion, then as G generates M , we have strong operator
topology convergence limG→∞ eG′′ = 1. Hence, it follows that [u, T0] = 0, and since u ∈ G was
arbitrary, we have T0 ∈ Z(M). �

Let (M, τ) be a finite von Neumann algebra and T ∈ B(L2(M, τ)). Recall that the dis-
tance between T and Z(M) is defined as dist(T,Z(M)) = inf{‖T − S‖ : S ∈ Z(M)}. For T ∈
B(L2(M, τ)) we let δT denote the derivation given by δT (x) = [x, T ].

Corollary 3.4. Let M be a finite von Neumann algebra, and suppose T ∈ B(L2(M)). Then

dist(T,Z(M)) ≤ ‖δT |M ′‖ + ‖δT |M‖.
Proof. This follows from the previous theorem since every point S ∈ {u(JvJ)T (Jv∗J)u∗ | u, v ∈
U(M)} satisfies dist(T, S) ≤ ‖δT |M ′‖ + ‖δT |M‖. �

As another application of Theorem 3.1 we use Christensen’s theorem [Chr82, Theorem 5.3]
to establish the following vanishing cohomology result; the case when C = M is the celebrated
Kadison–Sakai theorem [Kad66, Sak66].

Theorem 3.5. Let (M, τ) be a tracial von Neumann algebra and let ϕ be a normal regular
strongly generating hyperstate. Suppose C ⊂ Bϕ is a weakly closed M -bimodule. If δ : M → C is
a norm continuous derivation, then there exists c ∈ C so that δ(x) = [x, c] for x ∈M . Moreover,
if ϕ has the form ϕ(T ) =

∫ 〈T û∗, û∗〉 dμ(u) for some probability measure μ ∈ Prob(U(M)), then
c may be chosen so that ‖c‖ ≤ ‖δ‖.
Proof. Identifying C with its image under the Poisson transform, we will view C as an
operator system in Har(Pϕ) ⊂ B(L2(M, τ)). Since L2(M, τ) has a cyclic vector for M , Chris-
tensen’s theorem shows that δ(m) = mT − Tm for some T ∈ B(L2(M, τ)). Taking the conditional
expectation onto Har(Pϕ), we may assume T ∈ Har(Pϕ).

We suppose ϕ is given in standard form ϕ(T ) =
∑

n〈T ẑ∗n, ẑ∗n〉. Note that zmδ(z∗m) ∈ C, so
that

T − Po
ϕ(T ) =

∑
m

zmz
∗
mT −

∑
m

zmTz
∗
m =

∑
m

zmδ(z∗m) ∈ C

As Po
ϕ leaves C invariant (since C is an M -bimodule), by induction we get that T − (Po

ϕ)n(T ) ∈ C
for all n ≥ 1, and hence for N ≥ 1 we have

T − 1
N

N∑
n=1

(Po
ϕ)n(T ) ∈ C.

If z is a weak limit point of
{
(1/N)

∑N
n=1(Po

ϕ)n(T )
}
, then z ∈ Har(Po

ϕ) ∩ Har(Pϕ) and so by
Theorem 3.1 we have z ∈ Z(M). Thus, T − z ∈ C implements the derivation.
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For the moreover part, note that if ϕ has the form ϕ(T ) =
∫ 〈T û∗, û∗〉 dμ(u) for some

probability measure μ ∈ Prob(U(M)), then

‖T − z‖ ≤ sup
N

∥∥∥∥T − 1
N

N∑
n=1

(Po
ϕ)n(T )

∥∥∥∥
≤ sup

n
‖T − (Po

ϕ)n(T )‖

= sup
n

∥∥∥∥
∫
uδ(u∗) dμn

∥∥∥∥ ≤ ‖δ‖,

where μn denotes the pushforward of μ× μ× · · · × μ ∈ Prob(U(M)n) under the multiplication
map.

Hence c = T − z implements δ with ‖c‖ ≤ ‖δ‖. �
We remark that for a general hyperstate ϕ, in the proof of the previous theorem we still have

‖T − z‖ ≤ ‖δ‖cb, where ‖δ‖cb denotes the completely bounded norm of the derivation δ (see, for
instance, [Chr82, § 2] for the definition of the completely bounded norm). So in general we may
find c ∈ C with ‖c‖ ≤ ‖δ‖cb.

4. Rigidity for u.c.p. maps on boundaries

The main result in this section is Theorem 4.1, where we generalize [CP13, Theorem 3.2]. We
mention several consequences, including a noncommutative version of [BS06, Corollary 3.2],
which describes the Poisson boundary of a tensor product as the tensor product of Poisson
boundaries.

Theorem 4.1. Let (M, τ) be a tracial von Neumann algebra, let ϕ be a normal regular strongly
generating hyperstate, and let B = Bϕ denote the corresponding boundary. Suppose we have a
weakly closed operator system C such that M ⊂ C ⊂ B. Let Ψ : C → B be a normal u.c.p. map
such that Ψ|M = id. Then Ψ = id.

Proof. Let Pϕ(T ) =
∑

n(Jz
∗
nJ)T (JznJ) denote the standard form of Pϕ as in Proposition 2.8.

Then by Proposition 2.4 we have Po
ϕ(T ) =

∑
n znTz

∗
n. By identifying C with its image under the

Poisson transform we may assume that C is a weakly closed M -subbimodule of Har(Pϕ) and
Ψ : C → Har(Pϕ) is a normal u.c.p. map such that Ψ|M = id. Note that for T ∈ C we have

〈Ψ(T )1̂, 1̂〉 = 〈Pϕ(Ψ(T ))1̂, 1̂〉 = 〈Po
ϕ(Ψ(T ))1̂, 1̂〉

=
∑
n

〈znΨ(T )z∗n1̂, 1̂〉 = 〈Ψ(Po
ϕ(T ))1̂, 1̂〉,

where the last equality follows from the fact that Ψ is normal andM -bimodular, asM is contained
in the multiplicative domain of Ψ. Now 〈Ψ(Po

ϕ(T ))1̂, 1̂〉 = 〈Ψ(T )1̂, 1̂〉 for all T ∈ C immediately
implies that 〈

Ψ
(

1
N

N∑
n=1

(Po
ϕ)n(T )

)
1̂, 1̂

〉
= 〈Ψ(T )1̂, 1̂〉 for all T ∈ C.

Let z be a weak operator topology limit point of (1/N)
∑N

n=1(Po
ϕ)n(T ). Then, z ∈ Z(M) by

Theorem 3.1, so that Ψ(z) = z. We then have

〈Ψ(T )1̂, 1̂〉 = 〈z1̂, 1̂〉 = 〈T 1̂, 1̂〉
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where the last equality follows because z is independent of Ψ. Now let a, b ∈M and T ∈ C. Then,
we have that b∗Ta ∈ C, and hence by above computation, we get

〈Ψ(T )a1̂, b1̂〉 = 〈Ψ(b∗Ta)1̂, 1̂〉 = 〈b∗Ta1̂, 1̂〉 = 〈Ta1̂, b1̂〉.
Thus Ψ(T ) = T. �
Corollary 4.2. Let M be a finite von Neumann algebra with a normal faithful trace τ , and let
ϕ be a normal regular strongly generating hyperstate. Then M is a maximal finite von Neumann
subalgebra inside Bϕ.
Proof. Suppose N ⊂ Bϕ is a finite von Neumann algebra containing M . Then there exists a
normal conditional expectation E : N →M . Hence, by Theorem 4.1, E(x) = x for all x ∈ N ,
and hence N = M . �
Corollary 4.3. Let M be a II1 factor, and let ϕ be a normal regular strongly generating
hyperstate. If Bϕ �= M , then Bϕ is a type III factor.

Proof. Note that the stationary state is normal and faithful by Proposition 2.9, and Bϕ is a factor
by Proposition 2.7. We also note that Proposition 2.7 along with von Neumann’s bicommutant
Theorem shows that Bϕ is not a type I factor.

Suppose Bϕ is not a type III factor, then Bϕ has a semifinite normal faithful trace Tr. As
before, let P denote the Poisson transform, and let ζ be the normal state on Bϕ defined by ζ(b) =
〈P(b)1̂, 1̂〉. Fix 0 ≤ T ∈ Bϕ with Tr(T ) <∞, and ζ(T ) �= 0. Fix S∈Bϕ with S≥0 and Tr(S)<∞.
Let z be a ultraweak limit point of (1/N)

∑N
n=1(Po

ϕ)n(T ). Then by Theorem 3.1 we have
z ∈ Z(M) = C and, arguing as in the proof of Theorem 4.1, we have ζ(T ) = z. Therefore,
ζ(T ) Tr(S) is a limit point of

{
Tr

((
(1/N)

∑N
n=1(Po

ϕ)n(T )
)
S

)}∞
N=1

. On the other hand, note
that for each N ∈ N we have that Tr

(
(1/N)

∑N
n=1(Po

ϕ)n(T )S
)

= Tr
(
T

(
(1/N)

∑N
n=1(Po

ϕ∗)n(S)
))

.
Since

∣∣Tr
(
T

(
(1/N)

∑N
n=1(Po

ϕ∗)n(S)
))∣∣ ≤ Tr(T )‖S‖∞, by the above discussion, we then have

ζ(T ) Tr(S) ≤ Tr(T )‖S‖∞.
Consider a net of projections {Si}i∈I in Bϕ, such that Si converges to 1 in the strong oper-
ator topology. The above equation then shows that ζ(T ) Tr(1) ≤ Tr(T ) <∞. As ζ(T ) �= 0 by
choice, we get that Tr(1) <∞. Hence Bϕ is a type II1 factor and by Corollary 4.2 we have that
Bϕ = M . �
Theorem 4.4. Suppose for each i ∈ {1, 2}, Mi is a finite von Neumann algebra with normal
faithful trace τi. Let ϕi and ϕ1 ⊗ ϕ2 be normal regular strongly generating hyperstates for Mi

and M1⊗̄M2 on B(L2(Mi, τi)) and B(L2(M1⊗̄M2, τ1 ⊗ τ2)), respectively. Then

Har(Pϕ1 ⊗ Pϕ2) = Har(Pϕ1)⊗Har(Pϕ2).

Proof. We clearly have Har(Pϕ1)⊗Har(Pϕ2) ⊂ Har(Pϕ1 ⊗ Pϕ2), so we only need to show the
reverse inclusion. Note that

(Pϕ1 ⊗ id) ◦ (Pϕ1 ⊗ Pϕ2) = (Pϕ1 ⊗ Pϕ2) ◦ (Pϕ1 ⊗ id),

hence (Pϕ1 ⊗ id)|Har(Pϕ1⊗Pϕ2 ) gives a normal u.c.p. map which restricts to the identity on
M1 ⊗M2. By Theorem 4.1 we have that (Pϕ1 ⊗ id)|Har(Pϕ1⊗Pϕ2 ) is the identity map and hence

Har(Pϕ1 ⊗ Pϕ2) ⊂ Har(Pϕ1 ⊗ id) = Har(Pϕ1)⊗B(L2(M2)).

We similarly have
Har(Pϕ1 ⊗ Pϕ2) ⊂ B(L2(M1))⊗Har(Pϕ2).
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Since Har(Pϕ1) is injective it is semidiscrete [Con76a], and hence has property Sσ of Kraus
[Kra83, Theorem 1.9]. We then have

Har(Pϕ1 ⊗ Pϕ2) ⊂ (Har(Pϕ1)⊗B(L2(M2))) ∩ (B(L2(M1))⊗Har(Pϕ2)) ⊂ Har(Pϕ1)⊗Har(Pϕ2).

�

Corollary 4.5. Suppose, for each i ∈ {1, 2}, that Mi is a finite von Neumann algebra with
normal faithful trace τi. Let ϕi and ϕ1 ⊗ ϕ2 be normal regular strongly generating hyperstates
forMi andM1⊗̄M2 on B(L2(Mi, τi)) and B(L2(M1⊗̄M2, τ1 ⊗ τ2)), respectively. Then the identity
map on M1 ⊗M2 uniquely extends to a ∗-isomorphism between Bϕ1⊗ϕ2 and Bϕ1 ⊗Bϕ2 .

5. Entropy

In this section we introduce noncommutative analogues of Avez’s asymptotic entropy [Ave72]
and Furstenberg entropy [Fur63a, § 8].

5.1 Asymptotic entropy
Let M be a tracial von Neumann algebra with a faithful normal tracial state τ . For a normal
hyperstate ϕ ∈ Sτ (B(L2(M, τ))) we define the entropy of ϕ, denoted by H(ϕ), to be the von
Neumann entropy of the corresponding density matrix Aϕ:

H(ϕ) = −Tr(Aϕ log(Aϕ)).

If we have a standard form ϕ(T ) =
∑

n〈T ẑ∗n, ẑ∗n〉, then we may compute this explicitly as

H(ϕ) = −
∑
n

‖zn‖2
2 log(‖zn‖2

2).

Theorem 5.1. If ϕ and ψ are two normal hyperstates with ψ regular, then

H(ϕ ∗ ψ) ≤ H(ϕ) +H(ψ).

Proof. Let Aϕ and Aψ be the corresponding density operators and Pϕ and Pψ be the
corresponding u.c.p. M -bimodular maps. Suppose we have the standard forms

ϕ(T ) =
∑
i∈I

〈Tμ1/2
i â∗i , μ

1/2
i â∗i 〉 with μi > 0, ‖a∗i ‖2 = 1, and τ(aja∗i ) = 0 for all i �= j ∈ I,

ψ(T ) =
∑
j∈J

〈Tνj ĉ∗j , νj ĉ∗j 〉 with νj > 0, ‖c∗j‖2 = 1, and τ(ckc∗l ) = 0 for all k �= l ∈ J.

Hence Aϕ =
∑

i μiPâi and Aψ =
∑

j νjPĉj .
Let bi = JaiJ and di = JciJ so that

Pϕ(T ) =
∑
i

μibiTb
∗
i and Pψ(T ) =

∑
j

νjdjTd
∗
j .

Since ψ is regular we have that
∑

i νid
∗
i di =

∑
i νidid

∗
i = 1. Since ϕ is a hyperstate we have that∑

i μibib
∗
i = 1. Now

H(ϕ ∗ ψ) = −
∑
i,j

Tr[μiνjb∗i d
∗
jP1̂djbi log(Aϕ∗ψ)]

and

b∗i d
∗
jP1̂djbi = τ(bib∗i d

∗
jdj)Pb̂∗i d∗j

,
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so that for each k, � we have

Aϕ∗ψ =
∑
i,j

μiνjb
∗
i d

∗
jP1̂djbi ≥ μkν
τ(bkb∗kd

∗

d
)Pb̂∗kd∗�

.

As log is operator monotone, for each k, � we then have

− log(Aϕ∗ψ) = − log
(∑

i,j

μiνjb
∗
i d

∗
jP1̂djbi

)
≤ − log((μkν
τ(bkb∗kd

∗

d
))Pb̂∗kd∗�

).

Hence,

H(ϕ ∗ ψ) ≤ −
∑
i,j

Tr[μiνjτ(bib∗i d
∗
jdj)Pb̂∗i d∗j

log(μiνjτ(bib∗i d
∗
jdj)Pb̂∗i d∗j

)]

= −
∑
i,j

Tr[μiνjτ(bib∗i d
∗
jdj)Pb̂∗i d∗j

log(μiνjτ(bib∗i d
∗
jdj))]

−
∑
i,j

Tr[μiνjτ(bib∗i d
∗
jdj)Pb̂∗i d∗j

log(P
b̂∗i d

∗
j
)]

= −
∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(μiνjτ(bib∗i d

∗
jdj)).

Now define m on I × J by m(i, j) = μiνjτ(bib∗i d
∗
jdj). Note that

∑
i

m(i, j) = νjτ

( ∑
i

μibib
∗
i d

∗
jdj

)
= νjτ(d∗jdj) = νj

and ∑
j

m(i, j) = μiτ

( ∑
i

νjbib
∗
i d

∗
jdj

)
= μiτ(bib∗i ) = μi.

To finish the proof it then suffices to show

H(m) = −
∑
i,j

m(i, j) log(m(i, j)) ≤ H(μ) +H(ν),

where H(μ) = −∑
i μi log(μi) and H(ν) = −∑

i νi log(νi). By the remark before Theorem 5.1,
a direct calculation yields H(μ) = H(ϕ) and H(ν) = H(ψ).

Note that

H(m) = −
∑
i,j

m(i, j) log(m(i, j))

= −
∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(μiτ(bib∗i d

∗
jdj)) −

∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(νj)

= −
∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(μi)

−
∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(νj) −

∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(τ(bib∗i d

∗
jdj)).

In the last equality above, the first summation is H(μ), since summing over j yields

−
∑
i

μiτ(bib∗i ) log(μi) = −
∑
i

μi log(μi),
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while the second summation is H(ν). Hence, all that remains is to show∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(τ(bib∗i d

∗
jdj)) ≥ 0.

Let η(x) = −x log(x) for x ∈ [0, 1]. Note that η is concave, and so η(
∑

i αixi) ≥
∑

i αiη(xi)
whenever αi ≥ 0 and

∑
i αi = 1. So

−
∑
i,j

μiνjτ(bib∗i d
∗
jdj) log(τ(bib∗i d

∗
jdj)) =

∑
i,j

μiνjη(τ(bib∗i d
∗
jdj))

=
∑
i

μi

(∑
j

νjη(τ(bib∗i d
∗
jdj))

)

≤
∑
i

μiη

( ∑
j

νjτ(bib∗i d
∗
jdj)

)

=
∑
i

μiη(τ(bib∗i )) = 0. �

Corollary 5.2. If ϕ is a normal regular hyperstate, then the limit limn→∞(H(ϕ∗n)/n) exists.

Proof. The sequence {H(ϕ∗n)} is subadditive by Theorem 5.1 and hence the limit exists. �
The asymptotic entropy h(ϕ) of a normal regular hyperstate ϕ is defined to be the limit

h(ϕ) = lim
n→∞

H(ϕ∗n)
n

.

5.2 A Furstenberg-type entropy
Suppose G is a Polish group and μ ∈ Prob(G). Given a quasi-invariant action G

a
� (X, ν) the

corresponding Furstenberg entropy (or μ-entropy) is defined [Fur63a, § 8] to be

hμ(a, ν) = −
∫∫

log
(
dg−1ν

dν
(x)

)
dν(x) dμ(g).

If we consider the measure space (G×X, ν × μ), then we have a nonsingular map π : G×
X → G×X given by π(g, x) = (g, g−1x), whose Radon–Nikodym derivative is given by

dπ(μ× ν)
d(μ× ν)

(x, g) =
dg−1ν

dν
(x).

Recall that for arbitrary positive functions f, g ∈ L1(X,μ) (where (X,μ) is a standard probability
space), the relative entropy of the measures μ1 = fdμ and μ2 = gdμ, denoted by S(μ1 |μ2), is
defined as S(μ1 |μ2) =

∫
X f(log(f) − log(g))dμ (see [OP93, Chapter 5]). We may thus rewrite

the μ-entropy as a relative entropy

hμ(a, ν) = −
∫∫

log
(
dπ(ν × μ)
d(ν × μ)

(g, x)
)
d(ν × μ) = S((ν × μ) |π(ν × μ)).

Let (M, τ) be a tracial von Neumann algebra, ϕ a normal hyperstate for M , and A a von
Neumann algebra, such that M ⊆ A. Let ζ ∈ Sτ (A) be a normal, faithful hyperstate. Let Δζ :
L2(A, ζ) → L2(A, ζ) be the modular operator corresponding to ζ, and consider the spectral
decomposition Δζ =

∫ ∞
0 λ dE(λ). We denote by Δn =

∫ n
1/n λ dλ, n ≥ 1, the truncations of the

modular operator Δ. We know that Δn converges to Δ in the resolvent sense. Throughout
this section we denote the one- parameter modular automorphism group associated with ζ by
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{σζt }t∈R. We also denote the corresponding modular conjugation operator by J , and let S =
JΔ1/2. We refer the reader to [Tak03, Chapters VI–VIII] for details regarding Tomita–Takesaki
theory.

Since ζ|M = τ , we have a natural inclusion of L2(M, τ) in L2(A, ζ). Let e denote the orthog-
onal projection from L2(A, ζ) to L2(M, τ). The entropy of the inclusion (M, τ) ⊂ (A, ζ) with
respect to ϕ is defined to be

hϕ(M ⊂ A, ζ) = −
∫

log(λ) dϕ(eE(λ)e).

The next example shows that hϕ(M ⊂ A, ζ) can be considered as a generalization of the
Furstenberg entropy.

Example 5.3. If Γ is a discrete group, μ ∈ Prob(Γ), and Γ
a
� (X, ν) is a quasi-invariant action,

then we may consider the state ϕ on B(�2Γ) given by ϕ(T ) =
∫ 〈Tδγ , δγ〉 dμ(γ), and we may con-

sider the state ζ on L∞(X, ν) � Γ ⊂ B(�2Γ⊗L2(X, ν)) given by ζ(
∑

γ∈Γ aγuγ) =
∫
ae dν. Note

that a direct computation in this case yields (ϕ ∗ ζ)(∑γ∈Γ aγuγ) =
∫
ae d(μ ∗ ν). The modular

operator Δζ is then affiliated to the von Neumann algebra �∞Γ⊗L∞(X, ν), and we may compute
this directly as

Δζ(γ, x) =
dγ−1ν

dν
(x).

We also have that the projection e from �2Γ⊗L2(X, ν) → �2Γ is given by id ⊗ ∫
. Thus, it

follows that the measure dϕ(eE(λ)e) agrees with dα∗(μ× ν), where α : Γ ×X → R>0 is the
Radon–Nikodym cocycle, α(γ, x) = dγ−1ν/dν(x).

In this case we then have

hϕ(LΓ ⊂ L∞(X, ν) � Γ, ζ) = −
∫

log(λ)dϕ(eE(λ)e)

= −
∫∫

log
(
dγ−1ν

dν
(x)

)
d(ν × μ) = hμ(a, ν).

Lemma 5.4. Let ϕ ∈ Sτ (B(L2(M, τ))) be a normal hyperstate and write ϕ in a standard form
ϕ(T ) =

∑
n〈T ẑ∗n, ẑ∗n〉. Suppose A is a von Neumann algebra with M ⊂ A and ζ ∈ Sτ (A) is

a normal hyperstate. Then if hϕ(M ⊂ A, ζ) <∞ we have that z∗n1ζ ∈ D(log Δζ) for each n
and

hϕ(M ⊂ A, ζ) = −
∑
n

〈log Δζz
∗
n1ζ , z

∗
n1ζ〉 = i lim

t→0

1
t

∑
n

(ζ(znσ
ζ
t (z

∗
n)) − 1).

Proof. As A1ζ forms a core for Sζ we get that z∗n1ζ ∈ D(log(Δζ)). Also, we know that

lim
t→0

Δit
ζ − 1
t

ξ = i log(Δζ)ξ,

for all ξ ∈ D(Δζ). So we have that

hϕ(M ⊂ A, ζ) = −ϕ(e log(Δζ)e) = −
∑
n

〈log Δζz
∗
n1ζ , z

∗
n1ζ〉

= i
∑
n

〈
zn lim

t→0

Δit
ζ − 1
t

z∗n1ζ , 1ζ
〉

= i lim
t→0

1
t

∑
n

(ζ(znσ
ζ
t (z

∗
n)) − 1). �

1762

https://doi.org/10.1112/S0010437X22007539 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007539


Poisson boundaries of II1 factors

Example 5.5. Fix two normal hyperstates ϕ, ζ ∈ Sτ (B(L2(M, τ))) such that ϕ is regular and
ζ is faithful, and consider the case A = B(L2(M, τ)). Then the density operator Aζ is injec-
tive with dense range and the modular operator on L2(B(L2(M, τ)), ζ) is given by Δζ(T1ζ) =
AζTA

−1
ζ 1ζ , for T ∈ B(L2(M, τ)) such that T1ζ ∈ D(Δζ). In particular, note that log(Δζ)(T1ζ) =

(Ad(logAζ)T )1ζ , where Ad(logAζ)T = (logAζ)T − T (logAζ).
We also have that the projection e : L2(B(L2(M, τ)), ζ) → L2(M, τ) is given by e(T1ζ) =

Pζ(T )1̂. Therefore, e log Δζex1̂ = Pζ(Ad(logAζ)x)1̂ = Pζ(Ad(logAζ))x1̂. Hence,

hϕ(M ⊂ B(L2(M, τ)), ζ) = ϕ(Pζ(Ad(logAζ)))

= Tr(Aϕ∗ζAd(logAζ))

= Tr(Aϕ∗ζ logAζ) − 〈logAζ 1̂, 1̂〉,
where the last equality follows since ϕ is regular.

We recall the following two lemmas from work by D. Petz [Pet86].

Lemma 5.6. Let Δj be positive, self-adjoint operators on Hj , j = 1, 2. If T : H1 → H2 is a
bounded operator such that

– T (D(Δ1)) ⊆ D(Δ2)
– ‖Δ2Tξ‖ ≤ ‖T‖ · ‖Δ1ξ‖ (ξ ∈ D(Δ1)),

then we have for each t ∈ [0, 1], and ξ ∈ D(Δt
1) that

‖Δt
2Tξ‖ ≤ ‖T‖ · ‖Δt

1ξ‖
Lemma 5.7. Let Δ be a positive self-adjoint operator and ξ ∈ D(Δ). Then

lim
t→0+

‖Δt/2ξ‖2 − ‖ξ‖2

t

exists. It is finite or −∞ and equals
∫ ∞
0 log λd〈Eλξ, ξ〉 where

∫ ∞
0 log λdEλ is the spectral

resolution of Δ.

Corollary 5.8. We have

hϕ(M ⊂ A, ζ) = − lim
t→0+

∑∞
k=1 ‖Δt/2

ζ ez∗n1̂‖2 − ‖ez∗n1̂‖2

t
.

Lemma 5.9. We have hϕ(M ⊂ A, ζ) ≥ 0.

Proof. Let Pζ(T ) = eTe for T ∈ A. Let Δn =
∫ n
1/n λdλ, n ≥ 1, denote the truncations of the

modular operator Δ.
Using the operator Jensen’s inequality, we have

hϕ(M ⊂ A, ζ) = lim
n→∞ϕ(−e log Δne)

= − lim
n→∞〈Pϕ ◦ Pζ(log Δn)1̂, 1̂〉 ≥ lim

n→∞−〈log(Pϕ ◦ Pζ(Δn))1̂, 1̂〉
(recall that log is operator concave).

Notice that eΔne ≤ eΔe = e. Since Pϕ(e) = e, we get Pϕ ◦ Pζ(Δn) ≤ e ≤ 1. As log is operator
monotone, we get that log(Pϕ ◦ Pζ(Δn)) ≤ log(1) = 0. Hence we are done. �

Theorem 5.10. Let ϕ,ψ ∈ Sτ (B(L2(M, τ))) be two normal hyperstates such that ψ is regular,
and suppose A is a von Neumann algebra with M ⊂ A, and ζ ∈ Sτ (A) is a normal, faithful
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hyperstate which is ψ-stationary. Then

hϕ∗ψ(M ⊂ A, ζ) = hϕ(M ⊂ A, ζ) + hψ(M ⊂ A, ζ).
Proof. Suppose we have the standard forms

ϕ(T ) =
∑
i∈I

〈Tμ1/2
i â∗i , μ

1/2
i â∗i 〉 with μi > 0, ‖a∗i ‖2 = 1, and τ(aja∗i ) = 0 for all i �= j ∈ I,

ψ(T ) =
∑
j∈J

〈Tνj b̂∗j , νj b̂∗j 〉 with νj > 0, ‖b∗j‖2 = 1, and τ(bkb∗l ) = 0 for all k �= l ∈ J.

Let Pϕ and Pψ be the corresponding u.c.p. maps so that Pϕ(T ) =
∑

k μkJa
∗
kJTJakJ and

Pψ(T ) =
∑

l νlJb
∗
l JTJblJ . We shall denote the projection from L2(A, ζ) to L2(M, τ) by e and

Δζ by Δ. We also denote the one-parameter modular automorphism group corresponding to ζ
by σt. We then have

hϕ(M ⊂ A, ζ) = i lim
t→0

ϕ

(
eΔite− 1

t

)
= i lim

t→0

1
t
ϕ(eΔite− 1)

= i lim
t→0

1
t

( ∑
k

μk〈(Δit − 1)a∗k1ζ , a
∗
k1ζ〉

)
.

Similarly,

hψ(M ⊂ A, ζ) = i lim
t→0

1
t

( ∑
l

νl〈(Δit − 1)b∗l 1ζ , b
∗
l 1ζ〉

)

and

hϕ∗ψ(M ⊂ A, ζ) = i lim
t→0

1
t

( ∑
k,l

μkνl〈(Δit − 1)a∗kb
∗
l 1ζ , a

∗
kb

∗
l 1ζ〉

)

= i lim
t→0

1
t

( ∑
k,l

μkνl〈(blakσt(a∗kb∗l )1ζ , 1ζ〉 − 1
)
.

We shall now show that limt→0
1
t

( ∑
k,l μkνl〈blakσt(a∗kb∗l )1ζ , 1ζ〉 −

∑
k,l μkνl〈blσt(b∗l )σt(a∗k)1ζ ,

1ζ〉
)

= 0. Let yt = akσt(a∗k). Note that yt → aka
∗
k as t→ 0, in the strong operator topology.

We have

ytσt(b∗l ) − σt(b∗l )yt = ytσt(b∗l ) − ytb
∗
l + ytb

∗
l − σt(b∗l )yt

= yt(σt(b∗l ) − b∗l ) + (ytb∗l − b∗l yt) + (b∗l − σt(b∗l ))yt.

Now

1
t

( ∑
k,l

μkνl〈(ytb∗l − b∗l yt)1ζ , b
∗
l 1ζ〉

)
=

1
t

( ∑
k,l

μkνl〈blytb∗l 1ζ , 1ζ〉
)
− 1
t

( ∑
k,l

μkνl〈yt1ζ , blb∗l 1ζ〉
)

=
1
t

∑
k

μk

〈(∑
l

νlblytb
∗
l

)
1ζ , 1ζ

〉
− 1
t

∑
k

μk〈yt1ζ , 1ζ〉

=
1
t
〈yt1ζ , 1ζ〉 − 1

t
〈yt1ζ , 1ζ〉 = 0,

where the penultimate equality holds by ψ-stationarity of ζ.
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Also, limt→0(1/t)(yt(σt(b∗l ) − b∗l )) exists, and hence

lim
t→0

1
t

( ∑
k,l

μkνl〈blakσt(a∗kb∗l )1ζ , 1ζ〉 −
∑
k,l

μkνl〈blσt(b∗l )σt(a∗k)1ζ , 1ζ〉
)

= 0.

So we get that

hϕ∗ψ(M ⊂ A, ζ) = i lim
t→0

1
t

( ∑
k,l

μkνl〈(blσt(b∗l )akσt(a∗k) − 1)1ζ , 1ζ〉
)

= i lim
t→0

1
t

( ∑
k,l

μkνl[〈(blσt(b∗l ) − 1)1ζ , 1ζ〉

+ 〈(akσt(a∗k) − 1)1ζ , 1ζ〉

+ 〈(akσt(a∗k) − 1)1ζ , (blσt(b∗l ) − 1)∗1ζ〉]
)
.

The first term equals hϕ(M ⊂ A, ζ), while the second term equals hψ(M ⊂ A, ζ), and the third
term equals zero, as limt→0(1/t)(akσt(a∗k) − 1)1ζ exists, while limt→0

∑
l νl(blσt(b

∗
l ) − 1)∗1ζ = 0.

�

Corollary 5.11. Let ϕ ∈ Sτ (B(L2(M, τ))) be a regular normal hyperstate and suppose A is
a von Neumann algebra with M ⊂ A, and ζ ∈ Sτ (A) is a faithful ϕ-stationary hyperstate. Then
for n ≥ 1 we have

hϕ∗n(M ⊂ A, ζ) = nhϕ(M ⊂ A, ζ).

Lemma 5.12. hϕ(M ⊂ A, ζ) ≤ H(ϕ).

Proof. We continue with the notation from the proof of Theorem 5.10, so that Pϕ(T ) =∑
k μkbkTb

∗
k. Let ak = JbkJ ∈M . It follows from Lemma 5.7 that

H(ϕ) = − lim
t→0+

∑∞
k=1 μk‖At/2ϕ a∗k1̂‖2 − ‖a∗k1̂‖2

t
.

So by Corollary 5.8 it is enough to show that

lim
t→0+

∑∞
k=1 μk‖At/2ϕ a∗k1̂‖2 − ‖a∗k1̂‖2

t
≤ lim

t→0+

∑∞
k=1 μk‖Δt/2

ϕ ea∗k1̂‖2 − ‖ea∗k1̂‖2

t
.

So it is enough to show that

‖At/2ϕ ak1̂‖2 ≤ ‖Δt/2
ζ ak1ζ‖2.

Define T : L2(A, ζ) → L2(M, τ) by T (a1ζ) = Pζ(a)1̂. Then ‖T‖ = 1, as ‖T (1ζ)‖ = 1 and
‖Pζ‖ ≤ 1. T takes D(Δζ) into D(Aϕ) = L2(M, τ). We now denote Δζ by Δ. By Lemma 5.6
it is enough to show that

‖A1/2
ϕ Tξ‖ ≤ ‖Δ1/2ξ‖ for all ξ ∈ D(Δ).

In fact it is enough to show the above for all vectors in a core for D(Δ). Recall that A1ζ forms
a core for D(Δ). So we only need to show that

‖A1/2
ϕ Ta1ζ‖ ≤ ‖Δ1/2a1ζ‖ for all a ∈ A.
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To this end, let a ∈ A. Recall that S = JΔ1/2, so that Δ1/2 = JS. We then have

‖Δ1/2a1ζ‖2 = 〈Δ1/2a1ζ ,Δ1/2a1ζ〉 = 〈JSa1ζ , JSa1ζ〉
= 〈Ja∗1ζ , Ja∗1ζ〉 = 〈a∗1ζ , a∗1ζ〉 = ζ(aa∗)

= 〈Pζ(aa∗)1̂, 1̂〉.
We also have Pϕ ◦ Pζ = Pζ =⇒ ϕ ◦ Pζ = ζ. Now

‖A1/2
ϕ Ta1ζ‖2 = 〈A1/2

ϕ Pζ(a)1̂, A1/2
ϕ Pζ(a)1̂〉 = 〈AϕPζ(a)1̂,Pζ(a)1̂〉

= 〈Pζ(a)∗AϕPζ(a)1̂, 1̂〉 ≤ Tr(Pζ(a)∗AϕPζ(a))
= Tr(AϕPζ(a)Pζ(a∗)) ≤ Tr(AϕPζ(aa∗))
= 〈(ϕ ◦ Pζ)(aa∗)1̂, 1̂〉 = 〈Pζ(aa∗)1̂, 1̂〉
= ζ(aa∗) = ‖Δ1/2a1ζ‖2.

Hence, we are done. �

Corollary 5.13. hϕ(M ⊂ A, ζ) ≤ h(ϕ).

Proof. By Lemma 5.12, we have that hϕ∗n(M ⊂ A, ζ) ≤ H(ϕ∗n). By Corollary 5.11 we have that
hϕ∗n(M ⊂ A, ζ) = nhϕ(M ⊂ A, ζ). So we get

hϕ(M ⊂ A, ζ) ≤ H(ϕ∗n)
n

→ h(ϕ). �

Lemma 5.14. hϕ(M ⊂ A, ζ) = 0 if and only if there exists a normal ζ preserving conditional
expectation from A to M .

Proof. Let ϕ be a standard form ϕ(T ) =
∑

k〈T â∗k, â∗k〉. Let E : A →M be a normal ζ preserving
conditional expectation. Then we know that σζt (m) = m for all m ∈M , where σζt denotes the
modular automorphism group corresponding to ζ. Hence,

hϕ(M ⊂ A, ζ) = i lim
t→0

1
t

∑
k

〈(Δit − 1)a∗k1ζ , a
∗
k1ζ〉

= i lim
t→0

1
t

∑
k

〈σt(a∗k)1ζ , a∗k1ζ〉 − 1 = 0.

Conversely, suppose hϕ(M ⊂ A, ζ) = 0. This part of the proof is motivated by the proof of
Lemma 9.2 in [OP93]. Let Δζ = Δ and let Δ =

∫ ∞
0 λ dλ be its spectral resolution. Let Δn =∫ n

1/n λ dλ, n ≥ 1 be the truncations. We know that Δn converges to Δ in the resolvent sense. As
usual, we denote by e the projection from L2(A, ζ) to L2(M, τ). We have that e = eΔe ≥ eΔne
for all n. So (1 + t)−1 ≤ (eΔne+ t)−1 ≤ e(Δn + t)−1e for all n and for all t > 0. Taking limits
as n→ ∞, we get (1 + t)−1 ≤ e(Δ + t)−1e. Now we shall use the integral representation of log
given by

log(x) =
∫ ∞

0
[(1 + t)−1 − (x+ t)−1] dt,

so that

hϕ(M ⊂ A, ζ) = −
∫ ∞

0

∑
k

〈e[(1 + t)−1 − (Δ + t)−1]ea∗k1̂, a
∗
k1̂〉 dt.

1766

https://doi.org/10.1112/S0010437X22007539 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007539


Poisson boundaries of II1 factors

From hϕ(M ⊂ A, ζ) = 0 and the above discussion, we deduce that

〈e((1 + t)−1 − (Δ + t)−1)ea∗k1̂, a
∗
k1̂〉 = 0

⇒ e((1 + t)−1 − (Δ + t)−1)ea∗k1̂ = 0

⇒ (1 + t)−1a∗k1̂ = e(Δ + t)−1ea∗k1̂

for almost all t > 0, and hence by continuity, for all t > 0. We now show that the last relation
also holds without the compression e. To this end, note that by differentiating the equation
(1 + t)−1a∗k1̂ = e(Δ + t)−1a∗k1̂ with respect to t, we get (1 + t)−2a∗k1̂ = e(Δ + t)−2ea∗k1̂, for all
t > 0. Therefore, by the following norm calculation in L2(A, ζ) we have

‖e(Δ + t)−1ea∗k1̂‖2
2 = ‖(1 + t)−1a∗k1̂‖2

2 = 〈(1 + t)−2a∗k1̂, a
∗
k1̂〉

= 〈e(Δ + t)−2ea∗k1̂, a
∗
k1̂〉 = 〈(Δ + t)−2a∗k1̂, a

∗
k1̂〉 = ‖(Δ + t)−1a∗k1̂‖2

2.

So we get that (1 + t)−1a∗k1̂ = (Δ + t)−1a∗k1̂ for all t > 0. This implies that Δita∗k1ζ = a∗k1ζ , which
implies that σζt (a

∗
k) = a∗k and hence σζt (m) = m for all m ∈M , as ϕ is generating. Hence there

exists a ζ preserving conditional expectation from A to M , which is normal, as ζ is normal. �
Corollary 5.15. Har(B(L2(M, τ)),Pϕ) = M if and only if hϕ(M ⊂ Bϕ, ζ) = 0, where Bϕ
denotes the Poisson boundary with respect to ϕ.

Proof. If hϕ(M ⊂ Bϕ, ζ) = 0, then by Lemma 5.14 there exists a normal conditional expectation
E : Bϕ →M . By Theorem 4.1, E = id, which implies that Bϕ = M , and hence

Har(Pϕ) = P(Bϕ) = P(M) = M.

Conversely, if Har(B(L2M, τ),Pϕ) = M , then Δζ = I and hence hϕ(M ⊂ Bϕ, ζ) = 0 �
Corollary 5.16. Har(B(L2(M, τ)),Pϕ) = M if h(ϕ) = 0.

Proof. Since 0 ≤ hϕ(M ⊂ Bϕ, ζ) ≤ h(ϕ), this result follows from Corollary 5.15. �

6. An entropy gap for property (T) factors

If (M, τ) is a tracial von Neumann algebra, then a Hilbert M -bimodule consists of a Hilbert space
H, together with commuting normal representations L : M → B(H), R : Mop → B(H). We will
sometimes simplify notation by writing xξy for the vector L(x)R(yop)ξ. A vector ξ ∈ H is left
(respectively, right) tracial if 〈xξ, ξ〉 = τ(x) (respectively, 〈ξx, ξ〉 = τ(x)) for all x ∈M . A vector
is bitracial if it is both left and right tracial. A vector ξ ∈ H is central if xξ = ξx for all x ∈M .
Note that if ξ is a unit central vector, then x �→ 〈xξ, ξ〉 gives a normal trace on M .

The von Neumann algebra M has property (T) if for any sequence of Hilbert bimod-
ules Hn, and ξn ∈ Hn bitracial vectors, such that ‖xξn − ξnx‖ → 0 for all x ∈M , then we
have ‖ξn − P0(ξn)‖ → 0, where P0 is the projection onto the space of central vectors. This
is independent of the normal faithful trace τ [Pop06, Proposition 4.1]. Property (T) was
first introduced in the factor case by Connes and Jones [CJ85] who showed that for an ICC
group Γ, the group von Neumann algebra LΓ has property (T) if and only if Γ has Kazh-
dan’s property (T) [Kaž67]. Their proof works equally well in the general case when Γ is not
necessarily ICC.

We now suppose that M is finitely generated as a von Neumann algebra. Take a finite
generating set {ak}nk=1 ⊂M such that

∑n
k=1 a

∗
kak =

∑n
k=1 aka

∗
k = 1, and let B(L2(M, τ)) 
 T �→

ϕ(T ) =
∑n

k=1〈T â∗k, â∗k〉 denote the associated normal regular hyperstate. For a fixed Hilbert
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bimodule H we define ∇L,∇R : H → H⊕n by

∇L(ξ) = ⊕akξ, ∇R(ξ) = ⊕ξak.
Note that we have

‖∇L(ξ)‖2 =
n∑
k=1

‖akξ‖2 =
〈 n∑
k=1

a∗kakξ, ξ
〉

= ‖ξ‖2,

and similarly

‖∇R(ξ)‖2 =
〈 n∑
k=1

ξaka
∗
k, ξ

〉
= ‖ξ‖2.

Thus ∇L and ∇R are both isometries. We let T denote the operator given by Tξ =
∑n

k=1 a
∗
kξak.

Note that T = ∇∗
L∇R, and hence T is a contraction.

Suppose now that M ⊂ A is an inclusion of von Neumann algebras and ζ ∈ A∗ is a faithful
normal hyperstate. We may then consider the Hilbert space L2(A, ζ) which is naturally a Hilbert
M -bimodule where the left action is given by left multiplication L(x)â = x̂a, and the right action
is given by R(xop) = JL(x∗)J . In this case the vector 1̂ is clearly left tracial, and we also have
Jx∗J 1̂ = Δ1/2x1̂ from which it follows that 1̂ is also right tracial. If ξ0 ∈ L2(A, ζ) is a unit
M -central vector, then τ0(x) = 〈xξ0, ξ0〉 defines a normal trace on M . We let s ∈ Z(M) denote
the support of τ0.

Lemma 6.1. Let (M, τ), ϕ, and (A, ζ) be as given above. Then

hϕ(M ⊂ A, ζ) ≥ −2 log〈T1ζ , 1ζ〉.
Proof. Let Δ =

∫ ∞
0 λ dλ be the spectral resolution of the modular operator and let Δm =∫m

1/m λ dλ, m ≥ 1, be the truncations. Let μk = τ(a∗kak) and bk = μ
−1/2
k ak, for k = 1, 2, . . . , n.

Note that
∑n

k=1 μk = 1. Also note that La∗kRak
1ζ = a∗kΔ

1/2ak1ζ . Now

−2 log〈T1ζ , 1ζ〉 = −2 log
( n∑
k=1

〈a∗kΔ1/2ak1̂, 1̂〉
)

= −2 lim
m→∞ log

( n∑
k=1

μk〈b∗kΔ1/2
m bk1̂, 1̂〉

)

≤ −2 lim
m→∞

n∑
k=1

μk log(〈b∗kΔ1/2
m bk1̂, 1̂〉) ≤ −2 lim

m→∞

n∑
k=1

μk〈b∗k log(Δ1/2
m )bk1̂, 1̂〉

= − lim
m→∞

n∑
k=1

〈a∗k log(Δm)ak1̂, 1̂〉 = hϕ(M ⊂ A, ζ),

where the second inequality follows from Jensen’s operator inequality. �
Theorem 6.2. Let M be a II1 factor generated as a von Neumann algebra by {ak}nk=1 such
that

∑n
k=1 a

∗
kak =

∑n
k=1 aka

∗
k = 1. Let

B(L2(M, τ)) 
 T �→ ϕ(T ) =
n∑
k=1

〈T â∗k, â∗k〉

denote the associated normal regular hyperstate. If M has property (T), then there exists c > 0
such that if M ⊂ A is any irreducible inclusion having no normal conditional expectation from
A to M , and if ζ ∈ A∗ is any faithful normal hyperstate, then hϕ(M ⊂ A, ζ) ≥ c.

Proof. Suppose M has property (T) and there is a sequence of irreducible inclusions M ⊂ Am,
and normal faithful hyperstates ζm ∈ Am, such that hϕ(M ⊂ Am, ζm) → 0. Then by Lemma 6.1
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we have that 〈T1ζm , 1ζm〉 → 1, and hence
∑n

k=1 ‖ak1ζm − 1ζmak‖2
2 = 2 − 2〈T1ζm , 1ζm〉 → 0. Since

M has property (T) it then follows that for m large enough there exists a unit M -central
vector ξ ∈ L2(Am, ζm). If we let ζ̃ denote the state on Am given by ζ̃(a) = 〈aξ, ξ〉, then as ξ is
M -central we have that ζ̃ gives an M -hypertrace on Am. Thus, there exists a corresponding
normal conditional expectation form Am to M , for all m large enough. �

Acknowledgements

SD is immensely grateful to Darren Creutz for explaining the theory of Poisson boundaries of
groups to him, and for many useful remarks and stimulating conversations about earlier drafts
of this paper. SD would like to gratefully acknowledge many helpful conversations with Vaughan
Jones, Ionut Chifan, Palle Jorgensen, and Paul Muhly regarding this paper. SD would also like
to thank Ben Hayes and Krishnendu Khan for various discussions on and around the contents
of this paper. The authors would like to thank Sorin Popa for useful comments regarding this
paper. The authors would like to thank the anonymous referee for numerous valuable comments
and suggestions that greatly improved the exposition of the paper.

Appendix A. Minimal dilations and boundaries of u.c.p. maps

We include in this appendix a proof of Izumi’s result from [Izu02] that, for a von Neumann
algebra (or even an arbitrary C∗-algebra) A, and a u.c.p. map φ : A→ A, the operator space
Har(A, φ) has a C∗-algebraic structure. We take the approach in [Izu12] where Har(A, φ) is
shown to be completely isometric to the ∗-algebra of fixed points associated to a ∗-endomorphism
which dilates the u.c.p. map. There are several proofs of the existence of such a dilation; the
first proof is by Bhat in [Bha99] in the setting of completely positive semigroups, building
on work from [Bha96, BP94, BP95], and then later proofs were given in [BS00, MS02], and
Chapter 8 of [Arv03]. Our reason for including an additional proof is that it is perhaps more
elementary than previous proofs, being based on a simple idea of iterating the Stinespring dilation
[Sti55].

Lemma A.1. If H and K are Hilbert spaces, and V : H → K is a partial isometry, then for
A ⊂ B(H), B ⊂ B(K), we have that V ∗ ∗-alg(V BV ∗, A)V = ∗-alg(B, V ∗AV ).

Proof. Using the fact that V ∗V = 1, this follows easily by induction on the length of alternating
products for monomials in V BV ∗, and A. �

If A0 ⊂ B(H0) is a C∗-algebra, and φ : A0 → A0 is a u.c.p. map, then one can iterate
Stinespring’s dilation as follows.

Lemma A.2. Suppose A0 ⊂ B(H0) is a unital C∗-algebra, and φ0 : A0 → A0 is a u.c.p. map.
Then there exists a sequence whose entries consist of:

(1) a Hilbert space Hn,
(2) an isometry Vn : Hn−1 → Hn,
(3) a unital C∗-algebra An ⊂ B(Hn),
(4) a unital representation πn : An−1 → B(Hn) such that πn(An−1), and VnAn−1V

∗
n generate

An,
(5) a u.c.p. map φn : An → An,
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such that the following relationships are satisfied for each n ∈ N, x ∈ An−1:

V ∗
n πn(x)Vn = φn−1(x); (A)

V ∗
nAnVn = An−1; (B)

φn(πn(x)) = πn(φn−1(x)); (C)

πn+1(VnxV ∗
n ) = Vn+1πn(x)V ∗

n+1. (D)

Moreover, for each n ∈ N we have that the central support of VnV
∗
n in A′′

n is 1. Also, if A0 is
a von Neumann algebra and φ0 is normal, then An will also be a von Neumann algebra and πn
and φn will be normal for each n ∈ N.

Proof. We will first construct the objects and show the relationships (A), (B), and (C) by
induction, with the base case being vacuous, and we will then show that (D) also holds for all
n ∈ N. So suppose n ∈ N and that (A), (B), and (C) hold for all m < n, (we leave V0 undefined).

From the proof of Stinespring’s dilation theorem we may construct a Hilbert space Hn by
separating and completing the vector space An−1 ⊗Hn−1 with respect to the nonnegative definite
sesquilinear form satisfying

〈a⊗ ξ, b⊗ η〉 = 〈φn−1(b∗a)ξ, η〉,
for all a, b ∈ An−1, ξ, η ∈ Hn−1.

We also obtain a partial isometry Vn : Hn−1 → Hn from the formula

Vn(ξ) = 1 ⊗ ξ

for ξ ∈ Hn−1.
We obtain a representation πn : An−1 → B(Hn) (which is normal when A0 is a von Neumann

algebra and φ0 is normal) from the formula

πn(x)(a⊗ ξ) = (xa) ⊗ ξ,

for x, a ∈ An−1, ξ ∈ Hn−1. And recall the fundamental relationship V ∗
n πn(x)Vn = φn−1(x) for all

x ∈ An−1, which establishes (A).
If we let An be the C∗-algebra generated by πn(An−1) and VnAn−1V

∗
n , then πn : An−1 → An,

and from Lemma A.1 we have that V ∗
nAnVn is generated by V ∗

n πn(An−1)Vn and An−1. However,
V ∗
n πn(An−1)Vn = φn−1(An−1) ⊂ An−1, hence V ∗

nAnVn = An−1, establishing (B). Also, when A0

is a von Neumann algebra and πn is normal it then follows easily that An is also a von Neumann
algebra.

Also note that πn(An−1)VnV ∗
nHn is dense in Hn, and so since πn(An−1) ⊂ An we have that

the central support of VnV ∗
n in A′′

n is 1.
We then define φn : An → An by φn(x) = πn(V ∗

n xVn), for x ∈ An. This is well defined since
V ∗
nAnVn = An−1, unital, and completely positive. Note that for x ∈ An−1 we have φn(πn(x)) =
πn(V ∗

n πn(x)Vn) = πn(φn−1(x)), establishing (C).
Having established (A), (B), and (C) for all n ∈ N, we now show that (D) holds as well. For

this, notice first that for a, b ∈ An, x ∈ An−1, and ξ, η ∈ Hn we have

〈πn+1(VnxV ∗
n )(a⊗ ξ), b⊗ η〉 = 〈VnxV ∗

n a⊗ ξ, b⊗ η〉
= 〈φn(b∗VnxV ∗

n a)ξ, η〉
= 〈πn(V ∗

n b
∗VnxV ∗

n aVn)ξ, η〉
= 〈1 ⊗ πn(xV ∗

n aVn)ξ, b⊗ η〉.
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Setting x = 1 and using that V ∗
n+1(1 ⊗ ζ) = ζ for each ζ ∈ Hn, we see that

(Vn+1V
∗
n+1)πn+1(VnV ∗

n )(a⊗ ξ) = (Vn+1V
∗
n+1)(1 ⊗ πn(V ∗

n aVn)ξ)

= 1 ⊗ πn(V ∗
n aVn)ξ

= πn+1(VnV ∗
n )(a⊗ ξ),

and hence πn+1(VnV ∗
n ) ≤ Vn+1V

∗
n+1. If instead we set a = 1, then we have

Vn+1πn(x)ξ = 1 ⊗ πn(x)ξ = πn+1(VnxV ∗
n )Vn+1ξ,

and so Vn+1πn(x) = πn+1(VnxV ∗
n )Vn+1. Multiplying on the right by V ∗

n+1 and using that
πn(VnV ∗

n ) ≤ Vn+1V
∗
n+1 then gives Vn+1πn(x)V ∗

n+1 = πn+1(VnxV ∗
n ). �

Theorem A.3 (Bhat [Bha99]). Let A0 ⊂ B(H0) be a unital C∗-algebra, and φ0 : A0 → A0 a
u.c.p. map. Then there exist

(1) a Hilbert space K,
(2) an isometry W : H0 → K,
(3) a C∗-algebra B ⊂ B(K),
(4) a unital ∗-endomorphism α : B → B,

such that W ∗BW = A0, and for all x ∈ A0 we have

φk0(x) = W ∗αk(WxW ∗)W.

Moreover, we have that the central support of WW ∗ in B′′ is 1, αk(WW ∗) ≤ αk+1(WW ∗),
and for y ∈ B(K) we have y ∈ B if and only if αk(WW ∗)yαk(WW ∗) ∈ αk(WA0W

∗) for all k ≥ 0.
Also, if A0 is a von Neumann algebra and φ0 is normal, then B will also be a von Neumann
algebra, and α will also be normal.

Proof. Using the notation from Lemma A.2, we may define a Hilbert space K as the directed
limit of the Hilbert spaces Hn with respect to the inclusions Vn+1 : Hn → Hn+1. We denote by
Wn : Hn → K the associated sequence of isometries satisfying W ∗

n+1Wn = Vn+1, for n ∈ N, and
we set an increasing sequence of projections Pn = WnW

∗
n .

From (B) we have that Pn−1WnAnW
∗
nPn−1 = Wn−1An−1W

∗
n−1, and hence if we define the

C∗-algebra B = {x ∈ B(K) |W ∗
nxWn ∈ An, n ≥ 0}, then we have W ∗

nBWn = An, for all n ≥ 0.
Also, if A0 is a von Neumann algebra, then so is An for each n ∈ N, and from this it follows
easily that B is also a von Neumann algebra.

We define the unital ∗-endomorphism α : B → B (which is normal when A0 is a von Neumann
algebra and φ0 is normal) by the formula

α(x) = lim
n→∞Wn+1πn+1(W ∗

nxWn)Wn+1,

where the limit is taken in the strong operator topology. Note that α(Pn) = Pn+1 ≥ Pn. From
(D) we see that in general, the strong operator topology limit exists in B, and that for x ∈ An ∼=
PnA∞Pn the limit stabilizes as α(WnxW

∗
n) = Wn+1πn+1(x)W ∗

n+1.
From (A) we see that for n ≥ 0 and x ∈ An we have

Pnα(WnxW
∗
n)Pn = WnW

∗
nWn+1πn+1(x)W ∗

n+1WnW
∗
n

= WnV
∗
n+1πn+1(x)Vn+1W

∗
n

= Wnφn(x)W ∗
n .
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By induction we then see that also for k > 1, and x ∈ A0 we have

P0α
k(W0xW

∗
0 )P0 = P0α

k−1(P0α(W0xW
∗
0 )P0)P0

= P0α
k−1(W0φ0(x)W ∗

0 )P0

= W0φ
k
0(x)W

∗
0 .

By the previous lemma we have that the central support of Pn in WnA
′′
nW

∗
n is Pn+1. Hence

it follows that the central support of P0 in B is 1. �

A.1 Poisson boundaries of u.c.p. maps
If A ⊂ B(H) is a unital C∗-algebra, and φ : A→ A a u.c.p. map, then a projection p ∈ A is said to
be coinvariant if {φn(p)}n defines an increasing sequence of projections which strongly converge
to 1 in B(H), and such that for y ∈ B(H) we have y ∈ A if and only if φn(p)yφn(p) ∈ A for all
n ≥ 0. Note that for n ≥ 0, φn(p) is in the multiplicative domain for φ, and is again coinvariant.
We define φp : pAp→ pAp to be the map φp(x) = pφ(x)p, and then φp is normal u.c.p. Moreover,
we have that φkp(x) = pφk(x)p for all x ∈ pAp, which can be seen by induction from

pφk(x)p = pφk−1(p)φk(x)φk−1(p)p = pφk−1(φp(x))p.

Theorem A.4 (Prunaru [Pru12]). Let A ⊂ B(H) be a unital C∗-algebra, φ : A→ A a u.c.p.
map, and p ∈ A a coinvariant projection. Then the map P : Har(A, φ) → Har(pAp, φp) given
by P(x) = pxp defines a completely positive isometric surjection, between Har(A, φ) and
Har(pAp, φp).

Moreover, if A is a von Neumann algebra and φ is normal, then P is also normal.

Proof. First note that P is well defined since if x ∈ Har(A, φ) we have

φp(pxp) = pφ(p)xφ(p)p = pxp.

Clearly P is completely positive (and normal in the case when A is a von Neumann algebra and
φ is normal).

To see that it is surjective, if x ∈ Har(pAp, φp), then consider the sequence φn(x). For each
m,n ≥ 0, we have

φm(p)φm+n(x)φm(p) = φm(pφn(x)p) = φm(φnp (x)) = φm(x).

It follows that {φn(x)}n is eventually constant for any ξ in the range of φm(p) for any m. Since
{φn(x)}n is uniformly bounded and {φn(x)ξ}n converges for a dense subset of ξ ∈ H we then
have that {φn(x)}n converges in the strong operator topology to an element y ∈ B(H) such that
φm(p)yφm(p) = φm(x) for each m ≥ 0. Consequently, we have y ∈ A.

In particular, for m = 0 we have pyp = x. To see that y ∈ Har(A, φ) we use that for all z ∈ A
we have the strong operator topology limit

lim
n→∞φ(φn(p)zφn(p)) = lim

n→∞φn+1(p)φ(z)φn+1(p) = φ(z),

and hence

φ(y) = lim
m→∞φ(φm(p)yφm(p)) = lim

m→∞φm+1(x) = y.

Thus P is surjective, and since φn(p) converges strongly to 1, and each φn(p) is in the
multiplicative domain of φ, it follows that if x ∈ Har(A, φ), then φn(pxp) converges strongly
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to x and hence

‖x‖ = lim
n→∞ ‖φn(pxp)‖ ≤ ‖pxp‖ ≤ ‖x‖.

Thus, P is also isometric. �

Corollary A.5 (Izumi [Izu02]). Let A be a unital C∗-algebra, and φ : A→ A a u.c.p. map.
Then there exist a C∗-algebra B and a completely positive isometric surjection P : B →
Har(A, φ).

Moreover, B and P are unique in the sense that if B̃ is another C∗-algebra, and
P0 : B̃ → Har(A, φ) is a completely positive isometric surjection, then P−1 ◦ P0 is an
isomorphism.

Also, if A is a von Neumann algebra and φ is normal, then B is also a von Neumann algebra
and P is normal.

Proof. Note that we may assume A ⊂ B(H). Existence then follows by applying the previous
theorem to Bhat’s dilation. Uniqueness follows from [Cho74]. �

Corollary A.6 (Choi-Effros [CE77]). Let A be a unital C∗-algebra and F ⊂ A an operator
system. If E : A→ F is a completely positive map such that E|F = id, then F has a unique
C∗-algebraic structure which is given by x · y = E(xy). Moreover, if A is a von Neumann algebra
and F is weakly closed, then this gives a von Neumann algebraic structure on F .

Proof. Note that F ⊆ Har(A,E), as E|F = id. Since the range of E is contained in F , we get
Har(A,E) = F .

When A is a C∗-algebra this follows from Corollary A.5 since Har(A,E) = F . Also note that
since En = E it follows from the proof of Theorem A.4 that the product structure coming from
the Poisson boundary is given by x · y = E(xy).

If A is a von Neumann algebra and F is weakly closed, then F has a predual F⊥ = {ϕ ∈
A∗ | ϕ(x) = 0, for all x ∈ F} and hence A is isomorphic to a von Neumann algebra by Sakai’s
theorem. �

Proposition A.7. Let A be an abelian C∗-algebra and φ : A→ A a normal u.c.p. map. Then
the Poisson boundary of φ is also abelian.

Proof. Let B be the Poisson boundary of φ, and let P : B → Har(A, φ) be the Poisson transform.
If C is a C∗-algebra and ψ : C → B is a positive map, then P ◦ ψ : C → Har(A, φ) ⊂ A is positive,
and since A is abelian it is then completely positive. Hence, ψ is also completely positive. Since
every positive map from a C∗-algebra to B is completely positive it then follows that B is
abelian. �

Example A.8. Let Γ be a discrete group and μ ∈ Prob(Γ) a probability measure on Γ such that
the support of μ generates Γ. Then on �∞Γ we may consider the normal unital (completely) posi-
tive map φμ given by φμ(f) = μ ∗ f , where μ ∗ f is the convolution (μ ∗ f)(x) =

∫
f(g−1x) dμ(g).

Then Har(μ) = Har(�∞Γ, φμ) has a unique von Neumann algebraic structure which is abelian
by the previous proposition. Notice that Γ acts on Har(μ) by right translation, and since this
action preserves positivity it follows from [Cho74] that Γ preserves the multiplication structure
as well.

Since the support of μ generates Γ, for a nonnegative function f ∈ Har(μ)+ we have f(e) = 0
if and only if f = 0. Thus we obtain a natural normal faithful state ϕ on Har(μ) which is given
by ϕ(f) = f(e).
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Since ϕ is Γ-equivariant, this extends to a normal u.c.p. map ϕ̃ : �∞Γ � Γ → �∞Γ � Γ such
that ϕ̃LΓ = id. Note that �∞Γ � Γ ∼= B(�2Γ). It is an easy exercise to see that the Poisson
boundary of ϕ̃ is simply the crossed product Har(μ) � Γ.
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