(G, v, v)>-HOMOGENEITY OF PROJECTIVE
PLANES AND POLARITIES

W. JONSSON

In (1) Baer introduced the concept of (C, v)-transitivity and (C, v)-
homogeneity. A projective plane (see (5) for the requisite definitions and
axioms) is (C, v)-transitive if, given an ordered pair (P;, P;) of points collinear
with C but distinct from C and not on v, there is a collineation which maps
P, into P, and leaves fixed every point on vy as well as every line through C.
A projective plane is (C, v)-homogeneous for a non-incident point-line-pair
if itis (C, v) transitive and there is a correlation which maps every line through
C into its intersection with v and every point on 7 into its join with C.

The concept of (C, v)-homogeneity was extended in (4) to what was there
called (C, v, u)-homogeneity.

A projective plane is (C, v, u)-homogeneous if

(1) it is (C, v)-transitive,

(2) there is a correlation T whose square is a central collineation with centre C
and axis v (i.e., 7% fixes every point on v and every line through C).

The correlation 7 induces a mapping u of the lines through C onto the points
of v. Clearly 7 and o7 (where ¢ is a central collineation with centre C and axis
v) induce the same mapping p.

No1E. C could be incident with . There are examples of projective planes
which are (C, v, u)-homogeneous for both incident and non-incident point-line-
pairs (4).

It is of some interest to know whether one can always choose the correlation
7 in such a way that 72 is the identity. In what follows, it will be seen that
this is always possible if C lies on v. If C does not lie on v this is still an open
question.

THEOREM 1. Let § be a projective plane which is (C, v, u)-homogeneous,
C € v. Then G has a polarity (correlation of order 2) which interchanges C with
v and induces the mapping p.

Proof. Set up a ternary ring (we use here Pickert's version of the Hall
ternary ring (5) in the plane with the fundamental quadrangle O, U, V, E).
Choose C = V,0 not on v, U = (OV)#, and for later convenience we choose
E = OW N (W)#, where W is a point on UV distinct from U and V. Points
have co-ordinates (x, v) with x, y € T if they are noton UV;and (m), m € T,
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if they are on UV but distinct from V. The points on the line OE but not on
UV satisfy the equation y = x;0 = (0,0), E = (1,1), U = (0). The line
joining (m) and (0, ) has the co-ordinates [¢]. The ternary operation T maps
T X T X T— T and is defined by y = T(m, x, b) if and only if the point
(x, v) lies on the line [m, b]. Addition (T, +) is defined by ¢ + & = T(1, a, b),
a, b € T; multiplication (-) is defined by a-b = T (a, b, 0).

€ is (V, UV, u)-homogeneous and therefore (V, UV)-transitive. It is well
known (5, p. 100) that (V, UV)-transitivity is equivalent to the first splitting
law, T (m, x, b) = mx + b, together with the associativity of addition.

We now consider an analytic representation of €. Since a line through V is
mapped into a point on UV, and furthermore (UV)* =V, there is a mapping
of T onto $ which may (without danger of confusion) also be called g, such
that:

e} = (c).

Because (OV)™ = U, 0* = 0 and because (EV)" = W, 1# = 1. Since a point
on UV is mapped onto a line through V, there is a mapping v of T onto I such
that:

(m)r = [m’].

Because U = OV,0” = 0 and because W7 = EV,1” = 1. Since a point of
OV is mapped onto a line through U, there is a mapping = of T onto < such
that:

0, 8) = [0, &7].

By definition,
[m, 8] = (m) \J (0, b).

Thus
[m, 8]" = (m)" M (0,8)" = [m’] N[0, b7] = (m”, b7);

therefore [0, 8]” = (0, b7) because 0* = 0. Because (x, ¥) = [x] N [0, ], we get
(e, 97 = [x]"\J [0, y]" = (x*) \J (0, y) = [x*, y7].
Incidence is preserved by a correlation; thus
y=mx + b=0" = xtm? + y"
and we get the incidence equation
™ = x*m’ + (mx + b)"
forallm,x,b € . Let

x =1:0" =m’ 4+ (m + b)~;
m=1:b" = x* + (x + b)".

This clearly implies that u = ».
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Let x =1, 6 =0: 0 = m” + m™. Thus m™ — 0" = — m” for all m € &
since ¥ is a group under addition. Consider the incidence equation
T = x'm’ + (mx + b),
b7r — 01r = x'm’ + (mx + b)7r — 071',
—b" = x"m” — (mx + b)".
Setting b = Ogivesxm’ = (mx)”.Settingm = 1gives —x” — b* = — (x + b)’,
i.e.,

(x 4+ b)) = b" + x”.

Thus v is an anti-isomorphism with respect to both addition and multiplication.
The mapping p defined below is the required polarity:

(x: y)p = [x,,’ - 3’”]» [mr b]p = (mv! - bv)’

(m)e = [m’], [x]° = (x7),
Ve = UV, (Uv)y = V.

It
Il

We need only check two things: first that p preserves incidence, and second
that p induces the same mapping u of lines through V onto points on UV as
did 7. The second is easily verified. To verify that p preserves incidence we
need only show that

y=mx+b=—b =xm" —y’,

and this follows immediately from the fact that v is an anti-isomorphism with
respect to both addition and multiplication.

The existence of this anti-isomorphism has as an immediate consequence
that € is (U, OV, u/)-homogeneous for a suitable mapping x’ if and only if
G 1is (U, OV)-transitive. This is because the polarity p interchanges U with O V.

In (4) a Lenz-Barlotti classification of projective planes according to the
amount of (C, v, u)-homogeneity was given. This can be thought of as a
refinement of the original classification of Lenz and Barlotti. They classified
projective planes according to the amount of (C, ¥)-transitivity.

Because of Theorem 1 and the above remarks we have the following:
COROLLARY 1. A plane of class 111-2 belongs to either class A-B, C-B, or A-a.
COROLLARY 2. A plane of class 11-2 belongs to one of the classes A-a, A-B or B-B.

Proof. Here the notation of (2) and (3) is used. A plane belongs to class ITI-2
if there is a point R and a line » not incident with R such that € is (C, v)-
transitive for the point-line-pairs of the set

{(R,n)} U {(P, PR); PIr}
and for no others.

A plane belongs to class II-2 if it is (C, v)-transitive for the two point-line-
pairs (Ci, v1), (Cs, v2) whereby C; I vy, C1 I v; 4,7 =1, 2. A plane belongs to
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class A-a according to (4) if there is no point-line-pair (C, v¥) such that € is
(C, v, u)-homogeneous. Clearly a plane of class II-2 or III-2 could belong to
the class A-a.

A plane belongs to class A-8 according to (4) if there is exactly one point-line-
pair (C, v) such that C is not on v, for there is a mapping u such that € is
(C, v, u)-homogeneous. If the plane were also of class II-2, then clearly
C = Cy, v = 72 because the (C, v, u)-homogeneity implies the (C, vy)-transiti-
vity. If the plane were also of class III-2 then C = Rand vy = 7.

A plane belongs to class c-8 if there is a point R and a line 7 such that
those point-line-pairs (C, ¥) for which thereisa pwith € (C, v, u)-homogeneous
is the set { (R, )} \U {(P, PR); P Ir}.

Assume that € belongs to class I11-2 and that there is a P I for which
there exists a u such that € is (P, PR, p)-homogeneous. Clearly the group
of central collineations of € is transitive on the points of R. Therefore to every
QIr there is a collineation ¢ such that P° = Q, R* = R, »* = r. Because
of Theorem 1, there is a polarity p which interchanges P and PR and induces p.
The correlation ¢~ 'ps is also a polarity and Q° ‘¢ = P 'ec = (PR)* = QR.
Consider R°'#; every automorphism of € maps the pair (R, r) onto itself
since this is the only point-line-pair for which € is (C, v)-transitive. Hence,
since o= 1po is a correlation, R°™'»¢ = 7. Furthermore, 6—1ps induces the mapping
o 'uo of the lines through Q onto the points of QR. The (P, PR)-transitivity
implies the (P?, (PR)°) = (Q, QR)-transitivity. Therefore €is (Q, OR, 6~ uo)-
homogeneous. Because of previous remarks, there is also a mapping u’ of the
lines through R onto the points of » such that € is (R, r, u")-homogeneous.
This shows that the plane belongs to the class c-8. There are no other possi-
bilities for a plane of class IT11-2.

In (4) it was shown that the classical Moulton plane belongs to class c-g.

Corollary 2 is proved in the same way as Corollary 1, so the proof will be
omitted.
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