
MONOTONE FUNCTIONS ON LINEAR LATTICES 

H. W. ELLIS AND HIDEGORÔ NAKANO 

1. Introduction. If R is a sequentially continuous linear lattice, a 
function / (x) , denned on R+ = {x:0 < x 6 R} with 0 < / ( x ) < + oo, will 
be called a monotone function if it satisfies 

(Ml) /(x) <f(y) when* < y, 

(M2) /(x) = suptfixi) when 0 < xt |?=i x. 

Monotone functions, subject to additional conditions, have been studied at 
length. For example a length function (2) is a monotone function on the 
sequentially continuous linear lattice of equivalence classes of measurable 
functions. On Lp, 1 < p < c°, the norms are monotone functions as are the 
positive continuous linear functionals. A modular on a universally continuous 
linear lattice is a monotone function (3). 

In the present paper we study the problems of extension of monotone 
functions from semi-normal manifolds of a sequentially continuous linear 
lattice RtoR itself. 

2. Definitions and notation. A semi-ordered vector space R in which 
each pair of elements x, y has a supremum x\J y and an infimum x C\ y in 
R is called a linear lattice or Riesz space. 

A linear lattice R is: (i) sequentially continuous (called continuous in (3)) 
if an G R+, n = 1 , 2 , . . . , implies 

C)ane R; 
n = l 

(ii) universally continuous if for every collection ax G R+ (X G A), r \ # x G R; 
(iii) superuniversally continuous if it is universally continuous and if a\ Ç i£+ 
(X G A) implies the existence of a subsequence ax», i = 1 , 2 , . . . , such that 

CO 

n ax» = n ax. 
i - 1 XeA 

A monotone function f(x) is convex (concave) if 

/ (ax + ftO < «/(*) + ff(y) (f(ax + fty) > «/(*) + |8/(y)) 

for a + 0 = 1, a, 0 > 0. 
A monotone function is linear if f(x+y) = f(x) +f(y), sublinear if 

f(x + y) <f(x) +f(y), superlinear if f(x + y) > / ( x ) +f(y); homogeneous 
if /(ax) = af(x) for a > 0; and additive iî x A. y implies that f(x + y) = /(x) 

+/(y)-
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MONOTONE FUNCTIONS ON LINEAR LATTICES 227 

A monotone function that is linear is homogeneous. The proof uses only 
(Ml) (1, Proposition 1, p. 33). Sublinear and convex (superlinear and con­
cave) coincide if and only if / is homogeneous. Sublinear implies that 
f{nx) < nf{x), n = 1 , 2 , . . . . Convex with y = 0, a = 1/n, ft = (n — 1)/» 
implies that f{nx) > nf{x), n = 1, 2, . . . . If / is both sublinear and convex 
it follows tha.t f{nx) = nf{x), n = 1, 2, . . . , then for n replaced by an arbitrary 
rational number, and finally, using (M2), for arbitrary a > 0. 

A monotone function that is homogeneous and convex or sublinear will be 
called a length function. A monotone function that is convex and additive 
will be called modular. 

A linear subset S of a linear lattice R will be called a semi-normal manifold 
of R if x G S, \a\ < \x\ implies that a 6 S. In the terminology of Birkhoff 
this is an /-ideal. S is itself a linear lattice for the ordering induced by R. If R 
is sequentially continuous, universally continuous, or superuniversally con­
tinuous, so is 5. 

3. Extensions of monotone functions. If 5 is a semi-normal manifold 
of a sequentially continuous linear lattice R, a monotone function / defined 
on R+ will be called an extension of a monotone function g defined on S+ if 
f(x) = g(x) in S+. 

THEOREM 3.1. Let R be a sequentially continuous linear lattice, S a semi-
normal manifold of R. Then each monotone function f on S has unique maximal 
and minimal extension fM and fm to R such that, for an arbitrary extension g 
of f from S to R, 

fm(x) < g(x) <fM(x) 

for all x in R+. If f{x) is convex {concave, homogeneous, linear, sublinear, super-
linear, or additive) so are fM and fm. Thus, if f is a length function {or modular) 
on S, fM and fm are length functions {modular) on R. 

If a G R+ and there exists 
CO 

xt î?=i a (that is, 0 < Xi < X2. . . ; U xt = a) xt € S*9 

then if (M2) is to hold for fM and fm we must define 

fM{a) = /» ( a ) = lim/(*<) < + » . 
i-x» 

If a G R+ and there exists no sequence 

Xi î£-i a, Xi G S+, 

we define 

fju(a>) = + 0 0 , 

fm{a) = sup/(*) . 
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Let § denote the set of elements of R such that x 6 S implies the existence 
of a sequence xt 6 5+, i = 1, 2, . . . ; with 

Xi ÎT-i \x\. 

It is easily verified that S is a semi-normal manifold of R. 
We next show that for a 6 £+, /jjf (a) and /TO(a) depend only on a and not 

on the choice of sequence {x<}, 

xt t?=i a. 

LEMMA 3.1. Let 

ae&+, * i î £ . i a , y j î7 - i0 , * < , y j € S + , * , j = l , 2 , 

lim/(x,) = lim/ty,). 
i-X» £-*x> 

Proof of Lemma. Fix j . Since 5 is semi-normal, xt C\ yj Ç S+ , i = 1 , 2 , . . . . 
Since yj < a, 

*«î«lia f X i P l ^ T T - i ^ 

so that, by (M2) for 5, 

lim/(*« n y , ) = / ( y , ) . 
i-x» 

Thus 

lim/(*«) > l im/(*, fi y>) = / (y , ) , i = 1, 2 , . . . , 
i-X» i-X» 

l im/(*0 > lim/(?,) . 
i-X» i-X» 

Reversing the roles of x and y leads to equality. 

COROLLARY. fM and fm are uniquely defined on R+ and coincide on S+. 

We next prove that fm is a monotone function on R+. For # < y we have 

fm{x) = sup f{a) < sup f(a) = /w(y) , 
x>a«S+ y>aeS+ 

that is (Ml) holds. 
If 

Xi î?=l#, 

(Ml) implies that 

fm(x) > lim/*(*,). 

For x > a G S+ we have 

and hence 
Km/*(*,) > lim f(xi O a) = / ( a ) . 
i-Xx> i-X» 
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Thus 

\imfm(xi) > sup f(a) = fm(x) 
i-*x> x>aeS+ 

and (M2) holds. It follows from the corollary t h a t / m and fM define the same 
monotone function on S+ . 

We prove that fM is a monotone function on R+. (Ml) is trivially true for fM 

when y ##+, and is therefore true for fM on R+. (M2) is trivially true if 
Xi $S+ for some i. We complete the proof by showing that if xt G S+, i = 1, 
2, . . . , and 

CO 

x — \J XiÇ. R, 
i=i 

then x G S+. 
There exist sequences 

Xu G S*, Xij t~=i *u j = 1 , 2 , . . . , 

and 
00 

x = U #i = U Xij. 
«- i ij 

With 
n 

^n = U Xni G S"*", 

we have 

Zn Î2-1 U *ij = X 
ij 

and x G /S. 
Let g be an arbitrary monotone function extending / on S to R. Since g 

and / j * coincide in S+ and / M = + 0 0 in R+ — #+, g(x) < / M ( X ) for all 
x G i£+. For every a G 5 + with a < x, (Ml) implies that g(x) > g (a) = / ( a ) , 
whence g(x) >/TO(x) for all x in i£+. 

It is not difficult to show that if / on S has one of the additional properties 
in the theorem, thenfM and/ m have the same property on R. We give a proof 
for / sublinear. 

If x, y G R+, x + y G i?+. For a < x + y, a G S+, a = a H (x + 3/) < 
a H x + a H y (3, 10, p. 10). Thus 

fm(x + y ) = sup f(a) <fm(x) +fm(y). 
aeS+ 
a<x+y 

Thus fm is sublinear on R and both fm and / ^ are sublinear on S. If one of 
x, y is not in §,fM(x + 3O < /M (x) + / M (3O trivially. This completes Theorem 
3.1. 

THEOREM 3.2. Let S be an arbitrary semi-normal manifold of R. Then in 
order that fm (x) = fM (x) for every monotone function f on S+ and all x G R+, it 
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is necessary and sufficient that R = S. In order that fm(x) = fM(x) for every 
x G i?+, / a fixed monotone function on S+, it is necessary and sufficient that 
fm(x) = +œ on i?+ - 3+ 

Proof. The proof is trivial, necessity in the first part being shown by the 
monotone function g(x) = 0, x G S+. 

4. Full semi-normal manifolds of sequentially continuous linear 
lattices. Elements x, y of a linear lattice R are called mutually orthogonal 
if \x\ r\ \y\ = 0 and we then write x _L y. The set of all elements y £ R ortho­
gonal to x is denoted by xL and the set of all elements of R orthogonal to 
every element of a set A is denoted by AL. A subset N of R is called a normal 
manifold of R if to each a £ R corresponds x G N and 3/ G iV-1- with a = x+3/. 
A normal manifold is necessarily a semi-normal manifold (/-ideal). If R is 
sequentially continuous, z (z R, then every a £ R can be written uniquely 
as a = x + y with x G s11-, y G z-1. The mapping a —>x is a projection deter­
mined by 0. The corresponding linear operator, which is written as [2], is 
called a projector. Projectors are studied in detail in (3). The sets z±A- = [z]R 
and zL are normal manifolds of R and z G z11. As an example let R be the 
continuous linear lattice Ll(X, 5, M) of equivalence classes of integrable 
functions on the measure space (X, S, JUL). Then if f £ L1 and ef = [x £ X : 
f(x) 9e 0], [/] means projection on ef, modulo null sets. 

For an arbitrary index set A and elements x\ G R (X G A) we say that the 
set {x\} is filtering for < and write X\ ÎX«A if to any two elements xx, X\' corre­
sponds an element X\" such that X\ VJ x\> < x\". If in addition x = WX«AXX 

we write xx ÎX*AX. For projection operators on R> [x\] ÎX«A[X] means that for 
every a G R+, [x\]a îx«A[x]a. 

DEFINITION. A semi-normal manifold S of R is full (in R) if x G R, x _L 5 
implies that x = 0. An orthogonal system a\, X G A, of elements of R is full 
in R if x G R, x _L a\ for all X G A implies that x — 0. 

If R denotes the sequentially continuous linear lattice of Lebesgue measur­
able functions on ( — 00, 00), with the natural ordering il S = L1, the corre­
sponding set of Lebesgue integrable functions, without identifying equivalence 
classes, S is a semi-normal manifold of R that is full in R. If Si denotes the 
Lebesgue integrable functions vanishing outside (0, 1), Si is a semi-normal 
manifold of R that is not full in R. If 

/(*) = f x(t)dt, 
Jo 

f is a linear monotone function on Si. In this case clearly / has many linear, 
monotone function extensions to R different from fm and fM. On the other 
hand, S = R so that 

/•oo 

/ (*) = x(t)dt, 
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which is a linear monotone function on S+, has a unique extension to R+ as 
a monotone function. If x G R+ — 5 + , f(x) = +00. In the sequel we study 
full, semi-normal manifolds of sequentially continuous linear lattices. 

LEMMA 4.1. If S is a full semi-normal manifold of a sequentially continuous 
linear lattice R, then, for each x G R+, 

X H S 1\eS+ X. 

Proof. We suppose that y ^ x C\ s for all 5 G S+. Then y > x P\ ns for all 
5 ? 5 + and n = 1 , 2 , . . . because s £ S+ implies ns G S+, w = 1, 2, . . . . Thus 
we have y > [s]x for all 5 G S+. This implies that [s]y > [s]x for all s G S + 

and thus 
[s](x-y)+ = ( [ 5 ] * - [sbO+ = 0, 

for all 5 6 S+, whence 5 JL (x — y)+ and x < y. 

THEOREM 4.0 (3, Theorem 13.2). In order that a sequentially continuous 
linear lattice R be superuniversally continuous it is necessary and sufficient that 
for any orthogonal system a\ (X G A) in R and for any p £ R+ we have [p][a\] = 0 
except for at most countable X G A. 

THEOREM 4.1. Let R be a sequentially continuous linear lattice. In order that 
fm = fM for every full semi-normal manifold S of R and every monotone function 
f on S+j it is necessary and sufficient that R be sup eruniver sally continuous. 

Proof. Necessity. We prove necessity by showing that, if R is not super-
universally continuous, there exists a full semi-normal manifold S ol R with 
R 5* S. Theorem 3.2, applied to 5, completes the argument. 

If R is not superuniversally continuous, Theorem 4.0 implies that there 
exists a G R+ and an orthogonal system a\ £ R+, X G A, with the index set 
A not countable. If the orthogonal system is not maximal in R it can be 
extended to a maximal system ax, X G A, by Zorn's lemma or transfinite 
induction and a maximal system is full in R by definition. 

Let S denote the set of elements of R with 
00 

|x| < n U axi, 
1=1 

for some positive integer n and some countable collection X* G A, i = 1, 2, . . . . 
It is easy to verify that S is a semi-normal manifold of 5. Since a\ G S for 
every X G A and the orthogonal system a\, X G A, is full in R> S is full in R. 
Suppose that a G S+. There is then a countable sequence xt G S+ with 

00 

a = U Xi. 
1 

The definition of S implies that [x<][a\] = 0 for all but a countable collection 
of values X, i = 1, 2, . . . . Thus [a][a\] = 0 for all but a countable collection 
of indices X, giving a contradiction. Thus a $§, R 5* 8. 
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Sufficiency. If x £ i?+, x = U s es+(^ H 5) by Lemma 4.1, and the definition 
of superuniversai continuity implies that there is a sequence st £ S+ (which 
may be assumed to be increasing since 5 is semi-normal) with 

00 

x = u (x n s) = u (x n 5,). 
Thus every x is in S and Theorem 3.2 implies that fm = / ^ . 

COROLLARY.* In order that R be super universally continuous it is necessary 
and sufficient that for every full, semi-normal manifold S of R, S = R. 

If R is superuniversally continuous and S is a full semi-normal manifold 
of R, then fm(x) = fM{x) for every monotone function / on S+ and every 
x e R+ by Theorem 4.1. Thus S = R by Theorem 3.2. If § = 2?, then for 
every monotone function / on S+, /,*(#) = fM(x) for every x G i?+. Thus 
ii § = R for every full, semi-normal manifold of R, R is superuniversally 
continuous by Theorem 4.1. 

We note that 5 need not coincide with R. For example if R is the space 
of equivalence classes of Lebesgue measurable functions on (0, 1) with the 
natural partial ordering modulo null sets, R is superuniversally continuous 
by Theorem 4.0. U S = Ll, S is a full, semi-normal manifold properly con­
tained in R. Note that S = R. 

DEFINITION. The monotone function f on R+ is semi-continuous if x\ Ç R+, 
x\ TxeAX, implies that f(x) = supx€A/(xx). 

THEOREM 4.2. Let f be an arbitrary monotone function on R+
f where R is a 

sequentially continuous linear lattice. Then in order that f be semi-continuous 
it is necessary and sufficient that a > 0, [x\] |\eA [x] imply 

f([x]a) = supx/([xx]a). 

In (3) Nakano has defined semi-continuous norms on linear lattices in 
terms of countable sequences rather than filtering sets of elements. Noting 
that a norm on a sequentially continuous linear lattice is a subadditive 
monotone function, the present theorem is the analogue of his Theorem 30.5. 
The proof requires an extension to filtering sets of Theorem 6.18 which we 
give as 

LEMMA 4.2. Let R be a sequentially continuous linear lattice. If p 6 R+> 
p\ Tx p, then for every a € R+, [p\]a |x [p]a. 

Proof of the lemma. Since p < q implies [p] < [q], [p\]a fxcA. Since 
[p]a > [p\]a (X G A), it remains to be shown that if x > [p\]a (X Ç A), then 
x > [p]a. 

*The authors are indebted to the referee for suggesting this corollary and for comments 
improving several proofs. 
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Let b = [p]a — (\p]a) C\ x. Then, using (3, §5), 

[px]b = \px](\p]a - (\p]a)nx) = [Px]a - ([px]a) H x = 0, 

for all X G A. Now for q, r £ R, [q]r = 0 if and only if q _L r. Thus b ± p\ 
(X G A) and i JL U x £x = £ by (3, Theorem 4.2). Thus 

0 = [p]b = fe](fc>]a - ([p]a)r\x) = [p]a - (fe]a) H * f 

[£]a = (|>]a) H x < x. 

Pr<?0/ 0/ Theorem 4.2. The proof of (3, Theorem 30.5) now applies with 
minor changes. Necessity follows immediately from the definitions. To prove 
sufficiency we suppose that x\ jx x, x, x\ G R+, and must show that the 
conditions of the theorem imply that f(x) = sup\/(x\). Since (Ml) implies 
that > holds we need only show that < holds. 

We fix e, 0 < e < 1, and define 

p\ = (x\ — (1 — c)x)+ < (x - (1 - e)x)+ = (ex)+ = ex, 

for all X G A. Clearly p\ fx«A. Suppose that y > p\ (X G A). Since 

(x\ - (1 — e)x)+ > xx - (1 - e)*, 

^ > WX«A x — (1 — e)x = €*. 

Thus px TX«A ex and, since [ex] = [x], if # > 0 Lemma 4.2 implies that 
[p\] Tx [x]j whence [p\]x |x [x]x = x. By hypothesis then 

f(x) = supxf([p\]x). 

Since [a+]a = a+, [p\](x\ — (1 — e)x) = (#x — (1 — e)x)+ and 

(1 - e)[p\]x < [£x]*x < xx. 

Let 
€ij?=l0. 

Then 

and, by (M2), sup«/[(l - e,)(fex]*)] = f([px]x). Thus 

/(xx) > / [ ( l - e,)(fex]*)], * = 1 , 2 , . . . , 
/(*x) > / ( [&]* ) , 

supx/(xx) > supx/(bxW = / (*) . 

Let 5 be a semi-normal manifold of i?. Then the restriction of an arbitrary 
monotone function / on R+ to S+ is a monotone function on S+ and has 
minimal and maximal extensions to R+ which we shall write fm(s) and fM(5> 
respectively. 

THEOREM 4.3. Let R be a sequentially continuous linear lattice, f a monotone 
function on R+. Then in order that f = fm(S) for every full semi-normal manifold 
S of R, it is necessary and sufficient that f be semi-continuous. 
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Proof, Necessity. Assume t h a t / o n R+ is not semi-continuous. Then Theorem 
4.2 implies that there exists a £ R+ and a sequence [ax] îx [a] such that 

supxf([a\]a) <f(a). 

Let S denote the collection of elements x\J y with x G aL, y in [a\]R for 
some X 6 A. It is easily verified that 5 is a semi-normal manifold of R. If 
b _L 5, then 6 JL a-»- and 6 JL [ax]R (X € A). If x G 2f+, since [ax] îx [a] 

[ax]* îx [a]x, [a]x = U x [ax]x, 

b H [a]x = J H (Ux[ax]x) = VJX(6 H [ax]*) = 0 

(3, 7, p. 9). Thus b ± R, b = 0 and we have shown that 5 is full in R. 
By definition 

fm(a) = sup/(x) . 
z<o 

If x G 5, x < a implies that x G [a\]R for some X G A. Since [ax]x < [ax]a, 

/™(a) = sup/(x) = sup/([ax]x) < sup/([ax]a) < / ( a ) . 
xeS x<a XcA 
x<a X € A 

Sufficiency. Let # G 1?+. By Lemma 4.1 fulness implies that x = KJgtS 

(x f^ s). Since {x C\ s} is filtering for < , 

(x r\ s) ÎS€S x, 

f(x) = sup/(x f U ) = sup/(s) = /m(x), 
StS seS 

if / is semi-continuous. 

THEOREM 4.4. Let R be a sequentially continuous linear lattice and suppose 
that R contains a superuniversally continuous full semi-normal manifold S. Then 
in order that a monotone function f on R+ be semi-continuous it is necessary and 
sufficient that for each a G R+, 

(4.1) f{a) = supse<s/([s]a). 

Proof. Necessity. Since S is full in R, if a G R+, 

S C\a ]s€S<ly 

by Lemma 4.1. Lemma 4.2 then implies that [s H a] î s es [a] and in particular 
that [s P\ a]a = [s]a Î«€S [a]a = a. If the monotone function / is semi-con­
tinuous, (4.1) holds. 

Sufficiency. We first note that if 5 is superuniversally continuous and 
So G S, then [so]R is superuniversally continuous. Suppose it is not and choose 
a\ (X G A), y G ([so]^)"1" with [y][ax] ^ 0 for uncountably many X G A. Now 
so P\ ax (X G A) and y P\ s0 G S (since S is semi-normal). Since [s0 r\ ax] = [ax], 
[so ^ y] = [?]> this contradicts the fact that 5 is superuniversally continuous. 
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We now assume that a\ (X G A), a G R+ and that ax îx«Aa. By (Ml) , 

/ (a) > supx /(ax), 

and it is sufficient to prove that < holds when (4.1) is assumed. 
Since [s0]R is superuniversally continuous, Theorem 4.1 implies that, for 

every full semi-normal manifold 5 of [s0]R and every monotone function / on 
S+> fm =IM on (bo]i?)+. Thus on ([s0]i?)+, f = fm(s) for every full, semi-
normal manifold 5 of [s0]R and, by Theorem 4.3, / is semi-continuous on 
[SQ]R. Since ax |x a implies that [so]a\ fx [so]a, Theorem 4.2 implies that 

f([s0]a) = supx f([so]a\). 

Given e > 0, (4.1) implies that there exists s0 G S with 

/(<*) <f([so]a) + e = supx f([s0]ax) + e < supx /(ax) + e. 

Since e is arbitrary, the proof is complete. 

DEFINITION. R is locally superuniversally continuous if to each x G i?+, 
x 7* 0, corresponds p G R+, p ^ 0, such that [p] < [x] and [p]R is super­
universally continuous. 

THEOREM 4.5. / / R is a locally superuniversally continuous, sequentially 
continuous linear lattice and S denotes the set of elements s of R for which [s]R 
is superuniversally continuous, then S is a superuniversally continuous, full, 
semi-normal manifold of R. 

Proof. If p G 5, since [p] = [\p\] = [ap] for every real number a 9e 0, \p\ 
and ap are in S. For each p, [p]R is a subspace of R. If |g| < \p\, x G [q]R, 
y€\p]R, P£S> with \y\ < |x|, then \y\ = yx + y2 with yx G ([q]R)+, 
y2 G qLL. Since y2 < \y\ < \x\, y2 G q1L, y2 = 0 and y, \y\ G [q]R. Since [p]R 
is assumed to be superuniversally continuous it now follows easily from the 
definition that [q]R is superuniversally continuous and q G S. Thus 5 is a 
semi-normal manifold of R if it is linear and this will follow if we show that 
\p\ + \q\ G s if p, q G s. 

Using (3, Theorems 6.7 and 6.15), if a G R+, 

(\P\ + \q\)a = \p, q]a = [p]a U [q]a. 

Let a, ax € ([\p\ + \q\]R)+- Now [a] [ax] ^ 0 if and only if a A a ^ O . 
Assuming a C\ a\ 5* 0, 

a H ax = [\p\ + \q\) (a H ax) = [£](a H ax) U fo](a Pi ax), 

whence [£](a P\ ax) ?* 0 and/or [q](a H ax) 5̂  0. 
With Theorem 4.0 this shows that if [\p\ + |g|]i? is not superuniversally 

continuous, then at least one of [p]R, [q]R is not superuniversally continuous, 
giving a contradiction. We conclude that \p\ + \q\ G S. An alternative proof 
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of this part, independent of Theorem 4.0, can be based on the fact that 
[p ^ Q]R is a direct product of [p]R and 

[q-0(npr^q)]R= (1 - [p])[q]R. 

We next show that S is full in R. Suppose that h JL S and assume that 
h 9e 0. Since R is locally superuniversally continuous, there then exists p 9e 0, 
p £ R with 0 < [p] < [A], ^ 5 , contradicting the hypothesis that h _L S. 
We conclude that h = 0. 

Finally we show that 5 is superuniversally continuous. Let a\, X 6 A, be 
any orthogonal set of elements of 5, x an arbitrary element of S. Since [x]i? 
is superuniversally continuous 

[x][a\] = [x][a\C\x] = 0 

for all but at most countably many X, showing that 5 is superuniversally 
continuous. 
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