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Abstract

We consider the large polaron described by the Frohlich Hamiltonian and study its energy-momentum relation
defined as the lowest possible energy as a function of the total momentum. Using a suitable family of trial states,
we derive an optimal parabolic upper bound for the energy-momentum relation in the limit of strong coupling.
The upper bound consists of a momentum independent term that agrees with the predicted two-term expansion for
the ground state energy of the strongly coupled polaron at rest and a term that is quadratic in the momentum with
coefficient given by the inverse of twice the classical effective mass introduced by Landau and Pekar.
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1. Introduction
1.1. The Model

The large polaron provides an idealized description for the motion of a slow band electron through
a polarizable crystal. The analysis of the polaron is a classic problem in solid-state physics that first
appeared in 1933 when Landau introduced the idea of self-trapping of an electron in a polarizable
environment [30]. Since it provides a simple model for a particle interacting with a nonrelativistic
quantum field, the polaron has been of interest also in field theory and mathematical physics. In
particular, the strong coupling theory of the polaron and Pekar’s adiabatic approximation have been the
source of interesting and challenging mathematical problems.
Following H. Frohlich [20], the Hamiltonian of the model acts on the Hilbert space

# = L*(R?,dx) ® F, (1.1)
with F the bosonic Fock space over L?(R?) and is given by
Hy = -Ac+aN+a ' ¢(hy). (1.2)

Here, x € R3 is the coordinate of the electron, N denotes the number operator on Fock space and the
field operator ¢(hy) = a' (hy) + a(hy) with coupling function

1

hy(y) = P

(1.3)

accounts for the interaction between the electron and the quantum field. The creation and annihilation
operators satisfy the usual canonical commutation relations

[a(f).a"(9)] = (flg),.. [a(f).a(g)] = 0. (1.4)

Since we set /i = 1 and the mass of the electron equal to 1/2, the only free parameter is the coupling
constant & > 0.

By rescaling all lengths by a factor 1/a, one can show that a’H,, is unitarily equivalent to the
Hamiltonian

Hgolaron — —AX+N+\/E¢(hx), (1.5)

which is more common in the polaron literature and also explains why @ — oo is called the strong
coupling limit.

The Frohlich Hamiltonian defines a translation invariant model, that is, it commutes with the total
momentum operator,

[Ha,_ivx+Pf] =0, (1.6)

where Py = dI'(—iV) denotes the momentum operator of the phonons. This allows the definition of the
energy-momentum relation E, (P) as the lowest possible energy of H, when restricted to states with
total momentum P € R3. To this end, it is convenient to switch to the Lee~Low—Pines representation

Ho(P) = (Py — P)* +a *N+a ' ¢(hy), (1.7)
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where H, (P) acts on the Fock space only [32]. The Frohlich Hamiltonian H, is unitarily equivalent
to the fiber decomposition fRef H, (P)dP, which follows easily from transforming H, with e/F7* and
diagonalizing the obtained operator in the electron coordinate. The energy-momentum relation is then
defined as the ground state energy of the fiber Hamiltonian,

Eqo(P) = inf o (Hy(P)), (1.8)

which by construction satisfies £, (RP) = E,(P) for all rotations R € SO(3). It is known [26] that
E,(0) < E,(P)andhence E,(0) = inf o (H ) (in fact, E,(0) < E,(P) forall P # 0[29, 52]). Further
properties, such as the domain of analyticity, existence of ground states and the value of the bottom of
the essential spectrum, were analyzed in [44, 21, 58, 45, 23, 10].

The aim of this work is to analyze the quantitative behavior of the energy-momentum relation for
large coupling @ — oo. Our main result provides an upper bound for £, (P). The upper bound consists
of a momentum independent part coinciding with the optimal upper bound for the ground state energy
of the strongly coupled polaron at rest and a momentum-dependent part. In more detail, the momentum-
independent part is given by the classical Pekar energy and the corresponding quantum fluctuations that
are described by the energy of a system of harmonic oscillators with frequencies determined by the
Hessian of the corresponding classical field functional. This part agrees with the expected asymptotic
form of E,(0); see equation (1.25). The momentum-dependent part, on the other hand, describes the
energy of a free particle with mass M (@) = % / |[Ve|?, where ¢ denotes the self-consistent polarization
field, which coincides with the classical polaron mass introduced by Landau and Pekar [31]; see equation
(1.24). As will be explained in Section 1.3, our result confirms the heuristic picture of the polaron (the
electron and the accompanying classical field) as a free quasi-particle with largely enhanced mass.
To our best knowledge, the upper bound we present in this work is the first rigorous result about the
connection between the energy-momentum relation E , (P) and the classical polaron mass M («).

Starting from the works in the 1930s and 1940s [30, 31, 19], there has been a large number of
publications in the physics literature that studied the ground state energy E, (0) and the effective mass,
that is, the inverse curvature of E,(P) at P = 0. For a comprehensive summary of the earlier results,
we refer to [41]. More recent developments are reviewed in [1].

Mathematically rigorous results for the leading-order asymptotics of E, (0), for a large, were obtained
by Lieb and Yamazaki [40] (with nonmatching upper and lower bounds) and by Donsker and Varadhan
[11] as well as Lieb and Thomas [39]. The effective mass has been studied in [57, 12, 14, 38, 37, 4].
Other works have considered confined polarons or polaron models with more regular interaction [18,
15, 48]. For completeness, let us also mention recent progress in the understanding of the polaron path
measure [47, 3] as well as the increased interest in the analysis of the Schrodinger time evolution of
strongly coupled polarons [25, 34, 35,42, 13, 16, 17].

1.2. Pekar functionals

The semiclassical theory of the polaron has been introduced by Pekar [51]. It arises naturally in the
context of strong coupling, based on the expectation that the electron and the phonons are adiabatically
decoupled, similarly as the electrons are adiabatically decoupled from the heavy nuclei in the well-
known Born—Oppenheimer theory [6, 5]. With this in mind, one can minimize the Frohlich Hamiltonian
over product states of the form

¥, = u®e” (Q, (1.9)
where u € H! (R3) is a normalized electron wave function, Q = (1,0, 0, . . .) the Fock space vacuum and
e? (@) Q the coherent state, up to normalization, that is associated with a classical field av € L? (R3).

A simple computation leads to the Pekar energy functional
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W, | Ho W
(P Ha¥uv), (ul(=A +V*)u) 5 + VI, (1.10)

g(u, V) = W

with polarization potential

v(y)

———dy. 1.11
=y (1D

VY(x) = 2Re(v|hy),, = —Re/
By completing the square, one can further remove the field variable and obtain the energy functional
for the electron wave function,

() Plu(y)?

dxdy, (1.12)
lx =yl

E(u) = inf Glu,v) = /|Vu(x)|2dx—$/

which is known [36] to admit a unique rotational invariant minimizer y > 0 (the minimizing property is
unique only up to translations and multiplication by a constant phase). Alternatively, one can minimize
the Pekar energy functional w.r.t. the electron wave function first. This leads to the classical field
functional

F(v) = u ian (G(w,v) = inf spec (=A + V) + [[v[[%, (1.13)
ull 2=

whose unique rotational invariant minimizer is readily shown to be

ly ()I?
= —{ylh. = — 7 dy. 1.14
¢(2) = =(Y|h. (DY), / pPT L (1.14)
The corresponding classical ground state energy is called the Pekar energy
't = EW) = Fle), <0, (1.15)

and by the variational principle it provides an upper bound for inf o-(H, ). The validity of Pekar’s ansatz
was rigorously verified by Donsker and Varadhan [11] who proved that lim,_,« inf o-(H,) = e?* and
subsequently by Lieb and Thomas [39] who added a quantitative bound for the error by showing that

infor(HY) > P+ 0(a71P). (1.16)
Given the potential V¥ for the field ¢, one can define the Schrodinger operator
AP = —A 4V (x) = AP, AP = PR g2, (1.17)

with AP¢ = inf o (—=A + V¥(x)) < 0 and ¢ the corresponding unique ground state. It follows from
general arguments for Schrodinger operators that 27X has a finite spectral gap above zero, and thus the
reduced resolvent

R = Qu(h*™'Q, with Qy =1-Py, Py = Y)Wyl (1.18)

defines a bounded operator (P, denotes the orthogonal projection onto the state ).
The last object to be introduced in this section is the Hessian H"** of the energy functional F at its
minimizer ¢, defined by

1
(v|H**Y) 5 = lim g(]:((p +ev) = F(p)) VveLi(RY). (1.19)
In the following lemma, we collect some important properties of HP,
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Lemma 1.1. The linear operator H* : L>(R3) — L*(R>) has integral kernel

H™(y,2) = 6(y — 2) — 4Re (y|h.(y)Rh.(2)¥) > (1.20)
and satisfies the following properties.

() 0 < H™ <1
(i) KerH™ = Span{d;¢ : i=1,2,3}
(iii) H?* > 7 > 0 when restricted to (KerH?®*)+

(iv) Trp2(1 — VHPK) < oo,

The proof of the lemma, in particular item (ii), is based on the analysis of the Hessian of the energy
functional £ [33]. The details are given in Section 4.

1.3. Motivation and goal of this work

In this work, we are interested in the behavior of the energy-momentum relation E , (P) for large values
of the coupling a. In general, E, (P) is expected to interpolate between two distinct regimes (see, for
instance, [24, 22, 60, 58]): The quasi-particle regime and the radiative regime. The former corresponds
to small momenta, and the expectation is that the system behaves effectively like a free particle with
energy

P2

eff _
ES(P) = Ea(0) + 5,

(1.21)

where the effective mass is determined by the inverse curvature of E, (P) at P = 0 (which is known to
be well defined),

. (Em) —Ea<0>)‘1
11rr%) _— .

1
eff — _
M (@) = 5 lin 3 (1.22)

It is easy to verify that M°T(a) > 1/2 (the mass of the electron in our units), and one can further show
that the inequality is strict if @ > 0 so that the emerging quasi-particle is heavier than the bare electron.
The heuristic idea is that the electron drags along a cloud of phonons when it moves through the crystal
and thus appears to be heavier than it would be without the interaction. The radiative regime, on the
other hand, describes a polaron at rest and an unbound/radiative phonon carrying the total momentum
P. It is expected to be valid for large momenta and it is characterized by a flat energy-momentum relation
that equals or approaches the bottom of the essential spectrum [45] (see also [29, Lemma 1.1])

Tess(Ha(P)) = [Eq(0) + a2, ). (1.23)

The two regimes cross at |P| = P.(a) := y2M®F(a)/a which marks a characteristic momentum scale
of the polaron. While the quasi-particle picture is expected to be accurate for |P| < P.(«), the radiative
regime should hold for |P| > P.(«) (see also Remark 1.3 below). Between the two regimes there is no
concrete prediction for the behavior of E, (P). A schematic plot is provided in Figure 1.

One aspect of this work is to show that the quasi-particle picture is mathematically rigorous, insofar
as it provides a parabolic upper bound on E, (P) that coincides with the expected form of the quasi-
particle energy in the limit of large coupling. Since the quasi-particle energy (1.21) is determined by the
values of E,(0) and M®T (), it is instructive to recall two long-standing open conjectures concerning
their behavior for @ — co. As explained in the previous section, the phonon field behaves classically
for large coupling, and thus it is expected that M (@) should asymptotically tend to the expression that
follows from the corresponding semiclassical counterpart of the problem. This semiclassical theory of
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Figure 1. The energy-momentum relation E ,(P) is expected to have two characteristic regimes: The
parabolic quasi-particle regime for |P| < P.(a) = \2Mf (@) /a and the flat radiative regime for larger
momenta. For the transition between the two there is no precise prediction. The dashed lines denote the
quasi-particle energy (1.21) and the bottom of the essential spectrum (1.23). Their intersection defines
the momentum scale P.(«) that is proportional to « for large coupling. Note that the y-axis is measured

in units of order a2

the effective mass was introduced by Landau and Pekar in 1948 [31], and, based on this work (see also
[57, 14]), it is conjectured that

Meft 2
lim f“) = MY with MY = Z|Vg|?,. (1.24)
a—o 0% 3 L
Although this problem is many decades old, the best rigorous result available at the time of writing is
that M () is divergent [38] at least as fast as @*/> [4]. Regarding the ground state energy E,(0) the
prediction from the physics literature (see, e.g., [2, 43, 59, 27]) is that

1
Eq(0) = P 4 FTrLz(\/HPek ~D+0(@ % as a— (1.25)
a

for some & > 0O (in fact it is predicted that 6 = 2 [27]). Compared to the semiclassical expansion this
includes a subleading correction of order a2, which we call the Bogoliubov energy, and which arises
from quantum fluctuations of the field around its classical value. For a nice heuristic derivation of
this correction, we recommend the study of [43]. An upper bound of the form (1.25) is an immediate
consequence of the results in this paper. We also note that a corresponding lower bound on E, (0) was
recently established in [8].

Now inserting equations (1.24) and (1.25) into equation (1.21), and based on the expectation that the
quasi-particle regime is restricted to |P| < v2M®f(a)/a ~ a, it is clear that the Bogoliubov energy
needs to be taken into account in order to see the quasi-particle energy shift given by P?/(2a*M™F) <
a2,

To put it concisely, we can summarize the heuristics discussed above in the claim that

1 p?
lim. @*|Eq(aP) — % - mTrLz(x/HPek - 1)) = min{ZM—LP, 1}. (1.26)

Our main result, Theorem 2.1 below, provides an upper bound for E , (@ P) that is compatible with this
claim. To be more precise, our result implies that the left side of equation (1.26), with the limit replaced
by the lim sup, is bounded from above by the expression on the right side. This shows in particular that
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the corrections to the quasi-particle energy are always negative, a conclusion that is not entirely obvious
a priori.

During the publication process of this work, a corresponding lower bound on E , (@ P) was presented
in [9]. When combined with the upper bound presented in this work, the two bounds establish the
validity of equation (1.26).

Furthermore, we would like to mention the recent progress made in the analysis of the large coupling
limit of the effective mass, as reported in [9, 55]. These advancements represent a significant step
forward towards solving the Landau—Pekar conjecture (1.24).

Remark 1.2. An immediate consequence of equation (1.26) is that

1. S(Eq(aP) —En(0)\™
- 111’1’1 111’1’1 a _— =

fim Y, B M (1.27)

which is to be compared with equation (1.24) where the limits are taken in reversed order. In light of
this, we interpret equation (1.26) as an additional confirmation of the polaron’s quasi-particle nature,
which complements the picture suggested by equation (1.24).

Remark 1.3. An unresolved problem of interest is whether the ground state energy E,(P) enters the
essential spectrum for some finite momentum P, which may depend on the dimension and possibly
also on the value of «. It is known that in two dimensions E, (P) remains an isolated eigenvalue for
all P, meaning that the curve approaches inf oy (Ho (P)) only in the limit as |P| goes to infinity [58].
However, in three dimensions the question is unsettled. In Corollary 2.2 below, we prove that for large
a, E,(P) remains an isolated eigenvalue for all |P| < V2MPa. Nonetheless, there is evidence from
results obtained for weak coupling that E, (P) agrees with the bottom of the essential spectrum when
|P| is sufficiently large [10].

2. Main result
We are now ready to state the main result.

Theorem 2.1. Let E,(P) = inf o (H o (P)) and M = %||V<,o||12_2 with ¢ defined in equation (1.14). For
every € > 0, there exists a constant C > 0 such that

Trp2(VHPR 1) P? 1 See
EQ,(P) < Pk L 202 + min m,; +C.a 2t 2.1

forall P € R? and all « large enough.

As a consequence of Lemma 1.1, the operator VHFek — 1 is trace-class and nonpositive, implying
that the second term on the right-hand side is finite and lowers the energy. This term corresponds to the
quantum corrections to the ground state energy of the Frohlich Hamiltonian, as discussed in Section 1.3.
Since E,(0) = inf o (H,), our theorem implies a two-term upper bound for the ground state energy of
the Frohlich Hamiltonian. A complementary lower bound for E 4 (0) has been recently proved in [8].

The result for |P|/a > V2M™P can be obtained from equations (1.22) and (2.1) for P = 0. The relevant
range for the momentum dependent term is |P|/a@ < V2MP. For momenta satisfying o~ 5« |P|/a <
V2MLP | the last term in equation (2.1) is subleading for large & when compared to the momentum
dependent term. In this region, the upper bound describes a quadratic dispersion relation for a free
quasi-particle with mass a* M. The lower restriction |P|/a > a it
by deriving a better error term in equation (2.1).

For a long time, the only rigorous lower bound available for nonzero P was the one derived by Lieb
and Yamazaki [40] in 1958, which states that E,(P) > c;e™ + ¢, P?/(2a*M™) with ¢; ~ 3.07 and
¢ ~ 0.11 (where e is negative). After the completion of our paper, a lower bound that matches our

7 could in principle be improved
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upper bound was obtained in [9]. It should be noted that the approach in [9] is different from ours, as it
does not utilize the fiber decomposition of H,.

Combining a suitable lower bound on the bottom of the essential spectrum (1.23) with Theorem 2.1
yields an extension of known results regarding the existence of a unique ground state of H,, (P). Frohlich
[21] showed that a unique ground state exists for |P| < V2, which was later extended by Spohn [58] to a
larger but unspecified domain. More recently, Polzer [52] established the existence of the ground state
for all |P| < v2Mef () /o with M (@) defined by equation (1.22). Our new result demonstrates that
the ground state exists for |P| < V2MLPq.

Corollary 2.2. For every s € (0, %), there exists a constant a(s) > 0 such that E o (P) is a nondegen-
erate eigenvalue of Hy (P) for all |P| < (1 =2a~*)'?>N2MYPa and a > a(s).

To prove this statement, we combine equations (2.1) and (1.21) and [8, Theorem 1.1] to show that
E,(P) < inf oess(H o (P)) for the specified values of |P| and @. This implies that E, (P) is part of the
discrete spectrum, meaning it is an isolated eigenvalue of finite multiplicity. The nondegeneracy of this
eigenvalue can then be established using a Perron—Frobenius type argument, as shown in [44, 29].

In the next two sections, we provide the definition of a suitable trial state and formulate our main
statement as an energy estimate for this trial state. The remainder of the paper is devoted to the proof of
this energy estimate. A sketch of the strategy of the proof is given in Section 3.2.

2.1. Bogoliubov Hamiltonian

In this section, we introduce and discuss a quadratic Hamiltonian defined on the Fock space. For its
definition, we set Iy and IT; to be the orthogonal projectors onto KerH"* = Span{d;¢ : i = 1,2, 3} and
(KerHP) L that is,

Ran(Tlp) = KerH™, Ran(I1}) = (KerH™™)*. (2.2)

Even though we will not make explicit use of it, it is convenient to keep in mind that the decomposition
L*(R?*) = Ran(I1y) ® Ran(I1;) implies the factorization

F=Fy®F with Fy=F(Ran(Ilp)) and F; =F(Ran(Il})). 2.3)

For technical reasons, which are explained in Section 3.4.3, we introduce the Bogoliubov Hamiltonian
Hg with a momentum cutoff K € (0, o0]. Setting N; = dI'(Il;) (the number operator on Fj) and
recalling equation (1.18) we define

Hg = Ny = (y|¢(hi JRS(hi W), (2.4)
where the new coupling function

eik(x=y)
k]

1
M) = [ a0 D@ with i) = o /lm & @)

results from the coupling function 4, by removing all momenta larger than K and then projecting to
Ran(I1;). The second term in equation (2.4) defines the quadratic operator given by

(Wlo(hg IR (hy IW),» = // dydz (y|(hg JR(hg )(2W),2(a) +ay)(al +az).  (2:6)
By definition, Hg acts nontrivially only on the tensor component ;. Below we will show that Hg
is bounded from below and diagonalizable by a unitary Bogoliubov transformation. For the precise

statement, we need some further preparations.
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For K € (0, o], we introduce H ,P(ek as the operator on L?(R?) defined by

HEX I Ran(11)) = I1; — 4Tk (2.72)
HEX t Ran(TTp) = 0, (2.7b)

where Tk is defined by the integral kernel
Tk (v.2) = Re (¢|hk .(»)Rhy (), 2.8)

By definition H?®* = HP®X; see equation (1.20). Moreover, we set @k = (Hlpg‘k)l/ 4 and

0y + 0k 0y -0k

2 2
Ak | Ran(Tly) = Iy Bk | Ran(Ily) = 0. (2.9b)

Ak [ Ran(ITy) = Bk ' Ran(ITy) = (2.9a)

The next lemma, whose proof can be found in Section 4, implies some useful properties of these
operators, among others, that there are constants C, Ko > 0 such that

sup ([|[Ak llop + 1Bk Ilus) < C. (2.10)

K >Kj

Lemma 2.3. For Ky large enough, there exist constants § € (0,1) and C > 0 such that for all
K € (Ko, ]

(i) 0 < HF* < 1 and (HY* - p) I Ran(I1;) > 0
(ii) (Bx)* < C(1 - HZ)
(iii) Trp2(1 - HY) < C.

Moreover, for all K € (K, o)
(iv) Trp2((=iV)(1 — HE¥)(-iV)) < CK.

Remark 2.4. Since HIPfk has a real-valued kernel it satisfies H,Pfk f= Ro:(H,P<ek f)+i Im(H,P<ek f) for all
f € L*(R?), and the same holds for I1 and I1;. By the spectral calculus for self-adjoint operators, this
property extends to ®g and @;{1.

To make the relation between Hg and H;ek precise, we introduce the transformation
Uga(f)UL = a(Axf)+a' (Bxf) forall f e L*(R). (2.11)

That this transformation defines a unitary operator Ug for all K € (Kj, co] is a consequence of equation
(2.10) and A% =1+ Bi by the well-known Shale—Stinespring condition (see [54, 56, 53]). Also, note
that Ug does not mix the two factors in F = Fy ® Fj.

Lemma 2.5. For K € (K, o] with Ky large enough and Uk, the unitary operator defined by equation
(2.11), we have

. 1
UgHg Uy = dD(\HES) + ETrLz( HEEk —11)) (2.12)

with HIP;'k defined by equations (2.7a) and (2.7h).

The proof is obtained by an explicit computation and postponed to Section 4. From this lemma, we
can infer that the ground state energy of Hg is given by

1 1 3
inf o (Hg) = ETrLz(,/H,";k -1 = ETrLz(th,ng 1)+ > (2.13)
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where we also used I1; = 1 —TIly and Tr; 2 (Ilp) = 3. Moreover, since H;‘*k < II; we have inf o-(Hg ) < 0
and from item (iv) of Lemma 2.3 we find that inf o-(Hg ) > —oo uniformly in K — oo.
For the ground state of H K We shall use the notation

Yk = ULQ, (2.14)

where it is important to keep in mind that the state Y has excitations only in F; (i.e., no zero-mode
excitations) since UL acts as the identity on Fy; see equation (2.9b).

From now on, we shall always assume K > Kj large enough such that Lemmas 2.3 and 2.5 are
applicable.

2.2. Trial state and energy estimate

As starting point for the definition of our trial state, consider the Fock space wave function obtained
from the fiber decomposition of the classical Pekar product state Wy, ,, that is,

YN (P) = / dx /PPy (e (1O Q. @15

Testing the energy of H, (P) with ‘I‘ffk(P), one would in fact obtain that E, (P) is bounded from above
by

Pek—i+P—2+ (@) (2.16)
e 202 a’4MLP o\ . .

For E,(0), this provides already a better bound compared to the semiclassical approximation for
inf 0 (H,). The improvement comes from taking into account the translational symmetry and can be
interpreted as the missing zero-point energy of three quantum oscillators (that turned into translational
degrees of freedom). As a side remark, we find it somewhat surprising that fiber decompositions of this
form have been employed very rarely in the polaron literature, exceptions being [28] and [49]. We think
they could be of interest also for other translation-invariant polaron type models.

To obtain the desired bound for E,(P), we need to add several modifications to the integrand in
equation (2.15). On the one hand, we have to replace the classical field ¢ by a suitably shifted ¢p in
order to get the correct momentum dependent term (note that equation (2.16) is missing a factor % in the
quadratic term). The missing part of the rest energy (compare with equation (2.13)), on the other hand,
is caused by two types of correlations that need to be added to the Pekar product state. First, we include
correlations between the electron and the phonons. This is done in the spirit of first-order adiabatic
perturbation theory. Second, we rotate the vacuum by the unitary transformation (2.11) that diagonalizes
the Bogoliubov Hamiltonian (2.4). As discussed, the latter describes the quantum fluctuations of the
phonons around the classical field. For technical reasons, briefly explained in Section 3.2, we also need
to introduce suitable momentum and space cutoffs in the trial state.

Explicitly, we consider the family of Fock space wave functions Wk o(P) € F, depending on the
coupling «, the total momentum P € R? and the cutoff K € (Kj, ©), given by

Y o(P) = /dxe“‘”f—‘”)x e (agp)mataer) (GO 071G ), (2.17)
where
= p+ifp with &p = ;(PV) MY = g||V 2 (2.18)
Yp = pticp P = oye ¥ = 3Vl .
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and (recall equations (1.18) and (2.5))
G% . = v Yk, Gk, =ua()(R(hg W)(x)Yx and Yg =ULQ. (2.19)

Here, u, : R® — [0, 1] is a radial function, satisfying

1 Vix|<a -1
Ug(x) = and Viuglli= + ||[Auglli» < Ca 2.20
a(X) {0 Vx| > 2a Vualle + |Auall. (2.20)

for some C > 0. For completeness, we recall that ¢ > 0 and ¢ are the unique rotational invariant
minimizers of the Pekar functionals (1.12) and (1.13).

Remark 2.6. Writing G% L We think of these states as elements in L2 (R3, F) and of

(Rp(hi ) (x) = // dzdy R(x, )hg (Y () (af +az) (2.21)

as an x-dependent Fock space operator. Via the isomorphism L?(R3, F) ~ #, we can view G% . also
as a wave function in # . In this case, we shall write

Gy =v®Yk, Gg =uaR¢(hg W& Yg. (2.22)

Remark 2.7. Let us note that in equation (2.17), we anticipated the fact that the integrand isin L' (R?, F)
and thus Wk o(-) € Cp(R?, F). For G%, the integrability follows directly from the exponential decay
of ¢ (as shown in Lemma 3.7), while for G}< it can be seen from

/dx e () (RG(hge ) () Yk llr < lluall2IRGChe I @ Yl < oo, (2.23)
where we used Cauchy—Schwarz and Lemmas 3.8, 3.9 and 3.13. A more precise estimate for the norm
of Wk o (P) for large o will be given in Proposition 3.17.

For the introduced trial states, we prove the following energy estimate, where H,, denotes the
Bogoliubov Hamiltonian (2.4) for K = co.

Proposition 2.8. Let W ,(P) € F as in equation (2.17), choose ¢,é > 0 and set r(K, @) = K~'/2a™% +
VKa 3. For every & > 0, there exists a constant C > 0 (we omit the dependence on ¢ and ¢) such that
(Pro(PHa(P)¥k.a(P), oy , info(Hy) - 3 L P
<e
(Yk.o(P)| ¥k .o (P)) a? 204 MP

+Ce.afr(K,a) (2.24)

forall |P|/a < ¢, K/a < ¢ and « large enough.

The next section, which constitutes the bulk of the paper, is devoted to proving this proposition.
Before embarking on the proof, let us now deduce its main consequence and conclude the proof of
Theorem 2.1.

Proof of Theorem 2.1. With equation (2.13) and H?* = HPk we can rewrite the term of order &2 as

3 1
inf o (He) — 3= ETrLz(\/HPek -1). (2.25)
Choosing K proportional to a optimizes the asymptotics of the error in equation (2.24) and thus

proves equation (2.1) for |P| < YV2MPq by the variational principle. For larger |P|, we use E,(P) <
E (0) + a2 as a consequence of equation (1.24) and apply equation (2.1) for P = 0. m}
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3. Proof of Proposition 2.8
We recall the definition of the field operators
$(H)=a'(f)+a(f). a(f)=¢Gf) G.1)
and the Weyl operator
W(f) = e7i7) = oa'(N=alf) = pa' () gma(f) =3I Ia (3.2)
The Weyl operator is unitary and satisfies
W) = W(=1). W(HW() = WQW(f)eX ™ ez = w(f +g)e!™eliz (3.3

3.1. The total energy

The proof of Proposition 2.8 starts with a convenient formula for the energy evaluated in the trial state.
For the precise statement, we introduce the y-dependent function in L?(R?),

wey = (1-¢V)gp, (3.4)

and the y-dependent Fock space operator

. ) 2 ! _
Apy = iPry+igp(y), gp(y) = _W/o ds (ele™V (yV)* (PV)@),2. (3.5)

Since gp () is real-valued, we have (Ap )" = -Ap ,.
We further consider the shift operator T, = ¥V on L*(R¥), that is, (T, f)(x) = f(x + y) for every
f € L*(R?), and the Hamiltonian acting on %

Hop = B +aN+a ' ¢(hy + ¢p), (3.6)

where we recall that hPK = —A + V¢ — gPek,

Lemma 3.1. For Yk (P) defined in equation (2.17), we have

(Pko(P)[Ho(P) ¥k o(P)), = (ePek+ MP—;U,)N+5+Q+/C, 3.7)
where N = | ¥k o (P)|% and
£ = / dy (G |Ha pTye "> W(awp ,)GY ), (3.8a)
G = —2 / dy Re (G¥|Hq pTye ™ W(awp )G ), (3.8b)
K = % / dy (G |Ha pTye > W(awp )G ), - (3.8¢)

For the proof, we recall that the Weyl operator shifts the creation and annihilation operators by
complex numbers,

W(g)'a"(HW(g) = a'(f) + (gl f)zs W) al(IW(g) = a(f) + (gl ).z, (3.9)
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and, as a simple consequence,

W) ¢(f)W(g) = ¢(f) +2Re(flg),.,
W(g)'NW(g) = N+¢(g) +lIgll%.

W(g)'PyW(g) = Py —a'(iVg) —a(iVg) - (gliVg),
Moreover, we need the following identity.

Lemma 3.2. Let op = ¢ +iép with ép defined by (2.18). Then
Wi (app)e! PrPIW(app) = eAP'YW(awP,y).
Proof of Lemma 3.2. We first observe that
PG ()etPry = af (e f)

d

13

(3.10a)

(3.10b)

(3.10¢)

@3.11)

(3.12)

which follows from Ee_ispf YaT (e5=DYV £)eisPry = 0. In combination with equation (3.3), this leads

to
W (agp)e™ ¥ W(app) = eF1YW(a(1—eV)gp) exp (ia” In(pple ™V op),2).

Recalling pp = p +1i m(PV)go, we compute

o Im{pple™Vpp) 2 = ——=(ple Y (PV)gp),

MLP

1
= NP = 1 [ sl TG (P,

(3.13)

(3.14)

where we inserted eV = 1 — (yV) + %(yV)2 - /01 ds e ¥V (yV)? and used that, due to rotational
invariance of ¢, (¢|(PV)@),2 = 0 = (¢|(yV)?(PV)¢),:. Also, because of rotational invariance,

(LlOVI(PV)g)2 = ———]V ell7,

and thus, o Im(gple ™V op),2 = Py + gp(y).

(3.15)

]

Proof of Lemma 3.1. Throughout this proof, let E; = W(CL’QDP)G% e L>(R®) ® F,i=0,1, with G;{

defined in equation (2.19) and set ¥; = f dx e!Pr=P)X=, (x). First, note that ¥; € D(Hy(P)

112y for

i, j € {0, 1} which follows from D (H ,(P)"/?) = D(|P s [+N'/2) [40] together with | P |E; € L'(R3, F)
and N'/2Z; € L1(R3, F). The integrability of these states is verified using Lemmas 3.16 and 3.14.

Below, we shall employ the identities'
(Wil¥;), = / dy (=;1e'Pr —P)yTij>%

(Wi|Ho(P)Y)), = / dy (EilHoe' " PITE))

(3.16a)

(3.16b)

1Strictly speaking, ¥; does not belong to the operator domain of H, (P) (and similarly for Z; and H,). Nonetheless, the
following steps are justified by the well-known fact that the quadratic form with momentum cutoff (that is, with & replaced by

ha,x given in equation (2.5)) converges to the quadratic form associated with Hy, (P) [40, 25].
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where H,, is the Frohlich Hamiltonian given by equation (1.2). To obtain the first identity, write

(Wil;) /dx uz(x)|/dye‘“°f PIO=9g (y)) _<Hl|/dyez(Pf PT,E)).

and for the second one, use e~*(Pr ~P)X¢(vo) = ¢(v,)e (Fr=P)X 5o that

(Pilp(v)¥;), = / dx (E:(0)¢(vx) / dy ' Pr=PO=9g,(y)) (3.17a)

(PINY;) = / dx (E;(x)|N / dy ! Pr=PI =05 (y)) (3.17b)

(Wil(Py - P)"Y;) /dx B (x)|(Py - P)Z/dye‘“’f “POIE; ()

:/dx<Ei(x)|(—Ax)/dyei(P-f_P)(y_x)Ej(y)>F. (3.17¢)

With equations (3.16a) and (3.16b), the norm and the energy of the trial state are given by

Z ‘/dy<ﬂ.|el(f’f PITVE),

i€{0,1}

¥k o (P2

—2a7! Re/ dy (Bole' Pr=PTyE ) (3.18a)
(. P)Ho (P ¥k.a(P), = > o™ / dy (Ei|HoePrPT,E,)
i€{0,1}
—2a7! Re/ dy (Bo|Hae' Pr P17 ). (3.18b)
Inserting E; = W(CY(,DP)G% and applying Lemma 3.2, we find for i, j € {0, 1}
(5ile! Pr=PTyE;) = (Gl W(awp ,)TyGL ), (3.19a)
(EilHoe PrPPTE)) = (G W (app) HoW (agp)e ™ W(awp )T,GE ), (3.19b)

Using equations (3.10a) and (3.10b) and 2Re{pp|hy),2 = 2Re(p|hy),2 = V¥(x) (see equation

(1.11)) the Weyl-transformed Hamiltonian becomes
W(app) HoW(app) = A +V¢(x) +a N +a ™' ¢(h + ¢p) +llepll,

= Pek 2 2
=Hop+e ™ +lepll: - el

(3.20)

with H. «.p defined by equation (3.6). Note that we added and subtracted e?*k = APk + ||ga||22 and used

equation (3.6). Altogether, this implies
(Y. (P)Ha(P)Pk,o(P), = ("4 llpplZ = 6l N + £+ G+ K.

The claimed result now follows from

2

I(PV)l7, =

2 2
||90P||L2 - ||90||Lz = W’

1
a*(MLP)2

2 2
where we used || (PV)(,DHi2 = % ||V<,0||i2 = PTM LP because of rotational invariance of ¢.
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3.2. A short guide to the proof

3.2.1. Heuristic picture

Given Lemma 3.1, the remaining task is to show that (£ + G + K) /A coincides, up to small errors, with
the energy contribution of order &2 in equation (2.24). Although our proof is somewhat technical, the
main idea is a simple one, and we explain the corresponding heuristics here in order to facilitate the
reading. The main point is that the integrals appearing in the terms given in Lemma 3.1 turn out to be, as
a — oo and |P|/a < c, sharply localized around zero at the length scale of order . In this regime, as
formally wp ,(z) = yVe(z) for y small, the Weyl operator W(awp_,) effectively acts nontrivially only
on the Fy part of the Fock space (at this point, it is convenient to recall the factorization (2.3)). Moreover,
we shall show that eA7-» can be effectively replaced by the identity operator and it suffices to consider
Ty = 1+ yV. Since our trial state coincides with the vacuum on Fy, we thus expect for |y| small that

TyeAP’yW(awP,y)G% 2 e_’l“zyz(l + yV)ea-{'(“yV‘p)Gk, i=0,1 (3.23)
with A = éllVgolliz. (Since T, acts on the electron coordinate, it commutes with eAry and W(aw P.y))-

Taking this approximation for granted, and considering only the term withi = j = 0 in equations (3.18a)
and (3.19a), would lead to

N =~ / dy (GYITye P> W(awp ,)GY ), = / dye™*Y" + Errors. (3.24)

With the above replacement and keeping only the terms of order a2 (relative to the factor from the
norm), the energy terms are found to be given by

£ = %(w ® Yx [Ny ® Yk, / dy e 4 Errors (3.252)

v [ et s Yeloth + (14 (V) (@ TeD)w 8 T, (3.250)
G = —% Re(¢®YK|¢(h%)uaR¢(h}(,_)¢@YK)%/ dy e 4 Errors (3.25¢)
K = %(w ® Yi|p(h')Ruoh**uaRe(hl o ® Yx ), / dy e’ 4 Errors. (3.25d)

From here, the Bogoliubov energy is obtained by setting u, = 1 and K = oo in the leading-order
terms and using RAP*R = R, since this would imply (omitting the errors)

(3.252) + (3.25¢) + (3.25d) = (¢ ® Yool (N} — p(h )R (R, )y ® Yoo>%$ / dy e~

:1nf0'(2Hoo)/dye—,m2y2_ (3.26)
o

The remaining —237 term stems from the part of the interaction involving the zero modes. In equation
(3.25b), the term not involving yV vanishes due to (/|h.¢/),2» = —¢. Moreover, (/|h.Vi),2 = —%V(p

using VA. = —(Vh). via integration by parts (in the sense of distributions). Thus, since [a (yV¢), U] =
0’

(3.25b) = / dy ¢4 QU (W hyVu)a' (5T 9)Q)

1 122
-5 [ ave Iyl -

5 [ O e’y (3.27)
a
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Equations (3.26) and (3.27) now add up to the desired energy of order @72 see equation (2.25). Note

that for estimating the error induced by replacing e”#-» by unity we require the momentum cutoff K in
the definition of the trial state; see Lemma 3.16.

The main issue in equation (3.23) is that, while for small enough y one can use the first-order
approximation W(awp, ) = W(ayVe), for y large, on the other hand, the higher-order terms in wp
begin to play an important part, ultimately killing the Gaussian factor. Writing

(G |Ho(PYe P> W(awp ) TyGY ), (3.28)

_a? 2 . 4 .
= Tl (Gl (et et (@mr ) gmalave )T GIY i j=0,1,

we notice that, since
Iwpyll?, = 2/ dk |¢p (k)[*(1 = cos(ky)) = 2llgpll?, for |y] — oo, (3.29)

the prefactor should lead to a y-independent, exponentially small constant. In order to make use of this
exponential decay in a, however, we need to ensure that

|<G§<|ﬁa(P)eAP’>’e“-‘-(‘m”’y)e_“("WP’y)TyGé>W| < Ca"g(y) (3.30)

is polynomially bounded in @ with some integrable function g(y), which heuristically can be expected
to be true since the average number of particles in the state H, (P)GY is of order one w.r.t. . To obtain
the required integrability in y is also the reason for introducing the cutoff function u, in the definition
of GL.

K

3.2.2. Outline of the proof

Although the replacement (3.23) illustrates the main idea behind extracting the leading order terms, in
our proof we do not directly perform this replacement and estimate the resulting error. Instead, when
taking inner products, we commute the exponential operators ¢ (*"P) and e~*(@¥P) in W(aw P.y)
to the left resp. to the right until they hit the vacuum state in G%. This involves the Bogoliubov
transformation, cf. Lemma 3.12 and gives rise to a slight modification of wp ,, which we denote by

wp,y. These manipulations naturally lead to a multiplicative factor exp(—%zuﬁ p,y||i2) which, as we
shall see, indeed behaves like the Gaussian function in equation (3.23) for |y| small and tends to a
constant exponentially small in @ as |y| — oco. In Lemma 3.5, we prove the large @ asymptotics of
integrals of the type fg(y) exp —%2 we,y ||iz)dy for a suitable class of functions g. The major part of
the proof, apart from extracting the leading order terms, is to establish that the resulting error terms
in the integrands are, in fact, functions in this class. This is, for the most part, achieved by use of
elementary estimates combined with the commutator method by Lieb and Yamazaki [40] in the form
stated in Lemma 3.9. As already mentioned, for certain terms this makes the introduction of the space
cutoff u, and the momentum cutoff K necessary, while for others, it is enough to use the well-known
regularity properties of ¢, the relevant consequences of which are summarized in Lemma 3.7.

In the next two sections, we state the remaining necessary lemmas. The main proof is then carried
out in Sections 3.5-3.9.

Throughout the remainder of the proof, we will abbreviate constants by the letter C and write C,
whenever we want to specify that it depends on a parameter 7. As usual, the value of a constant may
change from one line to the next.
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3.3. The Gaussian lemma

We recall that wp , = (1 - eV)pp and Ok = (HIP{CI‘)U4 and set

wh , = Mowp,y € KerH™ (3.31a)
wpy = Mwp,y € (KerH™)* (3.31b)
Wpy = Ok Re(wp ) +iOF Im(wp ) (331c¢)
Wpy = Wh +Wp . (3.31d)

Remark 3.3. Note that (y,z) — Re(wp,y)(z) is even as a function on RS, while Im(wp_y)(z) is odd
on the same space. Since Il and ®g both commute with the reflection operator (7 f)(x) = f(—x), they
preserve the parity properties just mentioned. That Iy has the desired properties follows directly from its
explicit form. To see this for Ok, it is enough to check this for H ,Pfk, which can be easily done using the
fact that the resolvent R commutes with the reflection operator, which, on the other hand, follows from
the invariance of 4™k and P,, under parity, cf. the definition of R (1.18). Thus, (y, z) + Re(w}, )(2)

is even as a function on RS for i = 0, 1 while the corresponding imaginary parts are odd on the same
space. These facts will be of relevance below where they lead to the vanishing of several integrals.

The following lemma is proven in Section 4.

Lemma 3.4. Let A = %||Vgo||32. For every ¢ > 0, there exists a constant C > 0 such that

lwp 17 +11Wp 172 < Cla™y* +y?) (3.32a)
|||W%’y||i2 - 2/ly2| < Cla™2y* +y* +y%) (3.32b)
WPyl = 2457 < Ca7?y* +y* +)°) (3.32¢)

forally € R?, |P|/a < c and a > 0.

For 0 < § < 1 and > 0, we introduce the weight function

77012(1_6) ”WP,y”,z_z
2 s

ns.n(y) = exp| - (3.33)

where, for ease of notation, the dependence on a, P and K is omitted. Using the arguments laid down
in Remark 3.3, it is easy to see that ns ;,(y) is even as a function of y. Moreover, in the limit of large
a the dominant part of the weight function when integrated against suitably decaying functions comes
from the term in the exponent that is quadratic in y, cf. equation (3.32c). This is a crucial ingredient in
our proofs and the content of the next lemma.

Lemma 3.5. Let g > 0, ¢ >0, 1 = %||V<,o||z2 and ns , defined in equation (3.33). For every n € Ny,
there exist constants d, C,, > 0 such that

—naa21=9)y2 llgllee ~da~28+
[ 11s0 o) - ey < 6By g, G

for all nonnegative functions g € L*(R3) N L' (R?), n > ny, 6 € [0,1), |P|/a < c and all « large
enough.
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At first reading, one should think of n =0, § =0, 7 = 1 and g a suitable @-independent nonnegative
function. In this case, the integral involving the Gaussian is of order @~ whereas the term on the right-
hand side is of order ~* and thus contributing a subleading error. The proof of the lemma is given in
Section 4. As a direct consequence that will be useful to estimate error terms, we find

Corollary 3.6. Given the same assumptions as in Lemma 3.5, for every n € Ny there exist constants
d,C, > 0 such that

P
[ 1rsomanmay < ¢S ede gl (335)

for all nonnegative functions g € L*(R*) n L' (R3), n > no, 6 € [0,1), |P|/a < c and all K, a large
enough.

Proof of Corollary 3.6. Since
/ dy [y["e " < (naa?(-9)=H / dy[y"e™" = Cua =0 (336)
the statement follows immediately from Lemma 3.5. O

3.4. Further preliminaries

3.4.1. Estimates involving the Pekar minimizers
Lemma3.7. Lety > 0 be the (normalized) rotational invariant unique minimizer of the Pekar functional
(1.12), and let

H(x) = (ITxy),» = (¥ =) (x). (3.37)

We have that , |V| and H are LP (R3, (1 + |x|")dx) functions for all 1 < p < oo and all n > 0.
Moreover, there exists a constant C > 0 such that for all x we have

|H(x) - 1] < Cx>. (3.38)

Proof. As follows from [36], ¥(x) is monotone decreasing in |x|; moreover, it is smooth and bounded
and vanishes exponentially at infinity, that is, there exists a constant C > 0 such that  (x) < Ce™XI/C
for all |x| large enough (for the precise asymptotics see [46]). This clearly implies the statement for .
It further implies that all the derivatives of  are bounded. Hence, in order to show the desired result
for |Vy|, it suffices to show that / dx|x|"| Vi (x)]| is finite for all n > 0. Since ¥ is radial, that is, there

is a function ¥ : [0, c0) — (0, ) such that ¢ (x) = ¥™4(|x|), and monotone decreasing, we have
® 4 rad
[acnrmoe = ax [T L0020 = ) [
0 dr |x]
n+2
< 4”(R6‘+2IIWIILN R - I”WIILI) (3.39)

for all Ry > 0. Clearly, H is bounded, and hence, by |x + y|"* < 2"~ (|x|" + |y|"), we can easily bound
/ " H(x)dx < 2" 2y llalll - "l (3.40)
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from which the statement follows also for H. To show (3.38), use the Fourier representation

H(x) = / | (k)|? cos(kx)dk, (3.41)

together with H(x) < 1, cos(2mkx) > 1 — (k;)z, llwll,2 =1and Vi € L% m}

The next lemma contains suitable bounds for the potential V¥ and the resolvent R introduced in
equations (1.11), (1.14) and (1.18).

Lemma 3.8. There is a constant C > 0 such that
1
(V9?2 < C(1-A), V¥ < 7(-A)+C and IVRY2|,, < C. (3.42)

Proof. For the proof of the first two inequalities, we refer to [35, Lemma III.2]. The bound for the
resolvent is obtained through

1
0 < RI(=A)R? < RIIWP*RI — RI (V¥ — AP¥)R? < CR+ ER% (-A)R?, (3.43)
where we made use of the second inequality in equation (3.42). O

3.4.2. The commutator method
In the course of the proof, we are frequently faced with bounding field operators like ¢ (/. ). From the
standard estimates for creation and annihilation operators, we would obtain

la()®l < IFI2 N2, la® ()Pl < IFI IO+ D2, ¥ e %, (3.44)

which is not sufficient since 4p(y) is not square-integrable. With the aid of the commutator method
introduced by Lieb and Yamazaki [40] one obtains suitable upper bounds by using in addition some
regularity in the electron variable of the wave function W. For our purpose, the version summarized in
the following lemma will be sufficient.

Lemma 3.9. Let h . for K € (1, 00] as defined in equation (2.5), let A denote a bounded operator in
L*(R3) (acting on the field variable) and a® € {a, a'}. Further, let X, Y be bounded symmetric operators
in L*(R3) (acting on the electron variable) that satisfy Dg := 1 X Nop 1Y Tlop + TV X Nlop 1Y Nlop + 1 X Nop I VY [lop <
oo, There exists a constant C > 0 such that

IXa*(Ahg,+y)Y¥lly < CDoll(N + 1)V, (3.452)
. CcD
1Xa® (Aha vy — Ahg ay) Y]y < W”H(NH)”ZWH% (3.45b)

forally e R3, W e # and1 < K < A < .

Remark 3.10. Note that Ahg ..y, = Ty(Ahk,.) and in case that A has an integral kernel,

(AhK,x)(Z)Z/duA(Z,u)hK,x(u). (3.46)

Proof of Lemma 3.9. To obtain the first inequality, write ig . = (hk,.—hy,.) +h,. and apply the second
inequality (with A and K interchanged) to the term in parenthesis. The bound for the term involving A .

https://doi.org/10.1017/fms.2023.45 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.45

20 David Mitrouskas et al.

follows from equation (3.44), as

la® (Al s VW2 = / dx la® (Al xay) (VE) ()12 (3.47)
< / x| ARty 1% 1N + D2 ) ()15 < A Aol 2 1Y 121N + 1) /2913

To verify the second inequality, write the difference as a commutator

1 keik(xfz)
K <[k|<A

hA,x(Z) - hK,x(Z) = [_ivx, jK,A,x(Z)], jK,A,x(Z) =

and use that V and A commute (they act on different variables). Then similarly as in equation (3.47) we
obtain

1Xa*([V, Ajk A4y DY Pl < [1XVa* (Ajk A,+y)Y¥ln + 1 Xa® (A a,y) VYWl

A

< NXVllplla® (Ajk A +9) Yl + [ Xl lla® (Ajk A, +y) VY Pl
< N Al (IX VN 1Y Top + 1X o 1VY ll) [k A0 ll2 1N + 1) 2l
(3.49)
The desired bound now follows from sup,. x [|/x, ,\,olli2 < C/K. O

A simple but useful corollary is given by

Corollary 3.11. Under the same conditions as in Lemma 3.9, with the additional assumption that Y is
a rank-one operator, there exists a constant C > 0 such that

/ Az [IX(Ahk,.+y) ()Y ]2 < CDg (3.50a)
) _ €D
[ e x(@nen)@ - (hn )@ < 0 (3.50b)
forally e R®and 1 < K < A < co.
Proof. Since Y has rank one, we can use
[ a2 1X k) @y = X0l (Al )0 © QU (3.51)
for any w € L?(R?), and similarly for equation (3.50b), and apply Lemma 3.9. m|

3.4.3. Transformation properties of Ux
The next lemma collects some useful relations for the Bogoliubov transformation Ug . The proof follows
directly from the definition (2.11) and the properties explained in Remark 2.4. We omit the details.

Lemma 3.12. Let f € L*(R3), fO =TIy f, f! = 11, f with I1; defined in equation (2.2), and set

f =" +0¢ Re(f!) +i®k Im(f") (3.52a)
= f2+0, Re(f!) +i0 Im(f). (3.52b)
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The unitary operator Uk defined in equation (2.11) satisfies the relations

Uka(f)U} = a(f°) +a(Ax ') +a' (Bk f1)
Uka(/)Uy = a(f*) +a(Ax f") - a' (Bx 1)
Ug¢(NUy = 6(f). Ugn(H)Uy = n(f)
UkW(f)U) = W(J).

21

(3.53a)

(3.53b)

(3.53¢)

(3.53d)

Note that equation (3.3 1d) is consistent with the general notation introduced in equation (3.52b). The
following statements provide helpful bounds involving the number operator when transformed with the

Bogoliubov transformation.

Lemma 3.13. There exists a constant b > 0 such that
Upe N+ D"UL < p"n"(N+1)", UL(N+1)"Ug < b"n"(N+1)"

foralln € N.

(3.54)

Proof. With b replaced by bx = 2|| B || + | Ak |I3, + 1. both estimates follow from [7, Lemma 4.4]
together with equations (3.53a) and (3.53b). That bx < b for some K-independent b > 0 is inferred

from Lemma 2.3.

]

In the next two statements, we denote by 1(N > ¢) (resp. 1(N < ¢)) the orthogonal projector in F

to all states with phonon number larger than (resp. less or equal to) c.

Corollary 3.14. Let Yg = U;Q and Yz := 1(N > a®)Yk for 6 > 0. There exist constants b, Cs , > 0

such that

(Yk|(N+D"Yg)_ < b"n"

IA

(YR I(N + 1)"Y,><>F

IA

C(S,n a,—20

for all n € Ny.

Proof. The first bound follows directly from Lemma 3.13. The second one is obtained from

(YRI(N + 1)"Y,><>F

IA

INT(N+ D" Yg [l INT" Y |l-

IA

[N+ D)™™ Yk |- a™™® < (2(n+m)b)™"a™™"°

with m > 20/6.

(3.55a)

(3.55b)

(3.56)

]

Lemma 3.15. For § > 0 and k = 1/(16eba’®) with b > 0 the constant from Lemma 3.13, the operator

inequality
1(N < 2¢°)U} exp(2«N)U L(N < 2¢°) < 2

holds for all a large enough.
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Proof. We write out the Taylor series for the exponential and invoke Lemma 3.13,
[ee) 2 n
L(N < 2¢°)U% MU, 1(N < 2a9) = Z %1(1\1’ < 2¢°)UL (N + D)"U L(N < 2¢°)
n=0 :

o (2kbn)"
<y QCebm)™ ) N < 2a%) (N + 1)"L(N < 2¢°)
o n!
— (8a®kbn)"
< -~ 7 3.58
ZO - (3.58)
where we used 1 < 2a% in the last step. The stated bound now follows from the elementary inequality
n! > (2)". m|

The reason for introducing the momentum cutoff in Hx is to obtain a finite upper bound for the norm
of the state Py Y. This is the content of the next lemma, whose proof is given in Section 4.

Lemma 3.16. Let Py = / dk k azak and Ky large enough. There is a C > 0 such that
(QIU (P)?ULQ) < CK (3.59)

Sforall K € (K, o).

3.5. Norm of the trial state

In this section, we provide the computation of the norm N = || ¥k _(P)]|2.

Proposition 3.17. Let A = %||V<,0||z2 and ¢ > 0. For every & > 0, there exist a constant C. > 0 (we omit
the dependence on c) such that
3/2
b3
N- [ Z
‘ Aa?

forall |P|/a < c and all « large enough.

< C.VKa™ (3.60)

Proof. It follows from equations (3.18a) and (3.19a) that N' = Ny + N7 + N> with

No = / dy (G [Tye P> W(awp ,)GY ), (3.61a)
2
M = ‘;/dy Re (G |Tye* > W(awp )G ), (3.61b)
1
Ny = _2/dy (G}<|TyeAp,yW(awP,y)G}<>y/. (3.61¢)
a 4

Term MN. This part contains the leading order contribution (#)3/ 2. With H defined in equation (3.37),
let us write

No = / dy Hy)(Yg|W(awp ) Yk)

+ / dy H(y)(Yx|(e?"> =)W (awp )Yk ) . = Not + Noo. (3.62)

https://doi.org/10.1017/fms.2023.45 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.45

Forum of Mathematics, Sigma 23

In the first term, we use Yg = U;Q and apply equation (3.53d) to transform the Weyl operator with the
Bogoliubov transformation. This gives

UxW(awp,)Uk = W(awp,y) (3.63)

with wp , defined in equation (3.31d). From equations (3.2) and (3.33), we thus obtain

Nor = [ asHON@W@Tr)2), = [ 4 HOmW). (3.64)

Since ||H||;1 + ||H||.~» < C, cf. Lemma 3.7, we can apply Lemma 3.5 in order to replace the weight
function ng 1 (y) by the Gaussian e~ @y’ More precisely,

‘ / dy H(y)no,1 (y) - / dy H(y)e | < Ca™ (3.65)

for all |P|/a < c and all K, @ large enough. Then we use |H(y) — 1| < Cy? in order to obtain

3/2
i (353)

g < Ca™*. (3.66)
(04

To treat Ny, it is convenient to decompose the state Yk into a part with bounded particle number
and a remainder. To this end, we choose a small § > 0 and write

Yk = Y+ Y7 = 1N <)Yk + 1(N > a®)Yk. (3.67)
Inserting this into Ny, and using unitarity of eA#- and ||H||,1 < C, we can estimate
Wial < [ ay HORYEIA™ = DWawe,) i), |+ CIT7 - (3.68)
By Corollary 3.14 forn =0, [[Y¢ || < Cs a~'%. In the remaining expression, we use equation (3.63),
(Ygl(e* = DW(awp ) Yk), = (Yg|(e**> — DU W(aiwp,)Q) ., (3.69)

and insert the identity

1

1 =eMe ™ with k= ———
16ebad

(3.70)

on the left of the Weyl operator (where b > 0 is the constant from Lemma 3.13). After applying the
Cauchy—Schwarz inequality, this leads to

[(Yz|(e*> = DW(awp )Yk )| < eV Uk (e = DYRIslle ™ W (awp )Qll-.  (3.71)

In the second factor, we then employ

_@ w5, |2 _
le™ W (aiwp, )@l = ¢ 7 " iz e dlea e g (3.72)

and use e *Nal (e = af (e f) to write
. _ e~ 2K | ~
e*KNea"'(aWP’y)eKNQ — ed‘ (e7 awp’y)g —e 2 [Iwp.y ”1de W(eiK(YWP,y)Q. (373)
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Combining the previous two lines, we obtain

2
—x — a ke~
le™ W @iy )@l = exp (= S-(1 =) Tpy ) < 15.,() (3.74)

for some a-independent > 0 and « large enough. To estimate the first factor in equation (3.71), we
apply Lemma 3.15 (note that (A7 — )Yz € Ran(1(N < 2a%)))

le Uk (47> = DY 1= < V2[[(e™*> = )Ykl (3.75)
On the right side, we use the functional calculus for self-adjoint operators
I(e™"> = DY ll» < 1Ay Yklls < [PF) Ykl +1gp()] < C(VKIY +alyl).  (3.76)
where in the last step we applied Lemma 3.16 and used

lgp(y)| < Calyl, (3.77)

which is inferred from equation (3.5) using ||A¢p]|,2 < co. Returning to equation (3.71), we have shown
that

Nzl < € [ ay HOY(VRIy| + @lyPs.p ) + Coa™™, (378)
and hence we are in a position to apply Corollary 3.6. This implies for all @ large
N2l < C(VKa*179) 4 o760=9*1) 4 C50710 < C5 VKa #1179, (3.79)

Term N;. We start by inserting equation (2.22) for G }{ in expression (3.61b). Since the Weyl operator
commutes with u,, R and Py = )|, we can apply equation (3.10a) to obtain

W(awp )Gy = uaR(p(hy ) +2a(hk |Re(wp )).2) PyW(awp y) Gy, (3.80)

where we used that ik  is real-valued. Note that (g .| Re(w}) y))Lz is a y-dependent multiplication

operator in the electron variable. With (TyeAPJ)T = T_ye‘A“’v-v and equation (3.67), we can thus write
2
Mo=-= / dy Re (Riy¢ ® (Yg + YZ)|W(awp,)GY ), = NT+AN7, (3.81)

where we introduced the operator R; y = Ri’y + R%,y with

R}, = Py¢(hy )RuaT_yPye ", (3.82a)

R}, = 2aPy(hk |Re(Wp ), RuaT yPye 7. (3.82b)

Using Lemma 3.9 in combination with [|[VPy ||, + ||VR1/2||Op < oo (see Lemmas 3.7 and 3.8), we can
bound the first operator, for any ¥ € 7, by

IR} Pl < CIN + 1)2ua Ty Pye P> Wy < ClltaT-y Py lll| (N + 1) 2P . (3.83)
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To estimate the second operator, we write out the inner product, use Cauchy—Schwarz twice, apply
Corollary 3.11 (with A =1, X = Rand Y = P, ) and use equation (3.32a),

IR? JWII5 = 40| / dz Re(wp (2)) Pyl (2)RuaT -y Pye P>

IA

4a’ / du |wp,, (u)? / dz [Py h (DRI lugT-yPye P> |2

IA

2[4s,1 2 -Ap,y 2
Callwp 2 luaTyPye "5

IA

Ca?(y* +a ™) luaT—y Py I35 (3.84)
Combining the above estimates we arrive at
IRy Wil < CllutaT—yPyllp(1+ @y (N + 12 (3.85)

Since y (x) decays exponentially for large |x|, the function f,(y) = |[uaT-y Py, satisfies
172
N1 fally < / dy |y|"(/ dry(x + y)zua(x)z) < Cpa’™ forall n € Ny. (3.86)
With this at hand, we can estimate the part containing the tail. Invoking Corollary 3.14

C
NFL < SIaTe PR [ ay s +ar?) < Coa (3.87)

To estimate the first term in equation (3.81), we proceed similarly as in the bound for NVy,. We insert the
identity (3.70), apply Cauchy—Schwarz and employ equation (3.74). This leads to

VT

IN

2 . e
> [ &1 U R @ T e Waip,

IA

2 _
2 [ @ e e R 8 YRl (), (3.88)

In the remaining norm, we use the fact that R; ,, changes the number of phonons at most by one, and
thus we can apply Lemma 3.15 and equation (3.85), together with equation (3.552), to get

le " Uy (e P> Ry @ Y < V2IR1y¥ @ YRl < Cha(y)(1+ay?). (3.89)
With Corollary 3.6, equation (3.86) and || fo||.~ < 1, this leads to
< . C 2 ~1-3(1-6)
AT < = [y fa) (14 @) nsy() < Ca : (3.90)

Term N,. The strategy for estimating this term is similar to the one for Aj. Proceeding as described
before equation (3.81), one obtains

1
No = 2 / dy (Roy¥ ® (Yg + Yg)|W(awp )Gy ), = Ny + Ny 3.91)
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with Ry, = R} | +Rj | and

Ry, = Py¢(hy JRe™A > unT yuaRe(hy )Py, (3.92a)

R}, = 2aPy(hk |Re(wp ))2Re P usT yuaRG(hyc )Py. (3.92b)

It follows in close analogy as for Ry, in equations (3.82a) and (3.82b) that given any ¥ € 7#,
IR2y Wl < ClluaT-yallp(1+ay*) (N +1)¥|, (3.93)

and since [[uoT-yuoll, < 1(|y| < 4a), we can use Corollary 3.14 to estimate
> C > 2 -6
NS < gll(N +DYgl- [ dyL(ly| <4e)(1+ay’) < Csa™®. (3.94)
To bound the first term in equation (3.91), we proceed similarly as for AN,

N <a™? / dy [l Uk (Roy¢p ® YRl lle™ W (awp, )l -
V2
S _—

@

C
2| Ay IRy @ Yl nsn () < A/dyMWIshwU+afﬁmW@» (3.95)

@
The last integral is estimated again via Corollary 3.6, and thus |N*| < Ca™5+39.
Collecting all relevant estimates and choosing 6 > 0 small enough completes the proof of the

proposition. o

3.6. Energy contribution £
In this section, we prove the following estimate for the energy contribution £ defined in equation (3.82).

Proposition 3.18. Let N; = dI'(I1}) and choose ¢ > 0. For every € > 0, there is a constant C, > 0 (we
omit the dependence on c) such that

‘5 - 12 ((YK|N]YK>JE - %)N < C.VKa ™ (3.96)

[

fJorall |P|/a < ¢ and a large enough.

Proof. Since G% =y ® Yg, h"*y = 0 and NYg = N; Yk, one has
£ = /dy (G (N + a7 ¢(h. + @p))Tye > W(awp y)|GY ), = 1+ &, (3.97)

where both terms provide contributions to the energy of order a~2.
Term £;. Recall that H(y) = (¥/|Tyy),2, and use this to write

1
& = = [ Ay HO) (Xt Waw ) Yic),
1
+ = / dy H(y)(Yk [Ny (P> = DW(awp ) Yk) = Eir +Enn. (3.98)
[07
With equations (3.63), (3.3) and (3.33), it follows that

W(awp )Yk = UL W(aiwp,,)Q = no1(y)Uj e (@) @ (@) (3.99)
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and since ¢® (**7.») commutes with UKNlU;< and ea(‘mgw)YK =Yg (weuse Ug adf(fO)U;< =a'(f9)
for O € Ran(Ily)), this leads to

1 T il
fu=— / dy H(y)no,1 (0){QIUgN Ul e (*"P)Q) . (3.100)

Because Uk NlUj{ is quadratic in creation and annihilation operators, we can expand the exponential in
the inner product and use that only the zeroth- and second-order terms give a nonvanishing contribution,

&n = % / dy H(y)no,i (0){Yx N1 Yk )
+ ﬁ / dy H(y)no,1 (y)(Yk |N1Uj<aT(C”7}o,y)aT(aWp D) =&+ (3.101)
Next, we add and subtract the Gaussian to separate the leading-order term,
i = iz / dy H(y) e_la2y2<YK|NIYK>F
a
+ % / dy H(y) (0,1 (y) — e 1) (Y IN Y ) = € + &80 (3.102)

In E{‘i], we use |[H(y) — 1] < Cy? and Corollary 3.14 to replace H(y) by unity at the cost of an error

of order 7. In the term where H(y) is replaced by unity, we perform the Gaussian integral and use
Proposition 3.17 and again Corollary 3.14. This leads to

1
|53, - N =Yk N\ Yk ), | < coVRaoe. (3.103)

The error in equation (3.102) is bounded with the help of Lemma 3.5,

C C2a2y2 _
1 < 5 [ @ HOI00) - < cat (3.104)
In &2, we use the Cauchy—Schwarz inequality, Corollary 3.14 and Lemma 3.4, to obtain

[(Yx N\ UL a' (@) )a' (i) )Q) |

< N Yk |l la¥(@Wp y)a' (e} )l < 202075 17 < Co?(y* +a™).  (3.105)

With ||| - |"H||1 < C,,, we can now apply Corollary 3.6 to obtain

il < € / dy HO) (6 +a o (y) < Ca. (3.106)

In order to bound &5 in equation (3.98), we decompose Yg = Yf( +Y1>< for some § > 0 (see equation
(3.67)) and then follow similar steps as described below equation (3.69). This way we can estimate

1 _
8ol < 5 [y HON U (e = DY sy )+ 190G [ dyHO). G107
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While the second term is bounded via equation (3.55b) by Cs a~'2, in the first term we apply Lemma
3.15 and use the functional calculus for self-adjoint operators,

le" Uk (e = DNI YR |l < V2ll(e™ P> = DN YR |-
< V2||(Ppy +gp(MNIYE 5. (3.108)

Since Py changes the number of phonons in F; at most by one, we can proceed by

I(Pyy+grNIYRIF < (@ + DI(Pry +gp()) Ykl < Ca®(VKIy| +alyP), (3.109)

where we used 1 < a®, Lemma 3.16 and equation (3.77) in the second step. We conclude via Corollary
3.6 that

C - -
€l < — / dy H(y) (VK| +alyP)ns 5 (3) + Csa™'? < C VKa™0*. (3.110)

Term &,. Here, we start with

& = ()/_l/dy <YK|L1’yW(aWP,y)YK>]__

+a—1/dy (Yk|L1y(e> = DW(awpy)Yk) | = En +En, (3.111)

where
Liy = (Ylo(h. +op) W), = 6(Ly) + 7 (jy) (3.112)

with
ly = HY)e+ (WIhTy),0  Jy = Hy)ép, (3.113)

and £p defined in equation (2.18). We record the following properties of /, and its derivative. The proof
of the lemma is postponed until the end of the present section.

Lemma 3.19. For k =0, 1 and for all n € Ny,

sup [P0 2 < oo, [ I dy < o (3.114)
y
Note that, by Lemma 3.7, j, clearly has these properties as well. We proceed by writing £, = Sgl +(€2P1
with
& = ffl/dy (Yxlo(ly)W(awp y) Yk ), (3.115a)
e = ! [ ay (Xula)Wiawp,) Y. (.115b)
and estimate the two parts separately. Using the canonical commutation relations and (3.53c), we
evaluate
& = / (Iy1Wp.y) om0, (y)dy

= / ((1§|w$,’y)L2 + (I} [Re(wp ), +i<1;|®;21m(w}p,y)>ﬁ)no,l(y)dy, (3.116)
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where we used that [, is real-valued. Note that /_,(—z) = [, (z). As discussed in Remark 3.3, ng_1(y)
is even, and using the arguments therein one can conclude that ®;§Im(w}D y) and Im(w% y) are odd

functions on R since (y, z) > Im(w p.y)(z) is odd on this space, and hence

[ et ) mosey = [ (iiemon ), () = o (3.117)
Thus, with Re(wp ) = wq,y, and with
v(y) = (lylwoy), (3.118)
we finally have

& = [ {0+ BIRes), )+ Rewh ), amoa 0y = [ v (). (3.119)

Note that v € L' N L™ since y +» Iyl 2 is, while [lwg y||,2 is uniformly bounded in y. Because of
©(2) = =W |h.(2)¥),2 and V, h(x — 7) = =V h(x — z), we have by integration by parts

Vo = -2AVylhy) ;. (3.120)
Thus,
Ly = —%yw +@(HG) = 1) + Wl (Tyy =y = yVP)) o (3.121)
Since i is a smooth function with uniformly bounded derivatives, there exists a C > 0 such that for all y
1Ty = = yVls < CY2 (3.122)
Moreover, for k =0, 1 and every z € R3,
x = (h(2)VR)(x) e L'(R?,dx) and z+ ||h.(z)VFy| 1 € L2(R?, dz). (3.123)

The first statement follows easily from Lemma 3.7; to show the second one, use

1 1
d = 3.124
/ P =P ] (G-1249

and apply the Hardy-Littlewood—Sobolev inequality. This, together with equation (3.38), shows that
there exists a function f in L*>(R3, dz) such that

1
I1y(2) + 53V (2)] < f(@)y* (3.125)
Now, let
1 s
by(2) = wo () — yVe(2) = /O ds /0 dr (V) 2e(z 1) (3.126)

and note that ||b,, ||i2 < }1 y4||Ag0||i2 which is finite since A € L?. This equation, together with equation
(3.125), implies

1
v(y) + EIIstoIIiz < Cyl + 1y (3.127)
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From this and from v € L' N L™ it is also easy to deduce that | - |72y € L' N L*®. We can thus write
Jorvomam = [avmee s [abronm - e

and use Lemma 3.5 for g = | - |2|v| to bound

V dy [y12v(3)y* (no.1 (y) — e @) < Ca™®. (3.129)

Using equation (3.127), the definition of A = ¢[|Ve||%, as well as [ y2edy = 3732, we further have
that
2332 3 T o\3/2
d ety = (Z)7 < cat 3.130
‘ / yv(y)e 792\ 102 @ ( )
which finally gives the estimate
3
&+ (ﬁ)/\/ < C.VKa ™0 (3.131)
using Proposition 3.17.
In a similar fashion as for £, we obtain
1 :
& = —SafF / (iPVelwh ), H(y)no1 (y)dy. (3.132)

Explicit computation, using [Ty = m Zle |0:){0; | and {p|V¢),2 =0, gives
L

Lo (¢ = Vo)(y) iP 2 Vo(z)
20, () = —E v (o) + IV¢l - (Ve = Vo)) o (3133
3P IVl el (K IVl
Note that the real part of the above is odd as a function of y and hence
/ (VelRe(w} |)),2m01 () H(y)dy = 0, (3.134)
and, taking rotational invariance of ¢ into account, we arrive at
& =~ [ (1961 - (Ve « Yo ) m0a () (3.135)
21 — a4(MLp)2 Pllr [ @)Y) o,y y)ay. .
Further, note that |||V<,o||i2 — (Ve Vo) (y)| < Cy? and thus, by Lemma 3.7 and Corollary 3.6, one
obtains
P P> C
1E5 ] < CE < i (3.136)

This completes the analysis of &;.
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In order to estimate the term &>, we proceed as before by splitting Yx = Yg + Y. Using equation
(3.44), we can estimate

o [ Ay (RI00) + 7D = W@, Yic),
< cat [yl #1107+ PR < Coat (3.137)

where we used Corollary 3.14 and Lemmas 3.7 and 3.19. The term involving Y is split again into two
contributions,

£ = a‘I/dy (YRlo(Ly) (P> =W (awpy) k), (3.138a)

& = a_I/dy (YgIn(jy)(e*?> = D)W (awp ) Yk) . (3.138b)

To bound the first one, we proceed as in equation (3.107), that is, use Lemma 3.15 and the fact that
¢(ly) changes the number of phonons at most by one. This leads to

€0) < ot / dy [l Uk (47 = (1) Y2 l1r 15,5 (5)
< V2o / dy l(e™ P> = D)@Y llr 16,5 (3)- (3.139)

Furthermore, we have

A

[(e=4r> = Do) Yl < 1Apyd(UN YR < () APy Yl + ARy, d(1)] Yl
Ca’ (Il 2N Ap Yk llx + Iy Viyl2), (3.140)

IA

where we used [iPry,¢(f)] = n(yVf) and Yz = I(N < @®) Y. Note that in order to estimate the
remaining expression, it is not sufficient to directly apply Corollary 3.6. To obtain a better bound, we
first replace ns ,(y) by e~11@*"™5? and then, for the part containing the Gaussian, we use that ||/, [|,2
and || V[ ||, provide additional factors of |y|, as is shown below. More precisely, with Lemma 3.19 and

the aid of Lemmas 3.5 and 3.16, we bound

S _
o$! / ay 1y 12 1A py Yl 5 (3) (3.14D)
S _
< Cat™! / dy 1Lz (VEIy] + alyns. (»)
< Cag‘l‘/dy Iyl (VE|y| + aly[P)e 1@ ™ 4 cVKa 07 (3.142)

Next, we use that by equation (3.125) there exists an L? function f such that

(@) < %IyW(z)I + [y (3.143)

Hence, by integration

a5/2—1/dy ||ly||Lz(\/I_(|y|+a|y|3)e_’1'7(’2(1_6)y2 < CVKa 611728, (3.144)
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Regarding the second term in equation (3.140), we need to bound

@1 [ ay I o () (3.145)
where we proceed in a similar way as above, using that
IVl < CUyl+y7). (3.146)

In fact, since Vo (z) = —=(W|h.(2) V)2 — (Vi |h.(2)Y), 2, we have the identity

Viy(2) = H(y)Ve(2) + (VY| h.(Tyw) , + (W|h.(2)VTyy) (3.147)

(H(y) = DVe(2) + (VWh(2)(Ty = D¢) » + (Y7 () (Ty = DVY) .

Again, using that ¢ has bounded derivatives, we have

I(Ty = Do + [(Ty = DV~ < Clyl, (3.148)

and the desired inequality now follows from |H(y) — 1| < Cy? and equation (3.123). Given equation
(3.114), we can use Lemma 3.5 to replace ns_,(y) in equation (3.145) with e~y at the energy
penalty Ca~%*2%/2 and then use equation (3.146) to bound the remaining integral involving the Gaussian
factor, which yields an error of the same order. Altogether, this gives the estimate

€% < CVKa 659, (3.149)

For the term EF

1> We proceed in exactly the same way as in equation (3.139):

P
€51

IA

\/E(l_l / dy ”(e_AP,y — l)ﬂ(Jy)Y;{”}' né,n(y)

IA

Caé/z_l/dy ||jy||L2IIAP,yYKIIfn(s,n(y)+C05/2_1/dyllijyIILG(s,q(y)

IA

_11P]
Ca®7 155 [ dy H(y) (VKIy| + alyl)ns ()
s/2-1 1Pl
+Ca®T s [ Ay IVIH(Y) sy ()
< Ca~*19VK, (3.150)
where the last estimate follows from Corollary 3.6 and the assumption |P| < ca.
Combining the relevant estimates, that is, equations (3.103), (3.104), (3.106) and (3.110) for &; as

well as equations (3.131), (3.136), (3.137), (3.149) and (3.150) for &, we arrive at the statement of
Proposition 3.18, thus providing an appropriate bound for €. O

Proof of Lemma 3.19. Since H has the desired properties, we need to show them for

1V = (ylh.Ty) . (3.151)
To this end, we introduce

S ={feLlP®, (1+|y/Mdy) VI<p<co, Vn>0} (3.152)
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and start with the following observation: Suppose fi, f2, f3 and f4 are functions in S. Then

S(y) = ﬂdudvf'(u)fZ(v)f3(u+y)f4(v+y) cs. (3.153)

|u =

In fact, [S(Y)| < Cll falle= | 31l |l fillep | f2lle forall 1 < p < 3/2,q = 3p/(5p — 3) by the Hardy-
Littlewood—Sobolev inequality. Sincefdy|y|"f3(u+y) < 2N (™| Al + 1] - 17 f3l1,0), we have also

/dylyI"S(y) < Cllfalle=lL- 1" filler L2 a I Al + LA llr L2 a1 f31121) (3.154)
from which (3.153) follows. Moreover,

fes = Vlfles. (3.155)

Indeed, we have for all n > 0,

1 1 _
JurNiiay < Vi [ raves [y [ <o Gaso
yi< y[>

2

since m can be chosen arbitrarily large by assumption. Thus, it suffices to prove the desired statement
for the functions ||Vkl§l) ||z2. For k = 0, we use equation (3.124) to compute

WO, = L[] a0 100 +) a5,

v lu — vl

The statement now follows easily from equation (3.153) and Lemma 3.7. Arguing again via equation
(3.155), for k = 1 it suffices to show the statement for

IVEV N2, = IV Tyg) 2 + (W VT 2|
20V ATy, 127, + 21w | VTy) 2112, (3.158)

IN

(the first equality follows from V,h,(z) = —V.hy(z) and integration by parts). Using (3.124), we find

(VYR Ty, % < C // dudy |W'(”)“V‘/’(Vli|‘f’(vvl PWuty) (3.159)
11V Ty, < C // dudy VY ”"V';”(_VVT I () () (3.159b)
We arrive at the desired conclusion by Lemma 3.7 and equation (3.153). O

3.7. Energy contribution G

The energy contribution G, defined in equation (3.8b), is evaluated by the following proposition.

Proposition 3.20. Let Hg as in equation (2.4), Ny = dI'(I1}) and choose ¢ > 0. For every € > 0, there
exists a constant C ¢ > 0 (we omit the dependence on c) such that

2
G- NS (Yk|(Hk -N)Yk), | < Coa®(VKa ™0+ K ?a™) (3.160)
a
forall |P|/a < ¢ and all a large enough.
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Proof. Using hPekG(,L =0and NG(}< =N;GY, we can decompose G into two terms

2 _ _
g - / dy Re <G%|(a Ny +a 'o(h. + (pp))TyeAvaW(csz’y)G}()%

G+ G, (3.161)

where the first term will contribute to the error while the second one provides an energy contribution of
order &~2. We proceed for each one separately.
Term G;. With the aid of equations (3.67) and (3.80) and (TyeA?>)" = T_,e~AP> one finds

2
G = —J/dy Re (R3¢ ® (Yg + Yz)|[W(awp )G ), = G5 +G7, (3.162)

where we introduced the operator R3 y = R} + R3  with
. Y 2y

Ry, = Py¢(hi JRuaT-yPye PN, (3.163a)

R, = 2aPy(hk |Re(wp ) Rual-yPye ANy, (3.163b)

Proceeding similarly as for Ri y and R% y in equations (3.82a) and (3.82b), one further verifies

1IR3 y ¥l < CllttaTy Py llop(1+ @y?)[|(N + 1)32¥],. (3.164)

Recalling the definition f, (y) = ||uoT-y Py ., and equation (3.86), we can use Corollary 3.14 to find

op
C -
071 < 10T+ PRI [ av s +ar?) < Coa” (.165)
In the first term, we proceed with equation (3.74) and Lemma 3.15 to obtain
< 2 kN < —kN ~
71 = — [ dylle™ Uk (R3¢0 @ Ypo)ll lle™ W (@wp ) Q|-
2V2 C
< 25 [ IR @ YelnonO) < 55 [ @m0 rane, 6. (G166
which brings us again into a position to apply Corollary 3.6. Hence,
IG5| < Ca™039. (3.167)
Term G,. Here, we have
2 0 1
G, = = dy Re (G |¢(h. + op)TyW(awp )G ),

2
- = / dy Re (G |p(h. + op)Ty (e = DW(awp )Gk ), = Go +Gn. (3.168)

To separate the leading order contribution in G, we insert 1 = U;UK next to G?( and bring U;( to the
right side of the inner product. With Ux Y = Q, equation (3.53c) and equation (3.63) this gives

Goy = —%/dy Re (¢ ® Qla(h. + op)TyW(awp y)uaRa' (hy )y @ Q). (3.169)
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where - is defined in equation (3.52a). Next, we write W(awp y) = no,1 (y)e“%(‘m”vy>e‘“<‘”~‘;”»y) and
move the first exponential to the left side and the second exponential to the right side until they act both
on the Fock space vacuum. Using e~¢/)a’(g)e? ) = a¥(g) — (f|g), we find this way

G = ——/dyno 1(y) Re <W®Q|a(h +¢p)TyugRa’ (hy )lﬁ@Q) (3.170a)

2/ dyno,1(y) Re (¥ ® Q(h. + ¢p|Wp )2 Tyua R(Wp ylhy )20 @ Q) . (3.170b)

In the first line, we write &. + p = h% + h! + ¢ + i&p, with h! = (IT;h)., and use that

(v @ Qla(h® +igp)TyuqRa' (hy )W ®Q) =0 (3.171)

since h0 + i¢p € Ran(I1y) whereas h}{ . € Ran(IIy). Finally, we can replace a and a’ by ¢, and then
transform back with Uk, using equation (3.53c¢), in order to obtain

2
(3.170a) = —O[—z/dyng,l(y) Re (¥ @ Y |¢(h! + @)TyuaRp(hy )W ® Yk ). (3.172)

To summarize, we have shown that

2
G = ) / dy Re <G9<|L2,yG?<>7fn0,l()’) +/dy 6 (y)no,1(y) = Gan1 + G212 (3.173)
with
Loy = Py¢(h! + @) TyuaRe(hy )Py (3.174a)
6(y) = 2Re <l»[/|<h +oplwp, y>L2T uaR<WP y|h >L2¢> (3.174b)

In the first term, we add and subtract the Gaussian,

Gon1 = 2 / dy Re (G%|L2,,G% ), ey’
2 / dy Re (GY|La, G ), (no1 (y) = e™77) =GNy, + G5T, (3.175)
and proceed with G3}, by inserting i = hj + (h! = hj ), Ty =1+ (Ty = 1) and ug = 1 + (ug = 1),
G = az Re<G?<|¢(h}<,.+¢)R¢(h}<,.)G(}<>%/dye"“’zyz
_ i Re (GY1¢(hy .+ ) (ua — DRO(hY )G / dy ey’
Tz / dy Re (G |#(hic _+@)(Ty ~ DuaRp(hi JGY), e 1"
T2 / dy Re (G |g(h' — hy )TyuaRe(hk )G%), et

4
= Z g, (3.176)

n=1
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Since Py ¢(¢)R = 0, we have g;’f = %(YKKHK - NI)YK>JT(/1_22)3/2’ cf. (2.4), and hence we can

use Proposition 3.17 to conclude that
2
gl =N J(YK |(Hx - N)Yg) | < CoVKa™*. (3.177)

For the other terms, we shall show the combined error estimate

G2 +1G53 +1624 < C(VKa™® + K~12a73). (3.178)
In the last term, we recall h.(y) = hk=.(y), and apply Lemma 3.9 in combination with

IRY?uaT-y V|, < C. This gives

IA

2 1,242
91 < = / dy e |R2ug Ty p(h! — hye )Py G llx IR p(hy )Py Gl

Ca K12, (3.179)

IA

Next, we write Ty — 1 = /01 dsT, (yV) in the third term to obtain an additional |y],

2 _1a2y?
195171 < ;( / dy [yle™' )uwaR”znop lg(hic .+ )Gl IR (hie )Gl
< Ca VK, (3.180)

where the factor VK comes from the L norm of h}< o in the bound on the first field operator (since

AR'? is unbounded, we cannot apply the commutator method to this part). In the second term, we use
Y (x) < Ce™™I/C for some C > 0, and thus ||(uq — 1|, < Ce~*/C, to estimate

C _
IG2) < Sl = Dyll2 lp(hg .+ )RP(hy )Gllx < CVKe /€. (3.181)

This proves equation (3.178).
To bound the remaining contributions in G5, and G»12, we shall use

(G L2y G )| < Chral) (3.182a)
)] < Cha(O*+a™) Iyl +IyP +a7), (3.182b)

where
S2.a(Y) = uaT-y Pyl + [[VtaT—y Py |lop- (3.183)

Using the exponential decay of ¢ and [V¥u,|(y) < 1(|y| < 2a), for k = 0, 1, it is easy to show that
I fralle <C and ||| |"fralls < Cpa® forall n € Ny. (3.184)

To verify equations (3.182a) and (3.182b), use uoT-y¢(h.) = ¢(h._y)uT-, and Cauchy-Schwarz to
bound

(G%IL2yG%), | < IRV2¢(h'y + @ uaT-yPyG% s IRV p(hy )PyGY s (3.185)
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Now, we can use equation (3.44) and Lemma 3.9 to obtain equation (3.182a). To estimate £, (y), defined
in equation (3.174b), we proceed with

1O < 2[ITyualh—y[Wp.y) 2R Ry i20),2] (3.1862)

+ 2/(UITyualep|Wp.y) 2 R(Wp Sl Di2w) o), (3.186b)

and considering the first line, we use Cauchy—Schwarz, write out the two inner products (in the phonon
variable) and then use Cauchy—Schwarz again,

A

(G1869)] < 2 [ dulpy @] IPuTyitaloy R, [ a1 IR h (o)

12

IA

2||wa||Lz||wa||Lz( / |y Tyt hy ()R, / azlR"h (@l

Ch.aMUyl+y’ +a (3> +a7), (3.187)

IA

where the last step follows from Lemma 3.4 and Corollary 3.11 together with hg . = h0 + 07 1hl
Since the second line is estimated similarly, we arrive at equation (3.182b). With e equatlon (3. 182a) at
hand, we can apply Lemma 3.5 and equation (3.184) to get

2 —_1a?y? -
G511 < o) /d)’\<G(}<|L2,yG(I)<>%Hn0,1()’)—e Y| < ca7S, (3.188)
and further, using equation (3.182b) and Corollary 3.6, we obtain
Goul = € [ @ylE)lma) < ca (3.189)

This completes the analysis of Gy .
Next, we introduce R4,y = R}1 y ¥ Rﬁ y with

1
Ry,

Pyd(hk YR (e AP = 1)R3(h.—y + op)uaT-y Py (3.190a)

R}, = 2aPy(hx |Re(wh ) ,R: (747 = DR2$(h_y + ppuaT-yPy. (3.190b)

Inserting equations (3.67) and (3.80) into equation (3.168) it follows that
2
G = —— / dy Re (Ra ¢ ® (Yg + YZ)IW(awp )G ), = G5 +Gs. (3.191)
With the aid of Lemma 3.9, we obtain
IRy, Pl < Clite™P> = )N+ D2RPo(hy + @p)uaT—y Py ¥l (3.192)
and proceeding similarly as in equation (3.84), we find

IR; Pl < Ca(y® +a)|[(e™**> = DR ¢(h_y + 0p)uaT yPy¥|s. (3.193)
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For ¥ =  ® Y7, a second application of Lemma 3.9 (after using unitarity of e~4#.) together with
||gt>p||z2 < C for |P|/a < ¢ and Corollary 3.14 is sufficient to find

IRs 0 ® Ygllw < CllualoyPylly + IVuaTyPylly) (1 +ay?)I(N+ DYZ ||+
Csa'f o(y)(1+ay?) (3.194)

IA

with f , defined in equation (3.183). Using this bound in G3, and recalling Corollary 3.14 and equation
(3.184) we thus obtain

1G5| < Csa™®. (3.195)

In G5, we proceed by inserting equation (3.70) and use equation (3.74) and Lemma 3.15. This gives

2V2
051 < 23 [ ayIRapw © Yl ns (). (3.196)

The derivation of a suitable bound for the norm in the integrand is more cumbersome, so we go through
it step by step. To shorten the notation let G?: = ® Y. We start from equations (3.192) and (3.193)
where we insert h. = hg . + (h. — hg .) and use the triangle inequality,

IR} ,G% Nl < Cll(e™7> = Y+ 1)2RZp(hk .y + @p)uaT—y G4 (3.197a)
+ Cl(e P> = 1) (N + D)'2R2¢(h_y — hi.—)uaT-yG¥ |l (3.197b)

IR}, Gl < Ca(y? +a)|(e7A7 = DR ¢(hk .y + @p)utaT—yGY e (3.197¢)
+ Ca(y* +a d)|(e Py = )R ugd(h_y — hx..—y)uaT-y GO |y (3.197d)

For the second and fourth line, we apply Lemma 3.9 a second time (after bringing (N + 1)!/? to the
right of @ and a") to find

(3.197b) + (3.197d) < CK™ (1 + ay*)([uaT-yPyllop + |VitaT-y Py lp) | (N + DY £ ||~
< CK'"2(1+ay?) fr.0(y). (3.198)

In the first and third line, we use the functional calculus and write out Ap , = iPsy +igp(y),

(3.197a) + (3.197¢) < C||(Pry)(N + 1)'2R2¢(hg .y + 0p)utaT-y GO |l (3.199a)
+Ca(y* +a ) (Pry)RIG(hi oy + 9Pt T-y G |1 (3.199b)
+ClgpWIIIAN + DR p(hg .y + 0p)ua Ty G |l (3.199¢)
+Ca(y* +a ) gpWIIRT Gk —y + 9Pt aT-y G4 - (3.199d)

Now, we use [iPry, ¢(f)] = m(yV f) such that we can estimate the first line by

(3.1992) < C(II(N+ 1)'2RV2p(hg..—y + @p) (P Y)taT-yG% |l

+|(N+ DR 2(yVhi —y + yVeop)uaT-y G 1) (3.200)
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To bound the first line, we use again Lemma 3.9, while in the second line we use (Vhg). = —=V(hg ) =
—[V, hk .] and (3.44) together with |Vep|,» < C for |P|/a < c. Together, we obtain

A

(3.1992) < Clyl(lluaT-yPyllo + 1VitaT-y Py llp) (1N + DP Y|l + VKN + DY)

IA

Ca® [yl fo.a (1P YR I + VK)

IA

Ca®VK|yl fo,a(y), (3.201)

where the factor VK in the first step comes from the L?-norm of hk 0, and the last step follows from
Lemma 3.16. In a similar fashion, one shows

(3.199b) < Ca’VK|y|(1+ay?) fr.a(y). (3.202)
and, with equation (3.77), one also verifies
(3.199¢) + (3.199d) < Ca’(a?|y]® + aly]®) fr.a (¥). (3.203)

Collecting the estimates (3.198), (3.201), (3.202) and (3.203), we arrive at
_1
IRsy ® YR llw < sz,a(y)a"(K 2(1+ay?) + 2|yl + VK (|y] + a|y|3)). (3.204)

Now, we can apply Corollary 3.6 together with equation (3.184) to bound the right side of equation
(3.196). The result is

1G5 < Ca™? (K203 + VKa™+49). (3.205)
In view of the estimates (3.165), (3.167), (3.177), (3.178), (3.188), (3.189), (3.195) and (3.205), the

proof of Proposition 3.20 is now complete. O

3.8. Energy contribution KC

Recall that /C was defined in (3.8¢).

Proposition 3.21. Let Hg as in equation (2.4), Ny = dI'(I1}) and choose ¢ > 0. For every € > 0, there
exists a constant C¢ > 0 (we omit the dependence on c) such that

1
‘/c + N = (Yk|(Hg -N)Yk) | < Coa® (VKo ® + K720 77) (3.206)
(0%

Jorall |P|/a < ¢ and all a large enough.

Proof. We split this contribution into three terms

K= al_z dy <G}< [(hP* + @ N+a ' ¢(h. + goP))TyeAPWW(awP,y)G}()%
=K1+ K+ K, (3.207)
and note that C; provides the energy contribution of order a2,
Term /C;. We start again by writing
K = % / dy (G| T, W(awp )G),
+ % / dy (G |h"*Ty (e = DW(awp,y)Gg ), = Kt + K12, (3.208)
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and proceed for the first term similarly as in the computation of G;; see equation (3.168). This leads to

K

/ (Gx1¢(hy JRuah™ T, W(awp y)uaRe(hy )Gy ),

—2/ w®§2|a(h DRugh** Ty W (awp y)uaRa’ (hy )lp@sz)

1
= ;/dy G(1)<|L3,y09<>yfno,1(y)—/dyf3(Y)no,1()’) = Kin +Ki2, (3.209)
where
Lsy = Pyo(hy JRuah**TyuaRe(hy )Py (3.210a)
6H(y) = (¢|<h,< |Wp )12 Ruah**T uaR(walhk’_)szhz. (3.210b)

We go on with
K = o3 / dy (G |13, GY ), e ™
#05 [ & (GRILaLGR), (r0a) =) =K T, 21
and in the leading-order term, we insert 7, = 1+ (Ty — 1) and uy = 1+ (ug — 1),
ki = <G |6 (hie JRI"*R$(hi )G ), / dy e~Aa™y?
2<G 6k DR (o ~ DI Ro(h) )G),, [ dy e
<G ($(hl YRuoh™ (s - )RO(RY )G, / dy -1

s / dy (Gl6(hi ) Ruah™ (T, = DuaRo(hi )G ), e '
4
lo,
= LK (3.212)
n=1

Since RhPKR = R, one finds ICllolll = # <YK |(Hg —N; )YK>]-"(/I_7(;2)3’ cf. equation (2.4), and with the
aid of Proposition 3.17, this gives the leading-order contribution

‘/c'fl ! N (YKl(IH[K N)Yk),| < CaVKa . (3.213)
For the other terms, we shall show that
T2+ IS+ 1K < CVKa™. (3.214)
In the second term, we use /"R = Q,, = 1 — P, to write

3/2
K52 = a(G%1o(hk IR (e~ (1 - Pw)¢(h’K,.>G%>%(ﬁ) G219
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which is exponentially small in @, since || (i — 1)/, < Ce~®/€, and thus with Lemma 3.9 one obtains

|IC11°112| < CVKe /€ In the next term, we use [P, uy — 1] = —[A, uo] and again hiP*R = 1 — Py to

get
10,3 x \32
Kii = o (G l¢(hy JRua(ua —1)(1~ P¢)¢<h}<,.)c‘}<>yf(m)

3/2
— a7 2(GY ¢ (hk IRIA, ua] Re(hk ,)G%)W(%) . (3.216)
’ ’ @

Here, the first line is bounded again exponentially in @, whereas in the second line we use [A,uqy] =
2(Vug)V + (Aug) and ||Vug|lie + [|[Atglli» < Ca™l, see (2.20). Together with Lemmas 3.8 and 3.9,

this implies |IC11°113| < Ca™®. In the last term, we employ 7y — | = /01 dsTsy (YV), [HP*, ua] = —[A, uq]

and h**¢R = Q, to find
K= [ay [ (GRIO DutaTiy (Vo RO )G ), e~
+ a—2/ dy /0l ds (G |6(hk IRIA, ua)Tsy (yV)uaRG(hk )G%), e 0¥ (3217)
In both lines, there is an additional factor y, and together with equation (2.20), we thus obtain
KT < Ca®lig(hi )G Nl IVuaR Pl lIR' ¢ (hic )G Il
+Ca™® IR p(hi )G N7 IRV A, o]l Vita Rl IRG (i )Gl

<Ca™ VK +a™). (3.218)

This proves (3.214).

To estimate Cq12 and K¢

> we make use of

(G%ILs,G%), | < Cha(y) (3.2192)
150 < Cha(NO* +a™), (3.219b)

where
f3,(1(y) = ”u‘lTyM(XHOP + ”(Vu(l’)Tyu(I”op + ”ua’Ty(Vua)”op + ”(Vua)Ty(Vug)Hop (3220)

Recalling that by definition |V¥u, ()| < 1(|y| < 2a) for k = 0, 1, it follows that f3 (y) < 41(]y| <
4q) and thus

fs.allie <4 and ||| " fa.all < Cpa® forall n € Ny. (3.221)
In order to verify equation (3.219a), use APk = —A + V¢ — APk 1o write
RPuaTyhP™u RS = Roug ((=iV)Ty (=iV) + Ty (VE = P%))uy R
= —R> (=iVuo)Ty(=iVuug)R? + R (=iV)uoTyut o (~iV)R?
+ R (=iV)uo Ty (—iVita)R? = R* (=iViuo) Ty o (—iV)R?

+ R uaTyug(VE — AP)R3. (3.222)
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Since [[V¥R'?|l,, < C(||R]l,, + IVR'/?||,,) < C (see Lemma 3.8), it thus follows that

1 1
IR2uaTyh™* uaR|,, < Cfsa(y), (3.223)

With this at hand, one applies Lemma 3.9 to conclude the bound stated in equation (3.219a). For £3(y),
we proceed similarly as in equation (3.187), that is,

163(y)]

IA

IR 1o AP *Tyu 0 R | RV (W lhge Yi2w0]12,

IA

Fa O ITh B [ GlPul QRPE < Cha0G 0™, (224

Now, we can apply Lemma 3.5 and (3.221) to estimate

K551 < o [ @ a0 o) - e < ca, (3.225)
and further invoke Corollary 3.6 to obtain
Kial < [ & fa)(b +ama0) < Ca” (3.226)
Next, we come to K1, which we rewrite with the aid of equations (3.67) and (3.80) as
Ki = é / dy (Rsy¥ ® (Yg + YZ)IW(awp,)G% ), =K+ K7, (3.227)
with the operator Rs,, = Ry  +RZ  and

1
Rs

Py(hy IRuq(e P> = DT k"™ uoRe(hy )Py (3.228a)

R, = 2aPy(hk |Re(wp ) Rua(e P> = )Ty h**uoRp(hy )Py (3.228b)
Utilizing Lemma 3.9 and (3.32a), we have
IRL Wl < Cll(e™AP> = M + DYV2R2ug Ty i u o R (Rl )Pyl (3.229)
and following the same steps as in equation (3.84),
IR2 ¥ < Ca(y* +a ) (€47 = DR ugTyh™ uq Rp(hk )Pyl (3.230)
After using unitarity of e~47.» and equation (3.221), we can apply Lemma 3.9 another time to obtain

IRs & ® Y llw < Cfs,a(=y)(1+ay®) [N+ DYZ |5 (3.231)

Thus, we can estimate the tail with the aid of Corollary 3.14 and equation (3.221),
> c > 2 -6
|]C12 < Q_ZH(N+ 1)YK||.’F dy f3,n(_)’)(1 t+ay ) < Csa™. (3.232)
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Then we use equation (3.63), equaiton (3.74) and apply Lemma 3.15 to get
1 - —
K5I < o / dy |Ux e Rs y¢p ® Y|l le ™' W (awp ) Q|-

V2
< y/dy IRs. 3¢ @ Y llaw 6.5 (3)- (3.233)

To bound the norm in the integral, we proceed in close analogy to the steps following equation (3.196).
We abbreviate again G(,)<< =yY® Y1<< and start from equations (3.229) and (3.230). With equation (3.221),
the functional calculus and Ap y = iPyy +igp(y), one finds

1
IRy G llx < C(fsa(=pI(e™ "> =N+ 1)'2RZ¢(he )G |l

+a(y’ +a ) fs0(=p)ll(eAr = R $(hk )GYx)

< C(Aa-N OGP+ DR (kL )G, (3.2342)
+ Fa(=0)gp I+ DR g(hl )G | (3.234b)
+ a3 (@ +a (P )R (R )Gl (3.2340)
+ fra(=9) @y +a DIgp MR G (hk )G ). (3.234d)

In the second and fourth line, we use |gp(y)| < Ce|y|® and Lemma 3.9,

A

(3.234b) + (3.234d) < C(P|yl +alyl?) fr,0 (=)IN + DYZ |-
C@®yP +alyP) f3,a(-y). (3.235)

IN

In the first and third line, we employ the commutator [iP sy, ¢(f)] = n1(yVf) to get

(3.234a) + (3.234¢) < C(fg,a(—y)||(N+1)1/2R%¢(h}{’.)(fo)G(I)<<||7f (3.236a)
+ Fa NI+ DRI (yVhy )G (3.236b)
+ o=@y +a IRE$(h ) (PG Il (3.236¢)
+ a3 (@y? +a DIRIa(yVh )G ). (3.236d)

After another application of Lemma 3.9, we can use equation (3.67) and then Lemma 3.16 for the
terms involving P,

A

(3.236a) + (3.236¢) < Cfsa(=y)(@y> +1) |y [N+ 1)PFYZ||-
Chia(=y)(alyP +|yDa’VK,, (3.237)

IA

while in the other two lines, we use (Vhg). = —[V, hk_.], to obtain

(3.236b) + (3.236d) < Cfs.o (=) Iyl (@y® + Dl oll 2N+ DYE -
Chia(=y)(alyP + |y VK. (3.238)

IA
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Collecting all estimates we have thus shown that
IRs 0 © Y3l < Cfral=v)a®(@lyF + VK (aly + 1y))). (3.239)

Using this bound in equation (3.233), we can invoke Corollary 3.6 together with equation (3.221) in
order to obtain

K5, < CVKa 892, (3.240)

Term /C;. Using equations (3.67) and (3.80), one finds
1
Ky = v / dy (Rey ® (Yg + YZ)IW(awp )Gy ), = K5 +K5 (3.241)

. = 1 2
with the operator R¢ , = Rﬁ,y + Ré,y and

R, = Py¢(h JRuaNT_ye "> uqRp(hy )Py (3.242a)

Ry, = 2aPy¢(hi JRuaNT_ ye"vu,R(Re(wp )lhk,.),2Py. (3.242b)

With Lemma 3.9 and equation (3.32a) it is not difficult to verify
IR,y Pl < ClltaT-yuallo(1+@y?)[(N + 1>, (3.243)
and since [[uoT-yuoll,, < 1(|y| < 4a), we can use Corollary 3.14 to estimate the part with the tail by

C _
K| < JII(N+1)2YI><||f/dy 1(ly| < 4a)(1+ay?) < Csa™8. (3.244)

To treat K5 we proceed as in (3.233), that is

V2 c
sl < 2 / v Ret © Vil () < / Ay 1y € ) (1 + ) nsy(y).  (3.245)
It now follows from Corollary 3.6 that
IK5| < Ca™. (3.246)

Term /C3. This term is similarly estimated as the previous one. With the aid of equations (3.67) and
(3.80), we have

1
Ks = — / dy (R7.y¥ ® (YR + YZ)[W(awp )Gy ), = K5 +K3 (3.247)

with the operator R7,, = Rj | +R7  and

1
R7,y

Pyp(hy Ruqe P> T_y¢(h.+ op)uaRp(hy )Py (3.248a)

2
R7,y

20Py (Re(wp )hk )2 Ruae ™ P Ty ¢(h. + @p)uaR(hy )Py (3.248b)
Utilizing again Lemma 3.9 and equation (3.32a), one shows that

IR7y Pl < Chal(=y)(1+ay?)[|(N+1)*2¥|, (3.249)
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with f3 o defined in (3.220). Invoking Corollary 3.14 and equation (3.221), we thus find

C -
K51 SH0TDPYZ [ fra(n)(+ay?) < Coa™ (3.250)

Similarly, as in equation (3.233), we also obtain

V2 c
K51 < 33 [ R0 @ Y llonon ) < 55 [ avfa(-n(+arine, o). G250
By Corollary 3.6 and equation (3.220) it follows that
IK3] < Ca™®9. (3.252)

This completes the analysis of /. The proof of Proposition 3.21 follows from combining equations
(3.213), (3.214), (3.225), (3.226), (3.232), (3.240), (3.244), (3.246), (3.250) and (3.252). O

3.9. Concluding the proof of Proposition 2.8

Combining Propositions 3.18, 3.20 and 3.21, we arrive at

5+Q+K_inf0'(]HIK) N 3

K 1275 + VKa™0
N a? 202 ’

NG

(3.253)

< Cgas(

Now, for K < ca we know from Proposition 3.17 that N' > C a3 for some C > 0, such that the right side
is bounded by C, a®r(K, ). It remains to show that one can replace a2 inf o (Hg ) by a2 inf o (Ho,)
at the cost of an additional error. To this end, recall that inf c(Hg) = (Yg|Hg Yk )~ and use the
variational principle to find

(Yx|(Hg — Hoo) Yk ), < inf o (Hg) — inf o (He) < (Yool (Hx — Heo) Yoo .. (3.254)
Writing
_ 1 1 1 1 1 1
Hi —Heo = (Wl¢(h . — hDRG(hg W), > — (Wl¢(hHRG(h! = hye o) 5. (3.255)
and using Lemma 3.9, we can infer that for any ¥ € F
[(P|(Hk — Ho)¥) | < CK™V2(W|(N; + DY) . (3.256)

By Corollary 3.14, we know that (Y |(N;+1)Yx ) _ < C,and thus | inf o-(Hg ) —inf o-(He)| < CK~/2.
In view of equation (3.253) and Lemma 3.1 this completes the proof of Proposition 2.8.

4. Remaining Proofs

Proof of Lemma 1.1. The form of the kernel is readily found using second order perturbation theory (we
omit the details). (i) The lower bound H* > 0 follows from (1.19) whereas H*** < 1 is a consequence
of

4.1

2
12

(vI(1 = H™W) =4H/dyV(y)R”2h<(y)tﬁ

(ii) That Span{d;¢ : i = 1,2, 3} C KerH" follows from translation invariance of the energy functional
F (1.15). To show equality, we argue that there is a 7 > 0 such that (v|H"*v),» > 7|jv[|?, for all

v € L*(R3) with (v|Vg),> = 0 (note that this also implies (iii)). Since H** has real-valued kernel, it
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is sufficient to consider v € L]%Q(R3). We start by quoting [13, Lemma 2.7] stating that there exists a
constant T > 0 such that

Fv) - Flp) 2 Tyigl£3 v = (=2 4.2)

for all v € L?>(R?). (A key ingredient in the proof of this quadratic lower bound are the results about
the Hessian of the Pekar energy functional (1.12) that were obtained in [33]; see [13] for a detailed
derivation). Combined with equation (1.19), and using that for small & the infimum over y € R? exists,
this implies

(v|H"*v),» > 7 liminf min f, (y, €), (4.3a)
e—0 y€R3
o) =I5 +&7Mle — o = W2 + 267 Re(vlo — o(- = y)),2. (4.3b)

Given any v satisfying (v|Ve),2 = 0, we choose y* (&) such that f,, (y* (&), £) is minimal. Furthermore,
note that for every zero sequence (&, ),en such that

liminf [l¢ = ¢(- = ¥*(n)ll2 > 0, (4.4)
it follows that liminf,, e f, (y*(&5), &n) = o, and hence, we can conclude that |y*(g)| — 0 as & — 0.

To proceed, let (e) := ¢ — (- — y*(€)) and assume |y*(g)| > 0 (for if y* (&) = 0 it follows directly that
[ (e),¢e) = ||v||i2). With this, we can estimate

i _ _ n(e) 2
L@ 8) =I5 +e2n@)7 - 287 [vin(e)] = IVIZ = (vl )2 - (4.5)
In(e)ll,2
To bound the right side, write
1

1)@ = [ a5 (7 @T)pt =5y (e) “.6)

and use, by dominated convergence, that

I ds (V)@ (- = s3) = (D)l 2

—0 as |y|—>0. “@.7)

I fy ds (V) (- = sy)ll,2

Combining the last statement with |y*(g)| — 0 as € — 0 and (v|Vy),2 = 0, we conclude that

liminf £, (y*(e), &) 2 VI (4.8)
This completes the proof of items (ii) and (iii). Property (iv) follows from HP < (HP*)1/2 and
Tr;2(1 — HP*) < co; see Lemma 2.3 for K = co. o

Proof of Lemma 2.3. (i) The bound HPKek I Ran(I1;) < 1 follows analogously to equation (4.1) and
H;ek I Ran(ITp) = 0 holds by definition. The lower bound on Ran(I1;) is a consequence of (H*k —7) |
Ran(I1;) > O for some 7 > 0; see Lemma 1.1, in combination with

+(HY - HY&) < ck1/2, 4.9)
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To verify the latter, let v € Ran(I1;), IT,, = |v)(v| and write
(| (HESS — HP)) = 4 / dy Re (0] (hx..(y) — b)) Ry e ) (0.
4 / dy Re (y|(I, ) )R (. (y) = h.(0))0) . (4.10)

With Cauchy—Schwarz, it follows that
1R = E70) o] < 4K [y 1RV (e (3) = B OD Pl
+4K~1? / dy (IR'?(Ty hg ) (D) Py i3, + IRV (I h) (1) Py 3, 4.11)
and from Corollary 3.11, we obtain
|(vI(HEX — HP)v) ,| < cK™'2, (4.12)
(ii) On Ran(I1y) the inequality holds trivially, whereas on Ran(II;), it follows from Og < 1, B%( <
1O - 1),02 = (1 - (1 - H¥))71/2 and the elementary inequality (1 —x)~/? < 1+ p73/2x for all

x € (0,1-5).
(iii) Here, we use Trran () (1 — H?k) = 3, write

Trgan(rry) (1 — HEX) = / dy (ylhk ()RR, ()0, = / ay IR h (VP2 (@13)

and apply Corollary 3.11.
(iv) Since 1 — HIP{ek =TIIp+I1; (1 —Hlpfk)l'[l = Iy +4Tx, cf. equations (2.7a) and (2.7b), we can write

Trp2((=iV) (1 — H¥X)(=iV)) = Trp2 (VIIGV) + 4T, (VTk V). (4.14)

Using the explicit form of Iy, one shows that the first term is given by

3 2
3 Aell”,
Tr;2 (VHOV) = — ZTrLz (V|VA,~¢,0)(VA,-90|V) < 3—;, (4.15)
IVell’, 4= IVell7,
which is finite since Ay € L2. For the second term, it follows from a short computation that
T2 (VIx V) = / dy (WI[V. hie .(DIR[V. e (D)2 (4.16)

Using the Cauchy—Schwarz inequality and [|Vi/|,2 + [[R'/?[|,, + |[R'/?V||,, < oo, see Lemmas 3.7 and
3.8, we can estimate the last expression by

IA

/ dy [RV2[V. ke (P < C / dy (b )WIR + Ikl (7)ul2)

A

<c / dy bk o)P < Cllhgol’s = CK. (417)

This completes the proof of the lemma. O

Proof of Lemma 2.5. We recall that Hlpfk I Ran(ITy) = 0 and Tx = %(HIP{ek —1II;), and set Sx =
%(Hl + H,P(ek). For (u,,)nen an orthonormal basis of Ran(I1), we further set a,, = a(u,,) and use this to
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write the Bogoliubov Hamiltonian as

o)

Hx = Z ((unlSkum>L2aLam+(<un|TKﬁ>L2aILajﬂ+h.c.) + Trp2 (Tk).

n,m=1

Applying the transformation (2.11), a straightforward computation leads to

)

E.IK]HIKEJ}-< = Z (<Mn|(AKSKAK +BKSKBK +4AKTKBK)um>L2aLam

n,m=1
+ ((unl (A Sk Bx + AxTx Ak + B T B )it ) bl + h.c.))
+ TrRan(Hl) (TK + Bg Sk Bk + 2AKTKBK).

The statement of the lemma now follows from

Hl(AKSKAK + Bx Sk Bk +4AKTKBK)H1 = ‘[H;Ck

H](AKSKBK +AKTKAK +BKTKBK)H1 =0
1,7
H](TK+BKSKBK +2AKTKBK)H1 = 5( H[P;ek_nl).

Proof of Lemma 3.4. To bound [w}, y 17, we expand

1 S
wpy = (1 -e?V)(p+iép) = / dSl/ dsy eV (V)2
0 0
. 1
i -
+ m /0 dsIlje ?yv(yV)(PV)(p,
where we used IT; (yV)¢ = 0. Thus, since A € L?, we easily arrive at

Iwp lIF. < C(v*+a™*?P?)

L2 =

for some constant C > 0, and with |P| < ac we obtain the stated estimated. The bound for ||v711[, y||

follows from

~1 2 1 2 -1 1 2 1 2
”Wp,y”,‘z =[Ok Re(wp,y)”,‘z +©k Im(WP,y)”Lz < C”WP,y”Lb

where we used that O is real-valued and satisfies
0<B <O <1

I?

when restricted to Ran(I1;); see Lemma 2.3. To bound ||w(}, N

, We use
0 2 0 |2 -yV 2
Iwp yllz2 = lIwg Iz + Mo(1 — e )&l
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since ¢, £p and Il are all real-valued. Expanding 1 — e~V as in equation (4.21), it is easy to conclude
that ||[TIo(1 — e‘yv)fpni2 < CP?y?a~*. Using the explicit form of ITy and (Vg|p),> = 0, we can write

3 3
—— 3 (Viele™ V) (4.26)

w112 =
S TV, &

Using the Fourier representation and rotation invariance, we have
[(Viele™ Vo) .| = ' / pilé(p) I sin(py) dy|. (4.27)

By the elementary inequality |sinz — z| < Cz’, the formula [|(yV)¢||?, = 24y* and the finiteness of
[|A¢ll,2, we conclude that

w172 =20° < C(y* +y° +a™P?). (4.28)

To prove the last bound, we use
7517 = W% 1P, + 19k Re(wh )12 + [0 Im(wh )|, (4.29)

and hence with equation (4.24),
Blwh 12 < 1Fpy 12 — WS 12 < B Iwh 1. (4.30)
The desired bound now follows from equations (4.22) and (4.28). ]

Proof of Lemma 3.5. From Lemma 3.4, we have

§ 1P|

~ P
|||Wp,y||i2 —2/1y2| < Cla 2y +y*+y% < Cy— forall — <c¢, y> <ol 4.31)
a a

Hence, there is a constant ¢ > 0 such that for all y?> < ! the weight function (3.33) satisfies

ns(y) < exp(=(na®™? — pa=2%*)y?) (4.322)
nsn(y) 2 exp(=(na®'= + pa~?0t))?). (4.32b)
In the remainder, let us abbreviate f,,(y) = |y|"g(y) and Z(y) = |ns,,(y) — e"l"“mf&yzl. We then
decompose the integral into
Janwzo = [ anmzos [ anmzo 433)
with B, = {y € R? : y2 < @~!'}. The bounds (4.32a) and (4.32b) imply that
1Z(y)] < e~ (e”“’”“yz - 1) Vy € By (4.34)
and thus by |e* — 1| < ze® for z > 0, we obtain
/B A F0)Z0) < pa0! / dy fo(y)y2e(mimna ol (4.35)
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The last expression is further bounded by

2(1-6) 2

IA

—(gA—pa N a ne2 —(nid-pa-1)a2(1-9)y2
/ dy fu(y)y2erona™ el / dy [y|2erma™ @03 5

Crllgllo (/l— 0{-1)’(’”5)/2
) H

and since the resulting expression is uniformly bounded in n > g9 and « large, we get

ligllee
-/B dy fu(y)Z(y) < Cnm. 4.37)
To bound the second term in equation (4.33), we estimate
_ 0—264-1
[ anmz0) < [ v homanm e [a o, (4.38)

To see that the first summand is exponentially small as well, we use equation (4.29), equation (4.24) and
Re(w', y) =i Re(wpy) =T1; Re(wo,y) fori =0, 1,

Ipy 12 = IRe(w I + BIRe(wh )12 = BlRe(wo )% = BlI(1 - e Vgl (439)

and hence
- . 1 _y
nom () < exp (=1 g(y)) with q(v) = S0 =)l (4.40)

Since ¢ is real-valued, we have (¢le™V|p),> = (¢|e?V|p),2 = (¢ * ¢)(y) and thus

q(y) =llel’, = (¢ ) (y). (4.41)

Recall that, as shown in [36], the electronic Pekar minimizer ¢ is radial and nonincreasing and hence
@, cf. equation (1.14), is radial and nonincreasing as well, as convolutions of radial nonincreasing
functions are themselves radial nonincreasing functions. Consequently, ¢(y) is radial and monotone
nondecreasing, and thus g(y) > ¢(y’) for all y € B¢, y’ € Bg. On the other hand, by a simple

a’

computation, using the regularity of ¢, one finds that g(y) > Coy? for some Cy > 0 and all |y| small
enough, and thus g(y) > Coa! for all y € B¢, and « large. Therefore,

/ dy fu3)ns.n () < / dy fu(y)e B a0
c BS

@

< ¢ Conpa?! / dy fu(y) < e~ / dy fu(y)  (4.42)

for some d > 0, which completes the proof of the lemma. O

Proof of Lemma 3.16. Let p = —iV. By a straightforward computation using equation (2.11), we arrive
at

Uk PpURQ = )" a'(Axun)a’ (Bx pit)Q + Trp2 (B pBk)Q (4.43)
n

for some orthonormal basis (1), of L?(R?). That Bg pBk is trace-class can be seen via

Tr;2|BgpBk| < |IBkllus llPBkllus < CK, (4.44)
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where the second step follows from Lemma 2.3, implying ||Bk |lus < C, and
IpBkliis = Tri2(pBx Bk p) < Trpa(p(1 - Hig)p) < CK. (4.45)

By rotation invariance Tr;»(Bx pBk) = 0. The first term in equation (4.43), on the other hand, is seen
to be a two-particle wave function ®g given by

1
@ (x,y) = —(AgpBk + Bk pAk)(x,y). (4.46)
V2
Thus,
1
(Ykl(P£)*Yk), = SIAkpBk + BxpAkliis < 2MAx I3 lpBxllis < CK, (4.47)
where we invoked again equation (4.45). m}
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