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THE ALGEBRA OF DIFFERENTIALS OF INFINITE
RANK

W. C. BROWN

Introduction. Let £ and 4 denote commutative rings with identity and
assume that 4 is a k-algebra. A gth order k-derivation § of 4 into an 4-module
V is an element of Hom,(4, V) such that for any ¢ 4+ 1 elements a,, . .., a,
of A, the following identity holds:

q .
8(aoar . ..a,) = 21 (=D > an...ap58(@0.. .4y ... 4y .. a,)

1<...<ji
Thus, a 1st-order derivation is just an ordinary derivation of 4 into V.

In [5; 6], Y. Nakai has summarized and refined the work of several authors
(i.e. E. Kunz [4] and H. Osborn [7]) concerning the construction of a universal
object 2;9(4) for gth order derivations of A over k. Following the notation
and terminology of Nakai, ©,7(4) is defined to be an 4-module having the
following properties:

(): There exists a canonical ¢th order k-derivation §;? of 4 into ©,2(4).

(B): 2.7(A) is generated as an 4-module by

{ox*(a)|a € A}.

(v): Given any A-module V together with a gth order k-derivation \ of 4
into V, there exists a unique 4-module homomorphism ¥ mapping ;2(4)
into 7 such that A = ¥ o §;%
The construction of 2;?(4) together with a study of its functorial properties
are carried out in [6].

Suppose now that V is a commutative 4-algebra. Then a k-higher deriva-
tion of infinite rank § = {§,} from 4 into V is an infinite sequence of maps
51, 52, 63 [P such that

(1) each §; is an element of Hom,(4, V), and

(2) forallg = 1 and ¢, b in 4, we have

5,(ab) = ad, () + 81(@)81(d) + . . . + 8,(a)b.

Henceforth, we shall abbreviate this last equation by writing §,(ab) =
2 iti=q 8:(@)d; ©®).

Recently the author and W. E. Kuan in [1] have used this notion of k-higher
derivations of infinite rank to obtain some new results on analytic products of
a variety ¥ along a subvariety %.

Thus, the following question naturally arises from Nakai’s work. Does there
exist a universal object for k-higher derivations of infinite rank? The purpose
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of this paper is to show that such an object does exist and satisfies properties
analogous to a, 8 and v for 2;,7(4). We shall also study the functorial properties
of the universal object for k-higher derivations of infinite rank and finish
with an example for polynomial rings.

Preliminaries. Through this paper, all rings will be assumed to be associa-
tive and commutative but not necessarily containing an identity. & will always
denote a commutative ring with identity. We shall denote by A and B two
rings with identities which are k-algebras via two ring homomorphisms
01:k— A and 0, : k — B which take the identity of k2 to the identities in
A and B respectively. Henceforth we shall not explicitly write the map 6..
Thus, if @ is an element of 4 and x an element of &, we shall write xa instead
of 6:(x)a. In particular, if ¥ is a k-algebra homomorphism of 4 into B, then
V¥ is said to be zero on k if ¥ 0 6; = 0. We shall write ¥(k) = 0 if ¥ is zero
on k.

Let V be a ring (commutative but not necessarily containing an identity).
Then we shall call V' an A4-algebra if V is a unitary A-module such that
via = av; and

(1(1/11/2) = ((11/1)1/2 = V1((1V2)

for all 1, »2in V and @ in 4. An A-algebra homomorphism from an A-algebra
V1 to an A-algebra V. is a ring homomorphism which is also an A-module

homomorphism.
Let V be an A-algebra. By a k-higher derivation § = {§,} of 4 into V, we
shall mean an infinite sequence 6y, s, . . . of maps §, : A — V such that

(1) each §, is an element of Hom; (4, V), and
(2) for alle and b in A and ¢ = 1, we have

8,(ab) = ad,(0) + 61(@)dg1(d) 4+ ... + 6,1(a)d:(0) + 6,(a)bd.
We shall abbreviate this last equation (Leibniz’s rule) by writing
8,(ab) = 2 8:(a)8;(b).
+i=q

Thus, a k-higher derivation of 4 into an A4-algebra V is an infinite sequence
of linear maps of 4 into V which are all zero on %k and satisfy Leibniz’s rule.
We shall denote the collection of all such k-higher derivations of 4 into V by
(4, V).

Finally, we assume that the reader is familiar with the results which appear

in [5; 6].

1. Construction of the universal object for k-higher derivations. Let
A and %k be as in the preliminaries. We wish to construct an A4-algebra ,(4)
having the following properties:

(a) There exists a k-higher derivation §;* = {§;,4} from 4 into Q. (4).

(b) ©(4) is generated as an A-algebra by the set {§;,4(a)|a € 4,q = 1}.
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(c) Forany A4-algebra V and any k-higher derivation A = {\,} € (4, V),
there exists a unique A4-algebra homomorphism ¥ : Q,(4) — V such
that for all ¢ = 1, ¥ 0 §;,* = A,
We note that (b) means that Q;(4) is generated as an 4-module by all elements
of the form 8;;,# (@4)0k12 (@) . - « 8xin* (@4,). Thus, Q;(4) does not contain an
identity element.

We now proceed to the construction of €;(4). Following Y. Nakai [6], we
may construct for each ¢ = 1 a universal object 2;2(4) for ¢gth order deriva-
tions on A. Consider 4 ®; A, and let ¢: 4 ®; 4 —>A be given by
o> x; ®y:) = 2 xy: Let I be the kernel of ¢. We may view 4 ®; A4 as
an A-module via a(x ® y) = ax ®y. Then I is an ideal in 4 ®; 4 and

0->1—>4 45450

is an exact sequence of 4-modules. We note that I is generated as an A4-
module by all elements of the form 1 ® ¢ — ¢ ® 1, ¢ in A. Here 1 denotes
the identity of 4.

For all ¢ = 1, set ©,9(4) = I/I**! and define

57: 4 > 4) by 60)=(1Qa—a®1)+ I,

Then one can readily verify that properties «, 8 and ¥ mentioned in the intro-
duction hold.

Now let S = @1 /1911, the direct sum of the A-modules ©;2(4). Since

each 9,9(A4) is generated as an 4-module by {§,%(¢)|a € A}, we see that S is
generated as an A-module by {8;%(¢)|a € 4, q = 1}. Set

S" =85 @45 ®a... ®4S (the tensor product taken # times).
Let B, be the 4-submodule of S" generated by all elements of the form
S1 ®A N ®A Sn — Se(1) ®A e ®A So(n)

where the s; are in S, and ¢ is any permutation of {1,...,n}. Set ¥ (S) =
@1 S"/B,. Then & (S) is just the usual symmetric algebra generated by .S
over A, but without the zero degree terms. Thus, ¥ (S) is a commutative
A-algebra without an identity element. Since .S is generated as an 4-module
by the set {§;?(a)]e € 4,q = 1}, F(S) is generated as an A-algebra by the
same set. Thus, ¥ (S) is generated as an A-module by all elements of the
form {8;"1(ay) - .. 8" (as)|a; € 4,4, 2 1}.

Since 2;,2(4) C S C .7 (S), each §;¢ may be viewed as a gth order k-deriva-
tion of 4 into . (S). Thus, for each ¢ = 1 we have a gth order derivation ;¢
of A into ¥ (S), and .¥ (S) is generated as an A-algebra by

{6kq(a)la € Arq g 1}
Now let J denote the ideal in % (S) generated by all elements of the form
8:%(ab) — D 6.'(a)8’() a,bind,qg= 1.

t+i=q
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Let 7 : Z(S) — % (S)/J be the natural projection of ¥ (S) onto % (S)/J. Set
Q4) = £(S)/J, and for each ¢ = 1, &, = 7 068,% Then clearly 8,4 =
{61} € (4, 2 (4)). We also note the ,(4) is generated as an A-algebra
by {8:,4(a)|e € 4,q = 1} since S (S) is generated as an A-algebra by
{6:2(a)|ae € 4,q = 1}. Hence, (@(4),08:*) will be the desired universal
object if it has the universal mapping property (c)

THEOREM 1. Let V be any A-algebra and N = {N\,} € H#: (4, V). Then there
exists a unique A-algebra homomorphism ¥ : Q(A) — V such that for all
g1,

T 0 8t = A

Proof. By [6, Proposition 5], A, is a gth order k-derivation of 4 into V. Hence
by the universal mapping property of (@,9(4), 8;?), there exists a unique
A-module homomorphism %, : %(4) — V such that &, 0 8¢ = \,. By setting
Vo = @p=1h,:S— V, we obtain a unique 4-module homomorphism of S
into V such that for all ¢ = 1, ¥( 08,2 = )\, Since ¥ (S) is the symmetric
algebra generated by S over A (except for terms of degree zero), and V is
commutative, we may extend ¥, to an A-algebra homomorphism
¥, 1 Z(S) — V by setting

\1/1(51 Ra e RuaSn + Bn) = ‘1’0(81)‘1’0(82) PN ‘I/Q(Sn).
We note that if ¢ is an element of 4, then for all ¢ = 1 ¥;(§(a)) =
Vodi?(a) = N (a).
Suppose
80@) = T 6@’ )
o

=q
is a typical generator of the ideal J in % (S). Since ¥; is an A-algebra homo-
morphism, we have
¥1{6," (ad) — +Z 5" (2)8, (0)} =
+i=q
¥1084ad) — 2 U106 (a)¥1 08 (B) = N(ad) — 2 N(@)N;(0) =0
i+j=q +j=q

since \ is a k-higher derivation on 4. Hence, ¥;(J) = 0. Thus, ¥; induces an
A-algebra homomorphism ¥ of @,(4) into V such that for all ¢ = 1,
W 0 0xg? = A Since ©4(A4) is generated as an A4 -algebra by

{0 (a)|a € 4, ¢ 2 1},
¥ is obviously unique.

COROLLARY. Let A be a k-algebra with identity. Then there exists an A-algebra
U (4) and a k-higher derivation 64 € (A, U (A)) such that properties
(a), (b) and (c) are satisfied.

We shall call (2;(4), 8:4) the universal object associated with A, and
property (c) will be referred to as the universal mapping property (U.M.P.)
of (2;(4), 8:4). Clearly the A-algebra ©;(4) is unique up to isomorphism.
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We remind the reader again that Q;(4) is an A-algebra which does not
contain an identity.

2. Functorial properties of Q,(4). In this section we explore the functorial
properties of Q,(4).

Let A and B be two k-algebras with identities, and let #: 4 — B be a
k-algebra homomorphism taking the identity of 4 to that of B. Let §;4 = {6;,4}
and 6;% = {5;,%} be the canonical k-higher derivations of 4 and B into 2;(4)
and @, (B) respectively.

Now we may regard Q;(B) as an A-algebra via k. Since 6% o & is a k-higher
derivation of A into Q;(B), the U.M.P. of (2:(4), 6;%) implies that there
exists a unique A-algebra homomorphism &* : Q,(4) — €, (B) such that for
all ¢ = 1, #*8x,* = 6x,%h. The map % need not be a monomorphism but by
abuse of notation we shall identify A with 2(4) in B. Hence, if ¢ is an element
of A, then h*8;,*(¢) = 8B (a). Suppose C is a third k-algebra with identity,
and g : B — Cis a k-algebra homomorphism taking the identity of B to that
of C. Let g* be the induced mapping between @, (B) — ;(C). Then via gh, C
may be viewed as an A4-algebra. One can easily verify that g* o b* = (gh)*:
Q(4) = (0).

We may use the 4-algebra map £* to define a B-algebra homomorphism
LB ®4%) — 2 (B) as follows:

F«(;bi X4 xz) = ;bth*(xz)

Here %4, . . ., %, are elements of Q;(4), and by, . .., b, are elements of B. The
image of u in Q;(B) is a B-subalgebra, but not necessarily an ideal of Q;(B).
Let [Im u] denote the ideal of Q;(B) generated by the image of u.

Let us set @, (B/4) = Q% (B)/[Im u], and let j: Q(B) — 2 (B/4) be the
natural projection. Then @, (B/A4) is a B-algebra, and j is a B-algebra homo-
morphism. Foreach ¢ = 1,setd, = j 0 8,2 Thend = {3,} € #%(B, % (B/A)).
If ¢ is an element of 4, then forallg = 1,

3«("’) =job& ) =jo h*skaA (@) =0

since h*8;,4(a) is in Im p. Hence 3 is a k-higher derivation of B into @ (B/A)
which is zero an 4. Now we can show that (2;(B/A4),3) has the universal
mapping property with respect to all k-higher derivations on B which are
zero on 4.

LEMMA 1. Suppose V is any B-algebra, and N = {\;} € H%(B, V) such that
M) =0 for all q. Then there exists a unique B-algebra homomorphism
a:Q(B/A) > V such that w06 = .

Proof. By the UM.P. of (2(B), 6:%), there exists a unique B-algebra
homomorphism g : @,(B) — V such that «p 08, = N\. Suppose a is an
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element of 4. Then for all ¢ = 1, we have

(%): 0 = N\(a) = aodp,®(@) = ao(h* 0 6;* (a)).
Now let z be an arbitrary element of Im pu. Then 2z = p(Xiw10; ®4 x;) for
some by, ...,b, in B and x1,...,x, in ©(4). Since the tensor product is

over A, we may assume each x; has the form

Sk (a50)8k50* (ags) « - bk (@s,)-
Since h* is a ring homomorphism, and a, is a B-algebra homomorphism,
(%) implies ao(z) = 0. Thus, ao([Im u]) = 0. Hence, «o induces a B-algebra
homomorphism

a: UB)/[Imp] = Q(B/A) >V

such that @ 03, = A\, for all ¢ = 1. Since Q(B/A) is generated as a B-algebra
by {8,(6)|b € B, g = 1}, we see that a is necessarily unique.

Lemma 2. Q. (B/A) =2 Q4 (B) as B-algebras.

Proof. This lemma follows immediately from Lemma 1 and the uniqueness
of the universal object 2, (B).

We have now proven the following theorem:

THEOREM 2. Let A and B be k-algebras with identity, and let h : A — B be a
k-algebra homomorphism sending the identity of A to the identity of B. Let
u:B ®4%(A) — B be the induced B-algebra homomorphism. Then

Q4(B) = W%(B)/[Im 4]
as B-algebras.

We may use the ideas of Theorem 2 to present some information on exten-
sions of k-higher derivations. So as usual, let 4 and B be k-algebras with
identity, and let & : A — B be as before. We shall say that a k-higher deriva-
tion A = {\,} of 4 into a B-algebra V can be extended to B if there exists
N = {\/} €5(B, V) such that for all @ in 4 and ¢ = 1, \/(h(a)) = A (a).

ProrosiTiON 1. If p is injective, and Im p is an ideal direct summand of
Q. (B), then every k-higher derivation of A into a B-algebra V can be extended to
a k-higher derivation of B into V. Conversely, if every k-higher derivation of A
into a B-algebra V can be extended to a k-higher derivation of B, then u is injective
and, Im u is a B-algebra direct summand of Q. (B).

Proof. Let us first assume that p: B ®4 % (4) — 9 (B) is injective, and
that Im p = [Im u] is an ideal direct summand of Q;(B). Suppose V is a
B-algebra, and N = {\,} € (4, V). Then by the U.M.P. of (2,(4), 5:4),
there exists a unique A-algebra homomorphism « : Q;(4) — V such that
a 0 §;* = A\. We may extend « to a B-algebra homomorphism a; of B® 4 2,(4)
into V in the usual way:

a1(XC by ®axi) = X2 b(xy).
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Since p is injective, we may identify B ®4 2%(4) with Im x in @ (B). By
hypothesis, Im u is an ideal in Q;(B), and there exists an ideal L in ,(B) such
that Imu @ L = @(B). Hence, we may extend a; to a B-algebra homo-
morphism a; of Q;(B) into V such that a; when restricted to B ®,4 @;(4) is
ay. For each ¢ = 1, let A/ = a2 0 6,2 Clearly N = {)\/} € (B, V). If a is
an element of A4, then for all ¢ = 1, we have

A (@) = asd,®(a) = aslu(l ®adeo*(a))] =
0‘1(1 X4 5kqA(a)) = aakqA@') = )‘q(a)-

So we have extended \ to A\’ on B.

Now let us assume that every k-higher derivation of 4 into a B-algebra V'
can be extended to B. We first show that u is injective. For each ¢ = 1, let
pe: A— B ®4%%(A) be the k-module homomorphism defined as follows:
if aisin A4, then p,(a) = 1 ®4 6 (a). Here 1 of course denotes the identity
element of B. One easily checks that p = {p,} is a k-higher derivation of 4
into B ®4 @ (4). Thus by hypothesis,  can be extended to a k-higher deriva-
tion p’ = {p,/} of B into B ®, % (4). From the U.M.P. of (2x(B), §:%),
there exists a unique B-algebra homomorphism ¥ : Q;(B) = B ®4 % (4)
such that ¥ o §;2 = p'.

Now let z be an element in the kernel of u. Since Q;(4) is generated as an
A-module by products of the form 84,4 (a4 )0k 1,2 (@) - - - 04i*(@s,), We may
assume z has the form

2=2by...4 ®ibu*(@y)...0u"@wn), bu..s,in B.
Now

0

V(u(2)) = ¥{2 boy..ibris®(@ir) -+ - ki (@1,)}
=2 by..uw¥o&hn®@y) ... ¥0&,"@n) = 2 bu.pul@y) ... puas,)
=2 biytnd ®abra®@n)) ... (1 ®abri,*(as,)) = 2

Hence, u is injective. More generally, we have shown that ¥ o u is the identity
map. Thus, Im u is a B-algebra direct summand of Q;(B).

We note that if every k-higher derivation of 4 into V can be extended to B,
then Im u is a B-algebra direct summand of Q;(B). However, Im p need not
necessarily be an ideal direct summand of @;(B). In one important case, we
can simplify the statement of Proposition 1.

COROLLARY. Suppose that h: A — B s surjective. Then every k-higher
dertvation of A into a B-algebra V can be extended to B if and only if u is
injective.

Proof. If k is surjective, then u: B ®4 %(4) — 2 (B) is easily seen to be
surjective. Hence Im u = @4(B). Thus the result follows from Proposition 1.
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3. Localizations: A special case. Let A be a k-algebra with identity, and
suppose M is a multiplicatively closed set containing 1 in 4. In this section,
we further assume that M contains no zero divisors of 4. Later we shall remove
this second condition on M.

Let A, denote the localization of 4 by M. Recall then that 4, is a subring
of the total quotient ring of 4. Thus, 4, consists of all fractions of the form
a/m where a is in A and m is an element of M. Two fractions a/m and a’/m’
are equal if em’ = ma’. Since M contains 1, we may view 4 as a subring of
A 3 under the identification of ¢ with a/1.

We wish to prove the following theorem:

THEOREM 3. Ay @4 U(4) = (A y) as Ay-algebras.
We first need two lemmas:
LEMMA 3. Q4(4 ) = 0.

Proof. Let 6,44 = {64,424} denote the canonical A-higher derivation of
Ay into Q,(A4,). Since Q4(Ay) is generated as an A -algebra by the set
{644 (a/m)|a/m € Ay, q = 1}, it suffices to show that §,,4% = 0 for all q.
Now each 64,4¥ is zero on A. Hence for a/m in 4 ,;, we have

0 = 84,*¥(a) = aAﬁM(ﬁ;—-’%) = > bui¥(a/m) - a““‘M(—"f

i+i=q 1

c a7 M (a/m).

—y

Since m/1 is a unit in 4, we get 8,4, (a/m) = 0.

LEMMA 4. Every k-higher derivation of A into an A y-algebra V can be extended
to « k-higher derivation of A, into V.

Proof. Let V be an Aj-algebra. Then V does not necessarily contain an
identity element. So let V* = 4, @ V and define multiplication in V* as
follows:

(a1 + ») (a2 + vs) = a1as + aws + awi + vws.
Then V* is an A y-algebra which contains 4,. The identity of A4, is the
identity of V*.
Now let X = {\,} € #(4, V). Then \ may be viewed as a k-higher deriva-
tion of 4 into V*. Now by [2, Lemma 2], we may extend X\ uniquely to a k-
higher derivation N = {\/} € #% (44, V*). We next show that each )\,

actually maps 4, into V. We prove this by induction on g. Let a/m be an
element of 4,,. Then

)\1((1)

M (% : %) = TN (a/m) + o\ (%)

m\'(a/m) + a/mhi(m).
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Thus, M (a/m) = (1/m)(\(a) — (a/m)N\1(m)) which is an element in V.
Assume we have shown that N/, ..., A\, map 4, into V. Then

2@ =2 (£2) = 5 aia/myaf .

1¥j=¢g

Thus,

M (@/m) = - (M(@) = MmN eala/m) — ... — A(m)a/m).

By the induction hypothesis,
(I/m){Ne(@) = M(m)Ng—a' (@/m) — ... — N(m)a/m}

is an element of V. Hence, \,/ (¢/m) is an element of V. Thus, we have extended
\ to )\, a k-higher derivation of 4, into V.

We may now proceed with the proof of Theorem 3. By Lemma 4, every
k-higher derivation of 4 into an A4 j-algebra V can be extended to a k-higher
derivation of A, into V. Hence by Proposition 1, the 4 ,-algebra homo-
morphism  u: Ay a4 %(4) > @ (Ay) is injective. Since Q,(4,) = 0,
Theorem 2 implies that [Im u] = Q(4,). Hence, Theorem 3 will follow if we
show that Im u is an ideal in Q;(4 ).

Let ;4™ = {6, ¥} be the canonical k-higher derivation of 4, into Q;(4 ).
To show that Im u is all of Q;(4 ), it suffices to show that &,4A¥(a/m) € Im u
for all a/m in A, and ¢ = 1. We prove this by induction on ¢. For ¢ = 1, we
have

5™ (a/m) = oy (b (@) — aba ¥ (m)} € Im u.
By induction,

B M (a/m) = % {5kqAM (a) — 97};5“-41;1 (m) — . Bpg™™ (a/m)5k1AM(m)}

is an element of Im u. Therefore, u is surjective. This completes the proof of
Theorem 3.

4. Direct sums. As usual, let 4 be a k-algebra with identity. Suppose
there exists two ideals J; and J, in A such that J; @ J: = A as k-algebras.
Then J1 + Js = 4, and J1 N\ J, = JiJ2 = 0. Let 1 denote the identity of 4,
and write 1 = e; + e; with e; in J; and e, in J; respectively. Then each J; is a
k-algebra with identity e;. Thus, we may form @ (J1) and ©;(J;). Since @, (J ;)
is a J;-algebra, @ (J1) @ 9 (J2) is naturally an 4 = J; @ Js-algebra. Speci-
fically if a is an element of 4 and x and y are elements of Q;(J1) and Q;(J2)
respectively, then a(x @y) = aix @ aqy. Here ay is in Ji, a, in Js, and
@ = a1 + as. We can now prove the following theorem:

THEOREM 4. Q,(4) = Q. (J1) ® % (J2) as A-algebras.
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Proof. Let &7t = {8;,7'} and 872 = {6,'?} be the canonical k-higher
derivations of J; into ©,(J;) and J, into Q;(J2) respectively. Let

80 A — (1) @ X%
be defined as follows:

Forain A4,
64(‘1) = qu"l(ael) @quJz(ae2)-

Then one can easily show that § = {34} is a k-higher derivation of 4 into
Q. (J1) @ % (J2). From the U.M.P. of (2:(4), 8:4), we get a unique 4 -algebra
homomorphism ¥; : ©,(4) — Q,(J1) @ % (J2) such that ¥;06,* = 5. Thus
forallain A4,

W (0" (a)) = 8xe”* (aer) D dro” ().

Let ¢; and ¢, denote the inclusion mappings of J; and J, into A respectively.
Then 64 0 ¢c1 € 5 (J1, 2%(4)), and 84 0 ¢y € H (T, 2 (4)). Thus, we get
a unique Ji-algebra homomorphism aj: @ (J1) — ©(4) and a unique J.-
algebra homomorphism a3 : Q;(Js) — @ (4) such that a; 087t = §;4 0 ¢,
and a; 08,72 = 64 0¢c.. We may use a; and a, to define a map V¥, from
Q1) @ %Js) into Q(4) as follows: ¥olx @y) = a1(x) + a2(y). Here x
is an element of Q;(J1), and y is an element of Q;(J2). Since e;e; = 0, ¥, is an
A-algebra homomorphism. If a is any element of 4, then for all ¢ = 1 we have

V3 (5,(a)) = Wa(But @ du”?) (@) = ardi”*(@er) + asdeg”? (aes)
= Oy (aer) + 0re? (aez) = 8 (a).

Thus, we have constructed 4-algebra homomorphisms
\Illlgk(A)——)Qk(Jl) @9k(J2) and ‘Ileﬂk(]l) @Qk(Jg)-—-)Qk(A).

Since (¥y0 ¥y) 0§ = &4, the UM.P. of (@.(4),84) implies that
¥, 0 ¥; = identity. Suppose V is any A-algebra, and \ € 5 (4, V). Then
there exists a unique A-algebra homomorphism a: Q;(4) — V such that
a 08 = \. The composite map a 0 ¥, is an A-algebra homomorphism of
(1) @ %) into V such that (@ o ¥,) 08 = A\. We note that a o ¥, is
necessarily the unique A-algebra map for which (e o ¥s) 04 = \. Hence,
(@%(J1) ®%J2),8) has the UMP. Thus, ¥,0¥, = identity, and
Q0 (J1) @ % (J2) is isomorphic to Q;(4) as A4-algebras.

5. Residue class formations. Let 4 be a k-algebra with identity, and let
J be an ideal in 4. Let w: A — A/J denote the canonical projection of A4
onto A/J. Then as we noted before, the induced A4-algebra homomorphism
7 Q(4) > %(4/J) is surjective. Hence, the induced mapping
p: (A/T) @a%ud) = %(4/T) of (4/T)-algebras is surjective. Let IV denote
the kernel of u. Then

0>N— (A4/J) ®4%(A) B oa/7)—0

https://doi.org/10.4153/CJM-1973-013-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-013-4

ALGEBRA OF DIFFERENTIALS 151

is a short exact sequence of (4/J)-algebras. In this section, we wish to deter-
mine the structure of N.
Since 0 - J — A4 — 4/J — 0 is exact,

J @a%(A) >4 @a%u(d) = (4/)) @4 %) —0

is exact. Thus, (4/J) @4 %) = (A4)/T - %u(4) as (A/J)-algebras. Here
J - (4) is the image of J ®4 2% (4) under the composite map

J Qi) =>4 @anu(4) = 2u(4).

Clearly J - Qx(4) is an ideal in ©,(4), and @,(4)/J - % (4) is naturally an
(4 /7J)-algebra.

Let 6, (J) denote the ideal in Q,(4) generated by the set {8z, (x)|x in J,
g=1}.Set J = 64(J) + J - 9 (A4). Clearly J is an ideal in ©,(4).

Now u: (A/T) @4 %) —>%A/J) induces an (4/J)-algebra homo-
morphism (which we will also call u) from @;(4)/J - 9 (4) to Q,(4/J). Since
7*(J) = 0, =* induces an (4 /J)-algebra homomorphism & from @,(4)/J to
Q. (4/7). Specifically, g(y + J) = n*(y). Here y is any element of ©,(4). We
shall show that g is actually an (4 /J)-isomorphism of @ (4)/J onto Q(4/J).

We first define a k-higher derivation & = {8,} € #%(4/J, %(4)/]) as
follows: For ¢ in 4 and ¢ = 1, set

8@+ J) = 8xt(a) + J.

Since each 8,4 is additive and 8,4 (J) C J, each 3, is a well defined k-linear
homomorphism. Since 84 is a k-higher derivation, § = {3,} is a k-higher
derivation of A/J into Q4(4)/J. From the U.M.P. of (Q;(4/J), 8:4/7), we
get a unique (4 /J)-algebra homomorphism

U Q(A/T) = 2 (4) /T

such that W5, 47 (a + J) = d,(a + J) = dxe*(a) +J for all ¢ =1 and
ain A.
The (4/J)-algebra homomorphism & : Q(4)/J — Q. (4/J) is clearly

surjective. Using ¥, we can now show the g is injective. Suppose z is an
element in the kernel of g@. Then z has the form

2=3 Gu.idrn® @) . it (as) +J

where a;,...;, and @4y, ..., a4, are elements of A. Let @ denote the image of
an element ¢ (in A) in A/J. Then we have

0=Y@EE®) =YX Gu..coubrtn®”(@0) « + 051, (G14,)}
=2 Guia¥Ora®(G1y) « o o ¥bps,*"7 (G14,)
=3 Guevtndin (@) « -« 34, (asy)

Hence, u is injective.

https://doi.org/10.4153/CJM-1973-013-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-013-4

152 W. C. BROWN

We have now proven that Q(4)/6;4(J) 4+ J - @ (4) is isomorphic to
Q0 (4/7). Thus, we get the following commutative diagram with exact rows:

0—=N— (A4/]) s ud) — %A/J)—0

6 () 4+ T ) %)

The middle mapping is the (4/J)-algebra isomorphism sending
Z a; ®x1 g Z a;x; -+ J: Qk(A).
The commutativity of the above diagram implies that

N=§t() + T - %d)/T - 2%(4)

0—

— Q(4/J)—0.

as (4/J)-algebras. Hence, we have proven the following theorem:

THEOREM 5. Let A be a k-algebra with identity and J an ideal of A. Let 6,4 (J)
be the ideal in QU (A) gemerated by the set {8y,* (x)|x € J, ¢ = 1}. Then if N is
the kernel of the map u: (A/J) @4 %(4d) — Q(4/T),

N = {Z G; @4 xildi cd4/J,x; € ot ()}

6. Localizations. The general case. In this section, we shall prove
Theorem 3 without the added assumption that M consist of nonzero divisors.
So let 4 be a k-algebra with identity, and let M be any multiplicatively
closed set containing the identity 1 in 4. Let » = {x € A|mx = 0 for some
m in M}. Let #: A — A /n be the natural projection of A onto 4 /n. Then

w (M) = M* consists of nonzero divisors in 4/n, and (4/n)y« = A;. We
wish to prove the following theorem:

THEOREM 6. A3 ®4 U (A) =2 Q(A ) as Ay-algebras.
Proof. Let N denote the kernel of u: A/n ®4%(A4) — % (4 /7). Then
0—>N—A4/n @s%(4) = %(d/n) —0

is an exact sequence of (4 /n)-algebras. Tensoring with ® 44 3 (=R 4/ (4 /1) 3r%)
which is exact, we obtain that

0= N Qadyu— (A4/1n) @4 U(A) ®a Ay — UA/n) ®ady—0

is exact. Now (4/n) @4 %) @4 4= (A/n) @4 %) Qam (A /1)y =
Ay @a%u(4) and U(4/n) @4 Ay = U(A/1) Qam (A/n)y+ which by
Theorem 3 is isomorphic to Q;(4,,). Hence, we have

0> N @sdAu—> Ay @4 U(l) = %Ay) =0

is exact. Thus, the result will follow if we show N ®,4 4, = 0.
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By Theorem 5, N = {3 d; ® %;/a; € A/n,x, € §;*(n)}. Consider any
generator of N ®4 A of the form
(%) @1 @4 Yo (x) Qa4 a/m.

Here a, is an element of 4 /5, y an element of ©;,(4), x an element of #» and
d/m a representative of an element in 4 ,. Since x is in #, there exists an m’
in M such that m'x = 0. Now am'/mm’ is a well defined element of 4,, and
a/m = am’/mm'. Hence,

a1 @4 Y01 (x) Qa4 (a/M) = @) R4y 04 (x) Qa (@/mm').

Now, 0 = 6 (m'x) = w8114 (x) + %614 (m’). Thus,
_ a _ aQ
1 ®a ym'aklA (*) ®a am a1 ®a yxaklA (m") ®a 'rh-im7 =

— %31 @4 Y8 (') Q4 ﬁ =0.

The last term is zero since xd; = 0. Hence, any generator of the form (%) is
zero. The same proof shows that any generator of the form

@1 ®a 0 (x) @4 a/m
is zero also.
Let us assume we have proven that any generators of N ®4 4 of the form
a1 @4 ¥4 (x) Rad/mor @ ®adx(x) Qaa/marezerofori=1,...,q— 1.
Consider a generator of the form

z = 01 Q40" (x) @4 d/m.

Since x is an element of #, we can find an m’ in M such that m'x = 0. Then
2= d1 ®@aym 012 (x) Qa4 a/mm’.
Now, 0 = 8,2 (m'x) = 3 14 jmg Ok (m' )84 (x). Thus,
z = —a1 ®ay 6" (m)ore—1” (%) + Sx2” (M )8rg—2 (x) + ...
Xt (m')) ®a4 a/tim’ =0

by the induction hypothesis. A similar proof shows that

@1 @4 8 (x) @4 a/m = 0.
Thus, for all ¢ = 1 any generator of the form

a1 @4 Y0r* (¥) ®a @/ or &1 @40k (%) @ d/m

is zero. Since any element of N ®,4 A4, is a linear combination of generators
of these two types, we get N ®4 Ay = 0. Thus,

Ay RuW(A) = %(Anr).
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7. Tensor products. In this last section involving the functorial properties
of ©;(4), we shall present a tensor product relationship. Let 4 and B be
k-algebras with identities. Then B ® 4 is a k-algebra with identity and, we
can construct @z (B ®; 4). We can also consider B ®; % (4) asa (B ®; 4)-
algebra. These two (B ®y 4)-algebras are isomorphic.

THEOREM 7. Let A and B be two k-algebras with identities. Then
2p(B @A) =B @ %u(4)
as (B ®y A)-algebras.

Proof. We begin by defining a B-higher derivation of B ®; 4 into
B @i @ (4) as follows: For all ¢ = 1 set

Sq (;bz ®x ai) = ;lbi ®5kqA(ai)-

Here b1,...,0, are in B, and a4, ...,qa, are in A. Then one can readily
verify that & = {8,) € #s(B @14, B ®: %u(4)). From the U.M.P. of
Qp(B @i 4), 6529%4), there exists a unique (B ®j; A4)-algebra homo-
morphism ¥ : QB @A) = B @ % (4) such that ¥y 0§50 = 5.

Leta: A — B @y 4 be the k-algebra homomorphism given by a(a¢) = 1 ®a.
Then 6%®*4 0 « is a k-higher derivation of 4 into Q5(B ®; 4). Hence by the
U.M.P. of (2,(4),6;1), there exists a unique A-algebra homomorphism
V' 9 (A4) > QB @A) such that ¥y o064 = 6328 0. We may
extend W, in the usual way to a (B ®A4)-algebra homomorphism
Vy: B @ %(d) = QB ®i;4). Specifically, ¥.(3- b; @ x;) = 2 b,V (x4).
Here the b; are in B, and the x, are in ;(4).

Thus, we have (B ®y 4)-algebra homomorphisms

‘I’l:QB(B ®kA)"_>B ®ka(A) and \IIQ:B @ka(A)—_}QB(B ®kA).
It remains to show that these maps are inverses of each other. This is a some-

what laborious but straight forward computation and will be omitted.

8. An example. In this last section, we compute 2;(4) in the case that 4
is a polynomial ring.

Let x1, ..., x, denote a set of indeterminates, and let A = k[xi, ..., %,] be
the ring of polynomials in xy, . . ., x, with coefficients in k.
Let {uyle =1,...,n,¢g=1,...,0} be a second set of indeterminates

over A. Let A{u;,;) denote the ring of polynomials in the u;, with coefficients
in A but without constant term.
We may define a k-higher derivation § = {§,} of 4 into A (u,,) by defining

8o(x4) = uyy, for 1=1,...,m

and ¢=1,...,
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and then extending by Leibniz's rule [3, Proposition 2]. Clearly A{u;,) is
generated as an 4-algebra by the set {8,(x,)]i = 1,...,n,¢ = 1}.

Suppose N = {\,} € #%(4, V) where V is an A-algebra. We can define an
A-algebra homomorphism ¥ : 4(u;,) — V by setting ¥(#;) = A\,(x;). Then
¥ is the unique A4-algebra homomorphism which satisfies ¥ 0 § = X. Hence,
Qu(klxr, . ooy x0]) = Rlwn, - .o, %] (Uiy).

Added in proof. It has recently come to my attention that P. Ribenboim in
Higher deriwvations of rings. I, Rev. Roumaine Math. Pures Appl. 24 (1971),
77-110, has also constructed a universal object using different techniques
than appear here.
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